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and Positive Mass Theorem 
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Introduction 

In [An, Na, BKN] we have developed the theory of the Hausdorff 
convergence of Einstein 4-manifolds. Then the importance of ALE Ricci­
flat 4-manifolds has appealed to us. The phenomenon is very similar to 
the case of Yang-Mills connections. When the curvatures of Einstein 
metrics concentrate around a point, an ALE Ricci-flat 4-manifold bub­
bles off from there (see §2). This corresponds to the phenomenon that a 
Yang-Mills connection on 84 bubbles off from the points at which cur­
vatures of Yang-Mills connections concentrate [Uh]. The classification 
of Yang-Mills connections on 84 [AHS, Do2] has been essential in appli­
cations of the gauge theory to the differential topology ([Dol, FS]), so 
that it is very plausible that we think the classification of ALE Ricci­
flat 4-manifolds is also important. In view of Kronheimer's classification 
of such spaces under the additional assumption that the spaces are hy­
perkahler ([Kr]) (see §1), we pose the following question. Are there 
Ricci-fiat ALE 4-manifolds other than quotients of hyperkiihler space ? 

This question is related to physics. For ALE manifolds we can define 
the mass (see §3). If the space is Ricci-flat, the mass vanishes. Some 
physicists conjecture that the space is self-dual in this case [EGH]. This 
is a part of the generalized positive action conjecture. Although counter­
examples of this conjecture are recently constructed by LeBrun [Le], we 
can show that the conjecture holds under certain topological assump­
tions (Theorem 3.3). 

In this paper we shall make a survey of results on ALE Ricci-flat 4-
manifolds and give a partial answer to the above question. In particular 
we shall prove that a spin Ricci-flat ALE 4-manifold with r c 8U(2) 
has a hyperkahler structure (Theorem 3.3). We shall give some other 
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intrinsic characterizations of hyperkahler ALE 4-manifolds (Proposition 
4.2) using characteristic numbers. 

The author wishes to thank Professor M. Itoh for useful discussions. 

§1. ALE gravitational instantons 

After the discovery of Yang-Mills instantons on R4, physicists sought 
a corresponding object in gravity. Such an object, called "gravitational 
instanton", was first found by Eguchi and Hanson [EH]. This space is a 
noncom pact (complete) Riemannian 4-manifold which satisfies the Ein­
stein equation and we now call it the "Eguchi-Hanson space". It has 
an end which looks like the quotient space R4 / { ± 1}. Afterwards Gib­
bons and Hawking [ GH] found a family of Riemannian manifolds ( called 
"multi-Eguchi-Hanson space") which also satisfy the Einstein equation 
and each space has an end resembled R4 /r where r is a cyclic group. 
Then they introduced the following definition to describe this type of 
ends. 

Definition 1.1. Ann-dimensional complete Riemannian manifold 
(M,g) is said to be asymptotically locally Euclidean (ALE) of order 
r > 0, if there exists a compact subset K c M such that M \ K has 
coordinates at infinity; namely there are R > 0, a finite group r c O(n) 
acting freely on Rn \ BR(0), and a C 00 -diffeomorphism X: M \ K ....... 
(Rn\ BR(0))/r such that cp = x- 1 o proj satisfies (where proj is the 
natural projection of Rn to Rn /r) 

for X E Rn\ BR(0), 

The Einstein manifolds which were found by physicists have a hy­
perkahler structure which is defined as follows. 

Definition 1.2. A hyperkahler structure on a Riemannian man­
ifold (M,g) is a set of three almost complex structures (I,J,K) such 
that 

(1.3) g(Iv,Iw) = g(Jv, Jw) = g(Kv,Kw) = g(v, w) 

for v, w E TM, 

(1.4) VI= VJ = V K = 0, 

(1.5) IJ =-JI= K. 
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Multi-Eguchi-Hanson spaces were also found by Hitchin (Hi] who ob­
tained them by the Penrose's twistor construction. His approach had a 
close relationship with the deformation theory of rational double points. 
A quotient singularity C2 /r with a finite subgro;up r c SU(2) is called 
a rational double point and studied from several points of view by many 
mathematicians. Then Hitchin conjectured the existence of ALE grav­
itational instantons for other finite subgroups r c SU(2) which corre­
spond to the root systems and are classified as follows: 

An: r = {[': ,~~] : k = O,···,n} ~ Zn+l where ( is a primitive 

(n + 1)-th root of unity, 
Dn : r = 0;_2 the binary dihedral group of order 4(n - 2), 
E 6 : r = T* the binary tetrahedral group, 
E7 : r = 0* the binary octahedral group, 
E 8 : r = I* the binary icosahedral group. 

This conjecture was proved affirmatively by Kronheimer (Kr). 

Theorem 1.6 (Kr]. Let r be a finite subgroup of SU(2) and 
7r: M --. C2 /r the minimal resolution of the quotient space C2 /r as 
a complex variety. Suppose that three cohomology classes a.1, O.J, a.K E 
H 2(M; R) satisfy the non-degeneracy condition 

for each ~ E H2(M; Z) with E · E = -2 there exists 
A E {I, J, K} with a.A(E) =/:-0. 

Then there exists an ALE Riemannian metric g on M of order 4 to­
gether with a hyperkahler structure (I, J, K) for which the cohomology 
class of the Kahler form [wA] determined by the complex structure A 
is given by a.A for all A E I, J, K. Conversely every hyperkiihler ALE 
4-manifold of order 4 can be obtained as above. 

The exceptional set E of the minimal resolution M --. C2 /r decom­
poses to a union of CP 1 

and the intersection matrix (Ei · E;) is the negative of the Cartan matrix 
associated to the root system. In this way the set {E1, ···,En} can be 
identified with the set of simple roots. On the other hand the set of 
the classes {(E1), ···,(En)} gives a basis of the second homology group 
H2 (M; Z). Hence there is an isomorphism between H2(M; Z) and the 
weight lattice L. Moreover the cohomology group H 2 (M; R) is isomor­
phic to the Cartan subalgebra and the set {E E H2 (M; Z) I E · E = -2} 
are identified with the set of roots. 
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§2. Hausdorff convergence of Einstein manifolds 

In [ Gr] Gromov introduced a distance ( called Hausdorff distance) 
on the class of all metric spaces. There he proved the precompactness 
of the set of consisting of the isometry classes of Riemannian manifolds 
whose Ricci curvatures are bounded from below by -1 (for the definition 
and some properties of the Hausdorff distance the reader should read 
Fukaya's survey in this volume). Using Hausdorff distance, we consider 
the following class of Einstein 4-manifolds. 

Definition. 2.1. For a positive numbers R, D and k = ±1, 0 let 
£( k, D, V, R) denote the set of isometry classes of compact 4-dimensional 
Riemannian manifolds (X, g) satisfying the following conditions: 

(2.2) 
(2.3) 
(2.4) 

(2.5) 

Rieg= kg, 
diam(X,g) ~ D, 
vol(X,g) ~ V, 

l IRgj2 dVg ~ R, 

where R9 denotes the curvature tensor of g. 

By the Gromov's precompactness theorem £(k, D, V, R) is precom­
pact in the set of all compact metric spaces. Its boundary 8£( k, D, V, R) 
is described as follows. 

Theorem 2.6 [An, Na, BKN]. Let (X;, g;) (i = 1, 2, · · ·) be a 
sequence in £(k, D, V, R). Then there exists a subsequence {j} C {i} 
such that (Xj,9i) converges to a compact Einstein orbifold (X00 ,g 00 ) 

in the Hausdorff distance. More precisely, outside a finite set S = 
{x1, x2, · · ·, Xn} C X 00 there exists an into diffeomorphism </>j: X 00 \S ---t 

Xi such that the metric <P'}9i converges to 900 in the C 00 -topology on 
each compact subset of X 00 \ S. 

This compactness theorem is very similar to Uhlenbeck's compact­
ness theorem for Yang-Mills connections [Uh]. In her results Yang-Mills 
connections on S4 bubble off from points where the convergence are 
broken. In our case ALE Ricci-flat manifolds bubble off from S. 

Theorem 2.7 [BKN]. Let (Xj,9j), (X 00 ,g 00 ) and S be as in The­
orem 2.6. For each j and a = 1, ... ,n, there exists a point Xa,i E Xj 
and a positive number rj such that 

(2.8) (Xj, 9i, Xa,i) converges to (X00 , 900 , Xa) in the pointed Hausdorff 
distance, 

(2.9) lim r · = oo 
j--+oo J I 
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(2.10) the rescaled manifold (X;, r;g;, Xa,i) converges to an ALE Ricci 
flat 4-manifold (Ma, ha, Ya) in the pointed Hausdorff distance. 

Examples of Hausdorff convergence of Einstein 4-manifolds can be 
found in [Na] or [Ko] (in this volume). 

In the course of the proof we obtained the following intrinsic char­
acterization of the existence of coordinates at infinity. 

Theorem 2.11 [BKN]. Let (M,g) be a 4-dimensional Ricci-flat 
manifold which satisfies 

vol(Bt(P)) ~ Vt 4 

JM IRl2dVg < 00 

for all t > O, 

for some p E M and a positive constant V. Then (M,g) is ALE of 
order 4. 

We do not have any simply-connected non-hyperkahler examples 
which satisfy the conditions of Theorem 2.11. We conjecture that there 
are no such examples. In the following sections we shall give partial 
answers to this problem. 

§3. Positive mass conjecture 

Suppose that (M,g) is an n-dimensional ALE manifold of order 

r > n; 2 . In general relativity the mass of (M, g) is defined by 

(3.1) m(M,g) = lim f (8i(rp*g)i;(x)- 8;(rp*g)ii(x))8; ~dx, 
R-+oo jlzl=R 

where rp is as in Definition 1.L We remark that it is not at all clear 
that the mass m(M,g) is independent of the choice of coordinates at 
infinity. Bartnik [Ba] proved it by proving the uniqueness of harmonic 

coordinates at infinity under the condition r > n ; 2 . 

Physicists have conjectured that when (M,g) is an AE manifold 
(namely an ALE manifold with r = { e}) and has nonnegative scalar 
curvature, the mass m(M,g) is nonnegative and m(M,g) = 0 if and 
only if (M,g) is isometric to Rn with the standard metric. This positive 
mass conjecture was proved by Schoen and Yau [SYl] when n = 3 and 
r ~ 1 by the use of minimal surfaces. Shortly afterwards Witten [Wi] 
gave a different proof under the same assumptions using spinors. The 
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technique of Schoen and Yau can be used to prove tlie corresponding 
results when n ~ 7. (Schoen and Yau announced that the positive mass 
conjecture holds in arbitrary dimensions.) Witten's proof can be directly 
generalized to higher dimensional spin manifolds [Ba, LP]. 

For ALE 4-manifolds physicists (see [EGH]) conjectured that when 
( M, g) has nonnegative scalar curvature, the mass m( M, g) is nonnega­
tive and m(M,·g) = 0 if and only if (M,g) has self-dual curvature tensor. 
Recently LeBrun [Le] constructed counter-examples for this conjecture: 

Theorem 3.2 [Le]. The total space of any complex line bundle L 
over CP1 with Chern class c1 < -2 carries an ALE Kahler metric with 
zero scalar curvature of negative mass. 

In coordinates rp: C2 \Ba(O)-+ L \ CP1 (a> 0), the metric is written 
as 

g = (1- -)- 1(1 + -)- 1dr 2 + r 2 u2 + u2 + (1 - -)(1 + -)u 2 , a2 ka 2 ( a2 ka 2 ) 
r4 r2 1 2 r4 r2 3 

where k = -c1 and u1, u2, u3 is a left-invariant coframe of S 3 • The 
fundamental group r of the end is the cyclic group of order n = ~c 2 + 1 
acting on C2 by 

C2 ::l (z1,z2) 1-t ((z1,(z2), 

where ( is a primitive n-th root of unity. Dividing by this action, we can 
remove the apparent singularity at r = a, and define a smooth metric on 
L. Then a direct calculation shows that the scalar curvature vanishes, 
and the mass is negative. Moreover we have the anti-self-duality of the 
Weyl tensor. 

Recall that the universal covering space of S0(4) is Spin(4) = 
SU(2) x SU(2) = Sp(l) x Sp(l). The group Sp(l) x Sp(l) acts on R4 
which is identified with the space of quaternion H by the multiplication 
from right and left: 

Sp(l) x Sp(l) 3 (q,p) :c 1-t qxp for :c E R4 = H. 

When the ALE manifold ( M, g) is spin ( this is true for hyperkahler 
spaces), we suppose that the coordinates at infinity rp: R4 \ BR(O) --+ 

M \ K preserve the spin structure. Then r has a lift to Spin( 4). If we 
assume furthermore that r is contained in SU(2) and acts on C2 from 
the right, we have a satisfactory answer to our problem. 

Theorem 3.3. Suppose that (M,g) is a spin ALE 4-manifold of 
order r > 1 with the end S 3 /r where r c SU(2) acts from the right and 
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the scalar curvature 8 of ( M, g) is nonnegative. Then its mass m( M, g) 
is nonnegative. Moreover m(M,g) = 0 if and only if (M,g) admits a 
hyperkahler structure. 

When r acts from the left, the same conclusion holds for the orien­
tation reversing manifold of (M, g ). 

Proof of Theorem 3.3. We consider the bundle of self-dual spinors 
v+. Since r c 5U(2) acting from the right, v+ is trivial on M \ K. 
Hence we can take a constant spinor ¢ 0 with respect to this trivialization. 
We normalize ¢0 so that 1¢o I -+ 1 at infinity. As in [Ba, LP] we can 
take a spinor 'ljJ which is asymptotic to ¢ 0 and satisfies D'ljJ = 0. Then 
it holds 

m(M,g) = c /M(4IV¢1 2 + 5l¢1 2 )dV9 

for some positive constant c depending only on r. Since 5 ~ 0, we have 
m(M, g) ~ 0. If the mass vanishes, then V'ljJ = 0, and 5 = 0. Since ¢0 
is an arbitrary constant spinor, we can find a basis for the bundles of 
self-dual spinors v+ consisting of parallel spinors. This implies ( M, g) 
has a hyperkahler structure. Q.E.D. 

Corollary 3.4. If ( M, g) is a spin ALE Ricci fiat 4-manifold of 
order T > 0 with the end 5 3 /r where r c 5U(2) acts from the right, 
then it has a hyperkiihler structure. 

Proof. By Theorem 2.11 (M, g) is ALE of order 4. Hence the mass 
m(M, g) vanishes. So (M, g) has a hyperkahler structure by Theorem 
3.3. Q.E.D. 

An example of LeBrun is spin if and only if c1 is even. But even if 
c1 is even, the group r is not contained in 5U(2) in the coordinates at 
infinity preserving the spin structure. 

§4. Inequalities between characteristic numbers 

In this section we give other characterizations of hyperkahler mani­
fold among ALE Ricci-flat 4-manifold. First we derive an equality which 
corresponds to Hitchin's inequality for compact Einstein 4-manifolds. 

Theorem 4.2. Let (M,g) be an ALE Ricci-fiat 4-manifold (M,g) 
with the end 53 /r with Euler number x(M) and signature T(M). Then 

(4.3) 
1 

2(x(M) - lrf) ~ 3IT(M) + 11s(53 /r)j 
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where lfl is the order of r and rJs(S 3 /r) is the eta invariant of the 
space S3 /r for the signature operator. Moreover the equality holds if 
and only if w+ or w- vanishes identically, namely (M, g) or the op­
posite orientation space of ( M, g) is a quotient of an ALE hyperkii.hler 
4-manifold. 

Proof. For a Ricci-flat 4-manifold (M,g) the Gauss-Bonnet-Chern 
form is given by ( cf. [Bel) 

1 " i ,. 1 12 
3271"2 ~ ei;,.,n; 11. n, = 87l"21w dV9 , 

where W is the Weyl tensor of (M,g). Hence by the Gauss-Bonnet 
theorem for manifolds with boundary we have 

( 4.4) 

1 /" . ,. 1 
x(M) = 3271"2 J M ~ ei;,.,ni 11. n, + rrT 

i r 2 i 
= 871"2 JM IWI dVg + lrf" 

The first Pontrjagin form p 1 of ( M, g) is given by ( cf. [Bel) 

i 2 - i (I +12 I -12) - 871"2 trf! - 471"2 W - W dV9 , 

where w+, w- are the self-dual and the anti-self-dual Weyl tensors 
respectively. By the signature theorem for manifolds with boundary 
[APS] we have 

(4.5) 
r(M) = ~ JMP1 - rJs(S3 /r) 

= 21 2 / (lw+12 - 1w-12)dVg - rJs(S3 /r). 
1 71" jM 

Combining {4.4) and (4.5), we have the inequality (4.3) in Theorem 4.2. 
When the equality holds in (4.3), we have w+ = 0 or w- = 0. Q.E.D. 

The eta invariant of S3 /r is calculated as follows ([APS]): 

'f/ (S3 /r) = _ _!_'°'cot r(g) cot s(g) 
s 1r1 ~ 2 2 

gtl 

where r(g) and s(g) are the rotation numbers corresponding to the action 
of g E r c SO(4) at 0 E R4 • A direct calculation shows that for 
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r c SU(2) we have 

(S3 /r) = n(n - 1) 2n2 - 8n + 9 49 121 361 
T/S 3{n+l)' 6{n-2) '36' 72'180 

according to whether r is of type An, Dn, E 6, E 7 , Es. Since every 
hyperkahler ALE 4-manifold is simply-connected and its intersection 
form is the negative of the Cartan matrix, we have 

x(M) = -r(M) + 1 = n + 1, 

where n is the size of the Cartan matrix associated with r. The equal­
ity in Proposition 4.2 for an ALE hyperkahler 4-manifold can also be 
obtained from this directly. 

Now we recall the eta invariant T/D for the Dirac operator. Suppose 
that an ALE Ricci-flat 4-manifold (M,g) is spin. As in [Kr] we com-

pactify M to an orbifold M by a conformal change of the metric g. We 
denote by D: r(V+) --+ r(v_) the Dirac operator on M. Then the index 
theorem for orbifolds [Ka] says 

( 4.6) 

The eta invariant T/D(S3 /r) can be calculated as [HR] 

r, (S3 /r) = -- 1- '°' csc r(g) csc s(g). 
D 2lfl ~ 2 2 

g;tl 

For a hyperkahler 4-manifold (M,g) we have 

T/D(S3 /r) n(n + 2) 4n2 + 4n - 7 167 383 1079 
2 =12(n+l)' 48(n-2) '288'576'1440 

according tor is of type An, Dn, E6, E1, Es. Combining ( 4.5) and ( 4.6) 
we have 

(4.7) IndexD = -¼(r(M) + TJs(S3 /r)) _ TJD(~3 /r) 

for a spin ALE 4-manifold (M, g). In fact we have the following (see also 
[Kr; Lemma 7-2-1)]). 
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Proposition 4.8. If (M,g) is a spin ALE 4-manifold of order 
r > 0 with zero scalar curvature, then the index of the Dirac operator D 
on the compactification M equals to 0. 

Proof. Suppose we have a nonzero element of the kernel of the 

Dirac operator on M. Then by the conformal invariance of the Dirac 
operator, there exists a solution 1/; of D'I/; = 0 which satisfies the decay 
conditions 

11/JI = O(r- 3 ), 

jV'l/;j = O(r- 4 ), 

where r = dist(o, *) for some fixed o E M. The Weitzenbock formula 
for the Dirac operator says 

D*D = V*V + !s, 
8 

where S is the scalar curvature. Since S = 0 on M, we have 

V*V'I/; = 0 

By the decay conditions we can apply the Stokes theorem on M to get 

0 = /M(V*V'l/;,1/J) 

= JM (V'I/;, V'I/;). 

Thus we have V'I/; = 0 and hence 1/; = 0. This is a contradiction. 
Similarly the adjoint D* also has a trivial kernel. Q.E.D. 

Corollary 4.9. Under the same condition with Proposition 4.8 we 
have 

r(M) + r,8 (8 3 /r) + 4r,v(S3 /r) = o. 

In particular for a spin ALE Ricci-flat 4-manifold (M,g), the signa­
ture r( M) is determined by the end S3 /r. 
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