Advanced Studies in Pure Mathematics 18-I, 1990 Recent Topics in Differential and Analytic Geometry pp. 339-358

An Algebraic Character associated with the Poisson Brackets

Toshiki Mabuchi

Dedicated to Professor Akio Hattori on his sixtieth birthday

§0. Introduction

Let N be a connected compact Kähler manifold, and $\operatorname{Aut}(N)$ the group of holomorphic automorphisms of N. Then if $c_1(N)_{\mathbb{R}} < 0$ or $c_1(N)_{\mathbb{R}} = 0$, the celebrated solution of Calabi's conjecture by Aubin [2] and Yau [19] asserts that N always admits an Einstein-Kähler metric. In the case $c_1(N)_{\mathbb{R}} > 0$, however, the existence problem is still open, and moreover a couple of obstructions to the existence are known. For instance, Futaki [7] introduced a complex Lie algebra homomorphism $F_N: H^0(N, \mathcal{O}(TN)) \to \mathbb{C}$ such that

- (1) $F_N = 0$ if N admits an Einstein-Kähler metric;
- (2) $F_N \neq 0$ for N in a fairly large family of compact Kähler manifolds (see also Koiso and Sakane [15]).

The purpose of this note is to give a systematic study of the obstruction F_N from a viewpoint of symplectic geometry. For instance, we relate it to the theorem of stationary phase of Duistermaat and Heckman [4], [5]. Another key to our approach is the following (cf. §6):

Theorem 0.1. For any unipotent subgroup of $\operatorname{Aut}(N)$, the corresponding nilpotent Lie subalgebra of $H^0(N, \mathcal{O}(TN))$ sits in the kernel of F_N . Hence, if $F_N \neq 0$, then N admits a nontrivial biregular action of the algebraic group \mathbb{G}_m (= \mathbb{C}^* as a complex Lie group).

Recall in particular that this theorem implies the identity

 $(0.2) \qquad \qquad \psi(g) = |\det \phi(g)|^{\gamma} \qquad \text{for all } g \in \operatorname{Aut}(N),$

Received July 12, 1988.

where ψ : Aut $(N) \to \mathbb{R}_+$, ϕ : Aut $(N) \to \operatorname{GL}_{\mathbb{C}}(V)$ and $\gamma \in \mathbb{Q}$ are just the same as in [10], so that γ is $2 \cdot (1+n)^{-1}$ or $(1+n)^{-1}$ according as the (complex) dimension n of N is even or odd. Moreover, taking the infinitesimal form of (0.2), we obtain the identity $F_N = \gamma (\det \circ \phi)_*$ on $H^0(N, \mathcal{O}(TN))$.

This note consists of rather independent seven sections including the first two introductory ones, and was written as an addendum to the preceding joint work [10] with A. Futaki. The author wishes to thank him and also Professor S. Kobayashi for valuable suggestions and encouragement.

§1. Notation and conventions

1.1. Throughout this note, we fix an *n*-dimensional complex connected manifold X. Let $|\mathcal{O}^*|^2$ be the multiplicative sheaf over X arising from the presheaf

$$U \to \{ |f|^2; f \in H^0(U, \mathcal{O}^*) \}$$

with open subsets U of X. Then $H^0(U, |\mathcal{O}^*|^2) = \{\varphi \in C^{\infty}(U)_{\mathbb{R}}; \varphi > 0 \text{ and } \partial \bar{\partial} \log \varphi = 0\}$, where $C^{\infty}(U)_{\mathbb{R}}$ denotes the set of all real-valued C^{∞} functions on U. Let \mathcal{Z} be the set of all real d-closed $C^{\infty}(1,1)$ -forms on X, and \mathcal{B} the space of all $\sqrt{-1}\partial \bar{\partial} \varphi$ with $\varphi \in C^{\infty}(X)_{\mathbb{R}}$. Put

$$H^{1,1}(X,\mathbb{R}) := \mathcal{Z}/\mathcal{B},$$

and by abuse of terminology, we say that $\omega, \omega' \in \mathbb{Z}$ are *cohomologous*, if $\omega - \omega' \in \mathcal{B}$. Note that the following isomorphism is more or less known (which I learned from Enoki and Tsunoda):

(1.1.1)
$$H^{1,1}(X,\mathbb{R}) \cong H^1(X,\mathcal{O}^*/S^1) (= H^1(X,|\mathcal{O}^*|^2)).$$

By introducing somewhat new objects such as \mathcal{L}_{ζ} down below, we shall here give a differential geometric treatment of this isomorphism. Let ζ be an element of $H^1(X, |\mathcal{O}^*|^2)$ represented by a Čech 1-cocycle $\{\zeta_{ij}\}$ with respect to a sufficiently fine Stein cover $X = \bigcup_{i \in I} U_i$. We then have the corresponding R-line bundle \mathcal{L}_{ζ} over X such that the restriction $\mathcal{L}_{\zeta|U_i}$ of \mathcal{L}_{ζ} over each U_i is identified with $U_i \times \mathbb{R}$ by

$$U_{i} imes \mathbb{R} \cong \mathcal{L}_{\zeta \mid U_{i}}, \qquad (x,s) \leftrightarrow s \cdot \mathbf{e}_{i},$$

where \mathbf{e}_i is a local C^{∞} base for \mathcal{L}_{ζ} over U_i satisfying $\mathbf{e}_i(x) = \zeta_{ij}(x) \mathbf{e}_j(x)$, $x \in U_i \cap U_j$. Let \mathcal{L}_{ζ}^* be the dual \mathbb{R} -line bundle over X. Then a C^{∞} section

h of \mathcal{L}_{ζ}^{*} over X is called a *norm* for \mathcal{L}_{ζ} if $\mathbf{h}_{i} := \langle \mathbf{h}, \mathbf{e}_{i} \rangle$ is positive on U_{i} for each $i \in I$. Note that any norm **h** for \mathcal{L}_{ζ} is locally written as $\mathbf{h}_{i}\mathbf{e}_{i}^{*}$ on U_{i} , and the local data $\{\mathbf{h}_{i}\}_{i\in I}$ are characterized by the property $\mathbf{h}_{i} = \zeta_{ij} \cdot \mathbf{h}_{j}$. We now define the first Chern form $c_{1}(\mathcal{L}_{\zeta}, \mathbf{h})$ for \mathcal{L}_{ζ} with respect to **h** by

$$c_1(\mathcal{L}_\zeta,\mathbf{h}):=rac{\sqrt{-1}}{2\pi}ar\partial \log\mathbf{h}_i.$$

Then, given ζ , the (1,1)-form $c_1(\mathcal{L}_{\zeta}, \mathbf{h})$ is easily shown to define a common cohomology class in $H^{1,1}(X, \mathbb{R})$ (denoted by $c_1(\mathcal{L}_{\zeta})$) for all \mathbf{h} . Conversely, for any real *d*-closed C^{∞} (1,1)-form ω on X, we can write

$$\omega_{|U_i} = rac{\sqrt{-1}}{2\pi} ar{\partial} \log \mathbf{h}_i, \qquad i \in I,$$

for some $\mathbf{h}_i \in C^{\infty}(U_i)_{\mathbb{R}}$ with $\mathbf{h}_i > 0$. Then by setting $\zeta(\omega)_{ij} := \mathbf{h}_i/\mathbf{h}_j$, we have an element $\zeta(\omega) = \{\zeta(\omega)_{ij}\}$ of $H^1(X, |\mathcal{O}^*|^2)$, depending only on ω , such that $\{\mathbf{h}_i\}_{i \in I}$ form a norm **h** for the \mathbb{R} -line bundle $\mathcal{L}_{\zeta(\omega)}$ with

(1.1.2)
$$\omega = c_1(\mathcal{L}_{\zeta(\omega)}, \mathbf{h}).$$

Moreover, $\zeta(\omega_1) = \zeta(\omega_2)$ whenever ω_1 and ω_2 are cohomologous. Hence, denoting by $[\omega]$ the cohomology class in $H^{1,1}(X,\mathbb{R})$ represented by ω , we have the inverse

(1.1.3)
$$H^{1,1}(X,\mathbb{R}) \to H^1(X,|\mathcal{O}^*|^2), \qquad [\omega] \mapsto \zeta(\omega)$$

of the mapping: $H^1(X, |\mathcal{O}^*|^2) \ni \zeta \mapsto c_1(\mathcal{L}_{\zeta}) \in H^{1,1}(X, \mathbb{R})$. This then gives the isomorphism (1.1.1).

1.2. By a log-harmonic \mathbb{R} -line bundle over X, we mean a $C^{\infty} \mathbb{R}$ -line bundle \mathcal{L} over X written in the form $\mathcal{L} = \mathcal{L}_{\zeta}$ for some $\zeta \in H^1(X, |\mathcal{O}^*|^2)$. Now, let $p: \mathcal{L} \to X, p': \mathcal{L}' \to X$ be arbitrary log-harmonic \mathbb{R} -line bundles over X. Then by abuse of terminology, a diffeomorphism $g: \mathcal{L} \to \mathcal{L}'$ is called *log-harmonic*, if the following conditions are satisfied:

- (1) There exists a holomorphic automorphism \tilde{g} of X such that the identity $\tilde{g} \circ p = p' \circ g$ holds.
- (2) For each $x \in X$, the restriction $g_{|p^{-1}(x)} : p^{-1}(x) \to p^{-1}(\tilde{g}x)$ is an \mathbb{R} -linear isomorphism.
- (3) $g(\mathbf{e}_i)/\mathbf{e}'_j \in H^0(\tilde{g}(U_i) \cap U_j, |\mathcal{O}^*|^2)$, for all $i, j \in I$, where $\{\mathbf{e}_i\}$ (resp. $\{\mathbf{e}'_i\}$) are the local bases for \mathcal{L} (resp. \mathcal{L}') as defined in 1.1.

Furthermore, \mathcal{L} and \mathcal{L}' are said to be *equivalent* (denoted by $\mathcal{L} \sim \mathcal{L}'$), if there exists a log-harmonic diffeomorphism $g: \mathcal{L} \to \mathcal{L}'$ such that the corresponding automorphism \tilde{g} of X is id_X . By setting

 $\operatorname{Pic}_{\mathbb{R}}(X) := \{ \operatorname{all log-harmonic} \mathbb{R} \text{-line bundles over } X \} / \sim,$

we have (see (1.1.1), (1.1.2), (1.1.3) above):

$$H^{1,1}(X,\mathbb{R})\cong H^1(X,|\mathcal{O}^*|^2)\cong \operatorname{Pic}_{\mathbb{R}}(X), \qquad [\omega]\leftrightarrow \zeta(\omega)\leftrightarrow [\mathcal{L}_{\zeta(\omega)}],$$

where $[\mathcal{L}_{\zeta(\omega)}] \in \operatorname{Pic}_{\mathbb{R}}(X)$ is the class represented by $\mathcal{L}_{\zeta(\omega)}$. For a logharmonic line bundle \mathcal{L} over X, let $\mathcal{Z}_{\mathcal{L}}$ denote the set of all real *d*-closed C^{∞} (1,1)-forms on X in the cohomology class $c_1(\mathcal{L})$. We then set

$$\begin{split} \mathbf{H}_{\mathcal{L}} &: \text{ the set of all norms for } \mathcal{L}, \\ \mathcal{S}_{\mathcal{L}} &:= \{ \omega \in \mathcal{Z}_{\mathcal{L}}; \, \omega \text{ is nowhere degenerate} \}, \\ \mathcal{ES}_{\mathcal{L}} &:= \{ \omega \in \mathcal{S}_{\mathcal{L}}; \sqrt{-1}\bar{\partial}\partial \log(\omega^n) = r\omega \text{ for some } r \in \mathbb{R} \}, \\ \mathcal{EK}_{\mathcal{L}} &:= \{ \omega \in \mathcal{ES}_{\mathcal{L}}; \, \omega \text{ is a K\"ahler form} \} \end{split}$$

where elements of $\mathcal{ES}_{\mathcal{L}}$ (resp. $\mathcal{EK}_{\mathcal{L}}$) are called *Einstein symplectic* (resp. *Einstein-Kähler*) forms on X. Note that, in view of (1.1.2), the mapping

$$\mathbf{H}_{\mathcal{L}} \to \mathcal{Z}_{\mathcal{L}}, \qquad \mathbf{h} \mapsto c_1(\mathcal{L}, \mathbf{h}),$$

is surjective. Moreover, for elements $\mathbf{h}_1, \mathbf{h}_2$ in $\mathbf{H}_{\mathcal{L}}$, the identity $c_1(\mathcal{L}, \mathbf{h}_1) = c_1(\mathcal{L}, \mathbf{h}_2)$ holds if and only if $\mathbf{h}_1/\mathbf{h}_2 \in H^0(X, |\mathcal{O}^*|^2)$. Hence, whenever X is compact, \mathbf{h} is uniquely determined by $c_1(\mathcal{L}, \mathbf{h})$ up to constant multiple. Finally, a positive real $C^{\infty}(n, n)$ -form Ω on X is called an *Einstein volume form* if $(\sqrt{-1}\bar{\partial}\partial \log \Omega)^n = r\Omega$ for some $r \in \mathbb{R}$. We put

 $\tilde{\mathcal{E}}$: the set of all Einstein volume forms on X.

Obviously, $\tilde{\mathcal{E}}$ is nonempty if there exists a log-harmonic line bundle \mathcal{L} over X with $\mathcal{ES}_{\mathcal{L}} \neq \phi$.

1.3. Let $X = \bigcup_{i \in I} U_i$ be a sufficiently fine Stein cover, and L a holomorphic line bundle over X with transition functions θ_{ij} $(i, j \in I)$. To this L, we can naturally associate the Čech cohomology class $\{\theta_{ij}\} \in H^1(X, \mathcal{O}^*)$. Put $\zeta := \{|\theta_{ij}|^2\} \in H^1(X, |\mathcal{O}^*|^2)$, and denote by $L_{\mathbb{R}}$ the corresponding \mathbb{R} -line bundle \mathcal{L}_{ζ} over X. Let \mathcal{H}_L be the set of all C^{∞} Hermitian (fibre) metrics of L over X, and for each $h \in \mathcal{H}_L$, let $c_1(L, h)$ be the first Chern form for L with respect to h. We then have the map

$$\operatorname{ord}_{\mathbb{R}}: L \to L_{\mathbb{R}}, \qquad \ell \mapsto \operatorname{ord}_{\mathbb{R}}(\ell) := \ell \cdot \overline{\ell}$$

such that, for each $h \in \mathcal{H}_L$, there exists a unique norm (denoted by $h_{\mathbb{R}}$) for $L_{\mathbb{R}}$ satisfying the following conditions:

- $(1) \quad h(\ell,\ell)=h_{\mathbb{R}}(\mathrm{ord}_{\mathbb{R}}(\ell))\,(=h_{\mathbb{R}}(\ell\cdot\bar{\ell})),\qquad \ell\in L.$
- (2) The mapping $\mathcal{H}_L \ni h \mapsto h_{\mathbb{R}} \in \mathbf{H}_{L_{\mathbb{R}}}$ is a bijection.
- (3) $c_1(L,h) = c_1(L_{\mathbb{R}},h_{\mathbb{R}}).$

If $L = K_X^{-1}$, then we have a natural identification of $\mathcal{H}_{\mathcal{L}}$ with the space of volume forms on X. Moreover, in this case, the cohomology class $c_1((K_X^{-1})_{\mathbb{R}}) \in H^{1,1}(X, \mathbb{R})$ will be denoted simply by $c_1(X)_{\mathbb{R}}$.

1.4. From now on, until the end of this note, we fix an arbitrary log-harmonic \mathbb{R} -line bundle \mathcal{L} over X with $\mathcal{S}_{\mathcal{L}} \neq \phi$. Consider moreover a complex Lie subgroup G of the group $\operatorname{Aut}(X)$ of holomorphic automorphisms of X such that the natural G-action on X lifts to a quasi-holomorphic G-action on \mathcal{L} , where an action of G on \mathcal{L} is said to be quasi-holomorphic, if the following conditions are satisfied:

- (1) Each element g of G induces a log-harmonic diffeomorphism of the \mathbb{R} -line bundle \mathcal{L} (cf. 1.2).
- (2) Let {e_i; i ∈ I} be the local bases for L as defined in 1.1. Then for each i, j ∈ I, the functions g(e_i)/e_j (g ∈ G) are, wherever defined, written in the form |w_{ij;g}|² for some holomorphic functions w_{ij;g} (g ∈ G) depending holomorphically on g.

In this note, we fix such a lifting once for all, and look at the left G-action

$$G imes \mathbf{H}_{\mathcal{L}} o \mathbf{H}_{\mathcal{L}}, \qquad (g, \mathbf{h}) \mapsto g \cdot \mathbf{h} := (g^{-1})^* \mathbf{h},$$

where $((g^{-1})^*\mathbf{h})(\ell) := \mathbf{h}(g^{-1} \cdot \ell)$ for all $\ell \in \mathcal{L}$. Let \mathfrak{g} be the complex Lie subalgebra of $H^0(X, \mathcal{O}(TX))$ associated with G in $\operatorname{Aut}(X)$. For each $\mathcal{Y} \in \mathfrak{g}$, we define the corresponding real vector field $\mathcal{Y}_{\mathbb{R}}$ on X by

$$\mathcal{Y}_{\mathbb{R}} := \mathcal{Y} + \overline{\mathcal{Y}}.$$

Let J be the complex structure of X, and put $\mathfrak{g}_{real} := \{ \mathcal{Y}_{\mathbb{R}}; \mathcal{Y} \in \mathfrak{g} \}$. Then by sending $\mathcal{Y} \in \mathfrak{g}$ to $\mathcal{Y}_{\mathbb{R}} \in \mathfrak{g}_{real}$, we have the complex Lie algebra isomorphism $(\mathfrak{g}, \sqrt{-1}) \cong (\mathfrak{g}_{real}, J)$ with $\mathcal{Y} = \frac{1}{2}(\mathcal{Y}_{\mathbb{R}} - \sqrt{-1}J \cdot \mathcal{Y}_{\mathbb{R}})$. Now for each $(\mathcal{V}, \mathbf{h}) \in \mathfrak{g}_{real} \times \mathbf{H}_{\mathcal{L}}$, we define a C^{∞} section $\mathcal{V}\mathbf{h}$ for \mathcal{L}^* by

$$\mathcal{V}\mathbf{h} := \left. \frac{\partial}{\partial t} \right|_{t=0} (\exp(t\mathcal{V}))^* \mathbf{h} \ (= \left. \frac{\partial}{\partial t} \right|_{t=0} (\exp(-t\mathcal{V})) \cdot \mathbf{h} \).$$

Denote by $\mathcal{L} \otimes_{\mathbb{R}} \mathbb{C}$ the complex line bundle on X obtained as the complexification of \mathcal{L} . Note then that

(1.4.1)
$$\mathcal{Y}\mathbf{h} := \frac{1}{2}(\mathcal{Y}_{\mathbb{R}} - \sqrt{-1}J \cdot \mathcal{Y}_{\mathbb{R}})\mathbf{h},$$

is a global C^{∞} section for $\mathcal{L} \otimes_{\mathbb{R}} \mathbb{C}$. If X is compact, we can further define a \mathbb{C} -linear map $T_{\mathcal{L},\mathbf{h}} \colon \mathfrak{g} \to \mathbb{C}$ by

(1.4.2)
$$T_{\mathcal{L},\mathbf{h}}(\mathcal{Y}) := \int_{X} \mathbf{h}^{-1}(\mathcal{Y}\mathbf{h}) c_1(\mathcal{L},\mathbf{h})^n, \qquad \mathcal{Y} \in \mathfrak{g}.$$

Then by (1.4.1), the corresponding real and imaginary parts are written in the form

$$\operatorname{Re}(T_{\mathcal{L},\mathbf{h}}(\mathcal{Y})) = \frac{1}{2} \int_{X} \mathbf{h}^{-1}(\mathcal{Y}_{\mathbb{R}}\mathbf{h}) c_{1}(\mathcal{L},\mathbf{h})^{n},$$
$$\operatorname{Im}(T_{\mathcal{L},\mathbf{h}}(\mathcal{Y})) = -\frac{\sqrt{-1}}{2} \int_{X} \mathbf{h}^{-1}((J \cdot \mathcal{Y}_{\mathbb{R}})\mathbf{h}) c_{1}(\mathcal{L},\mathbf{h})^{n}.$$

Now, just by the same argument as in Donaldson [3; Proposition 6] (see also [17; Appendix A]), both $\operatorname{Re}(T_{\mathcal{L},\mathbf{h}})$ and $\operatorname{Im}(T_{\mathcal{L},\mathbf{h}})$ (and therefore $T_{\mathcal{L},\mathbf{h}}$) are independent of the choice of \mathbf{h} in $\mathbf{H}_{\mathcal{L}}$. (Hence, $T_{\mathcal{L},\mathbf{h}}$ is often denoted by $T_{\mathcal{L}}$.) We later study this independence from quite different viewpoints (cf. §5).

1.5. In this note, by N, we always denote a compact complex connected manifold with a holomorphic line bundle L over it. Here in 1.5, we further set X = N, and assume that \mathcal{L} is quantized by L, i.e.,

- (1) $\mathcal{L} = L_{\mathbb{R}}$, and
- (2) the natural G-action on X lifts to a holomorphic bundle action on L in such a way that the mapping $\operatorname{ord}_{\mathbb{R}}: L \to \mathcal{L}$ is G-equivariant.

Then by (3) of 1.3, the identity (1.4.2) and its real part are written in the form

$$T_{\mathcal{L},h_{\mathbb{R}}}(\mathcal{Y}) = \int_{N} h^{-1}(\mathcal{Y}h) c_1(L,h)^n,$$

 $\operatorname{Re}(T_{\mathcal{L},h_{\mathbb{R}}}(\mathcal{Y})) = rac{1}{2} \int_{N} h^{-1}(\mathcal{Y}_{\mathbb{R}}h) c_1(L,h)^n = (\psi_L)_*(\mathcal{Y}),$

for all $h \in \mathcal{H}_L$ and $\mathcal{Y} \in \mathfrak{g}$, where $(\psi_L)_* \colon \mathfrak{g} \to \mathbb{R}$ is the Lie algebra homomorphism defined in [10; §1]. We now assume that \mathcal{L} is anticanonically quantized, i.e., \mathcal{L} is quantized by the anticanonical line bundle $L = K_N^{-1}$ on which G acts naturally. Throughout this note, we denote such \mathcal{L} by \mathcal{A} (i.e., $\mathcal{A} := (K_N^{-1})_{\mathbb{R}}$). Then for each $\omega \in \mathcal{S}_{\mathcal{A}}$ (cf. 1.2), let $F_{N,\omega} \colon \mathfrak{g} \to \mathbb{C}$ be the \mathbb{C} -linear map defined by

$$F_{N,\omega}(\mathcal{Y}) = \int_N (\mathcal{Y}f_\omega) \, \omega^n,$$

where $f_{\omega} \in C^{\infty}(N)_{\mathbb{R}}$ is such that

$$\sqrt{-1}\bar{\partial}\partial\log(\omega^n) - 2\pi\omega = \sqrt{-1}\partial\bar{\partial}f_\omega.$$

Note that, for ω as above, there exists an element h of \mathcal{H}_L (unique up to constant multiple) such that $c_1(L, h) = \omega$. Then by the same argument as in Futaki and Morita [12; Proposition 2.3] (see also [17; Appendix A]), we obtain:

(1.5.1)
$$T_{\mathcal{A},h_{\mathbb{R}}}(\mathcal{Y}) = F_{N,\omega}(\mathcal{Y}), \qquad \mathcal{Y} \in \mathfrak{g}.$$

Since $T_{\mathcal{A}} = T_{\mathcal{A},\mathbf{h}}$ does not depend on the choice of \mathbf{h} in $\mathbf{H}_{\mathcal{A}}$ (cf. 1.4), the identity (1.5.1) implies that $F_{N,\omega}$ is also independent of the choice of ω in $\mathcal{S}_{\mathcal{A}}$. Hence, $F_{N,\omega}$ is often written as F_N (which is nothing but the one in the introduction). Thus, $F_N = T_{\mathcal{A}}$ if $\mathcal{S}_{\mathcal{A}} \neq \phi$ (where $T_{\mathcal{A}}$ is defined even when $\mathcal{S}_{\mathcal{A}} = \phi$, though F_N is not). Later, we shall give a nontrivial example of an Einstein non-Kähler symplectic form (cf. § 3), and show the following slight generalization of a theorem of Futaki [7]:

Theorem 1.6. The \mathbb{C} -linear map $T_{\mathcal{A}} (= F_N) \colon \mathfrak{g} \to \mathbb{C}$ is a complex Lie algebra homomorphism, i.e., $T_{\mathcal{A}}$ vanishes on $[\mathfrak{g}, \mathfrak{g}]$. Moreover, if $\tilde{\mathcal{E}}$ is nonempty, then $T_{\mathcal{A}} = 0$.

This theorem, of course, includes the important case $G = \operatorname{Aut}(N)$, and is valid even for the case where $S_{\mathcal{A}}$ is empty (though in our actual proof for the former half of 1.6, we assume $S_{\mathcal{A}} \neq \phi$ for simplicity).

§2. Poisson brackets for complex manifolds

Throughout this section, we fix an element ω of $S_{\mathcal{L}}$ (cf. 1.4) and write it locally in the form

$$\omega = rac{\sqrt{-1}}{2\pi}\sum_{lpha,eta=1}^n g_{lphaareta}\,dz^lpha\wedge dz^{areta},$$

with a system (z^1, z^2, \ldots, z^n) of holomorphic local coordinates on X. Let $C^{\infty}(X)_{\mathbb{C}}$ (resp. $C^{\infty}(X)_{\mathbb{R}}$) be the set of all complex-valued (resp. real-valued) C^{∞} functions on X. Then for this ω , we can define the associated Poisson bracket $[,]: C^{\infty}(X)_{\mathbb{C}} \times C^{\infty}(X)_{\mathbb{C}} \to C^{\infty}(X)_{\mathbb{C}}$ by

$$[arphi,\psi]:=\sum_{lpha,eta=1}^ng^{aretalpha}(arphi_lpha\psi_{areta}-arphi_{areta}\psi_lpha),\qquad arphi,\psi\in C^\infty(X)_\mathbb{C},$$

where $(g^{\bar{\beta}\alpha})$ is the inverse matrix of $(g_{\alpha\bar{\beta}})$ and

$$\psi_{lpha} := rac{\partial \psi}{\partial z^{lpha}}, \, arphi_{ar lpha} := rac{\partial arphi}{\partial z^{ar lpha}}, \, \dots \, .$$

In this section, we shall give a natural realization of \mathfrak{g} as a complex Lie subalgebra of $C^{\infty}(X)_{\mathbb{C}}$, which will later turn out to play a crucial role in our approach. Now, to each $\psi \in C^{\infty}(X)_{\mathbb{C}}$, associate complex C^{∞} vector fields \mathcal{V}_{ψ} and \mathcal{W}_{ψ} on X by

$$egin{aligned} \mathcal{W}_{m{\psi}} &:= -\sum_{lpha,eta=1}^n g^{ar{eta}lpha} \psi_{ar{eta}} rac{\partial}{\partial z^lpha}, \ \mathcal{V}_{m{\psi}} &:= \mathcal{W}_{m{\psi}} - \overline{\mathcal{W}_{ar{m{\psi}}}}. \end{aligned}$$

We first recall the following classical fact:

Fact 2.1. $\sqrt{-1}C^{\infty}(X)_{\mathbb{R}}$ is a Lie subalgebra of $C^{\infty}(X)_{\mathbb{C}}$. Moreover, for any $\varphi, \psi, \eta \in C^{\infty}(X)_{\mathbb{C}}$, we have:

(1) $[\mathcal{V}_{\varphi}, \mathcal{V}_{\psi}] = \mathcal{V}_{[\varphi, \psi]}$ and $[\varphi, \psi] = \mathcal{V}_{\varphi} \psi$.

(2) If X is compact, then $\int_X [\varphi, \psi] \eta \, \omega^n = \int_X \varphi [\psi, \eta] \, \omega^n$.

Let \mathfrak{p} be the space of all functions $\psi \in C^{\infty}(X)_{\mathbb{C}}$ such that \mathcal{W}_{ψ} is holomorphic on X. Then by comparing the holomorphic (1,0)-components of $[\mathcal{V}_{\omega}, \mathcal{V}_{\psi}]$ and $\mathcal{V}_{[\omega, \psi]}$, we immediately obtain:

Corollary 2.2. $[\mathcal{W}_{\varphi}, \mathcal{W}_{\psi}] = \mathcal{W}_{[\varphi, \psi]}$ for all $\varphi, \psi \in \mathfrak{p}$, i.e., \mathfrak{p} is a complex Lie subalgebra of $C^{\infty}(X)_{\mathbb{C}}$ and the \mathbb{C} -linear map: $\mathfrak{p} \ni \psi \mapsto \mathcal{W}_{\psi} \in H^{0}(X, \mathcal{O}(TX))$ is a complex Lie algebra homomorphism.

Now, choose a norm $\mathbf{h} \in \mathbf{H}_{\mathcal{L}}$ for \mathcal{L} such that $c_1(\mathcal{L}, \mathbf{h}) = \omega$ (cf. 1.2). (Note that such an \mathbf{h} is unique up to constant multiple if X is compact.) Moreover, to each $\mathcal{Y} \in \mathfrak{g}$, we associate the function $\xi_{\mathbf{h}}(\mathcal{Y}) := \mathbf{h}^{-1}(\mathcal{Y}\mathbf{h}) \in C^{\infty}(X)_{\mathbb{C}}$. Then by setting $\tilde{\mathfrak{g}} := \operatorname{Image}(\xi_{\mathbf{h}})$, we have:

Theorem 2.3. (1) $\mathcal{W}_{\xi_{\mathbf{h}}(\mathcal{Y})} = \mathcal{Y}$ for all $\mathcal{Y} \in \mathfrak{g}$. In particular, $\tilde{\mathfrak{g}}$ is a subset of \mathfrak{p} . (2) The \mathbb{C} -linear map $\xi_{\mathbf{h}} \colon \mathfrak{g} \to \tilde{\mathfrak{g}}$ is a complex Lie algebra isomorphism.

Proof. (1) Take a sufficiently fine Stein cover $X = \bigcup_{i \in I} U_i$ of X. Fixing an arbitrary $i \in I$, we express \mathcal{Y} on U_i in the form:

$${\mathcal Y} = \sum_{\gamma=1}^n a^\gamma rac{\partial}{\partial z^\gamma} \qquad (a^\gamma \in H^0(U_i, {\mathcal O})),$$

where $(z^1, z^2, ..., z^n)$ is a system of holomorphic local coordinates on U_i . Let \mathbf{e}_i be the local base for \mathcal{L} over U_i as defined in 1.1, and write \mathbf{h} as $\mathbf{h}_i \mathbf{e}_i^*$ on U_i for some $\mathbf{h}_i \in C^{\infty}(U_i)_{\mathbb{R}}$. An infinitesimal form of (2) of 1.4 yields

$$u:=-(\mathcal{Y}\mathbf{e}_{oldsymbol{i}})/\mathbf{e}_{oldsymbol{i}}\in H^0(U_{oldsymbol{i}},\mathcal{O}).$$

Moreover by $c_1(\mathcal{L}, \mathbf{h}) = \omega$, we have $(\log \mathbf{h}_i)_{\gamma\bar{\beta}} = -g_{\gamma\bar{\beta}}$ for all β and γ . Since $\xi_{\mathbf{h}}(\mathcal{Y}) = \mathcal{Y}(\log \mathbf{h}_i) + u$, it now follows that:

$$egin{aligned} \mathcal{W}_{m{\xi}_{\mathbf{h}}(\mathcal{Y})} &= -\sum_{lpha,eta,\gamma} g^{ar{eta}lpha} (a^{\gamma}(\log\mathbf{h}_i)_{\gamma}+u)_{ar{eta}} \, rac{\partial}{\partial z^{lpha}} \ &= -\sum_{lpha,eta,\gamma} g^{ar{eta}lpha} a^{\gamma} (\log\mathbf{h}_i)_{\gammaar{eta}} \, rac{\partial}{\partial z^{lpha}} = \mathcal{Y}. \end{aligned}$$

(2) In view of (1) above, it suffices to show $[\xi_{\mathbf{h}}(\mathcal{Y}_1), \xi_{\mathbf{h}}(\mathcal{Y}_2)] = \xi_{\mathbf{h}}([\mathcal{Y}_1, \mathcal{Y}_2])$ for all $\mathcal{Y}_1, \mathcal{Y}_2 \in \mathfrak{g}$. For simplicity, we put $\zeta_1 := \xi_{\mathbf{h}}(\mathcal{Y}_1)$ and $\zeta_2 := \xi_{\mathbf{h}}(\mathcal{Y}_2)$. Then by $\mathcal{Y}_1 \mathbf{h} = \zeta_1 \mathbf{h}$ and $\mathcal{Y}_2 \mathbf{h} = \zeta_2 \mathbf{h}$, we have:

$$\xi_{\mathbf{h}}([\mathcal{Y}_1,\mathcal{Y}_2])\mathbf{h}=[\mathcal{Y}_1,\mathcal{Y}_2]\mathbf{h}=\mathcal{Y}_1(\zeta_2\mathbf{h})-\mathcal{Y}_2(\zeta_1\mathbf{h})=(\mathcal{Y}_1\zeta_2-\mathcal{Y}_2\zeta_1)\mathbf{h}.$$

This together with (1) above yields

$$\xi_{\mathbf{h}}([\mathcal{Y}_1,\mathcal{Y}_2])=\mathcal{Y}_1\zeta_2-\mathcal{Y}_2\zeta_1=\mathcal{W}_{\zeta_1}(\zeta_2)-\mathcal{W}_{\zeta_2}(\zeta_1)=[\zeta_1,\zeta_2],$$

as required.

Remark 2.4. Note that the kernel of the mapping

$$\mathcal{W} \colon \mathfrak{p} \to H^0(X, \mathcal{O}(TX)), \qquad \psi \mapsto \mathcal{W}_{\psi}$$

is exactly $H^0(X, \mathcal{O})$ (= \mathbb{C} if X is compact). Suppose now that X is compact and that ω is a Kähler form. Then the Albanese map $a_X \colon X \to Alb(X)$ of X naturally induces the Lie group homomorphism

$$\tilde{a}_X \colon \operatorname{Aut}^0(X) \to \operatorname{Aut}^0(\operatorname{Alb}(X)) \cong \operatorname{Alb}(X)),$$

where $\operatorname{Aut}^{0}(\cdot)$ denotes the identity component of $\operatorname{Aut}(\cdot)$. Let P_0 be the kernel of this homomorphism \tilde{a}_X , and \mathfrak{p}_0 the associated Lie subalgebra of $H^0(X, \mathcal{O}(TX))$. Then P_0 has a natural structure of a linear algebraic group (cf. Fujiki [6]), and by a theorem of Lichnerowicz [16], the image of the mapping \mathcal{W} is exactly \mathfrak{p}_0 . Hence,

$$\mathfrak{p}_0 \cong \mathfrak{p} / \operatorname{Ker} \mathcal{W} = \mathfrak{p} / \mathbb{C}.$$

Q.E.D.

Remark 2.5. In the case where \mathcal{L} is anticanonically quantized with X = N, the Lie algebra homomorphism $\xi_{\mathbf{h}}$ was first observed by Futaki (through a definition quite different from ours) in the earlier version of [7] (see [11; 3.1]), though his original argument was later replaced by the new one in [7]. In this particular sense, our approach here is regarded as a natural generalization of forgotten Futaki's original approach to our log-harmonic bundle cases.

§3. Factorization of the character $T_{\mathcal{L},\mathbf{h}}$

For a fixed symplectic form ω in $\mathcal{S}_{\mathcal{L}}$, we choose an element **h** of $\mathbf{H}_{\mathcal{L}}$ such that $c_1(\mathcal{L}, \mathbf{h}) = \omega$ (cf. 1.2). In this section, assuming X to be compact, we shall express $T_{\mathcal{L},\mathbf{h}}$ as a composite of two Lie algebra homomorphisms and then prove Theorem 1.6. A nontrivial example of an Einstein non-Kähler symplectic form will also be given (cf. 3.3).

3.1. We here regard \mathbb{C} as an abelian one-dimensional complex Lie algebra. Let $\lambda_{\omega}: C^{\infty}(X)_{\mathbb{C}} \to \mathbb{C}$ be the \mathbb{C} -linear map defined by

$$\lambda_{\omega}(arphi):=\int_Xarphi\,\omega^n,\qquad arphi\in C^\infty(X)_{\mathbb C},$$

and we endow $C^{\infty}(X)_{\mathbb{C}}$ with the natural structure of a complex Lie algebra coming from the Poisson bracket defined in §2. Then λ_{ω} is a complex Lie algebra homomorphism, i.e., λ_{ω} vanishes on the commutator subalgebra of $C^{\infty}(X)_{\mathbb{C}}$, since by (2) of Fact 2.1 applied to $\eta = 1$, the identity $\int_{X} [\varphi, \psi] \omega^{n} = 0$ holds for all $\varphi, \psi \in C^{\infty}(X)_{\mathbb{C}}$. Now for $\mathcal{Y} \in \mathfrak{g}$,

$$\lambda_{\omega}(\xi_{\mathbf{h}}(\mathcal{Y})) = \lambda_{\omega}(\mathbf{h}^{-1}(\mathcal{Y}\mathbf{h})) = T_{\mathcal{L},\mathbf{h}}(\mathcal{Y}) \qquad (\text{cf. } (1.4.2)),$$

and hence we have:

Theorem 3.2. $T_{\mathcal{L},\mathbf{h}} = \lambda_{\omega} \circ \xi_{\mathbf{h}}$, and in particular, $T_{\mathcal{L},\mathbf{h}}$ is a complex Lie algebra homomorphism.

Until the end of this section, we set X = N, and assume moreover that \mathcal{L} is anticanonically quantized (cf. 1.5). Then $\mathcal{L} = \mathcal{A}$, $L = K_N^{-1}$, and we can naturally regard each $\Omega \in \tilde{\mathcal{E}}$ (cf. 1.2) as an element, denoted by h_{Ω} , of \mathcal{H}_L via

$$h_{\Omega}(\ell,\ell) := \pm < \Omega, \, (\sqrt{-1})^n \, \ell \wedge \bar{\ell} >, \qquad 0 \neq \ell \in L,$$

where <, > denotes the ordinary contraction of forms by vectors, and the plus or minus sign is chosen in such a way that the right-hand side is always positive. We shall now prove Theorem 1.6:

Proof of 1.6. In view of 3.2, it suffices to show the latter half of 1.6. (For this latter half, our proof down below goes through even if $S_{\mathcal{A}} = \phi$.) Let $\Omega \in \tilde{\mathcal{E}}$. Then there exists an $r \in \mathbb{R}$ such that

$$r \Omega = (\sqrt{-1}\partial \partial \log(\Omega))^n = (2\pi c_1(L,h_\Omega))^n.$$

Now, for any $\mathcal{Y} \in \mathfrak{g}$, we denote by $\mathcal{Y}\Omega$ the complex Lie derivative $(d \circ i_{\mathcal{Y}} + i_{\mathcal{Y}} \circ d)\Omega$ $(= d(i_{\mathcal{Y}}\Omega))$ of Ω with respect to the holomorphic vector field \mathcal{Y} . Then, in view of 1.5, we have:

$$T_{\mathcal{A}}(\mathcal{Y}) = \int_{N} h_{\Omega}^{-1}(\mathcal{Y}h_{\Omega}) c_{1}(L,h_{\Omega})^{n} = \int_{N} \{(\mathcal{Y}\Omega)/\Omega\} c_{1}(L,h_{\Omega})^{n}$$
$$= \frac{r}{(2\pi)^{n}} \int_{N} \mathcal{Y}\Omega = \frac{r}{(2\pi)^{n}} \int_{N} d(i_{\mathcal{Y}}\Omega) = 0.$$
Q.E.D.

Remark 3.3. The result of Koiso and Sakane [15] on the existence of non-homogeneous Einstein-Kähler metrics is true also for the Einstein symplectic case. In fact, in the definition of "tight pair" in [17; p.731], replace the condition (2) by

" ω is an Einstein symplectic form satisfying $\sqrt{-1}\bar{\partial}\partial \log(\omega^n) = \omega$ ",

and moreover, in place of the assumption " \tilde{Y} is a Fano manifold" in [17; Theorem 10.3], we assume the following:

- (1) $(c_1(W) + t c_1(L_1))^e[W] \neq 0$ whenever -n'' < t < n'.
- (2) $c_1(\tilde{Y})^{m_0}[\tilde{D}_0] \neq 0 \neq c_1(\tilde{Y})^{m_\infty}[\tilde{D}_\infty]$, where $m_0 = \dim_{\mathbb{C}} \tilde{D}_0$ and $m_\infty = \dim_{\mathbb{C}} \tilde{D}_\infty$.

Then [17; Theorem 10.3] is valid if we further replace (b) in that theorem by " \tilde{Y} admits an Einstein symplectic form". For instance, let C_0 be an irreducible nonsingular projective algebraic curve (defined over \mathbb{C}) of genus $g_0 \geq 2$ and take an ample holomorphic line bundle L_0 over C_0 satisfying $K_{C_0} = L_0^{\otimes(2g_0-2)}$, so that $c_1(L_0)$ generates $H^2(C_0, \mathbb{Z})$. We then put $W := C_0 \times C_0$, and let $p: L_1 \to W$ be the holomorphic line bundle $pr_1^*L_0^{\otimes k} \otimes pr_2^*L_0^{\otimes -k}$ over W ($1 \leq k \leq 2g_0 - 3$), where $pr_i: C_0 \times C_0 \to C_0$ denotes the natural projection to the *i*-th factor. Now, take the Einstein-Kähler form (associated with the Poincaré metric) ω_0 on C_0 in the cohomology class $-2\pi c_1(C_0)_{\mathbb{R}}$. Then $\omega := -(pr_1^*\omega_0 + pr_2^*\omega_0)$ is an Einstein symplectic form satisfying $\sqrt{-1}\overline{\partial}\partial \log \omega = \omega$. Note that ω_0 is naturally regarded as a Hermitian (fibre) metric for the line bundle $K_{C_0}^{-1}$. Hence, we have a natural Hermitian metric h for L_0 such that $h^{\otimes(2-2g_0)}$ coincides with ω_0 . We now define $\rho : L_1 \to \mathbb{R}$ by $\rho(\ell) := \|\ell'\|_h^k \|\ell''\|_h^{-k}$ for any $\ell = \ell'^{\otimes k} \otimes \ell''^{\otimes -k}$ in the fibre $(L_1)_{(x,y)}$ of L_1 over $(x,y) \in C_0 \times C_0$ with $\ell' \in (L_0)_x$ and $\ell'' \in (L_0)_y - \{0\}$. Let Y be the projective bundle $\mathbb{P}(E^*) := (E \text{ minus zero-section})/\mathbb{C}^*$, where E is the rank 2 vector bundle $\mathcal{O}_W \oplus L_1$ over W obtained as the direct sum of the trivial line bundle \mathcal{O}_W and L_1 . Now for simplicity, put $\kappa := k/(2g_0 - 2)$. Since

$$\int_{-1}^{1} t \left(c_1(W) + t \, c_1(L_1) \right)^2 dt = c_1(W)^2[W] \int_{-1}^{1} t \left(1 - \kappa^2 t^2 \right) dt = 0,$$

we have $F_Y = 0$. Hence there exists an Einstein symplectic form on Y. Actually, let $\Phi(t)$ be the polynomial

$$\Phi(t) := -\int_{-1}^t s\,(1-\kappa^2 s^2)\,ds, \qquad -1 \le t \le 1,$$

and define a C^{∞} function $\lambda = \lambda(\rho)$ in ρ by

$$ho^2 = \exp\left\{-\int_0^\lambda \Phi(t)^{-1}(1-\kappa^2 t^2)\,dt
ight\}.$$

Then $\eta := \sqrt{-1}\Phi(\lambda(\rho)) \rho^{-2} (p^*\omega)^2 \wedge \partial \rho \wedge \bar{\partial} \rho$ on L_1 extends to a volume form on Y, and it is easily checked that $\sqrt{-1}\bar{\partial}\partial \log \eta$ is an Einstein non-Kähler symplectic form on Y.

Remark 3.4. Let us set X = N, $G = \operatorname{Aut}(N)$, and consider the case where \mathcal{L} is anticanonically quantized. Assume further that $\omega \in \mathcal{EK}_{\mathcal{L}}$, i.e., ω is an Einstein-Kähler form in the class $c_1(X)_{\mathbb{R}}$. We then express ω just as in §2, using holomorphic local coordinates, and put:

$$\Box_{\omega} = \sum_{lpha,eta=1}^n g^{ar{eta}lpha} rac{\partial^2}{\partial z^lpha \partial z^{ar{eta}}}.$$

Let $\operatorname{Ker}_{\mathbb{C}}(\Box_{\omega}+1)$ (resp. $\operatorname{Ker}_{i\mathbb{R}}(\Box_{\omega}+1)$) be the space of all functions φ in $C^{\infty}(N)_{\mathbb{C}}$ (resp. $\sqrt{-1}C^{\infty}(N)_{\mathbb{R}}$) such that $(\Box_{\omega}+1)\varphi = 0$. Note that in our case, we have $\mathcal{L} = (K_N^{-1})_{\mathbb{R}}$, $\mathfrak{g} = H^0(N, \mathcal{O}(TN))$, and moreover ω is naturally regarded as an element (denoted by $\mathbf{h}(\omega)$) of $\mathbf{H}_{\mathcal{L}}$. Now, the well-known Matsushima's theorem [18] asserts that:

- (1) $\{ \mathcal{W}_{\varphi}; \varphi \in \operatorname{Ker}_{\mathbb{C}}(\Box_{\omega} + 1) \} = \mathfrak{g} \text{ (cf. } \S2);$
- (2) $\{ \mathcal{W}_{\varphi}; \varphi \in \operatorname{Ker}_{i\mathbb{R}}(\Box_{\omega} + 1) \}$ coincides with the \mathbb{C} -vector space $\mathfrak{k} (\subset \mathfrak{g})$ of all Killing vector fields on the Einstein-Kähler manifold (N, ω) .

By 1.6 and 3.2, this can be stated in the following slightly stronger form:

$$\xi_{\mathbf{h}(\omega)}(\operatorname{Ker}_{\mathbb{C}}(\Box_{\omega}+1)) = \mathfrak{g} \text{ and } \xi_{\mathbf{h}(\omega)}(\operatorname{Ker}_{i\mathbb{R}}(\Box_{\omega}+1)) = \mathfrak{k}.$$

In view of the identity $\lambda_{\omega}(\operatorname{Ker}_{\mathbb{C}}(\Box_{\omega}+1)) = \{0\}$, this expression has the advantage that, for $\omega \in \mathcal{EK}_{\mathcal{L}}$ as above, the vanishing of F_N is quite naturally understood (see for instance Futaki [8] for similar observations). We can now summarize Matsushima's theorem and the vanishing of F_N for $\omega \in \mathcal{EK}_{\mathcal{L}}$ just in the following one commutative diagram:

$$\begin{split} \mathfrak{k} & \hookrightarrow H^0(N, \mathcal{O}(TN)) \\ & \cong \, \Big| \, \xi_{\mathfrak{h}(\omega)} & \circlearrowright & \cong \, \Big| \, \xi_{\mathfrak{h}(\omega)} \\ & \operatorname{Ker}_{\mathfrak{iR}}(\Box_{\omega} + 1) & \hookrightarrow & \operatorname{Ker}_{\mathbb{C}}(\Box_{\omega} + 1). \end{split}$$

$\S4.$ The moment map

Let $\omega \in S_{\mathcal{L}}$, and choose an element **h** of $\mathbf{H}_{\mathcal{L}}$ such that $c_1(\mathcal{L}, \mathbf{h}) = \omega$. We then define the moment map $\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}}: X \to \mathfrak{g}^*$ associated with the quasi-holomorphic *G*-action (cf. 1.4) on \mathcal{L} by

$$(\mu^{\mathcal{L}}_{\mathfrak{a},\mathbf{h}}(x))(\mathcal{Y})=(\xi_{\mathbf{h}}(\mathcal{Y}))(x), \qquad x\in X,$$

where \mathfrak{g}^* denotes the space of \mathbb{C} -linear functionals on \mathfrak{g} . Note that, in our definition of $\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}}$, there is no ambiguity of translations even if G is not semisimple. Let \mathfrak{g}' be a (possibly real) Lie subalgebra of \mathfrak{g} and G' be the corresponding connected Lie subgroup of G. If \mathfrak{g}' is a complex Lie subalgebra of \mathfrak{g} , then we again have the moment map $\mu_{\mathfrak{g}',\mathbf{h}}^{\mathcal{L}}: X \to \mathfrak{g}'^*$ associated with the natural quasi-holomorphic G'-action on \mathcal{L} . For the remaining case where \mathfrak{g}' is not a complex Lie subalgebra, we can still define $\mu_{\mathfrak{g}',\mathbf{h}}^{\mathcal{L}}$ as follows. In this case, let \mathfrak{g}'^* be the space of all \mathbb{C} -linear functionals on $\{\mathfrak{g}'\}_{\mathbb{C}}$, where $\{\mathfrak{g}'\}_{\mathbb{C}}$ denotes the complex Lie subalgebra of \mathfrak{g} spanned by \mathfrak{g}' . We then put $\mu_{\mathfrak{g}',\mathbf{h}}^{\mathcal{L}} := p' \circ \mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}} (= \mu_{\{\mathfrak{g}'\}_{\mathbb{C}},\mathbf{h}}^{\mathcal{L}})$, where $p': \mathfrak{g}^* \to \mathfrak{g}'^*$ is the natural projection induced by $\mathfrak{g}' \hookrightarrow \mathfrak{g}$. Then, in any case, it is easy to check

(1)
$$(\mu^{\mathcal{L}}_{\mathrm{Ad}(g)\mathfrak{g}',g\mathbf{h}}(gx))(\mathrm{Ad}(g)\mathcal{Y}) = (\mu^{\mathcal{L}}_{\mathfrak{g}',\mathbf{h}}(x))(\mathcal{Y})$$

for all $g \in G, x \in X, \mathcal{Y} \in \mathfrak{g}'$.

Remark 4.1. Suppose G' is such that $g' \cdot \mathbf{h} = \mathbf{h}$ for all $g' \in G'$ (and this condition is satisfied if both X and G' are compact and G' preserves the symplectic form ω). Then, in view of (1.4.1), we have the inclusion $\xi_{\mathbf{h}}(g') \subset \sqrt{-1}C^{\infty}(X)_{\mathbb{R}}$. Now by (1) above, $\mu_{g',\mathbf{h}}^{\mathcal{L}}: X \to \sqrt{-1}g_{\mathbb{R}}^{\prime*}$ is G'-equivariant, where $g_{\mathbb{R}}^{\prime*}$ denotes the space of \mathbb{R} -linear functionals on g' endowed with the natural coadjoint G'-action. Hence, in this case, our $\mu_{g',\mathbf{h}}^{\mathcal{L}}$ is nothing but the ordinary moment map (cf. Guillemin and Sternberg [14]).

Definition 4.2. Recall that the (n, n)-form ω^n is naturally regarded as a signed measure on X, where either ω^n or $-\omega^n$ is a positive measure. If $\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}}$ is proper, then the push-forward $(\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}})_*(\omega^n)$ of the measure ω^n by $\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}}$ is a well-defined signed measure on \mathfrak{g}^* , and is called the *Duistermaat-Heckman's measure* associated with the moment map $\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}}$. Note that $(\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}})_*(\omega^n)$ is zero outside the closure of the image of $\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}}$. If X is compact, then we denote by $\theta_{\mathcal{L},\mathfrak{g},\mathbf{h}} \in \mathfrak{g}^*$ the barycenter

$$\frac{\int_{\chi \in \mathfrak{g}^{\star}} \chi \cdot \{(\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}})_{\star}(\omega^{n})\}(\chi)}{\int_{\mathfrak{g}^{\star}} (\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}})_{\star}(\omega^{n})} \left(= \frac{\int_{\chi \in \mathfrak{g}^{\star}} \chi \cdot \{(\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}})_{\star}(\omega^{n})\}(\chi)}{(c_{1}(\mathcal{L})^{n}[X])} \right)$$

of the Duistermaat-Heckman's measure $(\mu_{g,\mathbf{h}}^{\mathcal{L}})_*(\omega^n)$. Now, we shall show the following (cf. [17]; see also Futaki [9]):

Theorem 4.3. Suppose X is compact. Then we have the identity $\theta_{\mathcal{L},\mathfrak{g},\mathbf{h}} = (c_1(\mathcal{L})^n[X])^{-1}T_{\mathcal{L},\mathbf{h}}$, and in particular for any (possibly real) Lie subalgebras $\mathfrak{g}_1, \mathfrak{g}_2$ of \mathfrak{g} with $\mathfrak{g}_1 \subset \mathfrak{g}_2$,

$$\theta_{\mathcal{L},\mathfrak{g}_1,\mathbf{h}}(\mathcal{Y}) \ (= (c_1(\mathcal{L})^n[X])^{-1}T_{\mathcal{L},\mathbf{h}}(\mathcal{Y})) = \theta_{\mathcal{L},\mathfrak{g}_2,\mathbf{h}}(\mathcal{Y}) \qquad for \ all \ \mathcal{Y} \in \mathfrak{g},$$

i.e., $p_{12}(\theta_{\mathcal{L},\mathfrak{g}_2,\mathbf{h}}) = \theta_{\mathcal{L},\mathfrak{g}_1,\mathbf{h}}$, where $p_{12}: \mathfrak{g}_2^* \to \mathfrak{g}_1^*$ denotes the natural projection induced by $\mathfrak{g}_1 \subset \mathfrak{g}_2$.

Proof. It suffices to show $\int_{\chi \in \mathfrak{g}^*} \chi \cdot \{(\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}})_*(\omega^n)\}(\chi) = T_{\mathcal{L},\mathbf{h}}$. Let $\mathcal{Y} \in \mathfrak{g}$. Then this required identity follows immediately from

$$\int_{\chi \in \mathfrak{g}^{\star}} \chi(\mathcal{Y}) \cdot \{(\mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}})_{\star}(\omega^{n})\}(\chi) = \int_{X} \mu_{\mathfrak{g},\mathbf{h}}^{\mathcal{L}}(\mathcal{Y}) \omega^{n}$$
$$= \int_{X} \xi_{\mathbf{h}}(\mathcal{Y}) \omega^{n} = T_{\mathcal{L},\mathbf{h}}(\mathcal{Y}).$$

Q.E.D.

§5. $(\mathbb{C}^*)^r$ -actions and the theorem of stationary phase

In this section, we consider the case where X is compact with $G = (\mathbb{C}^*)^r$ for some $0 < r \in \mathbb{Z}$. Let $K (\cong (S^1)^r)$ be the maximal compact subgroup of G, and \mathfrak{k} the corresponding Lie subalgebra of \mathfrak{g} . Moreover, by $\mathcal{S}_{\mathcal{L}}^K$, $\mathbf{H}_{\mathcal{L}}^K$, we denote the set of all K-invariant elements in $\mathcal{S}_{\mathcal{L}}$, $\mathbf{H}_{\mathcal{L}}$, respectively. Then for any $\omega \in \mathcal{S}_{\mathcal{L}}^K$, there exists an $\mathbf{h} \in \mathbf{H}_{\mathcal{L}}^K$, unique up to constant multiple, such that $c_1(\mathcal{L}, \mathbf{h}) = \omega$. The purpose of this section is to obtain, as a corollary of the theorem of stationary phase, the independence of $T_{\mathcal{L},\mathbf{h}}$ on the choice of \mathbf{h} in $\mathbf{H}_{\mathcal{L}}^K$ (cf. Remark 5.3).

Let X^G be the fixed point set of the *G*-action on *X*, and write X^G as a union $\bigcup_{i=1}^{p} X_i$ of the connected components. Recall the classical fact (due to Atiyah, Guillemin and Sternberg) that the image of the moment map $\mu_{t,\mathbf{h}}^{\mathcal{L}}: X \to \sqrt{-1}\mathfrak{k}_{\mathbb{R}}^*$ is the convex hull of the finite set $\mu_{t,\mathbf{h}}^{\mathcal{L}}(X^G)$ (see for instance [13]). Now, the isotropy representation of *G* along each X_i induces a natural infinitesimal action of \mathfrak{g} on the normal bundle (denoted by E_i) of X_i in *X*. In particular, E_i splits into a direct sum of holomorphic vector subbundles (possibly with $n_i = 1$):

$$E_i = \bigoplus_j E_{ij}, \qquad j = 1, 2, \dots, n_i,$$

to which we can associate nontrivial characters $\chi_{ij} \in \mathfrak{g}^*$ such that every $\mathcal{Y} \in \mathfrak{g}$ acts on E_{ij} as scalar multiplication by $\sqrt{-1}\chi_{ij}(\mathcal{Y})$. Choose a K-invariant Hermitian connection for each E_{ij} and let Ω_{ij} be the corresponding curvature form. Then the theorem of stationary phase asserts that (cf. Duistermaat and Heckman [4], [5], Atiyah and Bott [1]):

Fact 5.1. Let $\mathcal{Y} \in \mathfrak{k}$ be such that $\chi_{ij}(\mathcal{Y}) \neq 0$ for any i and j. Moreover, put $\phi_i := \prod_{j=1}^{n_i} \det \left\{ (2\pi\sqrt{-1})^{-1} (\Omega_{ij} + \chi_{ij}(\mathcal{Y}) \operatorname{id}_{E_{ij}}) \right\}$. Then

$$\int_{X} \exp\left(\frac{\langle \mu_{\ell,\mathbf{h}}^{\mathcal{L}},\mathcal{Y}\rangle}{2\pi}\right) \frac{\omega^{n}}{n!} = \sum_{i=1}^{p} \int_{X_{i}} \exp\left(\frac{\langle \mu_{\ell,\mathbf{h}}^{\mathcal{L}},\mathcal{Y}\rangle}{2\pi}\right) \phi_{i}^{-1} \exp(\omega).$$

We now observe that $H^0(X_i, |\mathcal{O}^*|^2) \cong \mathbb{C}^*$. Moreover, the restriction \mathcal{L}_i of \mathcal{L} to X_i admits a natural bundle action of G induced from \mathcal{L} . We then have real Lie group homomorphisms

$$\kappa_i \colon G \to \mathbb{R}_+, \qquad i = 1, 2, \dots, p,$$

such that every $g \in G$ acts on \mathcal{L}_i as scalar multiplication by $\kappa_i(g)$. Let $(\kappa_i)_* : \mathfrak{g}_{real} (\cong \mathfrak{g}) \to \mathbb{R}$ be the corresponding Lie algebra homomorphism.

Then for any $x \in X_i, \mathcal{Y} \in \mathfrak{k}$ and $\mathbf{h} \in \mathbf{H}_{\mathcal{L}}^K$,

$$\{\mathbf{h}^{-1}(\mathcal{Y}\mathbf{h})\}(x) = rac{1}{2}\{\mathbf{h}^{-1}(\mathcal{Y}_{\mathbb{R}}-\sqrt{-1}J\cdot\mathcal{Y}_{\mathbb{R}})\mathbf{h}\}(x) = rac{1}{2}\sqrt{-1}(\kappa_i)_*(J\cdot\mathcal{Y}_{\mathbb{R}}),$$

where the left-hand side is nothing but $(\mu_{\ell,\mathbf{h}}^{\mathcal{L}}(x))(\mathcal{Y})$. Hence, for each *i*, the image $\mu_{\ell,\mathbf{h}}^{\mathcal{L}}(X_i)$ is a single point independent of **h**. We now choose a general R-basis $\{\mathcal{Y}_1, \mathcal{Y}_2, \ldots, \mathcal{Y}_r\}$ for \mathfrak{k} such that $\chi_{ij}(\sum_{k=1}^r a_k \mathcal{Y}_k) \neq 0$ for any *i*, *j* when $0 \neq (a_1, a_2, \ldots, a_r) \in \mathbb{Z}^r$. Further, define a system (y_1, y_2, \ldots, y_r) of real linear coordinates on $\sqrt{-1}\mathfrak{k}_{\mathbb{R}}^*$ by

$$y_k(\eta) = \langle (2\pi\sqrt{-1})^{-1}\eta, \mathcal{Y}_k
angle, \qquad \eta \in \sqrt{-1}\mathfrak{k}^*_{\mathbf{R}}.$$

We then have the following consequence of Fact 5.1:

Corollary 5.2. The Duistermaat-Heckman's measure $(\mu_{t,\mathbf{h}}^{\mathcal{L}})_*(\omega^n)$ on $\sqrt{-1}\mathfrak{k}_{\mathbb{R}}^*$ is independent of the choice of $\omega \in \mathcal{S}_{\mathcal{L}}$ and $\mathbf{h} \in \mathbf{H}_{\mathcal{L}}$.

Proof. Let $(\omega', \mathbf{h}') \in S_{\mathcal{L}} \times \mathbf{H}_{\mathcal{L}}$ be another pair such that $c_1(\mathcal{L}, \mathbf{h}') = \omega'$. Replacing $(\mathcal{Y}_1, \mathcal{Y}_2, \ldots, \mathcal{Y}_r)$ by its constant multiple, if necessary, we may assume that both $\mu_{\mathfrak{l},\mathbf{h}}^{\mathcal{L}}(X)$ and $\mu_{\mathfrak{l},\mathbf{h}'}^{\mathcal{L}}(X)$ are contained in $V := \{\eta \in \sqrt{-1}\mathfrak{k}^*_{\mathbb{R}}; |y_k(\eta)| < 1 \text{ for all } k\}$. Since $\mu_{\mathfrak{l},\mathbf{h}}^{\mathcal{L}}(X_i) = \mu_{\mathfrak{l},\mathbf{h}'}^{\mathcal{L}}(X_i)$, and since $\int_{X_i} \phi_i^{-1} \exp(\omega) = \int_{X_i} \phi_i^{-1} \exp(\omega')$, the identity in Fact 5.1 implies

$$egin{aligned} &\int_{X_i} \exp(rac{1}{2\pi} < \mu_{\mathfrak{k},\mathbf{h}'}^{\mathcal{L}}, \Sigma_{k=1}^r m_k \mathcal{Y}_k) >) \, (\omega')^n \ &= \int_{X_i} \exp(rac{1}{2\pi} < \mu_{\mathfrak{k},\mathbf{h}}^{\mathcal{L}}, \Sigma_{k=1}^r m_k \mathcal{Y}_k >) \, \omega^n \end{aligned}$$

for all *i* and all $\mathbf{m} = (m_1, m_2, \ldots, m_r) \in \mathbb{Z}^r - \{0\}$. Hence by setting $d\nu := (\mu_{\mathfrak{k}, \mathbf{h}}^{\mathcal{L}})_*(\omega^n), d\nu' := (\mu_{\mathfrak{k}, \mathbf{h}'}^{\mathcal{L}})_*((\omega')^n), \varphi_{\mathbf{m}} := \exp(\sqrt{-1}\Sigma_{k=1}^r m_k y_k),$ and $T := \sqrt{-1}\mathfrak{k}_{\mathbb{R}}^*$, we have:

$$\int_T \varphi_{\mathbf{m}} \, d\nu = \int_T \varphi_{\mathbf{m}} \, d\nu'$$

for all $\mathbf{m} \in \mathbb{Z}^r$. Since every continuous function on V of compact support is uniformly approximated by finite linear combinations of the $\varphi_{\mathbf{m}}$'s, we have $d\nu = d\nu'$, as required. Q.E.D.

Remark 5.3. By Theorem 4.3, $(c_1(\mathcal{L})^n[X])^{-1}T_{\mathcal{L},\mathbf{h}}$ is the barycenter $\theta_{\mathcal{L},\mathfrak{g},\mathbf{h}}$ of the Duistermaat-Heckman's measure $(\mu_{\mathfrak{k},\mathbf{h}}^{\mathcal{L}})_*(\omega^n)$. This together with Corollary 5.2 shows that $T_{\mathcal{L},\mathbf{h}}$ is independent of the choice of

h in $\mathbf{H}_{\mathcal{L}}^{K}$. Actually, 5.1 and 5.2 assert the stronger fact that $(\mu_{\ell,\mathbf{h}}^{\mathcal{L}})_{*}(\omega^{n})$ is completely determined by the data on the fixed point locus X^{G} and its normal bundle via the Fourier transform (see Guillemin and Sternberg [14; §34] for another characterization of such a measure).

Let G' be a connected linear algebraic group, defined over \mathbb{C} , and $H' (\cong (\mathbb{C}^*)^r$ for some r) its maximal torus. Then the Lie algebra g' of G' is written as a direct sum of vector spaces

(5.4)
$$\mathfrak{g}' = \mathfrak{h}' + \sum_{\chi} \mathbb{C} \mathcal{Y}_{\chi},$$

where \mathfrak{h}' is the Cartan subalgebra corresponding to H', and we have a finite subset Δ of \mathfrak{h}'^* such that each $\mathcal{Y}_{\chi} \in \mathfrak{g}'$ is related to $\chi \in \Delta$ by

$$\operatorname{Ad}(g)\mathcal{Y}_{oldsymbol{\chi}}=\chi(g)\mathcal{Y}_{oldsymbol{\chi}},\qquad g\in H'.$$

Note that $\mathbb{C}\mathcal{Y}_{\chi}$'s are Lie algebras associated with 1-dimensional unipotent subgroups of G'. In §5, we obtained a fairly good description of the Lie algebra character $T_{\mathcal{L}}$ on Cartan subalgebras of \mathfrak{g} . Now, in view of the decomposition (5.4), it remains to study the behaviour of $T_{\mathcal{L}}$ on Lie algebras associated with unipotent subgroups of G, which we shall discuss in detail in the next section.

§6. G_a -actions and the character $T_{\mathcal{L}}$

In this section, we assume that X = N with \mathcal{L} quantized by L(cf. 1.5), and let $c_1(L)_{\mathbb{R}} > 0$, so that N is projective algebraic. We moreover assume that G is a linear algebraic group, defined over \mathbb{C} , which acts biregularly on N. Let U be an arbitrary 1-dimensional unipotent subgroup of G (assuming such a subgroup exists), and by $\mathfrak{u} = \mathbb{C}\mathcal{Y}$, we denote the corresponding Lie subalgebra of \mathfrak{g} , where \mathcal{Y} is a \mathbb{C} -base for \mathfrak{u} . We choose $0 \ll q \in \mathbb{Z}$ such that $L^{\otimes q}$ is generated by global sections. Let $\{\sigma_0, \sigma_1, \ldots, \sigma_m\}$ be a \mathbb{C} -basis for $S := H^0(N, \mathcal{O}(L^{\otimes q}))$. Note that, via the U-action on L, the unipotent group U acts naturally on S, which induces an infinitesimal action of \mathfrak{u} on S. Since U is unipotent, Jordan's normal form of \mathcal{Y} allows us to assume without loss of generality that

(1) $\mathcal{Y}\sigma_0=0;$

(2)
$$\mathcal{Y}\sigma_i = e_i\sigma_{i-1}, \quad 1 \leq i \leq m,$$

where $e_i \in \mathbb{Z}$ is 0 or 1. For $0 < \varepsilon \in \mathbb{R}$, we define a Hermitian metric $h_{\varepsilon} \in \mathcal{H}_L$ for L by

$$h_{\varepsilon} := \left(\sum_{i=0}^{m} \varepsilon^{2i} \sigma_i \bar{\sigma}_i \right)^{-1} = \left\{ \sum_{i=0}^{m} (\varepsilon^i \sigma_i) (\varepsilon^i \bar{\sigma}_i) \right\}^{-1}.$$

Now, the infinitesimal action of \mathcal{Y} on h_{ε} (cf. (1.4)) is written as

$$\mathcal{Y}h_{\varepsilon} = -h_{\varepsilon}^{2} \left\{ \Sigma_{i=0}^{m} \varepsilon^{2i} \left(\mathcal{Y}\sigma_{i} \right) \bar{\sigma}_{i} \right\} = -\varepsilon h_{\varepsilon}^{2} \left\{ \Sigma_{i=1}^{m} \left(e_{i} \varepsilon^{i-1} \sigma_{i-1} \right) (\varepsilon^{i} \bar{\sigma}_{i}) \right\}.$$

Put $v_i := e_i \varepsilon^{i-1} \sigma_{i-1}$ and $w_i := \varepsilon^i \sigma_i$. Then by the Cauchy-Schwarz inequality, the absolute value $|h_{\varepsilon}^{-1} \mathcal{Y} h_{\varepsilon}|$ of $h_{\varepsilon}^{-1} \mathcal{Y} h_{\varepsilon}$ is estimated as follows:

$$|h_\varepsilon^{-1}\mathcal{Y}h_\varepsilon|^2 = \varepsilon^2 \frac{|\Sigma_{i=1}^m v_i \bar{w}_i|^2}{(\Sigma_{i=0}^m w_i \bar{w}_i)^2} \le \varepsilon^2 \frac{|\Sigma_{i=1}^m v_i \bar{w}_i|^2}{(\Sigma_{i=1}^m v_i \bar{v}_i)(\Sigma_{i=1}^m w_i \bar{w}_i)} \le \varepsilon^2.$$

Note that $c_1(L, h_{\varepsilon})$ is positive semi-definite as a pull-back of the Fubini-Study form on $\mathbb{P}^m(\mathbb{C})$. Therefore, for every $0 < \varepsilon \in \mathbb{R}$,

$$egin{aligned} |T_{\mathcal{L}}(\mathcal{Y})| &= |T_{\mathcal{L},(h_{arepsilon})_{\mathbf{R}}}(\mathcal{Y})| \leq \int_{N} |h_{arepsilon}^{-1}\mathcal{Y}h_{arepsilon}| \, c_{1}(L,h_{arepsilon})^{n} \ &\leq \int_{N} arepsilon \, c_{1}(L,h_{arepsilon})^{n} = arepsilon \, c_{1}(L)^{n}[N]. \end{aligned}$$

Let ε tend to 0. It then follows that $T_{\mathcal{L}}(\mathcal{Y}) = 0$, i.e., $T_{\mathcal{L}}$ vanishes on \mathfrak{u} . Thus we obtain:

Lemma 6.1. For any unipotent subgroup U of G (of arbitrary dimension), the complex Lie algebra homomorphism $T_{\mathcal{L}}: \mathfrak{g} \to \mathbb{C}$ vanishes on the corresponding Lie subalgebra \mathfrak{u} of \mathfrak{g} . In particular, if $T_{\mathcal{L}} \neq 0$, then G contains an algebraic subgroup isomorphic to $\mathbb{G}_m (= \mathbb{C}^*)$.

Let N (= X), G, L be as above. We moreover use the notation $\beta \in \mathbb{Q}$, $\psi_L : G \to \mathbb{R}_+$ and $\rho_M : G \to \mathbb{G}_m$ in [10]. Then, under the same assumption as in [10; (5.1)], the following equality holds for all $g \in G$:

Formula 6.2. $\psi_L(g) = |\det(\rho_M(g))|^{\beta} \quad (g \in G).$

Proof. By the Chevalley decomposition, we can express the identity component G^0 of G as a semidirect product $R_0 \ltimes U_0$ of a reductive algebraic subgroup R_0 of G^0 and the unipotent radical U_0 of G_0 . Let G_1 , S_1 be the same as in [10; §5]. Since G is linear algebraic, G^0 coincides with the identity component of G_1 , and hence R_0 is regarded as the identity component of S_1 . In particular, by [10; (5.1)], the formula 6.2 is true for $g \in R_0$. Recall that the Lie algebra homomorphism $(\psi_L)_*: \mathfrak{g} \to \mathbb{R}$ associated with $\psi_L: G \to \mathbb{R}_+$ is nothing but $\operatorname{Re}(T_L)$ (cf. 1.5). Hence, by Lemma 6.1, ψ_L is trivial on U_0 . Moreover, the algebraic group homomorphism $\rho_M: G \to \mathbb{G}_m$ is trivial on U_0 . Therefore, the formula 6.2 is true for $g \in U_0$, and consequently, also for $g \in G^0$. Since for any $g \in G$

there exists $0 < \nu \in \mathbb{Z}$ such that $g^{\nu} \in G^0$, it now follows that

$$\psi_L(g) = (\psi_L(g^
u))^{rac{1}{
u}} = \left|\det(
ho_M(g^
u))
ight|^{rac{
u}{
u}} = \left|\det(
ho_M(g))
ight|^{eta},$$

as required.

Note that, by taking the infinitesimal form of 6.2, we obtain the identity $T_{\mathcal{L}} = \beta (\det \circ \rho_M)_*$ on \mathfrak{g} . Now, consider the case where \mathcal{L} is anticanonically quantized with $c_1(N)_{\mathbb{R}} > 0$. Then Lemma 6.1 and Formula 6.2 above immediately prove Theorem 0.1 and (0.2) in the introduction respectively. Finally, recall the following conjecture of Futaki:

Conjecture 6.3. Let N be a compact complex connected manifold with $c_1(N)_{\mathbb{R}} > 0$. If moreover $F_N = 0$, then N admits an Einstein-Kähler metric.

If 6.3 is affirmative, then Matsushima's theorem and 6.1 above show that any compact complex connected manifold N with $c_1(N)_{\mathbb{R}} > 0$ admits a nontrivial biregular \mathbb{G}_m -action unless $\operatorname{Aut}(N)$ is finite. At present, however, we can find neither strong reasons for 6.3, nor counterexamples to it.

References

- M.F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology, 23 (1984), 1-28.
- [2] T. Aubin, Equations du type de Monge-Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris, 283 (1976), 119-121.
- [3] S.K. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc., 50 (1985), 1-26.
- [4] J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math., 69 (1982), 259-268.
- [5] _____, Addendum to "On the variation in the cohomology of the symplectic form of the reduced phase space", Invent. Math., 72 (1983), 153-158.
- [6] A. Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math., 44 (1978), 225–258.
- [7] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math., 73 (1983), 437-443.
- [8] _____, The Ricci curvature of symplectic quotients of Fano manifolds, Tohoku Math. J., **39** (1987), 329–339.
- [9] _____, "Kähler-Einstein metrics and integral invariants", Lecture Notes in Math., 1314, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.

Q.E.D.

- [10] A. Futaki and T. Mabuchi, An obstruction class and a representation of holomorphic automorphisms, in "Geometry and analysis on manifolds", Lectures Note in Math., 1339, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988, pp. 127-141.
- [11] A. Futaki, T. Mabuchi and Y. Sakane, Survey on Einstein-Kähler metrics with positive Ricci curvature, in this volume.
- [12] A. Futaki and S. Morita, Invariant polynomials of the automorphism group of a compact complex manifold, J. Diff. Geom., 21 (1985), 135-142.
- [13] V. Guillemin and S. Sternberg, Convex properties of the moment mapping, Invent. Math., 67 (1982), 491-513.
- [14] _____, "Symplectic techniques in physics", Cambridge University Press, Cambridge, 1984, pp. 1-468.
- [15] N. Koiso and Y. Sakane, Non-homogeneous Kähler-Einstein metrics on compact complex manifolds, in "Curvature and topology of Riemannian manifolds", Lecture Notes in Math., 1201, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986, pp. 165-179.
- [16] A. Lichnerowicz, Variétés kählériennes et première classe de Chern, J. Diff. Geom., 1 (1967), 195-224.
- [17] T. Mabuchi, Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties, Osaka J. Math., 24 (1987), 705-737.
- [18] Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J., 11 (1957), 145-150.
- [19] S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure Appl. Math., 31 (1978), 339-411.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan