An Algebraic Character associated with the Poisson Brackets

Toshiki Mabuchi
Dedicated to Professor Akio Hattori on his sixtieth birthday

§0. Introduction

Let N be a connected compact Kähler manifold, and $\operatorname{Aut}(N)$ the group of holomorphic automorphisms of N. Then if $c_{1}(N)_{\mathbb{R}}<0$ or $c_{1}(N)_{\mathbb{R}}=0$, the celebrated solution of Calabi's conjecture by Aubin [2] and Yau [19] asserts that N always admits an Einstein-Kähler metric. In the case $c_{1}(N)_{\mathbb{R}}>0$, however, the existence problem is still open, and moreover a couple of obstructions to the existence are known. For instance, Futaki [7] introduced a complex Lie algebra homomorphism $F_{N}: H^{0}(N, \mathcal{O}(T N)) \rightarrow \mathbb{C}$ such that
(1) $F_{N}=0$ if N admits an Einstein-Kähler metric;
(2) $F_{N} \neq 0$ for N in a fairly large family of compact Kähler manifolds (see also Koiso and Sakane [15]).
The purpose of this note is to give a systematic study of the obstruction F_{N} from a viewpoint of symplectic geometry. For instance, we relate it to the theorem of stationary phase of Duistermaat and Heckman [4], [5]. Another key to our approach is the following (cf. §6):

Theorem 0.1. For any unipotent subgroup of $\operatorname{Aut}(N)$, the corresponding nilpotent Lie subalgebra of $H^{0}(N, \mathcal{O}(T N))$ sits in the kernel of F_{N}. Hence, if $F_{N} \neq 0$, then N admits a nontrivial biregular action of the algebraic group $\mathbb{G}_{m}\left(=\mathbb{C}^{*}\right.$ as a complex Lie group $)$.

Recall in particular that this theorem implies the identity

$$
\begin{equation*}
\psi(g)=|\operatorname{det} \phi(g)|^{\gamma} \quad \text { for all } g \in \operatorname{Aut}(N) \tag{0.2}
\end{equation*}
$$

Received July 12, 1988.
where $\psi: \operatorname{Aut}(N) \rightarrow \mathbb{R}_{+}, \phi: \operatorname{Aut}(N) \rightarrow \operatorname{GL}_{\mathbb{C}}(V)$ and $\gamma \in \mathbb{Q}$ are just the same as in [10], so that γ is $2 \cdot(1+n)^{-1}$ or $(1+n)^{-1}$ according as the (complex) dimension n of N is even or odd. Moreover, taking the infinitesimal form of (0.2), we obtain the identity $F_{N}=\gamma(\operatorname{det} \circ \phi)_{*}$ on $H^{0}(N, \mathcal{O}(T N))$.

This note consists of rather independent seven sections including the first two introductory ones, and was written as an addendum to the preceding joint work [10] with A. Futaki. The author wishes to thank him and also Professor S. Kobayashi for valuable suggestions and encouragement.

§1. Notation and conventions

1.1. Throughout this note, we fix an n-dimensional complex connected manifold X. Let $\left|\mathcal{O}^{*}\right|^{2}$ be the multiplicative sheaf over X arising from the presheaf

$$
U \rightarrow\left\{|f|^{2} ; f \in H^{0}\left(U, \mathcal{O}^{*}\right)\right\}
$$

with open subsets U of X. Then $H^{0}\left(U,\left|\mathcal{O}^{*}\right|^{2}\right)=\left\{\varphi \in C^{\infty}(U)_{\mathbb{R}} ; \varphi>\right.$ 0 and $\partial \bar{\partial} \log \varphi=0\}$, where $C^{\infty}(U)_{\mathbb{R}}$ denotes the set of all real-valued C^{∞} functions on U. Let \mathcal{Z} be the set of all real d-closed $C^{\infty}(1,1)$-forms on X, and \mathcal{B} the space of all $\sqrt{-1} \partial \bar{\partial} \varphi$ with $\varphi \in C^{\infty}(X)_{\mathbb{R}}$. Put

$$
H^{1,1}(X, \mathbb{R}):=\mathcal{Z} / \mathcal{B}
$$

and by abuse of terminology, we say that $\omega, \omega^{\prime} \in \mathcal{Z}$ are cohomologous, if $\omega-\omega^{\prime} \in \mathcal{B}$. Note that the following isomorphism is more or less known (which I learned from Enoki and Tsunoda):

$$
\begin{equation*}
H^{1,1}(X, \mathbb{R}) \cong H^{1}\left(X, \mathcal{O}^{*} / S^{1}\right)\left(=H^{1}\left(X,\left|\mathcal{O}^{*}\right|^{2}\right)\right) \tag{1.1.1}
\end{equation*}
$$

By introducing somewhat new objects such as \mathcal{L}_{ζ} down below, we shall here give a differential geometric treatment of this isomorphism. Let ζ be an element of $H^{1}\left(X,\left|\mathcal{O}^{*}\right|^{2}\right)$ represented by a Čech 1-cocycle $\left\{\zeta_{i j}\right\}$ with respect to a sufficiently fine Stein cover $X=\cup_{i \in I} U_{i}$. We then have the corresponding \mathbb{R}-line bundle \mathcal{L}_{ζ} over X such that the restriction $\mathcal{L}_{\zeta \mid U_{i}}$ of \mathcal{L}_{ζ} over each U_{i} is identified with $U_{i} \times \mathbb{R}$ by

$$
U_{i} \times \mathbb{R} \cong \mathcal{L}_{\zeta \mid U_{i}}, \quad(x, s) \leftrightarrow s \cdot \mathbf{e}_{i}
$$

where \mathbf{e}_{i} is a local C^{∞} base for \mathcal{L}_{ζ} over U_{i} satisfying $\mathbf{e}_{i}(x)=\zeta_{i j}(x) \mathbf{e}_{j}(x)$, $x \in U_{i} \cap U_{j}$. Let \mathcal{L}_{ζ}^{*} be the dual \mathbb{R}-line bundle over X. Then a C^{∞} section
\mathbf{h} of \mathcal{L}_{ζ}^{*} over X is called a norm for \mathcal{L}_{ζ} if $\mathbf{h}_{i}:=<\mathbf{h}, \mathbf{e}_{i}>$ is positive on U_{i} for each $i \in I$. Note that any norm h for \mathcal{L}_{ζ} is locally written as $\mathbf{h}_{i} \mathbf{e}_{i}^{*}$ on U_{i}, and the local data $\left\{\mathbf{h}_{i}\right\}_{i \in I}$ are characterized by the property $\mathbf{h}_{i}=\zeta_{i j} \cdot \mathbf{h}_{j}$. We now define the first Chern form $c_{1}\left(\mathcal{L}_{\zeta}, \mathbf{h}\right)$ for \mathcal{L}_{ζ} with respect to \mathbf{h} by

$$
c_{1}\left(\mathcal{L}_{\zeta}, \mathbf{h}\right):=\frac{\sqrt{-1}}{2 \pi} \bar{\partial} \partial \log \mathbf{h}_{i} .
$$

Then, given ζ, the (1,1)-form $c_{1}\left(\mathcal{L}_{\zeta}, \mathbf{h}\right)$ is easily shown to define a common cohomology class in $H^{1,1}(X, \mathbb{R})$ (denoted by $\left.c_{1}\left(\mathcal{L}_{\zeta}\right)\right)$ for all \mathbf{h}. Conversely, for any real d-closed $C^{\infty}(1,1)$-form ω on X, we can write

$$
\omega_{\mid U_{i}}=\frac{\sqrt{-1}}{2 \pi} \bar{\partial} \partial \log \mathbf{h}_{i}, \quad i \in I
$$

for some $\mathbf{h}_{i} \in C^{\infty}\left(U_{i}\right)_{\mathbb{R}}$ with $\mathbf{h}_{i}>0$. Then by setting $\zeta(\omega)_{i j}:=\mathbf{h}_{i} / \mathbf{h}_{j}$, we have an element $\zeta(\omega)=\left\{\zeta(\omega)_{i j}\right\}$ of $H^{1}\left(X,\left|\mathcal{O}^{*}\right|^{2}\right)$, depending only on ω, such that $\left\{\mathbf{h}_{i}\right\}_{i \in I}$ form a norm \mathbf{h} for the \mathbb{R}-line bundle $\mathcal{L}_{\zeta(\omega)}$ with

$$
\begin{equation*}
\omega=c_{1}\left(\mathcal{L}_{\zeta(\omega)}, \mathbf{h}\right) \tag{1.1.2}
\end{equation*}
$$

Moreover, $\zeta\left(\omega_{1}\right)=\zeta\left(\omega_{2}\right)$ whenever ω_{1} and ω_{2} are cohomologous. Hence, denoting by $[\omega]$ the cohomology class in $H^{1,1}(X, \mathbb{P})$ represented by ω, we have the inverse

$$
\begin{equation*}
H^{1,1}(X, \mathbb{R}) \rightarrow H^{1}\left(X,\left|\mathcal{O}^{*}\right|^{2}\right), \quad[\omega] \mapsto \zeta(\omega) \tag{1.1.3}
\end{equation*}
$$

of the mapping: $H^{1}\left(X,\left|\mathcal{O}^{*}\right|^{2}\right) \ni \zeta \mapsto c_{1}\left(\mathcal{L}_{\zeta}\right) \in H^{1,1}(X, \mathbb{R})$. This then gives the isomorphism (1.1.1).
1.2. By a log-harmonic \mathbb{R}-line bundle over X , we mean a $C^{\infty} \mathbb{R}$-line bundle \mathcal{L} over X written in the form $\mathcal{L}=\mathcal{L}_{\zeta}$ for some $\zeta \in H^{1}\left(X,\left|\mathcal{O}^{*}\right|^{2}\right)$. Now, let $p: \mathcal{L} \rightarrow X, p^{\prime}: \mathcal{L}^{\prime} \rightarrow X$ be arbitrary log-harmonic \mathbb{R}-line bundles over X. Then by abuse of terminology, a diffeomorphism $g: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$ is called log-harmonic, if the following conditions are satisfied:
(1) There exists a holomorphic automorphism \tilde{g} of X such that the identity $\tilde{g} \circ p=p^{\prime} \circ g$ holds.
(2) For each $x \in X$, the restriction $g_{\mid p^{-1}(x)}: p^{-1}(x) \rightarrow p^{-1}(\tilde{g} x)$ is an \mathbb{R}-linear isomorphism.
(3) $g\left(\mathbf{e}_{i}\right) / \mathbf{e}_{j}^{\prime} \in H^{0}\left(\tilde{g}\left(U_{i}\right) \cap U_{j},\left|\mathcal{O}^{*}\right|^{2}\right), \quad$ for all $i, j \in I$, where $\left\{\mathbf{e}_{i}\right\}$ (resp. $\left\{\mathbf{e}_{i}^{\prime}\right\}$) are the local bases for \mathcal{L} (resp. \mathcal{L}^{\prime}) as defined in 1.1.

Furthermore, \mathcal{L} and \mathcal{L}^{\prime} are said to be equivalent (denoted by $\mathcal{L} \sim \mathcal{L}^{\prime}$), if there exists a log-harmonic diffeomorphism $g: \mathcal{L} \rightarrow \mathcal{L}^{\prime}$ such that the corresponding automorphism \tilde{g} of X is $i d_{X}$. By setting

$$
\operatorname{Pic}_{\mathbb{R}}(X):=\{\text { all log-harmonic } \mathbb{R} \text {-line bundles over } X\} / \sim,
$$

we have (see (1.1.1), (1.1.2), (1.1.3) above):

$$
H^{1,1}(X, \mathbb{R}) \cong H^{1}\left(X,\left|\mathcal{O}^{*}\right|^{2}\right) \cong \operatorname{Pic}_{\mathbb{R}}(X), \quad[\omega] \leftrightarrow \zeta(\omega) \leftrightarrow\left[\mathcal{L}_{\zeta(\omega)}\right]
$$

where $\left[\mathcal{L}_{\zeta(\omega)}\right] \in \operatorname{Pic}_{\mathbb{R}}(X)$ is the class represented by $\mathcal{L}_{\zeta(\omega)}$. For a logharmonic line bundle \mathcal{L} over X, let $\mathcal{Z}_{\mathcal{L}}$ denote the set of all real d-closed $C^{\infty}(1,1)$-forms on X in the cohomology class $c_{1}(\mathcal{L})$. We then set

$$
\begin{aligned}
\mathbf{H}_{\mathcal{L}} & : \quad \text { the set of all norms for } \mathcal{L} \\
\mathcal{S}_{\mathcal{L}} & :=\left\{\omega \in \mathcal{Z}_{\mathcal{L}} ; \omega \text { is nowhere degenerate }\right\} \\
\mathcal{E} \mathcal{S}_{\mathcal{L}} & :=\left\{\omega \in \mathcal{S}_{\mathcal{L}} ; \sqrt{-1} \bar{\partial} \partial \log \left(\omega^{n}\right)=r \omega \text { for some } r \in \mathbb{R}\right\} \\
\mathcal{E} \mathcal{K}_{\mathcal{L}} & :=\left\{\omega \in \mathcal{E} \mathcal{S}_{\mathcal{L}} ; \omega \text { is a Kähler form }\right\}
\end{aligned}
$$

where elements of $\mathcal{E} \mathcal{S}_{\mathcal{L}}$ (resp. $\mathcal{E} \mathcal{K}_{\mathcal{L}}$) are called Einstein symplectic (resp. Einstein-Kähler) forms on X. Note that, in view of (1.1.2), the mapping

$$
\mathbf{H}_{\mathcal{L}} \rightarrow \mathcal{Z}_{\mathcal{L}}, \quad \mathbf{h} \mapsto c_{1}(\mathcal{L}, \mathbf{h})
$$

is surjective. Moreover, for elements $\mathbf{h}_{1}, \mathbf{h}_{2}$ in $\mathbf{H}_{\mathcal{L}}$, the identity $c_{1}\left(\mathcal{L}, \mathbf{h}_{1}\right)$ $=c_{1}\left(\mathcal{L}, \mathbf{h}_{2}\right)$ holds if and only if $\mathbf{h}_{1} / \mathbf{h}_{2} \in H^{0}\left(X,\left|\mathcal{O}^{*}\right|^{2}\right)$. Hence, whenever X is compact, \mathbf{h} is uniquely determined by $c_{1}(\mathcal{L}, \mathbf{h})$ up to constant multiple. Finally, a positive real $C^{\infty}(n, n)$-form Ω on X is called an Einstein volume form if $(\sqrt{-1} \bar{\partial} \partial \log \Omega)^{n}=r \Omega$ for some $r \in \mathbb{R}$. We put
$\tilde{\mathcal{E}}:$ the set of all Einstein volume forms on X.
Obviously, $\tilde{\mathcal{E}}$ is nonempty if there exists a log-harmonic line bundle \mathcal{L} over X with $\mathcal{E} \mathcal{S}_{\mathcal{L}} \neq \phi$.
1.3. Let $X=\cup_{i \in I} U_{i}$ be a sufficiently fine Stein cover, and L a holomorphic line bundle over X with transition functions $\theta_{i j}(i, j \in I)$. To this L, we can naturally associate the Coch cohomology class $\left\{\theta_{i j}\right\} \in$ $H^{1}\left(X, \mathcal{O}^{*}\right)$. Put $\zeta:=\left\{\left|\theta_{i j}\right|^{2}\right\} \in H^{1}\left(X,\left|\mathcal{O}^{*}\right|^{2}\right)$, and denote by $L_{\mathbb{R}}$ the corresponding \mathbb{R}-line bundle \mathcal{L}_{ζ} over X. Let \mathcal{H}_{L} be the set of all C^{∞} Hermitian (fibre) metrics of L over X, and for each $h \in \mathcal{H}_{L}$, let $c_{1}(L, h)$ be the first Chern form for L with respect to h. We then have the map

$$
\operatorname{ord}_{\mathbb{R}}: L \rightarrow L_{\mathbb{R}}, \quad \ell \mapsto \operatorname{ord}_{\mathbb{R}}(\ell):=\ell \cdot \bar{\ell}
$$

such that, for each $h \in \mathcal{H}_{L}$, there exists a unique norm (denoted by $h_{\mathbb{R}}$) for $L_{\mathbb{R}}$ satisfying the following conditions:
(1) $h(\ell, \ell)=h_{\mathbb{R}}\left(\operatorname{ord}_{\mathbb{R}}(\ell)\right)\left(=h_{\mathbb{R}}(\ell \cdot \bar{\ell})\right), \quad \ell \in L$.
(2) The mapping $\mathcal{H}_{L} \ni h \mapsto h_{\mathbb{R}} \in \mathbf{H}_{L_{\mathbb{R}}}$ is a bijection.
(3) $c_{1}(L, h)=c_{1}\left(L_{\mathbb{R}}, h_{\mathbb{R}}\right)$.

If $L=K_{X}^{-1}$, then we have a natural identification of $\mathcal{H}_{\mathcal{C}}$ with the space of volume forms on X. Moreover, in this case, the cohomology class $c_{1}\left(\left(K_{X}^{-1}\right)_{\mathbb{R}}\right) \in H^{1,1}(X, \mathbb{R})$ will be denoted simply by $c_{1}(X)_{\mathbb{R}}$.
1.4. From now on, until the end of this note, we fix an arbitrary \log-harmonic \mathbb{R}-line bundle \mathcal{L} over X with $\mathcal{S}_{\mathcal{L}} \neq \phi$. Consider moreover a complex Lie subgroup G of the group $\operatorname{Aut}(X)$ of holomorphic automorphisms of X such that the natural G-action on X lifts to a quasi-holomorphic G-action on \mathcal{L}, where an action of G on \mathcal{L} is said to be quasi-holomorphic, if the following conditions are satisfied:
(1) Each element g of G induces a log-harmonic diffeomorphism of the \mathbb{R}-line bundle \mathcal{L} (cf. 1.2).
(2) Let $\left\{\mathbf{e}_{i} ; i \in I\right\}$ be the local bases for \mathcal{L} as defined in 1.1. Then for each $i, j \in I$, the functions $g\left(\mathbf{e}_{i}\right) / \mathbf{e}_{j}(g \in G)$ are, wherever defined, written in the form $\left|w_{i j ; g}\right|^{2}$ for some holomorphic functions $w_{i j ; g}(g \in G)$ depending holomorphically on g.
In this note, we fix such a lifting once for all, and look at the left G-action

$$
G \times \mathbf{H}_{\mathcal{L}} \rightarrow \mathbf{H}_{\mathcal{L}}, \quad(g, \mathbf{h}) \mapsto g \cdot \mathbf{h}:=\left(g^{-1}\right)^{*} \mathbf{h},
$$

where $\left(\left(g^{-1}\right)^{*} \mathbf{h}\right)(\ell):=\mathbf{h}\left(g^{-1} \cdot \ell\right)$ for all $\ell \in \mathcal{L}$. Let \mathfrak{g} be the complex Lie subalgebra of $H^{0}(X, \mathcal{O}(T X))$ associated with G in $\operatorname{Aut}(X)$. For each $\mathcal{Y} \in \mathfrak{g}$, we define the corresponding real vector field $\mathcal{Y}_{\mathbb{R}}$ on X by

$$
\mathcal{Y}_{\mathbb{R}}:=\mathcal{Y}+\overline{\mathcal{Y}} .
$$

Let J be the complex structure of X, and put $\mathfrak{g}_{\text {real }}:=\left\{\mathcal{Y}_{\mathbb{R}} ; \mathcal{Y} \in \mathfrak{g}\right\}$. Then by sending $\mathcal{Y} \in \mathfrak{g}$ to $\mathcal{Y}_{\mathbb{R}} \in \mathfrak{g}_{\text {real }}$, we have the complex Lie algebra isomorphism $(\mathfrak{g}, \sqrt{-1}) \cong\left(\mathfrak{g}_{\text {real }}, J\right)$ with $\mathcal{Y}=\frac{1}{2}\left(\mathcal{Y}_{\mathbb{R}}-\sqrt{-1} J \cdot \mathcal{Y}_{\mathbb{R}}\right)$. Now for each $(\mathcal{V}, \mathbf{h}) \in \mathfrak{g}_{\text {real }} \times \mathbf{H}_{\mathcal{L}}$, we define a C^{∞} section $\mathcal{V} \mathbf{h}$ for \mathcal{L}^{*} by

$$
\mathcal{V} \mathbf{h}:=\left.\frac{\partial}{\partial t}\right|_{t=0}(\exp (t \mathcal{V}))^{*} \mathbf{h}\left(=\left.\frac{\partial}{\partial t}\right|_{t=0}(\exp (-t \mathcal{V})) \cdot \mathbf{h}\right)
$$

Denote by $\mathcal{L} \otimes_{\mathbb{R}} \mathbb{C}$ the complex line bundle on X obtained as the complexification of \mathcal{L}. Note then that

$$
\begin{equation*}
\mathcal{Y}_{\mathbf{h}}:=\frac{1}{2}\left(\mathcal{Y}_{\mathbb{R}}-\sqrt{-1} J \cdot \mathcal{Y}_{\mathbb{R}}\right) \mathbf{h} \tag{1.4.1}
\end{equation*}
$$

is a global C^{∞} section for $\mathcal{L} \otimes_{\mathbb{R}} \mathbb{C}$. If X is compact, we can further define a \mathbb{C}-linear map $T_{\mathcal{L}, \mathbf{h}}: \mathfrak{g} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
T_{\mathcal{L}, \mathbf{h}}(\mathcal{Y}):=\int_{X} \mathbf{h}^{-1}(\mathcal{Y} \mathbf{h}) c_{1}(\mathcal{L}, \mathbf{h})^{n}, \quad \mathcal{Y} \in \mathfrak{g} \tag{1.4.2}
\end{equation*}
$$

Then by (1.4.1), the corresponding real and imaginary parts are written in the form

$$
\begin{aligned}
\operatorname{Re}\left(T_{\mathcal{L}, \mathbf{h}}(\mathcal{Y})\right) & =\frac{1}{2} \int_{X} \mathbf{h}^{-1}\left(\mathcal{Y}_{\mathbb{R}} \mathbf{h}\right) c_{1}(\mathcal{L}, \mathbf{h})^{n} \\
\operatorname{Im}\left(T_{\mathcal{L}, \mathbf{h}}(\mathcal{Y})\right) & =-\frac{\sqrt{-1}}{2} \int_{X} \mathbf{h}^{-1}\left(\left(J \cdot \mathcal{Y}_{\mathbb{R}}\right) \mathbf{h}\right) c_{1}(\mathcal{L}, \mathbf{h})^{n} .
\end{aligned}
$$

Now, just by the same argument as in Donaldson [3; Proposition 6] (see also [17; Appendix A]), both $\operatorname{Re}\left(T_{\mathcal{L}, \mathbf{h}}\right)$ and $\operatorname{Im}\left(T_{\mathcal{L}, \mathbf{h}}\right)$ (and therefore $T_{\mathcal{L}, \mathbf{h}}$) are independent of the choice of \mathbf{h} in $\mathbf{H}_{\mathcal{L}}$. (Hence, $T_{\mathcal{L}, \mathbf{h}}$ is often denoted by $T_{\mathcal{L}}$.) We later study this independence from quite different viewpoints (cf. §5).
1.5. In this note, by N, we always denote a compact complex connected manifold with a holomorphic line bundle L over it. Here in 1.5, we further set $X=N$, and assume that \mathcal{L} is quantized by L, i.e.,
(1) $\mathcal{L}=L_{\mathbb{R}}$, and
(2) the natural G-action on X lifts to a holomorphic bundle action on L in such a way that the mapping $\operatorname{ord}_{\mathbb{R}}: L \rightarrow \mathcal{L}$ is G-equivariant.
Then by (3) of 1.3 , the identity (1.4.2) and its real part are written in the form

$$
\begin{aligned}
T_{\mathcal{L}, h_{\mathbb{R}}}(\mathcal{Y}) & =\int_{N} h^{-1}(\mathcal{Y} h) c_{1}(L, h)^{n} \\
\operatorname{Re}\left(T_{\mathcal{L}, h_{\mathbb{R}}}(\mathcal{Y})\right) & =\frac{1}{2} \int_{N} h^{-1}\left(\mathcal{Y}_{\mathbb{R}} h\right) c_{1}(L, h)^{n}=\left(\psi_{L}\right)_{*}(\mathcal{Y}),
\end{aligned}
$$

for all $h \in \mathcal{H}_{L}$ and $\mathcal{Y} \in \mathfrak{g}$, where $\left(\psi_{L}\right)_{*}: \mathfrak{g} \rightarrow \mathbb{R}$ is the Lie algebra homomorphism defined in $[10 ; \S 1]$. We now assume that \mathcal{L} is anticanonically quantized, i.e., \mathcal{L} is quantized by the anticanonical line bundle $L=K_{N}^{-1}$ on which G acts naturally. Throughout this note, we denote such \mathcal{L} by \mathcal{A} (i.e., $\left.\mathcal{A}:=\left(K_{N}^{-1}\right)_{\mathbb{R}}\right)$. Then for each $\omega \in \mathcal{S}_{\mathcal{A}}\left(\right.$ cf. 1.2), let $F_{N, \omega}: \mathfrak{g} \rightarrow \mathbb{C}$ be the \mathbb{C}-linear map defined by

$$
F_{N, \omega}(\mathcal{Y})=\int_{N}\left(\mathcal{Y} f_{\omega}\right) \omega^{n}
$$

where $f_{\omega} \in C^{\infty}(N)_{\mathbb{R}}$ is such that

$$
\sqrt{-1} \bar{\partial} \partial \log \left(\omega^{n}\right)-2 \pi \omega=\sqrt{-1} \partial \bar{\partial} f_{\omega}
$$

Note that, for ω as above, there exists an element h of \mathcal{H}_{L} (unique up to constant multiple) such that $c_{1}(L, h)=\omega$. Then by the same argument as in Futaki and Morita [12; Proposition 2.3] (see also [17; Appendix A]), we obtain:

$$
\begin{equation*}
T_{\mathcal{A}, h_{\mathbb{R}}}(\mathcal{Y})=F_{N, \omega}(\mathcal{Y}), \quad \mathcal{Y} \in \mathfrak{g} \tag{1.5.1}
\end{equation*}
$$

Since $T_{\mathcal{A}}=T_{\mathcal{A}, \mathbf{h}}$ does not depend on the choice of \mathbf{h} in $\mathbf{H}_{\mathcal{A}}$ (cf. 1.4), the identity (1.5.1) implies that $F_{N, \omega}$ is also independent of the choice of ω in $\mathcal{S}_{\mathcal{A}}$. Hence, $F_{N, \omega}$ is often written as F_{N} (which is nothing but the one in the introduction). Thus, $F_{N}=T_{\mathcal{A}}$ if $\mathcal{S}_{\mathcal{A}} \neq \phi$ (where $T_{\mathcal{A}}$ is defined even when $\mathcal{S}_{\mathcal{A}}=\phi$, though F_{N} is not). Later, we shall give a nontrivial example of an Einstein non-Kähler symplectic form (cf. § 3), and show the following slight generalization of a theorem of Futaki [7]:

Theorem 1.6. The \mathbb{C}-linear map $T_{\mathcal{A}}\left(=F_{N}\right): \mathfrak{g} \rightarrow \mathbb{C}$ is a complex Lie algebra homomorphism, i.e., $T_{\mathcal{A}}$ vanishes on $[\mathfrak{g}, \mathfrak{g}]$. Moreover, if $\tilde{\mathcal{E}}$ is nonempty, then $T_{\mathcal{A}}=0$.

This theorem, of course, includes the important case $G=\operatorname{Aut}(N)$, and is valid even for the case where $\mathcal{S}_{\mathcal{A}}$ is empty (though in our actual proof for the former half of 1.6 , we assume $\mathcal{S}_{\mathcal{A}} \neq \phi$ for simplicity).

§2. Poisson brackets for complex manifolds

Throughout this section, we fix an element ω of $\mathcal{S}_{\mathcal{L}}$ (cf. 1.4) and write it locally in the form

$$
\omega=\frac{\sqrt{-1}}{2 \pi} \sum_{\alpha, \beta=1}^{n} g_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}}
$$

with a system $\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ of holomorphic local coordinates on X. Let $C^{\infty}(X)_{\mathbb{C}}$ (resp. $\left.C^{\infty}(X)_{\mathbb{R}}\right)$ be the set of all complex-valued (resp. realvalued) C^{∞} functions on X. Then for this ω, we can define the associated Poisson bracket $[]:, C^{\infty}(X)_{\mathbb{C}} \times C^{\infty}(X)_{\mathbb{C}} \rightarrow C^{\infty}(X)_{\mathbb{C}}$ by

$$
[\varphi, \psi]:=\sum_{\alpha, \beta=1}^{n} g^{\bar{\beta} \alpha}\left(\varphi_{\alpha} \psi_{\bar{\beta}}-\varphi_{\bar{\beta}} \psi_{\alpha}\right), \quad \varphi, \psi \in C^{\infty}(X)_{\mathbb{C}}
$$

where $\left(g^{\bar{\beta} \alpha}\right)$ is the inverse matrix of $\left(g_{\alpha \bar{\beta}}\right)$ and

$$
\psi_{\alpha}:=\frac{\partial \psi}{\partial z^{\alpha}}, \varphi_{\bar{\alpha}}:=\frac{\partial \varphi}{\partial z^{\bar{\alpha}}}, \ldots
$$

In this section, we shall give a natural realization of \mathfrak{g} as a complex Lie subalgebra of $C^{\infty}(X)_{\mathbb{C}}$, which will later turn out to play a crucial role in our approach. Now, to each $\psi \in C^{\infty}(X)_{\mathbb{C}}$, associate complex C^{∞} vector fields \mathcal{V}_{ψ} and \mathcal{W}_{ψ} on X by

$$
\begin{aligned}
\mathcal{W}_{\psi} & :=-\sum_{\alpha, \beta=1}^{n} g^{\bar{\beta} \alpha} \psi_{\bar{\beta}} \frac{\partial}{\partial z^{\alpha}} \\
\mathcal{V}_{\psi} & :=\mathcal{W}_{\psi}-\overline{\mathcal{W}}_{\bar{\psi}}
\end{aligned}
$$

We first recall the following classical fact:
Fact 2.1. $\quad \sqrt{-1} C^{\infty}(X)_{\mathbb{R}}$ is a Lie subalgebra of $C^{\infty}(X)_{\mathbb{C}}$. Moreover, for any $\varphi, \psi, \eta \in C^{\infty}(X)_{\mathbb{C}}$, we have:
(1) $\left[\mathcal{V}_{\varphi}, \mathcal{V}_{\psi}\right]=\mathcal{V}_{[\varphi, \psi]}$ and $[\varphi, \psi]=\mathcal{V}_{\varphi} \psi$.
(2) If X is compact, then $\int_{X}[\varphi, \psi] \eta \omega^{n}=\int_{X} \varphi[\psi, \eta] \omega^{n}$.

Let \mathfrak{p} be the space of all functions $\psi \in C^{\infty}(X)_{\mathbb{C}}$ such that \mathcal{W}_{ψ} is holomorphic on X. Then by comparing the holomorphic (1,0)-components of $\left[\mathcal{V}_{\varphi}, \mathcal{V}_{\psi}\right]$ and $\mathcal{V}_{[\varphi, \psi]}$, we immediately obtain:

Corollary 2.2. $\left[\mathcal{W}_{\varphi}, \mathcal{W}_{\psi}\right]=\mathcal{W}_{[\varphi, \psi]}$ for all $\varphi, \psi \in \mathfrak{p}$, i.e., \mathfrak{p} is a complex Lie subalgebra of $C^{\infty}(X)_{\mathbb{C}}$ and the \mathbb{C}-linear map: $\mathfrak{p} \ni \psi \mapsto$ $\mathcal{W}_{\psi} \in H^{0}(X, \mathcal{O}(T X))$ is a complex Lie algebra homomorphism.

Now, choose a norm $\mathbf{h} \in \mathbf{H}_{\mathcal{L}}$ for \mathcal{L} such that $c_{1}(\mathcal{L}, \mathbf{h})=\omega$ (cf. 1.2). (Note that such an \mathbf{h} is unique up to constant multiple if X is compact.) Moreover, to each $\mathcal{Y} \in \mathfrak{g}$, we associate the function $\xi_{\mathbf{h}}(\mathcal{Y}):=\mathbf{h}^{-1}(\mathcal{Y} \mathbf{h}) \in$ $C^{\infty}(X)_{\mathbb{C}}$. Then by setting $\tilde{\mathfrak{g}}:=\operatorname{Image}\left(\xi_{\mathbf{h}}\right)$, we have:

Theorem 2.3. (1) $\mathcal{W}_{\xi_{\mathrm{h}}(\mathcal{Y})}=\mathcal{Y}$ for all $\mathcal{Y} \in \mathfrak{g}$. In particular, $\tilde{\mathfrak{g}}$ is a subset of \mathfrak{p}. (2) The \mathbb{C}-linear map $\xi_{\mathbf{h}}: \mathfrak{g} \rightarrow \tilde{\mathfrak{g}}$ is a complex Lie algebra isomorphism.

Proof. (1) Take a sufficiently fine Stein cover $X=\cup_{i \in I} U_{i}$ of X. Fixing an arbitrary $i \in I$, we express \mathcal{Y} on U_{i} in the form:

$$
\mathcal{Y}=\sum_{\gamma=1}^{n} a^{\gamma} \frac{\partial}{\partial z^{\gamma}} \quad\left(a^{\gamma} \in H^{0}\left(U_{i}, \mathcal{O}\right)\right)
$$

where $\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ is a system of holomorphic local coordinates on U_{i}. Let \mathbf{e}_{i} be the local base for \mathcal{L} over U_{i} as defined in 1.1, and write \mathbf{h} as $\mathbf{h}_{i} \mathbf{e}_{i}^{*}$ on U_{i} for some $\mathbf{h}_{i} \in C^{\infty}\left(U_{i}\right)_{\mathbb{R}}$. An infinitesimal form of (2) of 1.4 yields

$$
u:=-\left(\mathcal{Y} \mathbf{e}_{i}\right) / \mathbf{e}_{i} \in H^{0}\left(U_{i}, \mathcal{O}\right)
$$

Moreover by $c_{1}(\mathcal{L}, \mathbf{h})=\omega$, we have $\left(\log \mathbf{h}_{i}\right)_{\gamma \bar{\beta}}=-g_{\gamma \bar{\beta}}$ for all β and γ. Since $\xi_{\mathbf{h}}(\mathcal{Y})=\mathcal{Y}\left(\log \mathbf{h}_{i}\right)+u$, it now follows that:

$$
\begin{aligned}
\mathcal{W}_{\xi_{\mathbf{h}}(\mathcal{Y})} & =-\sum_{\alpha, \beta, \gamma} g^{\bar{\beta} \alpha}\left(a^{\gamma}\left(\log \mathbf{h}_{i}\right)_{\gamma}+u\right)_{\bar{\beta}} \frac{\partial}{\partial z^{\alpha}} \\
& =-\sum_{\alpha, \beta, \gamma} g^{\bar{\beta} \alpha} a^{\gamma}\left(\log \mathbf{h}_{i}\right)_{\gamma \bar{\beta}} \frac{\partial}{\partial z^{\alpha}}=\mathcal{Y}
\end{aligned}
$$

(2) In view of (1) above, it suffices to show $\left[\xi_{\mathbf{h}}\left(\mathcal{Y}_{1}\right), \xi_{\mathbf{h}}\left(\mathcal{Y}_{2}\right)\right]=\xi_{\mathbf{h}}\left(\left[\mathcal{Y}_{1}, \mathcal{Y}_{2}\right]\right)$ for all $\mathcal{Y}_{1}, \mathcal{Y}_{2} \in \mathfrak{g}$. For simplicity, we put $\zeta_{1}:=\xi_{\mathbf{h}}\left(\mathcal{Y}_{1}\right)$ and $\zeta_{2}:=\xi_{\mathbf{h}}\left(\mathcal{Y}_{2}\right)$. Then by $\mathcal{Y}_{1} \mathbf{h}=\zeta_{1} \mathbf{h}$ and $\mathcal{Y}_{2} \mathbf{h}=\zeta_{2} \mathbf{h}$, we have:

$$
\xi_{\mathbf{h}}\left(\left[\mathcal{Y}_{1}, \mathcal{Y}_{2}\right]\right) \mathbf{h}=\left[\mathcal{Y}_{1}, \mathcal{Y}_{2}\right] \mathbf{h}=\mathcal{Y}_{1}\left(\zeta_{2} \mathbf{h}\right)-\mathcal{Y}_{2}\left(\zeta_{1} \mathbf{h}\right)=\left(\mathcal{Y}_{1} \zeta_{2}-\mathcal{Y}_{2} \zeta_{1}\right) \mathbf{h}
$$

This together with (1) above yields

$$
\xi_{\mathbf{h}}\left(\left[\mathcal{Y}_{1}, \mathcal{Y}_{2}\right]\right)=\mathcal{Y}_{1} \zeta_{2}-\mathcal{Y}_{2} \zeta_{1}=\mathcal{W}_{\zeta_{1}}\left(\zeta_{2}\right)-\mathcal{W}_{\zeta_{2}}\left(\zeta_{1}\right)=\left[\zeta_{1}, \zeta_{2}\right]
$$

as required.
Q.E.D.

Remark 2.4. Note that the kernel of the mapping

$$
\mathcal{W}: \mathfrak{p} \rightarrow H^{0}(X, \mathcal{O}(T X)), \quad \psi \mapsto \mathcal{W}_{\psi}
$$

is exactly $H^{0}(X, \mathcal{O})(=\mathbb{C}$ if X is compact). Suppose now that X is compact and that ω is a Kähler form. Then the Albanese map $a_{X}: X \rightarrow$ $\operatorname{Alb}(X)$ of X naturally induces the Lie group homomorphism

$$
\tilde{a}_{X}: \operatorname{Aut}^{0}(X) \rightarrow \operatorname{Aut}^{0}(\operatorname{Alb}(X))(\cong \operatorname{Alb}(X))
$$

where $\operatorname{Aut}^{0}(\cdot)$ denotes the identity component of $\operatorname{Aut}(\cdot)$. Let P_{0} be the kernel of this homomorphism \tilde{a}_{X}, and \mathfrak{p}_{0} the associated Lie subalgebra of $H^{0}(X, \mathcal{O}(T X))$. Then P_{0} has a natural structure of a linear algebraic group (cf. Fujiki [6]), and by a theorem of Lichnerowicz [16], the image of the mapping \mathcal{W} is exactly \mathfrak{p}_{0}. Hence,

$$
\mathfrak{p}_{0} \cong \mathfrak{p} / \operatorname{Ker} \mathcal{W}=\mathfrak{p} / \mathbb{C}
$$

Remark 2.5. In the case where \mathcal{L} is anticanonically quantized with $X=N$, the Lie algebra homomorphism $\xi_{\mathbf{h}}$ was first observed by Futaki (through a definition quite different from ours) in the earlier version of [7] (see [11; 3.1]), though his original argument was later replaced by the new one in [7]. In this particular sense, our approach here is regarded as a natural generalization of forgotten Futaki's original approach to our log-harmonic bundle cases.

§3. Factorization of the character $T_{\mathcal{L}, \mathrm{h}}$

For a fixed symplectic form ω in $\mathcal{S}_{\mathcal{L}}$, we choose an element \mathbf{h} of $\mathbf{H}_{\mathcal{L}}$ such that $c_{1}(\mathcal{L}, \mathbf{h})=\omega$ (cf. 1.2). In this section, assuming X to be compact, we shall express $T_{\mathcal{L}, \mathbf{h}}$ as a composite of two Lie algebra homomorphisms and then prove Theorem 1.6. A nontrivial example of an Einstein non-Kähler symplectic form will also be given (cf. 3.3).
3.1. We here regard \mathbb{C} as an abelian one-dimensional complex Lie algebra. Let $\lambda_{\omega}: C^{\infty}(X)_{\mathbb{C}} \rightarrow \mathbb{C}$ be the \mathbb{C}-linear map defined by

$$
\lambda_{\omega}(\varphi):=\int_{X} \varphi \omega^{n}, \quad \varphi \in C^{\infty}(X)_{\mathbb{C}}
$$

and we endow $C^{\infty}(X) \mathbb{C}$ with the natural structure of a complex Lie algebra coming from the Poisson bracket defined in §2. Then λ_{ω} is a complex Lie algebra homomorphism, i.e., λ_{ω} vanishes on the commutator subalgebra of $C^{\infty}(X)_{\mathbb{C}}$, since by (2) of Fact 2.1 applied to $\eta=1$, the identity $\int_{X}[\varphi, \psi] \omega^{n}=0$ holds for all $\varphi, \psi \in C^{\infty}(X)_{\mathbb{C}}$. Now for $\mathcal{Y} \in \mathfrak{g}$,

$$
\lambda_{\omega}\left(\xi_{\mathbf{h}}(\mathcal{Y})\right)=\lambda_{\omega}\left(\mathbf{h}^{-1}(\mathcal{Y} \mathbf{h})\right)=T_{\mathcal{L}, \mathbf{h}}(\mathcal{Y})
$$

and hence we have:
Theorem 3.2. $\quad T_{\mathcal{L}, \mathbf{h}}=\lambda_{\omega} \circ \xi_{\mathbf{h}}$, and in particular, $T_{\mathcal{L}, \mathbf{h}}$ is a complex Lie algebra homomorphism.

Until the end of this section, we set $X=N$, and assume moreover that \mathcal{L} is anticanonically quantized (cf. 1.5). Then $\mathcal{L}=\mathcal{A}, L=K_{N}^{-1}$, and we can naturally regard each $\Omega \in \tilde{\mathcal{E}}$ (cf. 1.2) as an element, denoted by h_{Ω}, of \mathcal{H}_{L} via

$$
h_{\Omega}(\ell, \ell):= \pm<\Omega,(\sqrt{-1})^{n} \ell \wedge \bar{\ell}>, \quad 0 \neq \ell \in L
$$

where $<,>$ denotes the ordinary contraction of forms by vectors, and the plus or minus sign is chosen in such a way that the right-hand side is always positive. We shall now prove Theorem 1.6:

Proof of 1.6. In view of 3.2, it suffices to show the latter half of 1.6. (For this latter half, our proof down below goes through even if $\mathcal{S}_{\mathcal{A}}=\phi$.) Let $\Omega \in \tilde{\mathcal{E}}$. Then there exists an $r \in \mathbb{R}$ such that

$$
r \Omega=(\sqrt{-1} \bar{\partial} \partial \log (\Omega))^{n}=\left(2 \pi c_{1}\left(L, h_{\Omega}\right)\right)^{n}
$$

Now, for any $\mathcal{Y} \in \mathfrak{g}$, we denote by $\mathcal{Y} \Omega$ the complex Lie derivative ($d \circ$ $\left.i_{y}+i_{y} \circ d\right) \Omega\left(=d\left(i_{y} \Omega\right)\right)$ of Ω with respect to the holomorphic vector field \mathcal{Y}. Then, in view of 1.5 , we have:

$$
\begin{aligned}
T_{\mathcal{A}}(\mathcal{Y}) & =\int_{N} h_{\Omega}^{-1}\left(\mathcal{Y} h_{\Omega}\right) c_{1}\left(L, h_{\Omega}\right)^{n}=\int_{N}\{(\mathcal{Y} \Omega) / \Omega\} c_{1}\left(L, h_{\Omega}\right)^{n} \\
& =\frac{r}{(2 \pi)^{n}} \int_{N} \mathcal{Y} \Omega=\frac{r}{(2 \pi)^{n}} \int_{N} d(i \mathcal{Y} \Omega)=0 .
\end{aligned}
$$

Q.E.D.

Remark 3.3. The result of Koiso and Sakane [15] on the existence of non-homogeneous Einstein-Kähler metrics is true also for the Einstein symplectic case. In fact, in the definition of "tight pair" in [17; p.731], replace the condition (2) by
" ω is an Einstein symplectic form satisfying $\sqrt{-1} \bar{\partial} \partial \log \left(\omega^{n}\right)=\omega$ ",
and moreover, in place of the assumption " \tilde{Y} is a Fano manifold" in [17; Theorem 10.3], we assume the following:
(1) $\left(c_{1}(W)+t c_{1}\left(L_{1}\right)\right)^{e}[W] \neq 0$ whenever $-n^{\prime \prime}<t<n^{\prime}$.
(2) $c_{1}(\tilde{Y})^{m_{0}}\left[\tilde{D}_{0}\right] \neq 0 \neq c_{1}(\tilde{Y})^{m_{\infty}}\left[\tilde{D}_{\infty}\right]$, where $m_{0}=\operatorname{dim}_{\mathbb{C}} \tilde{D}_{0}$ and $m_{\infty}=\operatorname{dim}_{\mathbb{C}} \tilde{D}_{\infty}$.
Then [17; Theorem 10.3] is valid if we further replace (b) in that theorem by " \tilde{Y} admits an Einstein symplectic form". For instance, let C_{0} be an irreducible nonsingular projective algebraic curve (defined over \mathbb{C}) of genus $g_{0} \geqq 2$ and take an ample holomorphic line bundle L_{0} over C_{0} satisfying $K_{C_{0}}=L_{0}^{\otimes\left(2 g_{0}-2\right)}$, so that $c_{1}\left(L_{0}\right)$ generates $H^{2}\left(C_{0}, \mathbb{Z}\right)$. We then put $W:=C_{0} \times C_{0}$, and let $p: L_{1} \rightarrow W$ be the holomorphic line bundle $p r_{1}^{*} L_{0}^{\otimes k} \otimes p r_{2}^{*} L_{0}^{\otimes-k}$ over $W\left(1 \leqq k \leqq 2 g_{0}-3\right)$, where $p r_{i}: C_{0} \times$ $C_{0} \rightarrow C_{0}$ denotes the natural projection to the i-th factor. Now, take the Einstein-Kähler form (associated with the Poincaré metric) ω_{0} on C_{0} in the cohomology class $-2 \pi c_{1}\left(C_{0}\right)_{\mathbb{R}}$. Then $\omega:=-\left(p r_{1}^{*} \omega_{0}+p r_{2}^{*} \omega_{0}\right)$ is an Einstein symplectic form satisfying $\sqrt{-1} \bar{\partial} \partial \log \omega=\omega$. Note that ω_{0} is naturally regarded as a Hermitian (fibre) metric for the line bundle $K_{C_{0}}^{-1}$. Hence, we have a natural Hermitian metric h for L_{0} such that
$h^{\otimes\left(2-2 g_{0}\right)}$ coincides with ω_{0}. We now define $\rho: L_{1} \rightarrow \mathbb{R}$ by $\rho(\ell):=$ $\left\|\ell^{\prime}\right\|_{h}^{k}\left\|\ell^{\prime \prime}\right\|_{h}^{-k}$ for any $\ell=\ell^{\prime \otimes k} \otimes \ell^{\prime \prime \otimes-k}$ in the fibre $\left(L_{1}\right)_{(x, y)}$ of L_{1} over $(x, y) \in C_{0} \times C_{0}$ with $\ell^{\prime} \in\left(L_{0}\right)_{x}$ and $\ell^{\prime \prime} \in\left(L_{0}\right)_{y}-\{0\}$. Let Y be the projective bundle $\mathbb{P}\left(E^{*}\right):=(E$ minus zero-section $) / \mathbb{C}^{*}$, where E is the rank 2 vector bundle $\mathcal{O}_{W} \oplus L_{1}$ over W obtained as the direct sum of the trivial line bundle \mathcal{O}_{W} and L_{1}. Now for simplicity, put $\kappa:=k /\left(2 g_{0}-2\right)$. Since

$$
\int_{-1}^{1} t\left(c_{1}(W)+t c_{1}\left(L_{1}\right)\right)^{2} d t=c_{1}(W)^{2}[W] \int_{-1}^{1} t\left(1-\kappa^{2} t^{2}\right) d t=0
$$

we have $F_{Y}=0$. Hence there exists an Einstein symplectic form on Y. Actually, let $\Phi(t)$ be the polynomial

$$
\Phi(t):=-\int_{-1}^{t} s\left(1-\kappa^{2} s^{2}\right) d s, \quad-1 \leq t \leq 1
$$

and define a C^{∞} function $\lambda=\lambda(\rho)$ in ρ by

$$
\rho^{2}=\exp \left\{-\int_{0}^{\lambda} \Phi(t)^{-1}\left(1-\kappa^{2} t^{2}\right) d t\right\}
$$

Then $\eta:=\sqrt{-1} \Phi(\lambda(\rho)) \rho^{-2}\left(p^{*} \omega\right)^{2} \wedge \partial \rho \wedge \bar{\partial} \rho$ on L_{1} extends to a volume form on Y, and it is easily checked that $\sqrt{-1} \partial \bar{\partial} \log \eta$ is an Einstein non-Kähler symplectic form on Y.

Remark 3.4. Let us set $X=N, G=\operatorname{Aut}(N)$, and consider the case where \mathcal{L} is anticanonically quantized. Assume further that $\omega \in \mathcal{E} \mathcal{K}_{\mathcal{L}}$, i.e., ω is an Einstein-Kähler form in the class $c_{1}(X)_{\mathbb{R}}$. We then express ω just as in §2, using holomorphic local coordinates, and put:

$$
\square_{\omega}=\sum_{\alpha, \beta=1}^{n} g^{\bar{\beta} \alpha} \frac{\partial^{2}}{\partial z^{\alpha} \partial z^{\bar{\beta}}}
$$

Let $\operatorname{Ker}_{\mathbb{C}}\left(\square_{\omega}+1\right)\left(\right.$ resp. $\left.\operatorname{Ker}_{i \mathbb{R}}\left(\square_{\omega}+1\right)\right)$ be the space of all functions φ in $C^{\infty}(N)_{\mathbb{C}}$ (resp. $\left.\sqrt{-1} C^{\infty}(N)_{\mathbb{R}}\right)$ such that $\left(\square_{\omega}+1\right) \varphi=0$. Note that in our case, we have $\mathcal{L}=\left(K_{N}^{-1}\right)_{\mathbb{R}}, \mathfrak{g}=H^{0}(N, \mathcal{O}(T N))$, and moreover ω is naturally regarded as an element (denoted by $\mathbf{h}(\omega)$) of $\mathbf{H}_{\mathcal{L}}$. Now, the well-known Matsushima's theorem [18] asserts that:
(1) $\left\{\mathcal{W}_{\varphi} ; \varphi \in \operatorname{Ker}_{\mathbb{C}}\left(\square_{\omega}+1\right)\right\}=\mathfrak{g}$ (cf. §2);
(2) $\left\{\mathcal{W}_{\varphi} ; \varphi \in \operatorname{Ker}_{i \mathbb{R}}\left(\square_{\omega}+1\right)\right\}$ coincides with the \mathbb{C}-vector space $\mathfrak{k}(\subset \mathfrak{g})$ of all Killing vector fields on the Einstein-Kähler manifold (N, ω).

By 1.6 and 3.2, this can be stated in the following slightly stronger form:

$$
\xi_{\mathbf{h}(\omega)}\left(\operatorname{Ker}_{\mathbb{C}}\left(\square_{\omega}+1\right)\right)=\mathfrak{g} \text { and } \xi_{\mathbf{h}(\omega)}\left(\operatorname{Ker}_{i \mathbb{R}}\left(\square_{\omega}+1\right)\right)=\mathfrak{k}
$$

In view of the identity $\lambda_{\omega}\left(\operatorname{Ker}_{\mathbb{C}}\left(\square_{\omega}+1\right)\right)=\{0\}$, this expression has the advantage that, for $\omega \in \mathcal{E} \mathcal{K}_{\mathcal{L}}$ as above, the vanishing of F_{N} is quite naturally understood (see for instance Futaki [8] for similar observations). We can now summarize Matsushima's theorem and the vanishing of F_{N} for $\omega \in \mathcal{E} \mathcal{K}_{\mathcal{L}}$ just in the following one commutative diagram:

$$
\begin{array}{cl}
\mathfrak{k} & \hookrightarrow H^{0}(N, \mathcal{O}(T N)) \\
\left.\simeq\right|_{\mathbf{h}(\omega)} & \circlearrowright \\
\simeq \xi_{\mathbf{h}(\omega)} \\
\operatorname{Ker}_{i \mathbb{R}}\left(\square_{\omega}+1\right) & \hookrightarrow \operatorname{Ker}_{\mathbb{C}}\left(\square_{\omega}+1\right)
\end{array}
$$

§4. The moment map

Let $\omega \in \mathcal{S}_{\mathcal{L}}$, and choose an element \mathbf{h} of $\mathbf{H}_{\mathcal{L}}$ such that $c_{1}(\mathcal{L}, \mathbf{h})=\omega$. We then define the moment map $\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}: X \rightarrow \mathfrak{g}^{*}$ associated with the quasi-holomorphic G-action (cf. 1.4) on \mathcal{L} by

$$
\left(\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}(x)\right)(\mathcal{Y})=\left(\xi_{\mathbf{h}}(\mathcal{Y})\right)(x), \quad x \in X
$$

where \mathfrak{g}^{*} denotes the space of \mathbb{C}-linear functionals on \mathfrak{g}. Note that, in our definition of $\mu_{\mathfrak{g}, \mathrm{h}}^{\mathcal{L}}$, there is no ambiguity of translations even if G is not semisimple. Let \mathfrak{g}^{\prime} be a (possibly real) Lie subalgebra of \mathfrak{g} and G^{\prime} be the corresponding connected Lie subgroup of G. If \mathfrak{g}^{\prime} is a complex Lie subalgebra of \mathfrak{g}, then we again have the moment map $\mu_{\mathfrak{g}^{\prime}, \mathbf{h}}^{\mathcal{L}}: X \rightarrow \mathfrak{g}^{\prime *}$ associated with the natural quasi-holomorphic G^{\prime}-action on \mathcal{L}. For the remaining case where \mathfrak{g}^{\prime} is not a complex Lie subalgebra, we can still define $\mu_{\mathfrak{g}^{\prime}, \mathbf{h}}^{\mathcal{L}}$ as follows. In this case, let $\mathfrak{g}^{\prime *}$ be the space of all \mathbb{C}-linear functionals on $\left\{\mathfrak{g}^{\prime}\right\}_{\mathbb{C}}$, where $\left\{\mathfrak{g}^{\prime}\right\}_{\mathbb{C}}$ denotes the complex Lie subalgebra of \mathfrak{g} spanned by \mathfrak{g}^{\prime}. We then put $\mu_{\mathfrak{g}^{\prime}, \mathbf{h}}^{\mathcal{L}}:=p^{\prime} \circ \mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}\left(=\mu_{\left\{\mathfrak{g}^{\prime}\right\}_{\mathbb{C}}, \mathbf{h}}^{\mathcal{L}}\right)$, where $p^{\prime}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{\prime *}$ is the natural projection induced by $\mathfrak{g}^{\prime} \hookrightarrow \mathfrak{g}$. Then, in any case, it is easy to check

$$
\begin{equation*}
\left(\mu_{\mathrm{Ad}(g) \mathfrak{g}^{\prime}, g \mathbf{h}}^{\mathcal{L}}(g x)\right)(\operatorname{Ad}(g) \mathcal{Y})=\left(\mu_{\mathfrak{g}^{\prime}, \mathbf{h}}^{\mathcal{L}}(x)\right)(\mathcal{Y}) \tag{1}
\end{equation*}
$$

for all $g \in G, x \in X, \mathcal{Y} \in \mathfrak{g}^{\prime}$.

Remark 4.1. Suppose G^{\prime} is such that $g^{\prime} \cdot \mathbf{h}=\mathbf{h}$ for all $g^{\prime} \in G^{\prime}$ (and this condition is satisfied if both X and G^{\prime} are compact and G^{\prime} preserves the symplectic form ω). Then, in view of (1.4.1), we have the inclusion $\xi_{\mathbf{h}}\left(\mathfrak{g}^{\prime}\right) \subset \sqrt{-1} C^{\infty}(X)_{\mathbb{R}}$. Now by (1) above, $\mu_{\mathfrak{g}^{\prime}, \mathbf{h}}^{\mathcal{L}}: X \rightarrow \sqrt{-1} \mathfrak{g}_{\mathbb{R}}^{\prime *}$ is G^{\prime}-equivariant, where $\mathfrak{g}_{\mathbb{R}}^{\prime *}$ denotes the space of \mathbb{R}-linear functionals on \mathfrak{g}^{\prime} endowed with the natural coadjoint G^{\prime}-action. Hence, in this case, our $\mu_{\mathfrak{g}^{\prime}, \mathbf{h}}^{\mathcal{L}}$ is nothing but the ordinary moment map (cf. Guillemin and Sternberg [14]).

Definition 4.2. Recall that the (n, n)-form ω^{n} is naturally regarded as a signed measure on X, where either ω^{n} or $-\omega^{n}$ is a positive measure. If $\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}$ is proper, then the push-forward $\left(\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)$ of the measure ω^{n} by $\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}$ is a well-defined signed measure on \mathfrak{g}^{*}, and is called the Duistermaat-Heckman's measure associated with the moment map $\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}$. Note that $\left(\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)$ is zero outside the closure of the image of $\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}$. If X is compact, then we denote by $\theta_{\mathcal{L}, \mathfrak{g}, \mathbf{h}} \in \mathfrak{g}^{*}$ the barycenter

$$
\frac{\int_{\chi \in \mathfrak{g}^{*}} \chi \cdot\left\{\left(\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)\right\}(\chi)}{\int_{\mathfrak{g}^{*}}\left(\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)}\left(=\frac{\int_{\chi \in \mathfrak{g}^{*}} \chi \cdot\left\{\left(\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)\right\}(\chi)}{\left(c_{1}(\mathcal{L})^{n}[X]\right)}\right)
$$

of the Duistermaat-Heckman's measure $\left(\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)$. Now, we shall show the following (cf. [17]; see also Futaki [9]):

Theorem 4.3. Suppose X is compact. Then we have the identity $\theta_{\mathcal{L}, \mathfrak{g}, \mathbf{h}}=\left(c_{1}(\mathcal{L})^{n}[X]\right)^{-1} T_{\mathcal{L}, \mathbf{h}}$, and in particular for any (possibly real) Lie subalgebras $\mathfrak{g}_{1}, \mathfrak{g}_{2}$ of \mathfrak{g} with $\mathfrak{g}_{1} \subset \mathfrak{g}_{2}$,

$$
\theta_{\mathcal{L}, \mathfrak{g}_{1}, \mathbf{h}}(\mathcal{Y})\left(=\left(c_{1}(\mathcal{L})^{n}[X]\right)^{-1} T_{\mathcal{L}, \mathbf{h}}(\mathcal{Y})\right)=\theta_{\mathcal{L}, \mathfrak{g}_{2}, \mathbf{h}}(\mathcal{Y}) \quad \text { for all } \mathcal{Y} \in \mathfrak{g}
$$

i.e., $p_{12}\left(\theta_{\mathcal{L}, \mathfrak{g}_{2}, \mathbf{h}}\right)=\theta_{\mathcal{L}, \mathfrak{g}_{1}, \mathbf{h}}$, where $p_{12}: \mathfrak{g}_{2}^{*} \rightarrow \mathfrak{g}_{1}^{*}$ denotes the natural projection induced by $\mathfrak{g}_{1} \subset \mathfrak{g}_{2}$.

Proof. It suffices to show $\int_{\chi \in \mathfrak{g}^{*}} \chi \cdot\left\{\left(\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)\right\}(\chi)=T_{\mathcal{L}, \mathbf{h}}$. Let $\mathcal{Y} \in \mathfrak{g}$. Then this required identity follows immediately from

$$
\begin{aligned}
\int_{\chi \in \mathfrak{q}^{*}} \chi(\mathcal{Y}) & \cdot\left\{\left(\mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)\right\}(\chi)=\int_{X} \mu_{\mathfrak{g}, \mathbf{h}}^{\mathcal{L}}(\mathcal{Y}) \omega^{n} \\
& =\int_{X} \xi_{\mathbf{h}}(\mathcal{Y}) \omega^{n}=T_{\mathcal{L}, \mathbf{h}}(\mathcal{Y})
\end{aligned}
$$

§5. $\left(\mathbb{C}^{*}\right)^{r}$-actions and the theorem of stationary phase

In this section, we consider the case where X is compact with $G=$ $\left(\mathbb{C}^{*}\right)^{r}$ for some $0<r \in \mathbb{Z}$. Let $K\left(\cong\left(S^{1}\right)^{r}\right)$ be the maximal compact subgroup of G, and \mathfrak{k} the corresponding Lie subalgebra of \mathfrak{g}. Moreover, by $\mathcal{S}_{\mathcal{L}}^{K}, \mathbf{H}_{\mathcal{L}}^{K}$, we denote the set of all K-invariant elements in $\mathcal{S}_{\mathcal{L}}, \mathbf{H}_{\mathcal{L}}$, respectively. Then for any $\omega \in \mathcal{S}_{\mathcal{L}}^{K}$, there exists an $\mathbf{h} \in \mathbf{H}_{\mathcal{L}}^{K}$, unique up to constant multiple, such that $c_{1}(\mathcal{L}, \mathbf{h})=\omega$. The purpose of this section is to obtain, as a corollary of the theorem of stationary phase, the independence of $T_{\mathcal{L}, \mathbf{h}}$ on the choice of \mathbf{h} in $\mathbf{H}_{\mathcal{L}}^{K}$ (cf. Remark 5.3).

Let X^{G} be the fixed point set of the G-action on X, and write X^{G} as a union $\cup_{i=1}^{p} X_{i}$ of the connected components. Recall the classical fact (due to Atiyah, Guillemin and Sternberg) that the image of the moment map $\mu_{\mathfrak{e}, \mathbf{h}}^{\mathcal{L}}: X \rightarrow \sqrt{-1} \mathfrak{k}_{\mathbb{R}}^{*}$ is the convex hull of the finite set $\mu_{\mathfrak{e}, \mathbf{h}}^{\mathcal{L}}\left(X^{G}\right)$ (see for instance [13]). Now, the isotropy representation of G along each X_{i} induces a natural infinitesimal action of \mathfrak{g} on the normal bundle (denoted by E_{i}) of X_{i} in X. In particular, E_{i} splits into a direct sum of holomorphic vector subbundles (possibly with $n_{i}=1$):

$$
E_{i}=\oplus_{j} E_{i j}, \quad j=1,2, \ldots, n_{i}
$$

to which we can associate nontrivial characters $\chi_{i j} \in \mathfrak{g}^{*}$ such that every $\mathcal{Y} \in \mathfrak{g}$ acts on $E_{i j}$ as scalar multiplication by $\sqrt{-1} \chi_{i j}(\mathcal{Y})$. Choose a K-invariant Hermitian connection for each $E_{i j}$ and let $\Omega_{i j}$ be the corresponding curvature form. Then the theorem of stationary phase asserts that (cf. Duistermaat and Heckman [4], [5], Atiyah and Bott [1]):

Fact 5.1. Let $\mathcal{Y} \in \mathfrak{k}$ be such that $\chi_{i j}(\mathcal{Y}) \neq 0$ for any i and j. Moreover, put $\phi_{i}:=\prod_{j=1}^{n_{i}} \operatorname{det}\left\{(2 \pi \sqrt{-1})^{-1}\left(\Omega_{i j}+\chi_{i j}(\mathcal{Y}) \operatorname{id}_{E_{i j}}\right)\right\}$. Then

$$
\int_{X} \exp \left(\frac{<\mu_{\mathfrak{e}, \mathbf{h}}^{\mathcal{L}}, \mathcal{Y}>}{2 \pi}\right) \frac{\omega^{n}}{n!}=\sum_{i=1}^{p} \int_{X_{i}} \exp \left(\frac{<\mu_{\mathrm{e}, \mathbf{h}}^{\mathcal{L}}, \mathcal{Y}>}{2 \pi}\right) \phi_{i}^{-1} \exp (\omega) .
$$

We now observe that $H^{0}\left(X_{i},\left|\mathcal{O}^{*}\right|^{2}\right) \cong \mathbb{C}^{*}$. Moreover, the restriction \mathcal{L}_{i} of \mathcal{L} to X_{i} admits a natural bundle action of G induced from \mathcal{L}. We then have real Lie group homomorphisms

$$
\kappa_{i}: G \rightarrow \mathbb{R}_{+}, \quad i=1,2, \ldots, p
$$

such that every $g \in G$ acts on \mathcal{L}_{i} as scalar multiplication by $\kappa_{i}(g)$. Let $\left(\kappa_{i}\right)_{*}: \mathfrak{g}_{\text {real }}(\cong \mathfrak{g}) \rightarrow \mathbb{R}$ be the corresponding Lie algebra homomorphism.

Then for any $x \in X_{i}, \mathcal{Y} \in \mathfrak{k}$ and $\mathbf{h} \in \mathbf{H}_{\mathcal{L}}^{K}$,
$\left\{\mathbf{h}^{-1}(\mathcal{Y} \mathbf{h})\right\}(x)=\frac{1}{2}\left\{\mathbf{h}^{-1}\left(\mathcal{Y}_{\mathbb{R}}-\sqrt{-1} J \cdot \mathcal{Y}_{\mathbb{R}}\right) \mathbf{h}\right\}(x)=\frac{1}{2} \sqrt{-1}\left(\kappa_{i}\right)_{*}\left(J \cdot \mathcal{Y}_{\mathbb{R}}\right)$,
where the left-hand side is nothing but $\left(\mu_{\mathfrak{e}, \mathbf{h}}^{\mathcal{L}}(x)\right)(\mathcal{Y})$. Hence, for each i, the image $\mu_{\mathfrak{e}, \mathbf{h}}^{\mathcal{L}}\left(X_{i}\right)$ is a single point independent of \mathbf{h}. We now choose a general \mathbb{R}-basis $\left\{\mathcal{Y}_{1}, \mathcal{Y}_{2}, \ldots, \mathcal{Y}_{r}\right\}$ for \mathfrak{k} such that $\chi_{i j}\left(\Sigma_{k=1}^{r} a_{k} \mathcal{Y}_{k}\right) \neq 0$ for any i, j when $0 \neq\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in \mathbb{Z}^{r}$. Further, define a system $\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ of real linear coordinates on $\sqrt{-1} \mathfrak{k}_{\mathbb{R}}^{*}$ by

$$
y_{k}(\eta)=<(2 \pi \sqrt{-1})^{-1} \eta, \mathcal{Y}_{k}>, \quad \eta \in \sqrt{-1} \mathfrak{k}_{\mathbb{R}}^{*}
$$

We then have the following consequence of Fact 5.1:
Corollary 5.2. The Duistermaat-Heckman's measure $\left(\mu_{\mathfrak{k}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)$ on $\sqrt{-1} \mathfrak{k}_{\mathbb{R}}^{*}$ is independent of the choice of $\omega \in \mathcal{S}_{\mathcal{L}}$ and $\mathbf{h} \in \mathbf{H}_{\mathcal{L}}$.

Proof. Let $\left(\omega^{\prime}, \mathbf{h}^{\prime}\right) \in \mathcal{S}_{\mathcal{L}} \times \mathbf{H}_{\mathcal{L}}$ be another pair such that $c_{1}\left(\mathcal{L}, \mathbf{h}^{\prime}\right)=$ ω^{\prime}. Replacing $\left(\mathcal{Y}_{1}, \mathcal{Y}_{2}, \ldots, \mathcal{Y}_{r}\right)$ by its constant multiple, if necessary, we may assume that both $\mu_{\mathrm{e}, \mathbf{h}}^{\mathcal{L}}(X)$ and $\mu_{\mathrm{e}, \mathbf{h}^{\prime}}^{\mathcal{L}}(X)$ are contained in $V:=\{\eta \in$ $\sqrt{-1} \mathfrak{k}_{\mathbb{R}}^{*} ;\left|y_{k}(\eta)\right|<1$ for all $\left.\mathbf{k}\right\}$. Since $\mu_{\mathfrak{e}, \mathbf{h}}^{\mathcal{L}}\left(X_{i}\right)=\mu_{\mathfrak{k}, \mathbf{h}^{\prime}}^{\mathcal{L}}\left(X_{i}\right)$, and since $\int_{X_{i}} \phi_{i}^{-1} \exp (\omega)=\int_{X_{i}} \phi_{i}^{-1} \exp \left(\omega^{\prime}\right)$, the identity in Fact 5.1 implies

$$
\begin{aligned}
& \left.\int_{X_{i}} \exp \left(\frac{1}{2 \pi}<\mu_{\mathfrak{e}, \mathbf{h}^{\prime}}^{\mathcal{L}}, \Sigma_{k=1}^{r} m_{k} \mathcal{Y}_{k}\right)>\right)\left(\omega^{\prime}\right)^{n} \\
& =\int_{X_{i}} \exp \left(\frac{1}{2 \pi}<\mu_{\mathfrak{k}, \mathbf{h}}^{\mathcal{L}}, \Sigma_{k=1}^{r} m_{k} \mathcal{Y}_{k}>\right) \omega^{n}
\end{aligned}
$$

for all i and all $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{r}\right) \in \mathbb{Z}^{r}-\{0\}$. Hence by setting $d \nu:=\left(\mu_{\mathrm{e}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right), d \nu^{\prime}:=\left(\mu_{\mathrm{e}, \mathbf{h}^{\prime}}^{\mathcal{L}}\right)_{*}\left(\left(\omega^{\prime}\right)^{n}\right), \varphi_{\mathbf{m}}:=\exp \left(\sqrt{-1} \Sigma_{k=1}^{r} m_{k} y_{k}\right)$, and $T:=\sqrt{-1} \mathfrak{k}_{\mathbb{R}}^{*}$, we have:

$$
\int_{T} \varphi_{\mathbf{m}} d \nu=\int_{T} \varphi_{\mathbf{m}} d \nu^{\prime}
$$

for all $\mathbf{m} \in \mathbb{Z}^{r}$. Since every continuous function on V of compact support is uniformly approximated by finite linear combinations of the φ_{m} 's, we have $d \nu=\dot{d} \nu^{\prime}$, as required.
Q.E.D.

Remark 5.3. By Theorem 4.3, $\left(c_{1}(\mathcal{L})^{n}[X]\right)^{-1} T_{\mathcal{L}, \mathbf{h}}$ is the barycenter $\theta_{\mathcal{L}, \mathfrak{g}, \mathbf{h}}$ of the Duistermaat-Heckman's measure $\left(\mu_{\mathfrak{e}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)$. This together with Corollary 5.2 shows that $T_{\mathcal{L}, \mathbf{h}}$ is independent of the choice of
\mathbf{h} in $\mathbf{H}_{\mathcal{L}}^{K}$. Actually, 5.1 and 5.2 assert the stronger fact that $\left(\mu_{\mathfrak{\ell}, \mathbf{h}}^{\mathcal{L}}\right)_{*}\left(\omega^{n}\right)$ is completely determined by the data on the fixed point locus X^{G} and its normal bundle via the Fourier transform (see Guillemin and Sternberg [14; $\S 34]$ for another characterization of such a measure).

Let G^{\prime} be a connected linear algebraic group, defined over \mathbb{C}, and $H^{\prime}\left(\cong\left(\mathbb{C}^{*}\right)^{r}\right.$ for some $\left.r\right)$ its maximal torus. Then the Lie algebra \mathfrak{g}^{\prime} of G^{\prime} is written as a direct sum of vector spaces

$$
\begin{equation*}
\mathfrak{g}^{\prime}=\mathfrak{h}^{\prime}+\sum_{\chi} \mathfrak{C} \mathcal{Y}_{\chi} \tag{5.4}
\end{equation*}
$$

where \mathfrak{h}^{\prime} is the Cartan subalgebra corresponding to H^{\prime}, and we have a finite subset Δ of $\mathfrak{h}^{\prime *}$ such that each $\mathcal{Y}_{\chi} \in \mathfrak{g}^{\prime}$ is related to $\chi \in \Delta$ by

$$
\operatorname{Ad}(g) \mathcal{Y}_{\chi}=\chi(g) \mathcal{Y}_{\chi}, \quad g \in H^{\prime}
$$

Note that $\mathbb{C} \mathcal{Y}_{\chi}$'s are Lie algebras associated with 1-dimensional unipotent subgroups of G^{\prime}. In $\S 5$, we obtained a fairly good description of the Lie algebra character $T_{\mathcal{L}}$ on Cartan subalgebras of \mathfrak{g}. Now, in view of the decomposition (5.4), it remains to study the behaviour of $T_{\mathcal{L}}$ on Lie algebras associated with unipotent subgroups of G, which we shall discuss in detail in the next section.

§6. G_{a}-actions and the character $T_{\mathcal{L}}$

In this section, we assume that $X=N$ with \mathcal{L} quantized by L (cf. 1.5), and let $c_{1}(L)_{\mathbb{R}}>0$, so that N is projective algebraic. We moreover assume that G is a linear algebraic group, defined over \mathbb{C}, which acts biregularly on N. Let U be an arbitrary 1-dimensional unipotent subgroup of G (assuming such a subgroup exists), and by $\mathfrak{u}=\mathbb{C} \mathcal{Y}$, we denote the corresponding Lie subalgebra of \mathfrak{g}, where \mathcal{Y} is a \mathbb{C}-base for \mathfrak{u}. We choose $0 \ll q \in \mathbb{Z}$ such that $L^{\otimes q}$ is generated by global sections. Let $\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{m}\right\}$ be a \mathbb{C}-basis for $S:=H^{0}\left(N, \mathcal{O}\left(L^{\otimes q}\right)\right)$. Note that, via the U-action on L, the unipotent group U acts naturally on S, which induces an infinitesimal action of \mathfrak{u} on S. Since U is unipotent, Jordan's normal form of \mathcal{Y} allows us to assume without loss of generality that
(1) $\mathcal{Y} \sigma_{0}=0$;
(2) $\mathcal{Y} \sigma_{i}=e_{i} \sigma_{i-1}, \quad 1 \leq i \leq m$,
where $e_{i} \in \mathbb{Z}$ is 0 or 1 . For $0<\varepsilon \in \mathbb{R}$, we define a Hermitian metric $h_{\varepsilon} \in \mathcal{H}_{L}$ for L by

$$
h_{\varepsilon}:=\left(\Sigma_{i=0}^{m} \varepsilon^{2 i} \sigma_{i} \bar{\sigma}_{i}\right)^{-1}=\left\{\Sigma_{i=0}^{m}\left(\varepsilon^{i} \sigma_{i}\right)\left(\varepsilon^{i} \bar{\sigma}_{i}\right)\right\}^{-1}
$$

Now, the infinitesimal action of \mathcal{Y} on h_{ε} (cf. (1.4)) is written as

$$
\mathcal{Y} h_{\varepsilon}=-h_{\varepsilon}^{2}\left\{\Sigma_{i=0}^{m} \varepsilon^{2 i}\left(\mathcal{Y} \sigma_{i}\right) \bar{\sigma}_{i}\right\}=-\varepsilon h_{\varepsilon}^{2}\left\{\Sigma_{i=1}^{m}\left(e_{i} \varepsilon^{i-1} \sigma_{i-1}\right)\left(\varepsilon^{i} \bar{\sigma}_{i}\right)\right\} .
$$

Put $v_{i}:=e_{i} \varepsilon^{i-1} \sigma_{i-1}$ and $w_{i}:=\varepsilon^{i} \sigma_{i}$. Then by the Cauchy-Schwarz inequality, the absolute value $\left|h_{\varepsilon}^{-1} \mathcal{Y} h_{\varepsilon}\right|$ of $h_{\varepsilon}^{-1} \mathcal{Y} h_{\varepsilon}$ is estimated as follows:

$$
\left|h_{\varepsilon}^{-1} \mathcal{Y} h_{\varepsilon}\right|^{2}=\varepsilon^{2} \frac{\left|\Sigma_{i=1}^{m} v_{i} \bar{w}_{i}\right|^{2}}{\left(\Sigma_{i=0}^{m} w_{i} \bar{w}_{i}\right)^{2}} \leq \varepsilon^{2} \frac{\left|\Sigma_{i=1}^{m} v_{i} \bar{w}_{i}\right|^{2}}{\left(\Sigma_{i=1}^{m} v_{i} \bar{v}_{i}\right)\left(\Sigma_{i=1}^{m} w_{i} \bar{w}_{i}\right)} \leq \varepsilon^{2} .
$$

Note that $c_{1}\left(L, h_{\varepsilon}\right)$ is positive semi-definite as a pull-back of the FubiniStudy form on $\mathbb{P}^{m}(\mathbb{C})$. Therefore, for every $0<\varepsilon \in \mathbb{R}$,

$$
\begin{aligned}
\left|T_{\mathcal{L}}(\mathcal{Y})\right| & =\left|T_{\mathcal{L},\left(h_{\varepsilon}\right)_{\mathbb{R}}}(\mathcal{Y})\right| \leq \int_{N}\left|h_{\varepsilon}^{-1} \mathcal{Y} h_{\varepsilon}\right| c_{1}\left(L, h_{\varepsilon}\right)^{n} \\
& \leq \int_{N} \varepsilon c_{1}\left(L, h_{\varepsilon}\right)^{n}=\varepsilon c_{1}(L)^{n}[N]
\end{aligned}
$$

Let ε tend to 0 . It then follows that $T_{\mathcal{L}}(\mathcal{Y})=0$, i.e., $T_{\mathcal{L}}$ vanishes on \mathfrak{u}. Thus we obtain:

Lemma 6.1. For any unipotent subgroup U of G (of arbitrary dimension), the complex Lie algebra homomorphism $T_{\mathcal{L}}: \mathfrak{g} \rightarrow \mathbb{C}$ vanishes on the corresponding Lie subalgebra \mathfrak{u} of \mathfrak{g}. In particular, if $T_{\mathcal{L}} \neq 0$, then G contains an algebraic subgroup isomorphic to $\mathbb{G}_{m}\left(=\mathbb{C}^{*}\right)$.

Let $N(=X), G, L$ be as above. We moreover use the notation $\beta \in \mathbb{Q}, \psi_{L}: G \rightarrow \mathbb{R}_{+}$and $\rho_{M}: G \rightarrow \mathbb{G}_{m}$ in [10]. Then, under the same assumption as in $[10 ;(5.1)]$, the following equality holds for all $g \in G$:

Formula 6.2. $\quad \psi_{L}(g)=\left|\operatorname{det}\left(\rho_{M}(g)\right)\right|^{\beta} \quad(g \in G)$.
Proof. By the Chevalley decomposition, we can express the identity component G^{0} of G as a semidirect product $R_{0} \ltimes U_{0}$ of a reductive algebraic subgroup R_{0} of G^{0} and the unipotent radical U_{0} of G_{0}. Let G_{1}, S_{1} be the same as in $[10 ; \S 5]$. Since G is linear algebraic, G^{0} coincides with the identity component of G_{1}, and hence R_{0} is regarded as the identity component of S_{1}. In particular, by $[10 ;(5.1)]$, the formula 6.2 is true for $g \in R_{0}$. Recall that the Lie algebra homomorphism $\left(\psi_{L}\right)_{*}: \mathfrak{g} \rightarrow \mathbb{R}$ associated with $\psi_{L}: G \rightarrow \mathbb{R}_{+}$is nothing but $\operatorname{Re}\left(T_{\mathcal{L}}\right)$ (cf. 1.5). Hence, by Lemma 6.1, ψ_{L} is trivial on U_{0}. Moreover, the algebraic group homomorphism $\rho_{M}: G \rightarrow \mathbb{G}_{m}$ is trivial on U_{0}. Therefore, the formula 6.2 is true for $g \in U_{0}$, and consequently, also for $g \in G^{0}$. Since for any $g \in G$
there exists $0<\nu \in \mathbb{Z}$ such that $g^{\nu} \in G^{0}$, it now follows that

$$
\psi_{L}(g)=\left(\psi_{L}\left(g^{\nu}\right)\right)^{\frac{1}{\nu}}=\left|\operatorname{det}\left(\rho_{M}\left(g^{\nu}\right)\right)\right|^{\frac{\beta}{\nu}}=\left|\operatorname{det}\left(\rho_{M}(g)\right)\right|^{\beta}
$$

as required.
Q.E.D.

Note that, by taking the infinitesimal form of 6.2 , we obtain the identity $T_{\mathcal{L}}=\beta\left(\operatorname{det} \circ \rho_{M}\right)_{*}$ on \mathfrak{g}. Now, consider the case where \mathcal{L} is anticanonically quantized with $c_{1}(N)_{\mathbb{R}}>0$. Then Lemma 6.1 and Formula 6.2 above immediately prove Theorem 0.1 and (0.2) in the introduction respectively. Finally, recall the following conjecture of Futaki:

Conjecture 6.3. Let N be a compact complex connected manifold with $c_{1}(N)_{\mathbb{R}}>0$. If moreover $F_{N}=0$, then N admits an EinsteinKähler metric.

If 6.3 is affirmative, then Matsushima's theorem and 6.1 above show that any compact complex connected manifold N with $c_{1}(N)_{\mathbb{R}}>0$ admits a nontrivial biregular \mathbb{G}_{m}-action unless $\operatorname{Aut}(N)$ is finite. At present, however, we can find neither strong reasons for 6.3 , nor counterexamples to it.

References

[1] M.F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology, 23 (1984), 1-28.
[2] T. Aubin, Equations du type de Monge-Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris, 283 (1976), 119-121.
[3] S.K. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc., 50 (1985), 1-26.
[4] J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math., 69 (1982), 259-268.
[5] Addendum to "On the variation in the cohomology of the symplectic form of the reduced phase space", Invent. Math., 72 (1983), 153-158.
[6] A. Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math., 44 (1978), 225-258.
[7] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math., 73 (1983), 437-443.
[8] The Ricci curvature of symplectic quotients of Fano manifolds, Tohoku Math. J., 39 (1987), 329-339.
[9] ——, "Kähler-Einstein metrics and integral invariants", Lecture Notes in Math., 1314, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.
[10] A. Futaki and T. Mabuchi, An obstruction class and a representation of holomorphic automorphisms, in "Geometry and analysis on manifolds", Lectures Note in Math., 1339, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988, pp. 127-141.
[11] A. Futaki, T. Mabuchi and Y. Sakane, Survey on Einstein-Kähler metrics with positive Ricci curvature, in this volume.
[12] A. Futaki and S. Morita, Invariant polynomials of the automorphism group of a compact complex manifold, J. Diff. Geom., 21 (1985), 135-142.
[13] V. Guillemin and S. Sternberg, Convex properties of the moment mapping, Invent. Math., 67 (1982), 491-513.
$[14] \longrightarrow$ "Symplectic techniques in physics", Cambridge University Press, Cambridge, 1984, pp. 1-468.
[15] N. Koiso and Y. Sakane, Non-homogeneous Kähler-Einstein metrics on compact complex manifolds, in "Curvature and topology of Riemannian manifolds", Lecture Notes in Math., 1201, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986, pp. 165-179.
[16] A. Lichnerowicz, Variétés kählériennes et première classe de Chern, J. Diff. Geom., 1 (1967), 195-224.
[17] T. Mabuchi, Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties, Osaka J. Math., 24 (1987), 705-737.
[18] Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J., 11 (1957), 145-150.
[19] S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure Appl. Math., 31 (1978), 339-411.

Department of Mathematics
College of General Education
Osaka University
Toyonaka, Osaka 560
Japan

