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Wild Ramification in the Imperfect Residue Field Case 

Osamu Hyodo 

Introduction 

The aim of this paper is to study wild ramification of complete discrete 
valuation fields without the assumption that the residue field is perfect. 
In the case where the residue field is perfect, there is a beautiful theory of 
ramification groups (Serre [14] §4). The difficulty of our case is that 
there seems to be no such a theory in general. As applications of our 
study, we shall show the following three results. In the following, let K 
be a complete discrete valuation field of mixed characteristics (0, p). 
(1) Miki [9], [10] studied ZP-extensions of K. He showed that any 
ZP-extension of K is contained in a composite of an unramified extension 
of K and a ZP-extension of the "canonical subfield" k of K. Here, k is 
characterized by the following properties. 

(0-1-1) k is complete with respect to the valuation induced from K. 

(0-1-2) The residue field of k is the maximal perfect subfield of the 
residue field K of K. 

(0-1-3) k is algebraically closed in K. 

We generalize his result by using continuous cohomology (Tate [16]). 
Let Hq(G, A) be the q-th continuous cohomology group of a topological 
group G with coefficients in a topological G-module A.' Let GE= 
Gal (Esep/E) be the absolute Galois group of a field E, and let (r) denote 
the r-th Tate twist for r E Z (cf. Tate [16] p. 262). 

Theorem (0-2). Assume that the residue field K of K is separably 
closed. Then the inflation map induces an isomorphism 

H1(Gk, Zp(r))------=--, H 1(GK, Zp(r)) if r# 1. 

As H 1(GE, ZP)~Hom (GE, Zp) classifies ZP-extensions of a field 
E, Miki's result is the particular case r=O of Theorem (0-2). (Miki's 
result can be reduced to the case where K is separably closed). 
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(2) Miki also studied the inseparable degree of the residue field extension 
of cyclic extension of K. Let eK be the absolute ramification index of K. 
He showed that for any cyclic extension L/K, 

(0-3-1) the residue field extension LJK is separable if eK<p-1 ([10] 
Prop. 9), 

(0-3-2) the inseparable degree [L: .Klnsep~pex if [L: K] = [L: K] 
([9] Prop. 6). 

We give a more precise estimate depending only on eK. Define integers 
f(n) and g(n) for n ~ 1 as follows. 
In the case (p- l)ln, we put 

f(n)=max {1 +a+ b Ip" +(p 2h- l)(p+ 1)- 1rh ~ n. (p-1)-1, 

a, b E Z, O~b}, 

g(n)=max{l+a+blp"+ph-l~n-(p-1)- 1, a, beZ, 0~b}. 

Otherwise, we put 

f(n)=max {a+ b Ir- p"- 1 + ph- 2(p 2 - p+ I)(p- I)(p+ 1)- 1 < n, 

a, b E Z, 0~ b}, 

g(n)=max {a+ b Ir- pa-t + pb- 2(p 2 - p+ l)(p- l)<n, 

a, beZ, O~b}, 

where r is the minimal non-negative integer such that r = n mod (p-1) 
(In particular, g(n)~f(n)~3+2-logp(n) and g(n)=f(n)=0 if n<p-1). 
The following result includes (0-3-1) and (0-3-2). 

Proposition (0-4). For any cyclic extension L/K, 

(0-4-1) we have [L: .KJinsep~pI<exl. 

If we assume moreover [L: K]=[L: K], 

(0---4-2) we have [L: Klnsep~pg(eK). 

(3) The following result is interesting even if .K is perfect. Let A be an 
abelian variety defined over K which has good reduction. We define the 
"connected part" n/ 00 (A) of the geometric fundamental group n1 g• 0 (A) 
(by definition n1 g• 0 (A) is the GK-co-invariant of the Tate module T(A) of 
A) as the kernel of the specialization 

n1 geo (A)--n1 geo (A.)' 

where A. is the reduction of A. It is well-known that n/ 00 (A) is a finite 
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p-group (Bloch [1] Prop. 2.4). We can deduce the finiteness effectively 

from (0-4-2) by considering the p-adic completion of the function field of A. 

Proposition (0-5). n/ 00 (A) is killed by po(eKl. 

As g(n)=O if n<p-1, we have; 

Corollary (0-6) (Kato-Saito [7] Prop. 7). If ex<p-1, we have 
1!1 geo (A)~ 1!1 geo (A,). 

To show the above results (1), (2) and (3), we define the depth of 
ramification as a measure of wild ramification and study its behaviour 
in cyclic extensions. Our key tools are inequalities concerning the depth 
of ramification (§4). In the classical case (i.e. the residue field is finite), 
they can be obtained by using the local class field theory (Serre [14] § 15). 
In our general case, we make use of higher local class field theory (Kato 
[5] and Parsin [12]). We study the information about wild ramification 
which is contained in higher local class field theory (Kato [5] and Parsin 
[16]), and deduce some of the inequalities. 

The plan of this paper is as follows. In Section 1, we give the result 
(Theorem (1-5)) concerning wild ramification and higher local class 
field theory. Section 2 is devoted to show some general properties of the 
depth of ramification, and Section 3 to the proof of Theorem (1-5). Our 
key inequalities are treated in Section 4. In Section 5, (resp. Section 7) 
we prove Proposition (0-4) (resp. Theorem (0-2)). We give a proof of 
Proposition (0-5) in a little more general situation in Section 6. 

I am grateful to Professor Hirao Miki. He kindly pointed out his 
results to me. I am also grateful to Professor Kazuya Kato for his 
valuable advices and encouragements. 

Contents 
§ 1. Ramification and local class field theory 
§2. The properties of the depth of ramification 
§3. The proof of Theorem (1-5) 
§4. Inequalities 
§5. Inseparable degrees of residue field extensions 
§6. An effective finiteness of the "connected part" of fundamental 

groups of abelian varieties 
§7. A generalization of Miki's theorem 

§ 1. Ramification and local class field theory 

Let K be a complete discrete valuation field with finite residue field 
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and with the normalized valuation vK. It is well-known that the homo­
morphism of the local class field theory 

contains information about ramification. Namely, 

(1-1-1) 'Pi(Oi) corresponds to the maximal unramifiedabelianextension 
of K (here, Oi is the unit group of K). 

(1-1-2) If.I 1 (U_k) coincides with the i-th upper ramification group of 
Gal(Kab/K) for i~l, (here U_k={l+ylvK(Y)~i} is the i-th principal unit 
group). 

Kato [5] and Parsin [12] generalized the local class field theory for an 
"n-dimensional local field" K by using Milnor's K-group K!'(K). They 
constructed a homomorphism generalizing If.I 1 , 

We naturally hope that the above homomorphism contains infor­
mation about ramification. The result corresponding to (1-1-1) was shown 
in [5], and Kato [6] and Lomadze [8] generalized (1-l-2) under some 
(restrictive) condition. The trouble in generalizing (1-1-2) without any 
restriction is that there seems to be no nice theory of ramification groups 
(Kato [6] Rem. (3.7) and Lomadze [8] p. 364). (Principal unit group as 
U_k can be defined for Milnor's K-groups K!'(K).) 

What we shall do is to define the depth of ramification which works 
well in general, and to give our result (Theorem (1-5)) which may be 
interpreted as a generalization of (1-1-2). 

Definition (1-2). An n-dimensional complete discrete valuation field 
K (we abbreviate it as "n~DVF" in what follows) is a field endowed with 
a sequence of fields {k;}o;;;i;;,n such that 

(1-2-1) k; is a complete discrete valuation field with residue field k;-i 
for l~i~n. 

(1-2-2) K=kn-

An n-DVF K has a (not necessarily unique) n-dimensional valuation 
(we abbreviate it as "n-DV" in what follows) 

where Qn has the lexicographic order, such that 
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Vx(1tn+1-;)=(0, ... , 0, 1, 0, ... , 0), 
i 
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where 7t; denotes a lifting of some prime element of k;. For any finite 
extension LJK, L is an n-DVF and Vx extends uniquely to L. Thus Vx 
extends to the valuation of an algebraic closure Kalg 

Vx: (K.1gr - Qn. 

Definition (1-3). Let M/L be a finite separable extension of algebraic 
(finite if n ?;2) extensions of K. We define the depth of ramification of M/L 
by 

dx(M/L)=inf {vx(TrM;L(y)/y) I y E Mx}. 

We shall show (Proposition (2-2)) that the right-hand-side of (1-3) 
exists. In the case where n = 1 and L/ K is finite, the depth of ramification 
is closely related to the different (note that the definition of the different 
is possible only in this case). To be precise, we have the formula 

where !')MIL denotes the relative different of M/L and nL (resp. nM) denotes 
a prime element of L (resp. M). In particular dx(M/L)=0 if and only if 
M / L is tamely ramified. 

We define "principal unit groups" for the Milnor's K-group of an 
n-DVF K with an n-DV Vx, Recall that the Milnor's K-group K~(E) for 
a field Eis by definition the quotient of Ex®z···®z£X (n times) by the 
subgroup generated by the elements of the form a 1 ®···®a,, such that a.+ 
a,=1 for some s=/=t. We denote the image of a1 ®···®an by the symbol 
{a1, ... ,a,,}. For Z 11 3i>0=(0, ... ,0), let UiK~(K) be the subgroup 
generated by the symbols of the form {l+x, y1, ... , Yn-i} where Vx(x)?;i 
and Yi E Kx for 1 ~j~n-1. (If n = 1, UiKt1(K)= Ui.) 

To the end of this section, let K be an n-dimensional local field. By 
definition, K is an n-DVF and k 0 is a finite field (cf. (1-2-1)). Fix an 
n-DV Vx and let ch(k 0)= p. Let L/K be a finite abelian extension. 
Then IJl11 induces an isomorphism (Kato [5] II §3.1 Theorem 1 (1)) 

K~(K)/N L;x(K~(L))~Gal (L/K), 

where N denotes a norm homomorphism. We define the subgroup Gi(L/ 
K) for i>0 by the image of UiK~(K), i.e. 

Then we can show that Gi(L/ K) = 0 for sufficiently large i and that G1(L/ K) 
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is a p-group, where 1 =(0, ... , 0, 1). By (1-1-2), Gi(L/K) coincides with 
the i-th upper ramification group when n = 1. 

We define the jumping numbers j(I) for / ~ 1 by 

j(/)=max {l ~ i E zn I #Gi(L/K)~p'} u {0}. 

For the later use, we note (i) j(l)=0 if #G1(L/K)<p 1, and (ii) both 
#Gj(IJ(L/K)~p' and #Gj(lJ+1(L/K)~p1-1 if #G1(L/K)~p 1• 

In case n= 1, we can show by using (1-1-2) and (1-4) 

00 

dK(L/K) =(p-1) L iO) · r'. 
l=l 

Conversely we can deduce (1-1-2) from the above formula in this case. 
In the general case, we have; 

Theorem (1-5). There are inequalities 

We shall give examples ((3-4) and (3-5)) which show (1-5) is best 
possible. It seems that we can define nice ramification groups only when 
the first equality of (1-5) holds. 

§2. The properties of the depth of ramification 

In this section, we show some general properties of the depth of 
ramification. Throughout this section, let K be an n-DVF and fix an n-DV 
vK of K. As is explained in Section I, vK extends uniquely to Ksep· 

We give some notations. Let {k;} 0 :,e;;:,e;n be as in (1-2-1). We call 
k 0 the residue field of K. Let OK= {x EK\ vK(x)~0} be the valuation ring. 
Note that OK does not depend on the choice of vK. Let L be a finite 
extension of Kand fix another n-DV 

Then there exists an upper triangle matrix T(L/K) E M.(Z) such that 

for any x E (K. 1gy. So we have by definition 

(2-1) dK(M/L) · T(L/K)=dL(M/L) 

for any finite separable extension M/L. Here we consider an element of 
Q" as a row vector. It is easily seen that the diagonal components of 
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T(L/K) do not depend on the choice of vK and vL, and that [/ 0 : k 0 ]· 

<let( T(L/ K)) = [L: K]. 
We call L/K unramified if all diagonal components of T(L/K) equal 

one and the residue field extension is separable. A tamely ramified ex­
tension is defined to be a composition of an unramified extension and an 
extension whose degree is prime to the characteristic of the residue field. 
We can see GK=Gal(Ksep/K) has a normal subgroup I (resp. P) which 
corresponds to the maximal unramified (resp. tamely ramified) extension 
of K. It is well-known GK/[,:::::'. Gko• I Ip c,,'. n zr and p is a pro-ch 

lcpch(ko) 

(k0)-group. In particular, I is a pro-solvable group. 
We first show that the right-hand-side of (1-3) exists. (If n= 1, this is 

trivial.) 

Proposition (2-2). Let M/L be a finite separable extension of finite 
extensions of K. Then there exists a minimal element in 

By the structure of GL, we see that there are subextensions M = 
Lm:::J ··· :::JL1 :::J L such that 

(2-3-1) [L;+ 1 : L;] is a prime for l~i~m-1, 

(2-3-2) L 1/L is unramified. 

So, to prove (2-2) it suffices to show the following Lemmas (2-,J.)-(2-6). 

Lemma (2-4). Let N be a subextension of M/L. Assume (2-2) 
holds for both M/N and N/L. Then (2-2) holds for M/L. Moreover we 
have 

dK(M/L) = dK(M/N) + dK(N/L). 

Lemma (2-5). If M/L is unramified, then (2-2) holds for M/L­
Moreover we have dK(M/L)=O. 

Lemma (2-6). Let p be a prime and assume [M: L] = p. Then (2-2) 
holds for M/L. 

We prove (2-4). By the assumption, we can choose a E Mx (resp. 
b E Nx) such that 

dK(M/N)=vK(TrMJN (a)/a) (resp. diN /L)=vK(TrN;L(b)/b)). 

Let c=b-(TrM;N(a))- 1 , then we have 

vK(TrMJL (c · a)/c · a)=vK((TrMJN (a)/a) · (TrNJL (b)/b)). 
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So we obtain 

On the other hand, it can be easily seen 

for any y E Mx. 

This proves (2-4). To prove (2-5), it suffices to show 

since 

vK(TrM/L (y)/y)=O 

vK(TrM1dy)/ y) ~ 0 

for some y e Mx , 

for any ye Mx. 

Let m0 (resp. 10 ) be the residue field of M (resp. L). If M/Lis unramified, 
we have 

for any ye OM, 

where - denotes the reduction to the residue field. So for any y E OM 
such that Trm011Jy)#O, we have 

viTrMJL. (y)/y)=viTrM/L (y))-vK(Y)=0-0=0. 

We proceed to prove (2-6). Choose an element y E Mx such that 

(2-7-1) 

(2-7-2) 

In both cases consider the minimal polynomial f (X) of y over L. Then 
f(X) is a manic polynomial of degree p. By Euler's lemma (Serre [14] 
p. 65) we have 

[ 
0 if 0;£j;£p-2, 

(2-8) TrM1dyi(J'(y))- 1)= 1 if j=p-1. 

Any element z of M is a summation 

P-1 
z= L a,,yi(J'(y)- 1) where aieL 

j=O J 

and by (2-7-1) and (2-7-2) we have 

for 0;£j;£p-1, 

vK(z)=min {vK(ai · yi(J'(y)- 1)) I 0;£j;£p-1}. 

Hence we obtain by (2-8) 

(2-9) vK(TrM/L (z)/z)=vK(ap- 1)-vK(z)~ vK(yl-p f'(y)). 

The equality of (2-9) holds if vK(z)= vK(ap-l · yP- 1.f'(yt 1)). In particular 
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it is the case if ai=O for O~j~p-2. Thus (2-6) is proved. 
The above proof of (2-6) shows: 

Lemma (2-10) .. Assume M/L is a cyclic extension of a prime degree 
p. Then for any generator <1 of Gal (M/L) and for any y E Mx satisfy­
ing the condition (2-7-1) or (2-7-2), we have 

In fact, as 

(2-11) 

dK(M/ L) = (p- l)·vK(l -(<1· y)/ y). 

f(X)= TI (X-<1· y), we have 
aeGal(M/L) 

yl-pf'(y)= TI (1-(u-y)/y). 
1,faeGal(M / L) 

And it is easily checked that vK(l-(u-y)/y) coincide for all l:;,l,ueGal 
(M/L). 

Remark (2-12). In fact dK(M/L)=O if M/L is tamely ramified. 
This can be seen easily from (2-4), (2-5) and the fact vK(m)=O for any 
integer m prime to ch (k0). 

Secondly we calculate the norm groups. The proof of the following 
Proposition (2-13) is the same as Serre [14] §5 Proposition 4. 

Proposition (2-13). Let L/K be a cyclic extension of degree a prime 
p and let <p(s)=(s-dK(L/K)) · T(L/K) for se zn. Then we have 

NL;K(U'f.<•>)= Ui: if (p-1)- 1p · dK(L/K)<s e zn. 

Proposition (2-14). Let the notations be as above. We have 

(2-14-1) NL;K(U'P(•)K~(L))~ U·K~(K) 

if (p-l)- 1p-dK(L/K)<sezn. 

(2-14-2) NL;K(u•·T(L/K)+lK~(L))c u•+lK~(K) 

if O~sezn. 

The assertion (2-14-1) can be seen from (2-13) and the formula 
NL;K{x, y}={NL;K(x), y} for xeU and yeK~ 1(K). The assertion 
(2-14-2) can be seen by using Kato [5] Ip. 322 Lemma 2. 

Thirdly we study the depth of ramification in the case where n = 1, 
i.e. K is a complete discrete valuation field. Recall that in this case dK(M/ 
L) is defined even if L/K is infinite algebraic. (But in this case dK(M/L) 
may not be a rational number.) 

Lemma (2-15). Let L=!im Li be an algebraic extension of a com­
ieJ 
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plete discrete valuation field K (each Li is finite over K) and let MO be a 
finite separable extension of Lio linearly disjoint from Lover Li 0 for some 
j 0 eJ. Let Mi=LiM 0 for j"?j 0 and M =lim Mi=M 0 L. Then we have 

J 

dK(M)Lj)~dK(Mr/Lr) (f jo~j'~j, 

dK(MJL)=inf {dK(M)Li) lj 0 ~j eJ}. 

Lemma (2-15) can be seen easily. The following Lemma (2-16) 
can be seen by a straightforward calculation using (2-10) and shall be 
used in the proof of (4-2) and (7-5). 

Lemma (2-16). Let K be a complete discrete valuation.field of mixed 
characteristics (0, p), and assume K contains a primitive p-th root ( of 
unity. Then we can class(fy all cyclic extensions L/K of degree pas in the 
following table. 

L=K(y) with the equation ; ramification ; dK(L/K) 
a) yP=w·n ; L=K ; eK 
b) yP=U ; [L: KJinsep=p ; eK 
c) yP=l+w-n•, 0<s<e'p, (s, p)=l ;L=K ; eK- p- 1(p-1)-s 
d) yP= 1 +u. nP·t, 0<t<e' ; [L: KLnsep= P ; eK-(p-1) • t 
e) yP=l+w-(1-()P, wEt:Q ; [L: K] •• p= p ; 0 

where u, wEOi:, uEt:KP, e'=(p-1)- 1eK (eK=vK(p)), Q={xP-xlxeK} 
and n is a prime element of K. 

§ 3. The proof of Theorem (1-5) 

In this section we prove Theorem (1-5) and give some examples. 
We first prove (1-5) in the case where L/K is cyclic of a prime degree. 

Note that the left-hand-side and the right-hand-side of (1-5) coincide in 
this case. So it suffices to show p- 1(p-1)-j(1)=dK(L/K) since j(l)=O 
for 1'?;2. If dK(L/K)=0, then we can see easily J(l)=O by (2-14-1). If 
dK(L/K)>0, we may assume without loss of generality that the first 
component of dK(L/K) is greater than zero by Lemma 6 (2) of Kato [5] 
II p. 664. We may assume moreover that K is a complete discrete valu­
ation field with residue field F=Fp.((X 1))···((Xn-i)). Then the assersion 
p- 1(p-1)-j(l)=dK(L/K) follows from (2-10), Kato [5] II p. 668-670 
(C) and (D) and an isomorphism 

Z/pZ ---=--~ .ai-1/(l-y)Qi-1 (y is a Cartier operator) 
w w 

1 dX 1 dXn-t 
--/\···/\--
X1 Xn-1 
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which can be seen easily from Lemma 3 of Kato [5] II p. 624. 
Next we prove (1-5) in general. Let L 0 be a subextension of L/K of 

a prime degree, such that 

! (p-1)- 1 p · dK(L0/ K)=min {j(l) lj(l)t,0} if Gal (L/K)= G1(L/K), 

dK(L0 /K)=0 otherwise. 

Let {j'(l)} be the jumping numbers of L/L 0 • (We fix an n-DV vLo of L 0 

and T(L 0 /K)eMn(Z) as in (2-1), and write T instead of T(L 0 /K) for 
simplicity). 

We claim 

(3-1-1) j'(l)=O if j(l)=O or both j(l+l)=0 and 

dK(L0/K)= p- 1(p-1)-j(l), 

(3-1-2) <.p(j(l)) ~j'(l) ~j(l) · T otherwise, 

where <.p(s)=(s-dK(L0/K))· T. 

The assertion (3-1-1) is trivial. To show (3-2-2), we consider a 
commutative diagram (Kato [5] II p. 661 Corollary 1) 

K~(Lo)fNL;LQ(K~(L)) NLolK K~(K)fNL;K(K~(L)) 
(3-2) lll lll 

Gal (L/L 0) c____. Gal (L/K). 

First we prove the first inequality of (3-1-2). On the contrary, assume 
<.p(j(l)) > j'(l). Then by the definition of jumping numbers we have 

#G"'UO>>(L/ L0) ~ #Gi'<1>+1(LJL0) ~p1-1 _ 

On the other hand, if j(l)>(p-1)- 1p-dK(L 0 /K), we have by (2-14-1) and 
(3-2) 

G"'U<1>>(L/ L 0) =, Gi<1>(L/ K). 

Thus we obtain 

pl~ #Gi<1>(L/ K) ~ #G"'UO>>(L/ L0 ) ~ pl-1. 

This is a contradiction. If j(l)=(p-1)- 1 p · dK(L0 /K), we have by (2-14-1), 
(3-2) and Kato [5] II p. 668-670 (C) and (D) 

G"'U<1>>(L/L0)-:::,Gi<1>(L/K) n Gal(L/L 0). 

By the fact Gal(L/K)=Gi< 1>(L/K) (recall the choice of L 0), we have 
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[L: L0 ]=#(Gj(!J(L/K) n Gal(L/L 0))~#G"'UUll(L/L 0)~p- 1[L: L0 ]. 

This is a contradiction. We next prove the second inequality of (3-2-2). 
On the contrary, assume j'(l)> j(l) · T. Then we have 

On the other hand, we have 

Gi0)·T+1(L/L 0 ) c Gi0)+ 1(L/ K) 

by (2-13-2) and (3-2). Thus we obtain 

This is a contradiction. 
Now we can prove (1-5) by induction on [L: K]. If dx(L 0 /K)=O, 

we have by (3-2-1) and (3-2-2) 

j'(l) = j(l) · T. 

As dx(L/K) · T= dLQ(L/L0) in this case, the assertion (1-5) for L/K follows 
from that for L/L 0 . If dx(L 0 /K)>0, let [L: K]=pm (note in this case 
Gal(L/K)=G 1(L/K) is a p-group). The inequalities (1-5) for L/L 0 are 

m-1 m-1 
(p-1) L j'(l)·p-l~dL 0(L/L 0 )~p- 1(p-1) L j'(l)·p- 1• 

I=! !=! 

As 

dLaCL/L0 ) • y-i =dx(L/K)-dx(L 0 /K) = dx(L/K)-(p- 1)- 1 p · j(m), 

we have 

m-1 m-1 
j(m)+ ( L j'(l) · P1-1). y-1 ~(p-1)-1 P · dx(L/K) ~j(m)+ ( L j'(l))r-1. 

1=1 1=1 

On the other hand we have the following inequalities by (3-1-2). 

m m-1 
(3-3-1) L j(l) · p1-1 ~j(m)+ ( L j'(l) · pl-1). y-1 

I=! !=! 

m-1 m 
(3-3-2) j(m)+ ( I: /(l)) · r- 1 ~ I: j(l) 

1=1 1=1 

Thus (1-5) follows. 
We give some examples concerning Theorem (1-5). The following 

Proposition (3-4) and Example (3-5) show that the inequalities of (1-5) 
are best possible in general. 
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Proposition (3-4). The first equality of (1-5) holds if at most one 
diagonal component of T(L/K) is divisible by p. 

Example (3-5). Let q = ph and K be a complete discrete valuation 
field with residue field Fq((X 1))···((Xn_ 1)). Then K is an n-dimensional 
local field. Let L; (1 ~ i ~ n) be a cyclic extension of K of degree p, such 
that the i-th diagonal component of T(L;/K) equals p (then the other 
diagonal components are necessarily one). This assumption does not 
depend on a choice of n-DV's vK and vL,· Let L be the composition 
of all L;. Then the set of jumping numbers {j(l)l l~l~n} of L/K 
coincides with {(p- I)- 1p-dK (Ld K) 11 ~ i~n} and we have 

We first show (3-5). The assertion 

can b-e seen easily by the definition of jumping numbers. Let M; be the 
composition of all Li except L;. By the assumption we have vM,(x) rt zn 
for any element x E L 1 such that vK(x) rt zn. So we can show 

by using (2-10) and (2-4). 
To prove (3-4), we may assume Gal (LJK)= G1(L/K) replacing K by 

the maximal tamely ramified subextension (cf. Remark (2-12)). Then only 
one diagonal component of T(L/K) is greater than one. Let s be the 
integer such that the (n-s)-th diagonal component of T(L/K) is greater 
than one. We may also assume K is as in (3-5). 

Lemma (3-6). Let the assumption be as above. If G1(L/K)/G 1+ 1(L/ 
K) is not trivial for 0< tE Zn, then the elements of K~(K) of the following 
form generate the group G1(L/K)/G 1+1(L/K) via the homomorphism 'Pn of 
local class field theory. 

(3-6--1) 

(3-6--2) {l+u, X 1, ... , Xn_1} if s=n-1, 

where vK(u)=t. 

We prove (3-4) and (3-6) simultaneously by induction on [L: K]. 
If [L: K]=p, (3-4) is trivial and (3-6) can be seen from Kato [5] II 
p. 668 ,..._,670 (C) and (D). If [L: K] > p, we fix a subextension L0 of 



300 0. Hyodo 

degree p as in the proof of (1-5). Assume (3-4) and (3-6) are valid for 
L/L 0 • By Kato [5] Ip. 322 Lemma 2, we may suppose the elements of 
K~(L 0 ) satisfying the condition of (3-6) are the symbols such that all 
except the first component are contained in Kx. By the proof of (1-5) 
and the formula N Lo/dx, y} = {N Lo/ix), y} where x E L6 and yEK~_i(K), 
we see that it suffices to show 

(3-7) <p(j(l)) = j'(l) 

Here the notations are as in (3-1-2). We have shown j'(l)~<p(j(l)) in 
the proof of (1-5). Assume j'(I) > <p(j(l)). Then we can deduce 

Gi'<1)(L/L 0 )c Gj(lJ+1(L/K) 

by (2-13) and (3-6). This is impossible, because 

JJGi'<1)(L/L 0)~p 1 and JJGiU)+1(L/K)~p1-1. 

§ 4. Inequalities 

In this section we shall prove the following inequalities, which are 
key to the proof of (0-2) and (0-4). 

Lemma (4-1). Let K be a complete discrete valuation field with 
residue.field K of characteristic p>0, K 2 be a cyclic extension of K of 
degree p2 and K 1 be the subextension of degree p. Let eK=vK(P) (if 
ch(K)=p, we put eK=oo). 

(4-1-1) Assume dK(K1/K)~p- 1eK. Then we have 

0~ eK-dK(K 2/K 1) ~p- 1(eK-dK(K 1/K)). 

(4-1-2) Assume dK(K 1/K)~r 1eK. Then we have 

p- 1(p2- p+ 1) · dK(K1/K)~dK(K2/ K1) • 

Lemma (4-2). Let K be as in (4-1), Kn+ 1 be a cyclic extension of K 
of degree pn+I, and Kn be the subextension of degree pn. Assume 0< 
dK(Kn+1/Kn)~2- 1eK. Then we have 

Remark (4-3). It seems that Lemma (4-2) in the case ch (K)=0 
is valid under the weaker assumption eK-dK(Kn+dKn)>p- 1(eK-dK(Kn/ 
Kn_ 1)), where Kn-I is the subextension of degree pn- 1• This can be 
checked when K is finite, by using the formula above Theorem (1-5) and 
(4-7) below. 
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Corollary (4-4). Let K be an algebraic extension of a complete dis­
crete valuation field of mixed characteristics (0, p), K 00 be a ZP-extension 
of K, Kn be the subextension of degree pn and bn=Pn(eK-dK(Kn+ifKn)). 
Then only the following two cases can occur. 

(4-4-1) 

(4-4-2) 

for all n. 

{ bn I n ~ O} is bounded. 

Corollary (4-5). Let K be as in (4-1), Kn be a cyclic extension of K 
of degree pn and Km be the subextension of degree pm for O ~ m ~ n. 
Assume K 1/K is wildly ramified. 

(4-5-1) If dK(Km/Km_1)~2- 1eK, we have 

dK(KmfKm-1)~(p 2m-l + l)(p- l)(p+ 1)-lp-m and 

dx(Km/K)~(p 2m- l)(p+ l)p-m, 

(4-5-2) Assume moreover [Kn: K]=[Kn: .K]. Then if dx(Km/Km_1)~ 
2- 1eK, we have 

dx(Km/Km-1)~pm-pm-l and dK(Km/K)~pm-1, 

First we deduce Corollaries (4-4) and (4-5) from (4-1) and (4-2). 
By (2-15) we see that (4-1) is still valid if we take K as in (4-4). So (4-4) 
can be seen from (4-1). In fact if dK(Km+if Km)>O for some m, (4-1-2) 
assures us that dK(Kn+1/Kn)~p- 1eK for sufficiently large n and then we 
can apply (4-1-1). In the case n=l, (4-5-l)(resp.(4-5-2)) follows from 
the fact (p-1)- 1p · dK(K1/K)e Z (resp. (p-1)- 1dK(K1/K)e Z) (cf. (2-10)). 
The general case can be shown by induction by using the following (4-6). 

Sublemma (4-6) Assume dK(Km/Km-i)~2- 1ex, Then we have 

(4-6-2) 

Sublemma (4-6) is a consequence of (4-2) and the fact (p- l)leKm' 
ei_1dK(Kmf Km-1) (cf. (2-10)). 

Secondly we prove (4-1). The first inequality of (4-1-1) can be seen 
from (2-16) (or from the fact vK(p)=eK). We shall show the other 
inequalities. We can reduce (4-1) to the case where K is finitely generated 
over Fp, as any complete discrete valuation field is the completion of an 
inductive limit of a directed system of complete discrete valuation fields 
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whose residue fields are finitely generated over FP (Kato [5] II § 1.5 Cor. 2 
to Lemma 10). Let (n - I)= trans. degreeFp K. Then K is a finite 
extension of Fp(X 1, ... ,Xn_ 1). Let E=K·Fp((X 1))···((Xn_ 1)), then E/K 
is a separable extension of K. So we can reduce ( 4-1) moreover to the 
case where K is an n-dimensional local field. 

Thus it suffices to prove ( 4-1) for the first component of the depth of 
ramification of the extension of n-dimensional local fields K 2 /K. Let 
{j(I)} (resp. {j(/)i}) be the jumping numbers (resp. their first components) 
of K 2 /K. Then by Theorem (1-5), we have 

So 

Now (4-1) can be seen from the following; 

Lemma (4-7). Let the assumptions be as above. 

(4-7-1) If j(2) 1 ~(p-1)- 1eK, we have j(l) 1 ~j(2) 1 +eK. 

(4-7-2) Jfj(2) 1 ~(p-l)- 1eK, we havej(l) 1 ~p-j(2) 1 . 

Let IJ'n: K~(K)------>Gal(K"b/K) be the reciprocity map. Choose 
xE Uj(2JK~(K) such that IJ'n(x) is not trivial in Gal(K 1/K). Then, as 
K 2 / K is cyclic, IJ'n(xP) is not trivial in Gal (K 2 / K). Let m = min {j(2) + 
vK(P), p·j(2)}. As (U(( 2 l)PcU';_, we have xPEUmK~(K). Thus we 
obtain j(l) ~ m. Noting that eK is nothing other than the first component 
of vip), we have (4-7). 

Remark ( 4-8). Though ( 4-2) cannot be shown by using Theorem 
(1-5), we can prove a similar result to its corollary (4-5-1) by using (1-5). 
Let the notations be as in (4-5) and let r be the minimal integer such that 
p'>(p-1)- 1eK. Then we have 

In fact we can reduce this to the case where K is an n-dimensional local 
field, and in the similar way to (4-7) we can show the first components 
{j(l) 1 } of jumping numbers of Km/ K satisfy 

for O~i~m. 

Now our assertion follows from (1-5). 

Lastly we prove (4-2). We only give a proof for the case ch (K)=O, 
as it suffices for the later use. The proof of the case ch (K) = p is similar. 
Let en=eK)eK, nn be a prime element of K., d=dK(Kn+i/Kn), and u be a 
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generator of Gal (Kn+i/K). We may assume K contains a primitive p-th 
root ( of unity, for we have dK(M(O/L(O) = dK(M/L) for any finite separable 
extension M/L (to see this, use (2-12) and the fact that M(O/M and L(O/L 
are tamely ramified). By (2-16), we can suppose Kn+i =K((l+ y)P- 1) for 
some y E Kn such that 

(4-9-1) 

(4-9-2) 

(4-9-3) 

p,j"en-vK(y) if Kn+1=Kn, 

Y 1cenVK(Y) cl- KP if [~· K] -p · n ~ n n + 1 · n insep - · 

We put (l+yr 1 =l+w. Then vK(w)=p- 1vK(y)=(p-1)- 1 (eK-d). As 
o-P"(l + w) = ( -(1 + w), we have 

def 

(4-10) (1-o-P")·w = w-o-P"w=(l-()(l+w). 

On the other hand, we can choose Zn E Kn and Zn+ 1 E Kn+ 1 \Kn satisfying 
the following conditions. (Note that (1- o-) · w ri Kn as (1- o-P") · w ri K.-) 

(4-11-1) 

(4-11-2) 

(4-11-3) 

(1-o-)-w=zn+zn+l• 

en-vK(Zn+1)$Z if Kn+1=Kn, 

z n-en"VK(Zn+d cl- K if [K.-- K] -p 
n + 1 · n ~ n n + 1 · n i nsep - · 

(The choice of zn and zn+ 1 is not unique, but vK(zn+ 1) is uniquely deter­
mined). Let l+o-+···+o-P"- 1 act on both sides of(4-11-1), then we have 

(4-12) (1- o-P"). w = TrKn/K(zn) + (1 + O" + ... + o-P"-1). Zn+ 1 • 

Now the key point is 

(4-13) 

We give a proof of (4-2) assuming (4-13). Note vK(l-O=(p-1)- 1eK 
(Serre [14] §4 Proposition 17). Since we have vK((l -o-P") · w) =(p- 1)- 1eK 
by (4-10), we have by (4-12) and (4-13) 

(4-14) 

As 

(4-15) 

we have by the definition of the depth of ramification 
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Then, Lemma (4-2) follows from (4-14) and (4-16). Now we return to 
the proof of (4-13). Let (1- u) act on both sides of ( 4-12), then we have 

(1-u)· w-(1-0=(1-uP")· Zn+l. 

So by (4-11-1), we have 

(4-17) (1-0 · zn+(l-0 · Zn+l =(1-uP") · Zn+l • 

By (4-11-2), (4-11-3) and (2-10), we have 

(4-18) vK((l -uP") · Zn+ 1) = vK(zn+ 1)+(p- 1)- 1d < vK(zn+ 1)+(p- 1)- 1eK. 

By (4-15), (4-17) and (4-18), we obtain 

vK(zn+ 1) = vK(zn)+(p- 1)- 1(eK-d) > 2 · (p-1)- 1(eK -d). 

Now (4-13) follows from the assumption d~2- 1eK. 

§ 5. Inseparable degrees of residue field extensions 

To the end of this paper, let K be a complete discrete valuation field 
of mixed characteristics (0, p). In this section we prove Proposition (0-4). 

We may assume K is separably closed and moreover [L: K] is a power 
of p. So let [ L: K] = pn and let Km be the subextension of degree pm for 
O~m~n (L=Kn)- We may also assume K 1/K is wildly ramified. 

First we prove (0---4) in the case (p-1),/'eK. The key fact is; 

Lemma (5-1). Let r be the minimal non-negative integer such that 

r = eK (mod p-1) and lets be an integer such that p8 = [Kn: K]. Then we 
have 

We see that pn-s(eK-dK(Kn/Kn_ 1)) is a non-negative integer by 
(4-1-1) and the fact eK)eK=Pn-s. By (2-10) we know that pn-s.dK(Kn/ 
Kn_ 1) is divisible by (p-1). So, (5-1) follows from the fact pn-seK= 
r (mod p-1). 

Define an integer I by 

l =min {1 ~ m~ n I dx(Km/Km- 1)> p- 1ed U {n+ 1}. 

By (4-1-1) and (5-1), we have for l~n 

ps-nr~ eK-dK(Knf Kn- 1)~ p1-nceK-dK(K,IK1- 1)) • 

So 
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(5-2) 

If I= n + 1, (5-2) holds by replacing I by 1-1. 
We want to prove the following inequalities for m ~ l. 

(5-3-1) 

(5-3-2) 

dKCKm/ Km- 1) > pm-3(p2- p + 1) (p-1) (p+ 1)-l 

dK(Km/Km-1)>pm- 3(p2-p+l)(p-1) if [Km: K]=pm. 
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If m = I, (5-3-1) (resp. 5-3-2)) follows from the fact dK(K1/K) ~p- 1(p-1) 
(resp. diKi/K)~(p-1)) (cf. (2-16)). If m~2, we have by (4--1-2) 

dK(Km/ Km-1)~p- 1(P2- p+ 1) · dK(Km-1/Km-2) · 

So, in this case (5-3-1) and (5-3-2) follows from (4--5). 
Now (0--4) in the case (p-1),YeK follows from (5-2), (5-3-1) and 

(5-3-2). 

Remark (5-4). Jfthe assertion in (4-3) is true, we can replace (5-3-1) 
(resp. (5-3-2)) by 

dK(Kzf K1- 1) ~(p 21- 1 + 1) (p- l)(p+ 1)- 1r 1 

(resp. dK(Kz/K1_ 1)~p1- 1(p-l)). 

So we can prove (0-4) in the case (p-1),r'eK for .f(n)=max {a+ b Ir· p0 - 1 

+(p2b+1 + l)(p- l)(p+ 1)- 1rb- 1 ~ n, a, b E Z, b~O} and g(n)=max {a+ 
blr·pa- 1+pb(p-l)~n, a, bEZ, b~O}. 

Next we prove(0-4)in the case of(p:_l)leK. In this case K contains 
a primitive p-th root ( of unity. 

As in the proof of Miki [9] Proposition 6, we use the following well­
known fact. 

Lemma (5-5). There is an element y EK,,_ 1 such that 

N Kn-i/K(y)=(. 

We fix yEKn-l such that NKn-i1iY)=(. As (EUl:, we have yE 
Uln-i" Let Ym=NK»-i/KJY) and let Vm=vK(l-ym) for O~m~n-1. 
Then by Serre [14] §5 Lemma 5, we have 

(5-6-1) Vm~Vm+l +dK(Km+1/Km) if Vm+1~(p-1)-ldK(Km+1/Km) 

(5-6-2) Vm=p·Vm+l if Vm+1<(p-1)- 1diKm+1/Km). 

Define an integer l by 

l=max {0~ m ~n-21 Vm+ 1 ~(p-1)- 1dK(Km+ 1/Km)} U { -1}. 
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for O~m~l. 

Thus by (5-6-1), (5-6-2), (2-4-1) and the fact v0 =vK(1-0=(p-1t 1eK, 
we have 

(5-7) O<vn-1 ~ pl-(n- 2l((p- 1)- 1eK-dK(K1+1/ K)). 

Let [Kn: .K] = p•. Then we have 

[Kn_ 1 :.K]~p•-t and p•-n~vn-t· 

In the case p-:/2, we have dK(K 1+1/K)<2- 1eK by (5-7). So by (5-7) 
and (4-5-1) we have 

p•-n ~pl-n+2((p-1)-1eK-(p21+2_ l)(p+ 1)-lp-1-1). 

So 

(5-8-1) p•-l-2 +(p21+2 - l)(p+ 1)-1 p-1-1 ~(p-1)-leK. 

Assume s=n. Then by (5-7) and (4-5-2), we have 

(5-8-2) pn-1-2+p1+1~(p-1)-leK+l. 

Now(0--4)in the case (p-1) I eK and p-:f2follows from(5-8-1)and(5-8-2). 
In the case p=2, if dK(K 1+1/K 1)~2- 1eK, we have by (5-7) 

pn- 1- 2v11_ 1 ~ eK-d~Kl+ 1/K)~eK-2- 1eK-dK(Kif K) 

<2- 1(eK-dK(K 1/K)). 

So (5-8-1) and (5-8-2) holds by replacing l by r--1. Thus we have 
completed the the proof of (0--4). 

§ 6. An effective finiteness of the "connected part" of fundamental groups 
of abelian varieties 

In this section we prove Proposition (0--5) in a little more general 
situation. Let K be a complete discrete valuation field of mixed charac­
teristics (0, p) and A be an abelian variety defined over K which has 
stable reduction. We define the "connected part" 1r~0 n (A) of nfeo (A) as 
follows. 

Let d be the Neron model of A (Raynaud [13]) i.e. d is a com­
mutative group scheme defined over OK characterized by the following 
properties. 

(6-1-1) 



Wild Ramification 307 

(6-1-2) 

for any scheme Y smooth over OK. 

Let d 0 be the connected component of d, nd 0 be the kernel of 
multiplication by n, and define the fixed part (nd 0 )f by the maximal 
finite flat subgroup of nd 0 as in Grothendieck [3]. Then for any prime l, 
{(ind 0 )f}n forms an [-divisible group. Recall that there is a canonical 
exact sequence of finite flat group schemes over OK 

where (nd 0 )f,< 00 (resp. (nd)f ••1) is connected (resp. etale). Thus we can 
define the subquotients of the Tate module T(A) = lim "A(Ksep), T f(A), 

n 

Tf,con(A) and Tf,• 1(A) as the Tate module of {(nd 0 )f(Ksep)}n, {(nd 0 )f,con 

(Ksep)}n and {(nd 0 )f,• 1(Ksep)}n respectively. (These groups are Z-GK­
modules. In fact Tf,c 00 (A) is a ZP-module). We have an exact sequence 

(6-2) 0 - Tf,con(A) - Tf(A) - Tf,et(A) - 0. 

Definition (6-3). We define the "connected part" nr (A) as the 
image of the natural homomorphism 

Tf,con(A) - T(A)cK c:,,,ny•0 (A). 

(Here, T(A)cK is the GK-co-invariant. For the isomorphism T(A)cK c:,,, 

n[°° (A), see Bloch [l] Lemma 5.3.) 

Remark (6-4). If A has good reduction, we have Tf(A)= T(A) and 
Tf,• 1(A)c=nf° 0 (As) where A.=d x 0 KK is the reduction of A. So by 
(6-2) we have an exact sequence 

0 - nl°° (A) - nf<° (A) - ny<0 (A.) - 0. 

Thus Definition (6-3) coincides with the definition in Introduction. 

Now we prove (0-5) assuming A has stable reduction. Assume 
there is an element of order p' in nr0 (A). Then by definition, there is 
a subgroup H of prA(K •• p) .satisfying the following properties. 

(6-5-1) H::J{(J"·X-x!xEprA(K •• p), aEGd 

(6-5-2) pr(A)(K •• p)/H c:,,, Z/p' Z 

(6-5-3) (pd 0 )f • con(Ksep)· H/ He:,,, Zj p' Z 

Let A=A/H, then by (6-5-1) A is defined over K. Let 
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be a natural homomorphism. Then t/t is a cyclic covering of degree p'. 
Let d be the Neron model of A, then by (6-5-2) and (6-5-3) there exists 
an exact sequence of group schemes over OK 

(6-6) 

where / is a connected finite flat group scheme over OK of order p'. 
(By (6-5-3), / is a subgroup of (nd 0 )f,con.) Since/ is connected, we 
can replace d by d 0 and.# by d 0 in (6-6). Let % (resp.%) be the 
completion of the function field of d 0 (resp. d 0

) by the discrete valua­
tion correspondes to d 0 x 0 J(. (resp. d 0 x 0 KK). Then .i" and % are 
complete discrete valuation fields of mixed characteristics (0, p). More­
over .i" / % is a cyclic extension of degree p', and since / is connected, 

we have [.i": %]=[ff: ~Lsep=p'. Thus by (0--4-2), we obtain 
r~g(eK). 

§ 7. A generalization of Miki's theorem 

In this section we prove Theorem (0-2). 
Let K be a complete discrete valuation field of mixed characteristics 

(0, p) with separably closed residue field and let k be the canonical subfield 
of K (cf. (0-1-t)~(0-1--3)). For any integer n ~O, let (n be a primitive 

00 00 

pn-th root of unity, Kn= K((n), kn= k((n), K 00 = V Kn, k 00 = U kn and 
/"-... /'... n=l n=l 

K':,, (resp. k':,,) be the p-adic completion of K':,, (resp. k':,,). As k is 
algebraically closed in K, we have Gal {K 00 / K) =::: Gal (k 00 / k). By Tate 
[16] Prop. (2.2), we have 

/'--. /'--. 

K':,,=:::H1(GK=' Zp(l)) and k':,,=:::H1(Gk=• Zp(1)). 

Proposition (7-1). Let C=Gal (K 00 /K)=Gal (k 00 /k). Then we have 
an isomorphism 

/'--. /'--. 

H 0 ( C, k':,,(r))-=----. H0 ( C, K':,,(r)) (f r # 0. 

We deduce Theorem (0-2) from (7-1). Consider the following com­
mutative diagram of exact sequences where the vertical arrows are inflation 
maps. 

(7-2) 
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Now (0-2) follows from (7-1) and (7-2). 
Before we prove (7-1), we give some notations. For an algebraic 

extension N of K, let Q(ON)=Um Qz(ON)/pn be the p-adic completion of 
n 

the absolute differential group of the integer ring ON and let o;(J)= 
Um ( EE) ON)/ p" for a set I. 

n iel 

Proposition (7-1) can be seen from the following Lemmas (7-3) and 
(7-4). 

Lemma (7-3). We have an exact sequence of C-modules 

/'_ /'_ ~ 

0--------> k~--------> K~ dlog Q(OKJ, 

where dlog is defined by dlog(y)=dy/y for yEOL and dlog(w)=Ofor 
WEk~. 

Lemma (7-4). We have H 0(C, Q(OK=)(r))=0 if r#O. 

To prove (7-3) and (7-4), we need the following little stronger version 
of a theorem of Epp [2]. 

Proposition (7-5). Let Kand k be as above, l be a ZP-extension of k, 
and L= lK. Then for any finite extension M/L such that l is algebraically 
closed in M, we have 

[M: L]=[M: LLsep• 

We will give a proof of (7-5) at the end of this section. 

Corollary (7-6). Let en be the ramification index of K./kn- Then 
we have e. = 1 for n » 0. In other words, a prime element of kn is still 
a prime element of Knfor n»O. 

We prove (7-6). By Theorem (31.1) of Nagata [ 11], we can choose 
a subfield K 0 of K such that 

(7-7-1) K 0 is complete with respect to the valuation induced from K, 

(7-7-2) K 0 =K, 

(7-7-3) pis a prime element of K 0 , 

Then K/K 0 is a totally ramified extension of degree eK, and a prime element 
of kn is a prime element of K 0 kn, so en equals the ramification index of 
Kn/K 0 kn- As K is algebraically closed, k"o/k 2 is a totally ramified ZP­
extension. We apply (7-5) for L=k 00 (K 0 k2)=K 0 k 00 and M =K 00 , then 
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we have [K: K 0 k]=[K 00 : K 0 k 00 ]=[K 00 : K]. Thus we obtain UC: KJ= 

[K: K 0k] for n » 0. Now (7-6) follows from the fact en· [Kn: KJ =[Kn: 
K 0 k,,] = [K: K 0 k]. 

Lemma (7-8). Fix an integer n ~ 2 satisfying the condition of (7-6). 
Choose {uiLe1cOKn such that {u;}iel forms a p-base of Kn. Let {xJiel be 
the canonical base of OKJI) and let Cn=Gal (K 00 /Kn). Then we have an 
isomorphism of OKoo -en-modules 

oK:(I) "' tJ(oKJ 
w w 
xi ~ du;/ui 

We prove (7-8). By the same argument as Hyodo [4] §4, we can 
show that there is an exact sequence of OKoo -en-modules 

0----> Koo/8(1)----> lim tJ(OKm)----> oK; (I)®oK OKoo----> 0, 
W n<m W W n 

a-(C,), - p' ·a· dC,/ C, 

b-duJui - xi®b 

where 8= {y E K 00 I vK(Y)~ -(p-l)- 1eK}. We see that tJ(OKJ= 
fu!! (lim tJ(OKJ)/p', and that K 00 /8 is p-divisible. Thus we have (7-8). 

r n<m 

We prove (7-4). As K 00 /Kn is a ZP-extension of type (4-4-2) (note 
for n»0, Kn+ 1/Kn is totally ramified), we can show H 0 (Cn, oK:(J)(r))=0 
for r#0 by the same argument as in Tate [15] §3.1 Proposition 8 (b). 
The assertion (7-4) follows from (7-8) and the well-known fact 

H0(C, tJ(OKJ(r))=H 0(C/Cn, H0(Cn, tJ(OKJ(r)). 

" To show (7-3), it suffices to prove Ker (d log)= k~. It is trivial that 

" " Ker(dlog)::::ik~, so we have to show dlog(q)#0 for any q(f:.k~. We 
" " " may assume q ¢. k~ · (K~)P as K~ is torsion free. Let q, EK~ be a 

representative of q in (K~)/(K~)Pr and Lq,,=K 00 ((q,)P-r). By (7-5) we 
have [Lq,,: Koo];nsep= p'. So, we obtain dK(Lq,1/Koo)>0. 

Sublemma (7-9). Assume dK(Lq,1/K 00 )> p- 1eK. Then we have 

dlog(q)#0. 

Fix an integer m such that q 1 eK::, and [Km(qf- 1): Km];nsep=p, 
and let Km,1 =Km(qf-'). Note that OKJa)=OLq,1 for any aEOKm,1 such 
that OKm(a)=OKm,I" So we have by (2-10) dK(Lq,1/Koo)=dKf..Km,1I Km). 
By (2-16), we see that q 1 = 1 +u · W (mod (K::,)P) for ueOKm such that 
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ii rJ_ KmP and weOk such that vK(w)=(p-1)- 1p·(eK-dK(Lq, 1/K 00))<eK 
(here we use the assumption). So the image of q 1 by the homomorphism 

dlog: K~Jp- Q(OKJ/p 

is non-trivial. Thus (7-9) follows. 
By (4-4--2) we have dK(Lq,,+1/Lq,,)> p- 1eK for sufficiently large r. 

Consider a commutative diagram 

,,...._ -
dlog': L;,,- Q(OL.), 

where the vertical arrows are natural homomorphism .. There is an element ,,...._ 
q' EL;,, such that e(q)=(q')P'. By (7-9), we have d log'(q')#0. Now 
Lemma (7-3) follows from the fact Q(OL.) is torsion free. 

Our final task is to prove Proposition (7-5). We may assume M/L is 
Galois. Let In be the subextension of 1/k of degree pn and K 0 be the 
subfield ofK satisfying (7-7-1)-(7-7-3). As K(( 1)/K is tamely ramified, 
we may assume ( 1 EK. By replacing K by K 0 ln for sufficiently large n, 
we may assume 

(7-10-1) a prime element nk of k is still a prime element of K 

(7-10-2) there is a finite Galois extension M 0/K, linearly disjoint from L, 
such that M 0L=M. 

As K is separably closed, any tamely ramified extension of K is defined 
over k. So, Gal (M 0/K) is a p-group, fork is algebraically closed in M 0 • 

By using induction, we can see easily that it suffices to show (7-5) in the 
case where M 0 / K is cyclic of degree p. 

Let M 0 =K(aP-'). We assume on the contrary M=L. Then by 
Tate [15] Proposition 9, we have dK(M/L)=O. By replacing K by Kln 
for sufficiently large n, we may assume eK<via-l)<p·e' where e'= 
(p-1)- 1eK (cf. (2-15) and (2-16)). As (KX)P::, ure· by the assumption 
that K is separably closed, we can write a as follows. 

(7-11) a= n (l+cf"'(')nD mod(KX)P. 
ex<i<p•e' 

Here, if p I i, we can take m(i) = 0 and either ci E OK such that "c; rJ_ l(P or 

ci=O. If p,f'i, we can take m(i)~0 and either cieOK such that C;rf_KP or 
cieOk. Let 
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[ 
eK·(l+p-t+···+pl-m(i))+i-p-m(i) 

h(i)= 
+oo 

h=min {h(i) I eK< i<p-e'}. 

otherwise, 

Then h<p·e'. Moreover h equals h(i) for unique i. To see this, note 
that the p-adic valuation of h(i 1) and h(i 2) are different if m(i 1);i:m(i 2). 

We fix the integer j such that h = h(j). 
What we have to show is the following (7-12). 

(7-12) mod (£X)P· U\ 

for some c1 eOK such that c1 =Ci (mod Ok) and y Ek such that vK(Y) = h, 
where Uh={l+xlxeL, vK(x)~h}. 

Recall M=L(aP-'). By (7-12) we have [M: LJinsep= p. This 
contradicts our assumption M = L. Thus Proposition (7-5) follows from 
(7-12). 

To see (7-12), it suffices to show 

(7-13) 
mod (£X)PUh if i;l:j, 

mod (£X)PU\ 

where c1 and y are as in (7-12). This assertion (7-13) can be obtained 
by applying Lemma (7-14) below in the following way: In case ci(/:.Ok, 
we put e= p·e' -h, c=ci, w=nL and m=m(i). In case ciEOk, we put 
e=p·e'-h, c=l, w=cinL and m to be an integer satisfying eK·(l+ 
p-1 + ... + p-m+l) + i· rm> h). 

Lemma (7-14). Keep the notation as above. Let y=(l+cPmw)for 
m~ 1, where ceOK and weOk such that eK<vK(w) <p·e'. Thenfor any 
e > 0, there exist c' E OK, y E / and y' EL= Kl which satisfy 

(7-14-1) 

(7-14-2) 

(7-14--3) 

(7-14-4) 

y = 1 +c' ·y+y' 

c'=c 

mod (£X)P, 

mod (Ok), 

By induction, it suffices to show (7-14) for the case m= I. Let 
s(n)=(p-1)- 1p·(eK-dk(/n((l+w)P-')/ln)). As 'Ji is perfect, by Tate 
[15] Prop. 9, we have for sufficiently large n(e), 

p·e' -e<s(n(e)) and p·e' -vK(w) <s(n(e)). 
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By (2-16) there exists w' E l*l such that 

vK((l + w)-(1 + w')P-1) =s(n(s)) <vK(w) and vK(w') = r 1vK(w). 

y =(I+ c-w')P(l + cP-w) = 1 + p-(c -cP)-w' + cP-(w + w'P+ p-w') 

mod (Kx)P. 

Now we see that (7-14-1)-(7-14-4) are satisfied for 

c'=c-cP, y=p-w' and y'=cP(w+w'P+p-w'). 

Thus the proof of (7-14) is completed. 

Remark (7-15). By a similar argument, we can show the following 
equal chracteristic version of Proposition (7-5). Let K be a complete 
discrete valuation field of characteristic p>O and assume K is separably 
closed. Let k be a subfield of K such that 

(7-15-1) k is complete with respect to the valuation induced from K, 

(7-15-2) k is the maximal perfect subfield of K. 

(7-15-3) k is algebraically closed in K. 

(Such a subfield k exists, but not necessarily uniquely). Let l be a totally 
ramified ZP-extension of k and let L= IK. Then for any finite (not neces­
sarily separable) extension M/L such that l is algebraically closed in M, 
we have 

[M: L]=[M: LLnsep• 
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