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§ 1. Introduction 

Let k be an algebraically closed field and X an irreducible complete 
non-singular algebraic curve over k. We denote by n 1(X) the algebraic 
fundamental group of X (see [3, Exp. VJ). The group ni(X) may be 
canonically identified with the Galois group Gal (k(X)ur /k(X)), where 
k(X) is the function field of X over k and k(X)ur is the maximum unramified 
extension of k(X). When char k=O, it is a classical fact that the structure 
of n 1(X) is determined by the genus g of X. Namely n 1(X) is isomorphic 
to f 9 , the pro-finite completion of the fundamental group I' 9 of a Riemann 
surface of genus g; 

However when char k>O, the group n 1(X) has not been determined yet. 
In particular, we do not know the set of all finite quotient groups of n 1(X). 
(We know that there exists a surjective homomorphism f 9-'>n1(X) (see 
Grothendieck [3, Exp. X]), but to determine its kernel is a difficult open 
problem.) 

In the previous paper [4], the author considered a finite etale Galois 
covering Y-" X and determined the action of G = Gal ( Y/ X) on the space of 
holomorphic differentials on Y. As its consequence the following Theorem 
A was obtained ([4, Theorem 5]). Here the integer t(G) is defined as the 
minimum number of generators.of the k[G]-module JG={I'..,.eGa.,.-ul 
LueG a.,.=0}, the augmentation ideal of the group algebra k[G]. 

Theorem A. If a finite group G is a quotient of the pro-finite group 
n 1(X), then we have t(G)~g (g is the genus of X). 
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When char k=O, t(G)= 1 holds for every G, and Theorem A becomes 
trivial. In this paper we shall discuss some consequences of Theorem A, 
assuming char k > 0. In Section 2, we first give some general properties 
of t(G) and then we compute t(G) when G has a normal Sylow p-subgroup 
(p=char k). In Section 3, we give a result which is proved by combining 
Theorem A and the results of Section 2 (Proposition 5). By use of 
Proposition 5 we can find examples of finite groups which can not be 
quotients of n 1 (X). But Proposition 5 itself has another proof which does 
not depend on Theorem A. (It is also given in Section 3.) Accordingly we 
have, for the present, no examples which show definitely that Theorem A 
gives a new restriction on the structure of n1(X). 

I would like to express my sincere gratitude to Professor Y. Tsushima 
and late Professor T. Miyata for their kind advice. 

§ 2. Some properties of t( G) 

Hereafter we assume that p=char k is positive. For a finite group G, 
t(G) denotes, as before, the minimum number of generators of the augmen
tation ideal of k[G]. In this section we give elementary properties and a 
method for computation of t(G). 

The following two Propositions are derived easily from the definition 
of t(G). Here, for a finite group G, d(G) is the minimum number of 
generators of G. 

Proposition 1. (i) We have t( G) ~ d( G). 
(ii) IfG is a p'-group, t(G)=l. 
(iii) If G is a p-group, t(G)=d(G). 

Proof. From the equality ar-l=o"(-r-l)+(a-1) for a, reG, we 
easily obtain (i). If G is a p'-group, k[G] is semi-simple and hence k[G] = 
ktBia holds. Therefore we have t(G)= 1 because there exists the pro
jection k[G]~J a· When G is a p-group, Ia is the Jacobson radical of k[G] 
([2, (5.24)]). Hence we have t(G)=dimk(Ja/IJ) in view of Nakayama's 
lemma. Since dimk Ua/n)=dimF (G/[G, G]GP)=d(G), we obtain (iii) 

• p 

([G, G]GP is the Frattini subgroup of G). 

Proposition 2. (i) If G is a quotient group of G, then t(G)~t(G). 
(ii) If G' is a subgroup ofG, then t(G')-l~(G: G')(t(G)-1). 

Proof. The surjective homomorphism G~G induces a surjective 
homomorphism k[G]~k[G]. Hence (i) is immediate. Putting t=t(G), 
we have a surjective k[G]-homomorphism <p: k[G]'~Ia. For a k[G]
module M, denote by MI a· the module M regarded as a k[G']-module. 
Then we have k[G]' IG· ~k[G']tm and Iala·~k[G'Jm- 1EE>Ia·, where m= 
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( G: G'). (The latter isomorphism follows from Schanuel's lemma [2, 
(2.24)].) Hence '<p induces a surjective k[G']-homomorphism k[G'] 1m-+ 

k[G'Jm- 1E!;)IG'· Therefore we obtain t(G')~tm-m+l i.e. t(G')-1~ 
(G: G')(t(G)-1). 

Next we show a method for computing the number t(G). First we 
introduce some notations. Let V0 ,···, Vn be the isomorphism classes of 
all irreducible k[G]-modules (V0 is the trivial module). Denote by J=JG 
and I =IG the Jacobson radical and the augmentation ideal of k[G], 
respectively. We define the integers ai (i=O,··, n) by the following 
decomposition as k[G]-module; 

n 
I/JI~ EB ar V;. 

i=O 

n 
Putting f;=dimk V;, we have the decomposition k[G]JJ~ EB/;· V;. 

i=O 
Hence by Nakayama's lemma we easily obtain 

t(G)= max {-[ - j;] I i=O,···, n}, 

where [x] denotes the largest integer not exceeding x. (Hence m = - [ -x] 
is the smallest integer satisfying m ~ x.) To calculate a;, consider the 
projective k[G]-module U which satisfies U /JU~ V0 • (For the existence of 
U, see e.g. [2, §6].) Then we have the following 

Proposition 3. (i) Define the integers s; (i =0,-··, n) _by the decom
position 

n 
JU/Pu~ EB si· V;. 

i=O 

Then a0 =s 0 and a;=s;+fdor i~l. 
(ii) We have s0 =dimk(I/I2)=dimFp(G/[G, G]GP), where G/[G, G]GP is 
the maximum elementary p-abelian quotient of G. 

Proof. We have a decomposition k[ G] = U $ W, where W is the 
n 

projective k[G]-module satisfying W/JW~ ®kV;. Hence I=JUE!;)W 
' i=l n 

holds. Consequently I/JI=(JU/J2U)®(W/JW)~(JU/J2U)®(EB .!;· V;), 
i=l 

which proves (i). From IW= W, we obtain I2=IJU® W. Therefore 
I/I2=JU/IJU =s 0 • V0 , i.e. s0 =dimdI/J2). The latter equality in (ii) 
is easily obtained by considering the map <p: G-+I/I 2 which is defined by 
<p(u)=u-1 (mod/2) for ueG. 

As a consequence of Proposition 3 we obtain 
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Corollary. t(G)=max {so, -[ - ;: ]+ 1 (i'i?; 1)}. 
Remarks. (1) From the exact sequence 0--+JU--+ U--+ V0 --+0, we 

obtain si=dimk ExthGJCV0 , V;) (i=O,··, n). 
(2) Following the argument of [1], we see that t( Gm)= t( G) holds if s0 = 0 
for G, while we have t( Gm)= m . t( G) for m 'i;; t( G) if s0 'i?; 1 ( Gm is the direct 
product of m copies of G). 

Assume that a finite group G has a normal Sylow p-subgroup. In that 
case we can express t(G)more explicitly than in Corollary to Proposition 3. 
Hereafter we shall give the result. In the above situation G is isomorphic 
to a semi-direct product H · S, where S is a p-group and H is a p'-group 
acting on S. Let V0 ,··, Vn be the isomorphism classes of all irreducible 
k[H]-modules (V0 is the trivial module). Recalling p=char k, we see that 
S acts trivially on irreducible k[G]-modules. Let N = [S, S]SP be the 
Frattini subgroup of S, and put P=S/N. Then Pis an elementary abelian 
p-group and G (hence H) acts on P through conjugation. (Since N is a 
characteristic subgroup of S, it is a normal subgroup of G.) The integers 
mi (i=O,··, n) are defined by the following isomorphism of k[H]-modules; 

n 
p @F k'.:::!. $ m;• V;. 

P i=O 

With notations as above, we have 

Proposition 4. Put J; = dimk V;. Then 

t(G)=max {-[ - j/ ]+ l-8i I i=O,··, n}, 
where 8;=0for i'i;;l and 80 =1. 

Proof. We use the symbols J, U and si in the same sense as above. 
Let <p: k[G]--+k[H] be the surjective homomorphism induced by the 
natural projection G--+H=G/S. Then J=Ker<p. Further we have U= 
kc+JU, where c= LreH -r E k[G]. Using this equation we obtain JU =Jc 
because J is nilpotent. Let ls be the augmentation ideal of k[S]; ls= 
J n k[S]. Then by using the semi-direct product decomposition G = H. S, 
we easily get Jlc=nc for every natural number l. Therefore we obtain 
JU/J2U'.:::!./8/I~ as k[G]-modules (G acts on S through conjugation; Sis 
acting trivially on both sides). Since 18/l~'.:::!.P @Fv k, the above iso
morphism shows the equality s;=mi for i=O,··, n. Hence, by Corollary 
to Proposition 3, we obtain Proposition 4. 
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§ 3. A consequence of Theorem A 

Apply Theorem A when G is a finite p-group (p=char k). Then 
we obtain the classical inequality y ~ g, where y is the p-rank of X ( cf. 
Proposition 1 (iii)). Hence Theorem A is surely a non-trivial assertion 
when char k>O. However, for a general finite group G, it is not easy 
to determine the number t(G), and so we do not know exactly to what 
extent Theorem A gives restriction on the set of finite quotient groups 
of n1(X). 

In the following situation we can describe a consequence of Theorem A 
in a "down-to-earth" form: Let G' be a subgroup of a finite group G and 
let K be a normal subgroup of G' for which the quotient G' / K has a normal 
Sylow p-subgroup (p=char k). Then G'/K is isomorphic to a semi-direct 
product H · S, where Sis a p-group and His a p'-group acting on S. For H 
and S above, let P, V; and m; (i=Q, ... , n) be the same as defined before 
Proposition 4. Then as a consequence of Theorem A we obtain the 
following 

Proposition 5. Let the situation be as above. If G is a quotient of 
n:1 (X), then 

holds for each i=Q, ... , n, where b;=Ofor i~l and b0 =1. 

Proof. Put f;=dimk V;. Then applying Proposition 4 to G'/K= 
H -S, we obtain m;~(t(G'/K)-l)f;+b; for each i=Q, ... , n. Proposition 2 
shows t( G' / K)- 1 ~ t( G')- 1 ~ ( G: G')(t( G)-1 ). Further t( G) ~ g holds 
by Theorem A. Thus the proof of Proposition 5 is completed. 

Finally we shall give a different proof of Proposition 5, wl}.ich does 
not use Theorem A: Take a finite etale Galois covering Y---+ X satisfying 
G=Gal(Y/X), and let Y---+X' be the covering corresponding to G', i.e. 
G'=Gal(Y/X'). Denoting by g' the genus of X', we have g'-l=(G: G') 
(g-1) by the Riemann-Hurwitz formula. So we should prove m;~ 
(g'-l)_{;+b; (J;=dimkV;). Since H-P=H-S/N (N=[S,SJSP) is a 
quotient of G', we have a covering Z---+X' with Gal (Z/X')=H ·P. Let 
f: W---+X' be the covering corresponding to P (P=Gal (Z/W)). The 
group H =Gal (W/X') acts naturally on the cohomology group H 1(W, 0w), 
Since P=Gal(Z/W), P*=Hom(P, FP) is an Fp[H]-submodule of 
Homcont (n 1(W), Fp)=H 1(W, 0wY, where Fis the p-th power Frobenius 
map and H 1(W, 0wY = {e E H 1(W, 0w) I F(e)=e}. Therefore (P ®Fp k)* 
=P* ®Fp k is a k[H]-submodule of H 1(W, 0w) because H 1(W, l!lwY 
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@F k is naturally contained in H 1(W, 0w). On the other hand, H acts 
nat~rally on the locally free sheaf ffe=f *(0w) on X'. For i=O,-··, n, 
let ffe(V;) be the isotypical part of ffe with respect to the irreducible k[H]
module V;. Since H is a p'-group, we have a direct sum decomposition 

ffe= EB ffe(V;) and rankffe(V;)=ft. As is easily verified, the V;-isotypical 
i=O 

part of H 1(W, 0w)=H 1(X', ffe) coincides with H 1(X', ffe(V;)). Recalling 
that (P @Fp k)* is a k[H]-submodule of H 1(W, 0w), we see that the 
inequality mJi~dimk H 1(X', ffe(Vn) holds for each i=O,···, n, where yt 
is the dual module of V;. Since degffe(Vr)=0 and dimkH 0(X', ffe(Vn)= 
,5;, the Riemann-Roch theorem shows dimkH 1(X', ffe(Vn)=(g'-l)ft+t5i. 
Consequently we obtain mi~(g' - l)fi+b;, which completes the proof of 
Proposition 5. 
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