Advanced Studies in Pure Mathematics 12, 1987 Galois Representations and Arithmetic Algebraic Geometry pp. 173-188

Some Problems on Three Point Ramifications and Associated Large Galois Representations

Vasutaka Ihara

Dedicated to Professor Ichiro Satake for his 60th birthday

Introduction

Let Q be the rational number field, \overline{Q} be its algebraic closure, and l be a fixed prime number. Then the absolute Galois group $G_Q = \operatorname{Gal}(\overline{Q}/Q)$ admits a canonical representation

$$\varphi = \varphi_{\mathbf{Q}} : G_{\mathbf{Q}} \longrightarrow \text{Out } \pi_1^{\text{pro-}l}(\mathbf{P}_{\bar{\mathbf{Q}}}^1 \setminus \{0, 1, \infty\}),$$

in the outer automorphism group of the pro-l fundamental group of the punctured projective line, which arises from the exact sequence

$$1 \longrightarrow \pi_1^{\text{pro-}l}(\boldsymbol{P}_{\bar{\boldsymbol{q}}}^1 \setminus \{0, 1, \infty\}) \longrightarrow \pi_1^{\text{pro-}l}(\boldsymbol{P}_{\boldsymbol{q}}^1 \setminus \{0, 1, \infty\}) \longrightarrow G_{\boldsymbol{q}} \longrightarrow 1.$$

Recently, several authors started (perhaps more or less independently) to work on this type of "large Galois representations"; Belyi [3], Grothendieck [7], Deligne [5], [6], the author [9], [10], etc. In this report, we pose and discuss various basic open problems related to this representation φ and its natural "subrepresentations" ψ .

§ 1. The Galois representation φ

(1-1) First, let us repeat the definition of the Galois representation $\varphi_{\boldsymbol{Q}}$ more precisely in terms of function fields. Let M be the maximum pro-l extension of the rational function field $K=\overline{\boldsymbol{Q}}(t)$ unramified outside $t=0,1,\infty$. Then $M/\boldsymbol{Q}(t)$ is also a Galois extension. So, identifying the two Galois groups $\operatorname{Gal}(K/\boldsymbol{Q}(t))$ and $G_{\boldsymbol{Q}}=\operatorname{Gal}(\overline{\boldsymbol{Q}}/\boldsymbol{Q})$ in the obvious way, we obtain an exact sequence of Galois groups

$$1 \longrightarrow \operatorname{Gal}(M/K) \longrightarrow \operatorname{Gal}(M/\mathbf{Q}(t)) \longrightarrow G_{\mathbf{Q}} \longrightarrow 1.$$

Put $\mathfrak{F} = \operatorname{Gal}(M/K)$ and $\mathfrak{F} = \operatorname{Gal}(M/Q(t))$. Then the composite of three canonical homomorphisms

Received April 9, 1986.

$$\tilde{\mathfrak{F}}$$
 \longrightarrow Int $\tilde{\mathfrak{F}}$ $\overset{\text{Res}}{\longrightarrow}$ Aut \mathfrak{F} \longrightarrow Out \mathfrak{F}

factors through G_{o} and defines the homomorphism

$$\varphi_{\mathbf{Q}} \colon G_{\mathbf{Q}} \longrightarrow \operatorname{Out} \mathfrak{F}; \qquad \mathfrak{F} = \operatorname{Gal}(M/K).$$

Here, for any topological group X, Aut X, Int X and Out X=Aut X/Int X denote the groups of automorphisms, inner automorphisms and outer automorphisms of X, respectively. The canonical homomorphism $X \rightarrow$ Int X is defined by $x \rightarrow$ Int x, where (Int x) $y = xyx^{-1}$ (x, $y \in X$), and Res: Int $\widetilde{X} \rightarrow$ Aut \widetilde{X} is the restriction homomorphism.

(1-2) This definition, starting from $P^1\setminus\{0, 1, \infty\}$ over Q, can of course be generalized to the case of an arbitrary scheme over any field. But here, we want to look closely at this special case which is *rigid* with respect to deformations and which gives a *canonical* representation of G_Q determined only by I. While the ordinary linear representation of the Galois group is a representation in the automorphism group of a *vector space*, our representation is in the (outer) automorphism group of the Galois group $\mathfrak{F} = \operatorname{Gal}(M/K)$ which is isomorphic to the *free pro-l group of rank* 2. (In the general case, what corresponds to $\operatorname{Gal}(M/K)$ is the geometric part of the pro-I fundamental group of the given scheme, which, except for the case of curves, is usually either difficult to determine or too small.)

We may also replace "pro-l" by either "almost pro-l", or "profinite". Namely:

- (i) The almost pro-1 case. Choose any finite Galois extension K'/K unramified outside $t=0, 1, \infty$, and define M to be the maximum pro-1 extension of K' unramified outside $t=0, 1, \infty$. Then Gal (M/K) is a free almost pro-1 group of rank 2 in the sense of [10], i.e., the completion of the abstract free group F of rank 2 with respect to the pro-1 topology of some normal subgroup $F' \subset F$ of finite index. If an intermediate field Q^* ($Q \subset Q^* \subset \overline{Q}$) is such that $K'/Q^*(t)$ is a Galois extension, we obtain a representation of G_{Q^*} in Out (Gal (M/K)).
- (ii) The profinite case. Take M to be the maximum Galois extension of K unramified outside $0, 1, \infty$. Then $\operatorname{Gal}(M/K)$ is the free profinite group of rank 2, and we obtain a canonical representation of G_Q in $\operatorname{Out}(\operatorname{Gal}(M/K))$.

These two cases are equally important as the pro-*l* case, but we shall mainly restrict our attention to the pro-*l* case and occasionally give remarks related to other cases.

As a final remark here, we note that one may also replace the base field Q by any other perfect field k with characteristic $\neq l$ (without changing

the structure of Gal (M/K)). But the only basic cases are k=Q and $k=F_p=Z/p$ $(p\neq l)$. The representation φ_k for other cases can be obtained from φ_Q or φ_{F_p} by restriction. (Even then, the study of φ_{Q_l} (Q_l) : the l-adic number field) is of an independent interest.) We shall mainly consider the case over Q, and abbreviate as $\varphi=\varphi_Q$.

- (1-3) Two basic problems are:
- (P1) What is the kernel of φ ?
- (P2) What is the image of φ ?
- (1-4) About (P1). (i) Let k_{φ} denote the Galois extension over Q corresponding to the kernel of φ . Then k_{φ} has the following interpretation. For any intermediate field k of \overline{Q}/Q , a k-model of M will mean any intermediate field M_k of M/k(t) such that $M_k \cdot \overline{Q} = M$ and $M_k \cap \overline{Q} = k$. It will be called a Galois k-model if moreover $M_k/k(t)$ is a Galois extension. Now, in each of the pro-l, almost pro-l and the profinite case, the group Gal (M/K) has trivial center. (In fact, a free pro-l (resp. almost pro-l, profinite) group of finite rank > 1 has trivial center.) From this follows immediately that k_{φ} is the smallest algebraic extension of Q for which M has a Galois k_{φ} -model.

Incidentally, as for non-Galois models of M, there is a convenient Q-model M_Q used by Beyli [3] (also by Deligne [6] and the author [9]) cf. [9] I § 4.

- (ii) In the profinite case, Belyĭ [3] proved that φ is *injective*. He proved this by showing that every algebraic curve defined over an algebraic number field can be realized as a finite covering of P^1 unramified outside 0, 1, ∞ . In particular, an elliptic curve with any given absolute invariant $j \in \overline{Q}$ is so, and this leads to that $k_{\varphi} = \overline{Q}$.
- (iii) In the pro-l case, k_{φ} cannot be as large as \overline{Q} , because k_{φ} must be a pro-l extension of the cyclotomic field $Q(\mu_{l_{\infty}})$ unramified outside l ([5], [9] § I). Thus, one may ask:
- (P1') Is k_{φ} in the pro-l case the maximum pro-l extension of $Q(\mu_{l_{\infty}})$ unramified outside l?

Our present knowledge is so narrow, and we cannot even put it as a conjecture.

A closely related geometric question is this:

(P3) Which curve over \overline{Q} (or \overline{Q}_t) can be realized as an *l*-covering of P^1 unramified outside 0, 1, ∞ ?

Here, an l-covering means a finite covering such that the degree of its Galois closure is a power of l.

We know that such curves have good reduction outside l [9] § I. As for the special fiber above l of the integral closure of $P_{Z_l}^1$ in such a covering

of $P_{\bar{q}_i}^1$, what we know at present is the following elementary

Theorem 1. Let $P_{Z_l}^1 = \operatorname{Spec} Z_l[t] \cup \operatorname{Spec} Z_l[t^{-1}]$ be the projective t-line over Z_l with the geometric general fiber $P_{\overline{Q}_l}^1$. Let $X_{\overline{\gamma}}/P_{\overline{Q}_l}^1$ be an l-covering of degree l^n $(n \ge 1)$ unramified outside $t = 0, 1, \infty$, and X be the integral closure of $P_{Z_l}^1$ in $X_{\overline{\gamma}}$. Then the special fiber X_s of X is an integral scheme, and its normalization X_s^n , considered as a $P_{\overline{F}_l}^1$ -scheme via the projection $X_s \to P_{\overline{F}_l}^1$, is isomorphic to

Spec
$$\bar{F}_l[t^{1/l^n}] \cup \operatorname{Spec} \bar{F}_l[t^{-1/l^n}],$$

i.e., the unique purely inseparable covering $P_{\bar{F}_l}^1 \rightarrow P_{\bar{F}_l}^1$ of degree l^n .

For example, if $X_{\bar{q}}$ is the Fermat covering of level l corresponding to the function field $\bar{Q}_t(t^{1/l}, (1-t)^{1/l})$, then X_s is the projective t_1 -line $(t_1=t^{1/l^2})$ with cuspidal singularities at each of the (l-2) distinct F_t -rational points $t_1 = a$ of $P_{\bar{F}_t}^1 \setminus \{0, 1, \infty\}$, and the completion of the local ring of X_s at $t_1 = a$ is given by

The proof of Theorem 1 is reduced to this Fermat case by passage to the Frattini subcovering of (a suitable enlargement of) $X_{\bar{\tau}}$.

(1-5) About (P2). The Galois group $\mathfrak{F}=\operatorname{Gal}(M/K)$ is equipped with the conjugacy classes of three special subgroups, the inertia groups above $t=0, 1, \infty$. The outerly action of G_Q on \mathfrak{F} respects this structure. To be more precise, call any place of M over \overline{Q} lying above $t=0, 1, \infty$, a cuspidal place of M. Then the inertia group in M/K of a cuspidal place is (topologically) generated by a single element, and hence is a quotient of \hat{Z} . It is isomorphic to Z_t (resp. $(Z/m) \times Z_t$ with some $m \not\equiv 0 \pmod{l}$, resp. \hat{Z}), according to whether the case is pro-l (resp. almost pro-l, resp. profinite). A primitive parabolic element is a generator of one of such an inertia group, and an \mathfrak{F} -conjugacy class of such an element is a primitive parabolic conjugacy class. Call $\tilde{\Phi}$ the group of all $\sigma \in \operatorname{Aut} \mathfrak{F}$ that raises each primitive

parabolic conjugacy class c to some power c^{α} ($\alpha \in \hat{\mathbf{Z}}^{\times}$). Here, α depends on σ but not on c. Define $\Phi = \check{\Phi}/\mathrm{Int} \, \mathfrak{F} \subset \mathrm{Out} \, \mathfrak{F}$. Then $\varphi(G_Q)$ is contained in Φ . Moreover, it is contained in the \mathfrak{S}_3 -symmetric part $S\Phi$ defined as follows. Let the symmetric group \mathfrak{S}_3 act on $K = \overline{Q}(t)$ as the group of linear fractional transformations stabilizing and acting on $\{0, 1, \infty\}$ as the group of permutations (the " λ -group"). The fixed field is $\overline{Q}(j)$, with

$$j=2^8(t^2-t+1)^3/t^2(1-t)^2$$
.

The exact sequence of Galois groups

$$1 \longrightarrow \mathfrak{F} \longrightarrow \operatorname{Gal}(M/\overline{Q}(j)) \longrightarrow \mathfrak{S}_3 \longrightarrow 1$$

defines an *injective* homomorphism $\mathfrak{S}_3 \longrightarrow \operatorname{Out} \mathfrak{F}$. We define $S\Phi$ to be the centralizer of \mathfrak{S}_3 in Φ . One checks easily that $\varphi(G_Q) \subset S\Phi$. These are rather obvious restrictions of the image. Deligne thinks that the image is much smaller than $S\Phi$, and our study of the ψ -representation ([9] II, IV; cf. § 3) seems to support this. See also [11] "the \mathfrak{S}_4 -symmetricity of $F_\rho * F_\rho$ ", and [1].

The situation is completely parallel in the profinite case. Namely, the groups Φ and $S\Phi$ are defined analogously, and $\varphi(G_Q) \subset S\Phi$. As φ is injective in this case, φ induces an *isomorphism* between G_Q and its image.

Now for the "coordinate system". Recall that the topological fundamental group $\Gamma = \pi_1(P_c^1 \setminus \{0, 1, \infty\})$ is a free group of rank 2 generated by such loops x_c , y_c , z_c around 0, 1, ∞ , respectively that $x_c y_c z_c = 1$. Therefore, its completion \mathfrak{F} is free pro-l (resp. almost pro-l, or profinite, depending on the case) with rank 2, generated by such x and y that x, y and $z = (xy)^{-1}$ each generates some inertia group above 0, 1 and ∞ , respectively. The group $\tilde{\Phi}$ can be expressed as

$$\tilde{\Phi} = \left\{ \sigma \in \operatorname{Aut} \widetilde{\mathfrak{V}}; \, \sigma y \sim y^{\alpha} \, (^{\exists} \alpha \in \hat{\boldsymbol{Z}}^{\times}) \, \right\}.$$

$$\sigma z \sim z^{\alpha}$$

As for the exponent α , if the case is pro-l (resp. profinite), it is uniquely determined by σ as an element of Z_l^{\times} (resp. \hat{Z}^{\times}), called the norm $N(\sigma)$ of σ . For $\rho \in G_Q$, $\chi(\rho) = N(\varphi(\rho))$ is the l-cyclotomic (resp. the cyclotomic) character describing the action of ρ on the group of l-powerth (resp. all) roots of unity.

As for the freedom in the choice of (x, y): If we only impose that they generate \mathcal{F} and each of $x, y, z = (xy)^{-1}$ is primitive parabolic above $0, 1, \infty$, respectively, then the choice of (x, y) is up to $\tilde{\Phi}$ -transforms. But if we further impose that they come from x_c, y_c via an embedding $\bar{Q} \subset C$,

then this will define a narrower class. The triple (x_c, y_c, z_c) described above is, roughly speaking, unique up to simultaneous Γ -conjugation, and it is precisely so if we impose x_c any y_c to be positively oriented. The class of (x, y) thus defined is unique up to $\varphi(G_q)$ -transformations, where $\varphi(G_q)$ is the preimage of $\varphi(G_q)$ in Aut \mathfrak{F} . This means that, for a free pro-l (or profinite) group \mathfrak{F} of rank 2 given together with a set of free generators (x, y), there is a uniquely determined subgroup of Out \mathfrak{F} that corresponds with $\varphi(G_q)$. What is THIS?

(1-6) Similar problems for $\varphi_{\mathbf{Q}_l}$. The representation $\varphi_{\mathbf{Q}_l} \colon G_{\mathbf{Q}_l} \to \Phi$ can be identified with the restriction of $\varphi_{\mathbf{Q}}$ to the decomposition group of an (arbitrary) extension \bar{l}/l to $\bar{\mathbf{Q}}$. Therefore, Image $\varphi_{\mathbf{Q}_l} \subset \text{Image } \varphi_{\mathbf{Q}_l}$, and as for the kernel, the Galois extension k_{φ_l}/Q_l corresponding to Ker $\varphi_{\mathbf{Q}_l}$ can be identified with the \bar{l} -adic completion of k_{φ} .

At present, we have nothing to add about the image. As for k_{φ_i}/Q_i , it is obvious that k_{φ_l} is *some* pro-l extension over $Q_l(\mu_{l_{\infty}})$. But at least when l is a regular prime, $k_{\varphi_l}/Q_l(\mu_{l_{\infty}})$ cannot be the maximum pro-l extension. In fact, denote by Σ_l the maximum pro-l extension over $Q_l(\boldsymbol{\mu}_{l_m})$ (or equivalently, over $Q_l(\mu_l)$), and Σ' the maximum pro-l extension over $Q(\mu_{lm})$ (or equivalently, over $Q(\mu_l)$ unramified outside l. Call Σ'_l the \bar{l} -adic completion of Σ' , which can be regarded as a Galois subextension of $\Sigma_l/Q_l(\mu_{lm})$. The minimum number of generators of the pro-l groups $Gal(\Sigma_l/Q_l(\mu_l))$ and Gal $(\Sigma'/Q(\mu_l))$ are l+1 and $\frac{1}{2}(l+1)$ respectively. (Here and in the following, when $l=2, \frac{1}{2}(l+1)$ should be replaced by 2.) Now, if l is regular, then it follows (by Frattinization and the Hilbert classfield theory) that Gal $(\Sigma'/\mathbf{Q}(\boldsymbol{\mu}_l)) \simeq$ Gal $(\Sigma'_l/\mathbf{Q}_l(\boldsymbol{\mu}_l))$ canonically, and from [13] Satz 11.5 follows directly that this group is a free pro-l group of rank $\frac{1}{2}(l+1)$. Since $k_{\varphi} \subset \Sigma'$, we conclude that if l is regular, the minimum number of generators of Gal $(k_{\varphi_l}/Q_l(\boldsymbol{\mu}_l))$ is at most $\frac{1}{2}(l+1)$, and if furthermore (P1') is valid then Gal $(k_{\varphi_l}/\mathbf{Q}_l(\boldsymbol{\mu}_l))$ must be a free pro-l group of rank $\frac{1}{2}(l+1)$.

(P4) What is k_{φ_l} ? What is the structure of the pro-l group $Gal(k_{\varphi_l}/Q_l(\mu_l))$? (Is it free with rank $\frac{1}{2}(l+1)$?)

Unfortunately, the choice of standard generators of the Demuskin group $\operatorname{Gal}(\Sigma_l/\boldsymbol{Q}_l(\boldsymbol{\mu}_l))$ seems "too arbitrary" to study $\operatorname{Gal}(k_{\varphi_l}/\boldsymbol{Q}_l(\boldsymbol{\mu}_l))$ as its quotient.

(1-7) φ_{F_p} for $p \neq l$. The representation φ_{F_p} : Gal $(\bar{F}_p/F_p) \rightarrow \Phi$ is determined by the image of the Frobenius element. Its conjugacy class is the same as the one determined by the φ_Q -image of a Frobenius above p. This conjugacy class is contained in the subset $\{\sigma \in \Phi; N(\sigma) = p\}$, but as shown in [9] I, this set consists of more than one Φ -conjugacy class (and in fact, infinitely many Φ -conjugacy classes; cf. Kanako [12]).

(P5) Can one give a good parametrization of Φ -conjugacy classes and pinpoint the Frobenius conjugacy class?

§ 2. Approximation of φ ; the canonical filtration of G_Q

- (2-1) In Sections 2 and 3, we shall consider two different types of "approximations" of φ . First, in Section 2, we restrict ourselves to the pro-l case and consider the first type. This arises from the filtration $\{\mathfrak{F}(m)\}_{m\geqslant 1}$ of the free pro-l group $\mathfrak{F}=\operatorname{Gal}(M/K)$ by the descending central series; $\mathfrak{F}(1)=\mathfrak{F},\mathfrak{F}(m+1)=[\mathfrak{F},\mathfrak{F}(m)](m\geqslant 1)$. Here, $[\ ,\]$ is the commutator operation (closure of the algebraic commutator). Take any positive integer m. Then each outer automorphism of \mathfrak{F} induces an outer automorphism of $\mathfrak{F}/\mathfrak{F}(m+1)$ and hence an automorphism of its center $\mathfrak{F}(m)/\mathfrak{F}(m+1)$. Therefore, Φ and hence also G_{ϱ} act outerly on $\mathfrak{F}/\mathfrak{F}(m+1)$, and in particular on $\mathfrak{F}(m)/\mathfrak{F}(m+1)$. We have three things here to look at.
 - (i) First, $\mathfrak{F}(m)/\mathfrak{F}(m+1)$ is a free \mathbb{Z}_i -module of finite rank

$$\rho_m = \frac{1}{m} \sum_{d \mid m} \mu\left(\frac{m}{d}\right) 2^d; \quad \text{(Witt)};$$

hence Aut $(\mathfrak{F}(m)/\mathfrak{F}(m+1)) \simeq GL_{\rho_m}(Z_l)$. But for any $\sigma \in \text{Aut } \mathfrak{F}$, the action of σ on $\mathfrak{F}(m)/\mathfrak{F}(m+1)$ is determined by its action on $\mathfrak{F}/\mathfrak{F}(2) \simeq Z_l^{\oplus 2}$. In particular, for $\sigma \in \Phi$, it acts on $\mathfrak{F}(m)/\mathfrak{F}(m+1)$ via scalar multiplication by $N(\sigma)^m$. Therefore, this representation of G_Q in $\mathfrak{F}(m)/\mathfrak{F}(m+1)$ is simply the scalar representation given by $\rho \to \chi(\rho)^m$ ($\rho \in G_Q$).

- (ii) Each quotient $\mathfrak{F}/\mathfrak{F}(m+1)$ is a finitely generated pro-l group, and is nilpotent with finite level. So, as Deligne did in [6], one may look at its Malcev's Lie algebra \mathfrak{g}_m over \mathbf{Q} , and try to determine the Galois image in $\operatorname{Der}(\mathfrak{g}_m)/\operatorname{Int}(\mathfrak{g}_m)$; the algebra of outer derivations of \mathfrak{g}_m . By using the Belyi lifting of φ , one may replace Out \mathfrak{F} by Aut \mathfrak{F} , and $\operatorname{Der}(\mathfrak{g}_m)/\operatorname{Int}(\mathfrak{g}_m)$ by $\operatorname{Der}(\mathfrak{g}_m)$. In [6], Deligne gives a description of the Galois image in $\operatorname{Der}(\mathfrak{g}_m)$ modulo some ideal. It corresponds to some essential part of the study [9] of the Galois representation in Out $(\mathfrak{F}/[\mathfrak{F}(2), \mathfrak{F}(2)])$ (cf. [9] IV §7).
- (iii) Let $\Phi(m)$ $(m \ge 1)$ denote the kernel of the homomorphism $p_m^1 : \Phi \to \operatorname{Out}(\mathfrak{F}/\mathfrak{F}(m+1))$. Then $\Phi(1)$ is the kernel of the norm $N : \Phi \to \mathbb{Z}_k^\times$, and $\{\Phi(m)\}_{m \ge 1}$ gives a descending filtration of Φ . For $m \ge 2$, $\Phi(m)$ is the same as the group $\Phi_1(m)$ of [9]. In particular, $\Phi(1) = \Phi(2) = \Phi(3)$, and $[\Phi(m), \Phi(n)] \subset \Phi(m+n)$ $(m, n \ge 1)$. For each $m \ge 2$, the quotient $\operatorname{gr}^m \Phi = \Phi(m)/\Phi(m+1)$ is a free \mathbb{Z}_t -module of rank $2\rho_m \rho_{m+1}$. The group $\Phi/\Phi(1) \simeq \mathbb{Z}_t^\times$ acts on $\operatorname{gr}^m \Phi$ via conjugation Int σ $(\sigma \in \Phi)$, and this action is nothing but the α^m -multiplication $(\alpha \in \mathbb{Z}_t^\times)$. As for the symmetric part $S\Phi$ of Φ , we also put $S\Phi(m) = S\Phi \cap \Phi(m)$. Then $\operatorname{gr}^m S\Phi = S\Phi(m)/S\Phi(m+1)$ can be considered naturally as a submodule of $\operatorname{gr}^m \Phi$, and its rank is approximately 1/6 times

rank $gr^m \Phi$. More precisely, it is given by the following formula of Deligne*;

rank gr^m
$$S\Phi = \alpha_m - \beta_{m+1}$$
 $(m \ge 3, l \ne 2, 3)$,

with

$$\alpha_m = (r_m : \pi) = \frac{1}{3m} \sum_{\substack{d \mid m \\ m/d \not\equiv 0 \pmod{3}}} \left\{ \mu\left(\frac{m}{d}\right) 2^d - \varepsilon_m \right\},\,$$

$$\beta_m = (r_m: 1) = \frac{1}{6m} \left\{ \sum_{d \mid m} \delta\left(\frac{m}{d}\right) \mu\left(\frac{m}{d}\right) 2^d + 2\varepsilon_m \right\},\,$$

where

$$\varepsilon_{m} = \begin{cases} -1 \cdots m = 3^{\alpha} \\ 2 \cdots m = 2 \cdot 3^{\alpha} \\ 0 \cdots \text{ otherwise} \end{cases}, \quad \delta(m) = \begin{cases} 1 \cdots m \equiv \pm 1 \\ 3 \cdots 3 \\ 4 \cdots \pm 2 \\ 6 \cdots 0 \end{cases} \pmod{6}.$$

Here, r_m is the character of the \mathfrak{S}_3 -action on $\mathfrak{F}(m)/\mathfrak{F}(m+1)$, and π is the irreducible character of \mathfrak{S}_3 with degree 2. For small m we have

Now call $G_{Q(m)}$ the kernel of $p_m \circ \varphi \colon G_Q \to \text{Out}(\mathfrak{F}/\mathfrak{F}(m+1))$. In other words, $G_{Q(m)} = \varphi^{-1}(\Phi(m))$. Then $\{G_{Q(m)}\}_{m \geqslant 1}$ gives a descending filtration of G_Q such that $\bigcap_m G_{Q(m)} = G_{k_m}$. We have

$$Q(\mu_{l_{\infty}}) = Q(1) = Q(2) = Q(3) \subset Q(4) = Q(5) \subset Q(6) \cdot \cdot \cdot \cdot$$

The basic properties of this tower are:

- (a) $\{Q(m)\}_{m\geqslant 1}$ is an increasing sequence of Galois extensions of Q, with $Q(1)=Q(\mu_{l_m})$.
 - (b) Each extension Q(m)/Q(1) is pro-l, and is unramified outside l;
 - (c) Gal $(\mathbf{Q}(m+1)/\mathbf{Q}(m))$ is central in Gal $(\mathbf{Q}(m+1)/\mathbf{Q}(1))$.
- (d) Consider Gal (Q(m+1)/Q(m)) as a Z_i -module. Then the natural action of $Z_i^{\times} = \text{Gal}(Q(1)/Q)$ on Gal (Q(m+1)/Q(m)) is given by the α^m -multiplication $(\alpha \in Z_i^{\times})$.

^{*)} This formula appears already in his letter [5]; the author also calculated it independently.

(2-2)

(P6) Determine the sequence $\{Q(m)\}$ explicitly. Is each Q(m) maximal under the conditions (a) \sim (d)?

For each $m \ge 1$, the quotient $\operatorname{gr}^m G_{\boldsymbol{Q}} = \operatorname{Gal}(\boldsymbol{Q}(m+1)/\boldsymbol{Q}(m))$ can be identified with the submodule of $\operatorname{gr}^m S\Phi$ consisting of the image of $G_{\boldsymbol{Q}(m)}$. Hence $\operatorname{gr}^m G_{\boldsymbol{Q}}$ is a free \boldsymbol{Z}_l -module of finite $\operatorname{rank} \le \operatorname{rank} \operatorname{gr}^m S\Phi$.

(P6') Determine rank gr^mG_Q $(m \ge 1)$.

What we know at present about this rank is as follows.

Proposition 1. We have $c'_m \leq \operatorname{rank} \operatorname{gr}^m G_Q \leq c_m$, where

$$c'_{m} = \begin{cases} 1 \cdots m : odd \geqslant 3 \\ 0 \cdots otherwise, \end{cases} \qquad c_{m} = \begin{cases} a_{m} - b_{m} + 1 \cdots m : odd \geqslant 3 \\ a_{m} \cdots otherwise, \end{cases}$$

with $a_m = \operatorname{rank} \operatorname{gr}^m S\Phi$ (given above), and $b_m = [(m+3)/6]$ (m: odd $\geqslant 3$). Here, [*] (* $\in \mathbb{Q}$) denotes the greatest integer $\leqslant *$.

(P7) Can $\operatorname{gr}^m G_Q$ be non-trivial for some even m? When l=2, there exists some $m \geqslant 7$ such that rank $\operatorname{gr}^m G_Q > c'_m$ (cf. § 3).

(2-3) An interpretation of Q(m) in terms of the Belyi's Q-models. Let M_Q be the Q-model of M corresponding to the Belyi's representative [9] I $\S 4, K(m+1)$ $(m \ge 1)$ be the subextension of M/K corresponding to $\S(m+1)$ and put $K(m+1)_Q = K(m+1) \cap M_Q$. Then $K(m+1)_Q$ is a Q-model of K(m+1), but it is not Galois over Q(t).

Proposition 2. (i) $k = \mathbf{Q}(m)$ $(m \ge 1)$ is the smallest Galois extension of \mathbf{Q} which makes $K(m+1)_{\mathbf{Q}} \cdot k/\mathbf{Q}(t) \cdot k$ a Galois extension.

(ii) $\mathbf{Q}(m+1)$ coincides with the residue field of each cuspidal place of $K(m+1)_{\mathbf{Q}} \cdot \mathbf{Q}(m)$.

The proof is an easy exercise using [9] I.

§ 3. Subrepresentations ϕ

(3-1) The approximation of φ of the second type is, roughly speaking, as follows. Suppose $\mathfrak{n} \subset \mathfrak{F}$ is a normal subgroup invariant by the action of the Galois group G_{Q^*} , for some $Q \subset Q^* \subset \overline{Q}$, and suppose we know already

the (outerly) action of G_{Q^*} on the quotient $\mathfrak{g}=\mathfrak{F}/\mathfrak{n}$. Consider the "finer" quotient $\mathfrak{F}^*=\mathfrak{F}/[\mathfrak{n},\mathfrak{n}]$. The main subject of Section 3 is a certain group theoretic framework convenient to describe the G_{Q^*} -action on \mathfrak{F}^* . An advantage of considering this extension $\mathfrak{F}^*\to\mathfrak{g}$ is that \mathfrak{F}^* has trivial center (under a mild assumption on \mathfrak{n}). The main "new part" to describe is the G_{Q^*} -action on $\mathfrak{n}^*=\mathfrak{n}/[\mathfrak{n},\mathfrak{n}]$ which (again, under a mild assumption on \mathfrak{n}) can be identified with the projective limit $\varprojlim T_\iota(\operatorname{Jac} X_n^*)$ of the Tate module of the Jacobian of X_n^* , where $\{X_n^*/P^1\}$ is the \mathfrak{g} -tower corresponding to \mathfrak{n} . The basic reference for Section 3 is [10].

(3-2) To be more precise, let \Re be a free almost pro-l group of rank 2, $\{x, y\}$ be a generator of \Re , and put $z = (xy)^{-1}$. Let n be a closed normal subgroup of \Re such that n is pro-l and

$$\mathfrak{n} \cap \langle x \rangle = \mathfrak{n} \cap \langle y \rangle = \mathfrak{n} \cap \langle z \rangle = 1.$$

Put $n^* = n/[n, n]$, $\mathfrak{F}^* = \mathfrak{F}/[n, n]$ and $\mathfrak{g} = \mathfrak{F}/n$;

$$1 \longrightarrow \mathfrak{n}^* \longrightarrow \mathfrak{F}^* \longrightarrow \mathfrak{g} \longrightarrow 1 \qquad \text{(exact)}.$$

Denote by x^* (resp. y^* , z^*) the projection of x (resp. y, z) on \mathfrak{F}^* .

Theorem 2. (i) The centralizer of x^* (resp. y^* , z^*) in \mathfrak{F}^* is the cyclic group topologically generated by x^* (resp. y^* , z^*);

(ii) the center of \mathfrak{F}^* is trivial.

As for (i), one can prove a little more, that if $s^*x^*s^{*-1}$ ($s^* \in \mathfrak{F}^*$) is a power of x^* then s^* must be a power of x^* (and similarly for y^* , z^*). These proofs reduce easily to Lemma 5.3 of [10] by using free differentiations.

Now let us define the group " Φ for $\mathfrak{F}/[\mathfrak{n},\mathfrak{n}]$ ", called Ψ , as follows.

where \sim denotes conjugacy in \mathfrak{F}^* , and Int (\mathfrak{F}^* , \mathfrak{n}^*) denotes the group of all inner automorphisms of \mathfrak{F}^* of the form Int n ($n \in \mathfrak{n}^*$). The exponent α is again determined uniquely by σ (call it also $\alpha = N(\sigma)$). This group contains a normal subgroup

$$\mathcal{Y}_1 \! = \! \left\{ \! \begin{array}{l} \sigma x^* \! \approx \! x^* \\ \sigma \in \operatorname{Aut} \, \mathfrak{F}^* \colon \sigma y^* \! \approx \! y^* \\ \sigma z^* \! \approx \! z^* \end{array} \! \right\} \! / \! \operatorname{Int} \left(\mathfrak{F}^*, \, \mathfrak{n}^* \right),$$

where \approx denotes conjugacy by element of n*.

Our first result related to these groups is the existence of a certain anti 1-cocycle $\varepsilon: \mathcal{V} \to \mathcal{A}^{\times}$, where $\mathcal{A} = \mathbf{Z}_{l}$ [[g]], the completed group algebra of g. Before stating this result, we need some preliminaries.

(3-3) Denote by $\mathscr{B} = Z_{l}[[\mathfrak{F}]]$ (resp. $\mathscr{A} = Z_{l}[[\mathfrak{g}]]$) the completed group algebra of \mathfrak{F} (resp. \mathfrak{g}) over Z_{l} , and $\pi \colon \mathscr{B} \to \mathscr{A}$ the projection. As \mathfrak{F} is a free almost pro-l group of rank 2 generated by x and y, \mathscr{B} is equipped with the free differentiations $\partial/\partial x$, $\partial/\partial y \colon \mathscr{B} \to \mathscr{B}$ defined as follows. Every element $\theta \in \mathscr{B}$ is expressed *uniquely* as

$$\theta = s(\theta) \cdot 1_{\Re} + \theta_1(x-1) + \theta_2(y-1)$$
 $(\theta_1, \theta_2 \in \mathcal{B})$

where $s: \mathcal{B} \to Z_t$ is the augmentation homomorphism. We define $\partial \theta / \partial x = \theta_1$, $\partial \theta / \partial y = \theta_2$ (cf. [10] Theorem 2.1).

Now the group Ψ acts naturally on the quotient \mathfrak{g} of \mathfrak{F}^* , and hence also on \mathscr{A} and \mathscr{A}^{\times} . Note that Ψ_1 is contained in the kernel of this action. A continuous map $\varepsilon \colon \Psi \to \mathscr{A}^{\times}$ will be called an anti 1-cocycle, if

$$\varepsilon(\sigma' \circ \sigma) = \sigma'(\varepsilon(\sigma)) \cdot \varepsilon(\sigma'), \quad \text{for all } \sigma, \sigma' \in \Psi.$$

(3-4) The following theorems are basic for the presentations of Ψ and Ψ_1 .

Theorem 3. There exists a unique continuous anti 1-cocycle

$$\varepsilon \colon \mathscr{U} \rightarrow \mathscr{A}^{\times}$$

satisfying the following property. For any $\sigma \in \Psi$, any $\tilde{\sigma} \in \text{Aut } \mathfrak{F}^*$ representing σ , and any $\alpha \in \hat{\mathbf{Z}}^{\times}$, $s, t \in \mathfrak{F}$ such that $sx^{\alpha}s^{-1}$ (resp. $ty^{\alpha}t^{-1}$) represents $\tilde{\sigma}x^*$ (resp. $\tilde{\sigma}y^*$) modulo $[\mathfrak{n}, \mathfrak{n}]$, one has

$$\varepsilon(\sigma) = \pi \left(s - \frac{\partial (s-t)}{\partial x} (x-1) \right) = \pi \left(t - \frac{\partial (t-s)}{\partial y} (y-1) \right).$$

The proof is parallel to that of Theorem A in [10].

Theorem 4. (i) For $\sigma \in \Psi$, $\varepsilon(\sigma) = 1$ if and only if $\sigma = 1$.

(ii) The restriction of ε to Ψ_1 gives an anti-isomorphism

$$\varepsilon_1 : \Psi_1 \rightarrow [1 + \mathcal{R}(\mathbf{x} - 1) \cap \mathcal{R}(\mathbf{y} - 1)]^{\times}$$

where x (resp. y) is the projection of x (resp. y) on $g \subset A$, and \mathcal{R} is the right ideal of A defined by

$$\mathcal{R} = \{ r \in \mathcal{A}; (x-1)r \in (xy-1)\mathcal{A} \}$$

= \{ r \in \mathcal{A}; (y-1)r \in (yx-1)\mathcal{A} \}.

Note that in the pro-l case every element of $1 + \mathcal{R}(x-1) \cap \mathcal{R}(y-1)$ is invertible. The proof of Theorem 4 can be obtained by the combination of methods used in [9] II (proof of Theorem 3B) and [10] § 3.

Thus if Δ denotes the image of the canonical homomorphism $\delta \colon \mathscr{U} \to \operatorname{Aut} \mathfrak{g}$, then \mathscr{U} can be embedded into the semi-direct product $\Delta \ltimes (\mathscr{A}^{\times})^{\circ}$ via (δ, ε) , where $(\mathscr{A}^{\times})^{\circ}$ denotes the aniti-isomorphic dual of \mathscr{A}^{\times} .

(3-5) Consider now the restriction homomorphism $\mu: \Psi \to Aut \, n^*$. How can this be explicitly presented? The following two theorems answer this question.

Theorem 5 ([10] § 1). Consider the pro-l abelian group \mathfrak{n}^* as a left \mathfrak{g} -module by conjugation, and hence also as a left \mathscr{A} -module. Then as left \mathscr{A} -modules,

$$\mathfrak{n}^* \xrightarrow{\sim} \mathscr{A}(x-1) \cap \mathscr{A}(y-1)$$
 (canonically).

This is induced from the mapping

$$\mathfrak{n} \ni n \longrightarrow \pi(\partial n/\partial x)(x-1) = -\pi(\partial n/\partial y)(y-1) \in \mathscr{A}(x-1) \cap \mathscr{A}(y-1).$$

Theorem 6. The action of $\sigma \in \Psi$ on \mathfrak{n}^* , when translated to an action on $\mathcal{A}(x-1) \cap \mathcal{A}(y-1)$ via Theorem 5, is given as

$$\alpha \longrightarrow \sigma(\alpha) \cdot \varepsilon(\sigma) \qquad (\alpha \in \mathcal{A}(x-1) \cap \mathcal{A}(y-1)).$$

The proof is completely parallel to that of Theorem C of [10].

- (3-6) The Galois representation in Ψ . A natural representation of the Galois group G_{Q^*} in Ψ arises when there is an infinite Galois extension L/K and its Q^* -model $L^*/Q^*(t)$ ($Q \subset Q^* \subset \overline{Q}$), satisfying the following properties.
 - (i) L/K is unramified outside $t=0, 1, \infty$;
- (ii) L/K is an almost pro-l extension, i.e., g = Gal(L/K) contains an open normal pro-l subgroup;
 - (iii) the ramification index of each of 0, 1, ∞ in L is infinite;
- (iv) $L^* \cdot \overline{Q} = L$, $L^* \cap \overline{Q} = Q^*$ (but $L^*/Q^*(t)$ need not be Galois). There are many interesting examples of L, such as those obtained from the tower of Fermat (or Heisenberg) curves of level l^n $(n \to \infty)$, the tower of modular curves of level $2ml^n$ $(n \to \infty)$, etc. (cf. [10]). Since we shall later refer to the "Fermat case", we recall here what this means. With the

notation of Section 2 (2-3), this is the pro-l case with L=K(2), $Q^*=Q$, and $L^*=K(2)_Q$ (hence $g=\mathfrak{F}/\mathfrak{F}(2)=Z_l\times Z_l$).

Now L and L* being given, denote by M the maximum pro-l extension of L unramified outside 0, 1, ∞ , and put

$$n = \text{Gal}(M/L), \quad \mathfrak{F} = \text{Gal}(M/K), \quad \mathfrak{g} = \text{Gal}(L/K)$$

$$1 \longrightarrow n \longrightarrow \mathfrak{F} \longrightarrow \mathfrak{g} \longrightarrow 1 \quad \text{(exact)}.$$

Then \mathfrak{F} is a free almost pro-l group of rank 2 generated by two such elements x, y that x, y and $z=(xy)^{-1}$ each generates some inertia group above 0, 1, ∞ respectively. Note that \mathfrak{n} satisfies the assumptions of (3-2). Identify G_{Q^*} with $\operatorname{Gal}(L/L^*)=\operatorname{Gal}(M/L^*)/\mathfrak{n}$ in the canonical way, and for each $\rho \in G_{Q^*}$ choose an element $\rho^* \in \operatorname{Gal}(M/L^*)$ which lifts ρ . Then the conjugation Int ρ^* induces an automorphism of \mathfrak{F} which is well-defined by ρ modulo inner automorphisms by elements of \mathfrak{n} . Clearly, Int ρ^* stabilizes \mathfrak{n} and hence also $[\mathfrak{n},\mathfrak{n}]$. Thus, $\rho \to \operatorname{Int} \rho^*$ induces a homomorphism

$$\psi \colon G_{\mathbf{0}^*} \longrightarrow \mathcal{V}.$$

Note that the natural action of G_{Q*} on g, or on n* factors through ψ .

The composite $\varepsilon \circ \psi \colon G_{Q^*} \to \mathscr{A}^\times$ is the anti 1-cocycle constructed and studied in [10]. (In [10], $\varepsilon \circ \psi$ is denoted as ψ . It is constructed without making explicit reference to the group Ψ ; cf. also [9] § II for the case $\mathfrak{n} = [\mathfrak{F}, \mathfrak{F}]$.) The composite $\mu \circ \psi \colon G_{Q^*} \to \operatorname{Aut} \mathfrak{n}^*$ is the natural action of G_{Q^*} on $\mathfrak{n}^* = \varprojlim T_t$ (Jac X_n^*), and by Theorems 4, 5, this can be explicitly presented as the "twisted right multiplication" of

$$\varepsilon(\psi(\rho)) \in \mathscr{A}^{\times}$$
 on $\mathfrak{n}^* \simeq \mathscr{A}(x-1) \cap \mathscr{A}(y-1)$ $(\rho \in G_{Q^*})$.

(3-7)

- (P8) What is the kernel Ker $\psi = \text{Ker } (\varepsilon \circ \psi)$?
- (P9) What is the image of $\varepsilon \circ \psi$ in \mathscr{A}^{\times} ?

In the Fermat case, both questions are closely related to the Vandiver conjecture, as shown by Coleman [4].

(3-8) Since Φ and Ψ are, roughly speaking, outer automorphism groups of \mathfrak{F} and of $\mathfrak{F}^* = \mathfrak{F}/[\mathfrak{n}, \mathfrak{n}]$ respectively, one wants to connect them by a "canonical homomorphism" $\gamma \colon \Phi \to \Psi$ and study its image and the kernel. This would help obtain some information on the representation φ from that on ψ . But strictly speaking, there is no canonical homomorphism $\gamma \colon \Phi \to \Psi$ unless one replaces $\operatorname{Int}(\mathfrak{F}^*; \mathfrak{n}^*)$ by $\operatorname{Int} \mathfrak{F}^*$ and makes a further assumption on \mathfrak{n} that \mathfrak{n} is Φ -invariant. Here, the latter assumption on \mathfrak{n} would not be so harmful, because we are mostly interested in

the case where n is a characteristic subgroup of \mathfrak{F} . But the former replacement would define a group Ψ' for which an analogue of Theorem 3 would be more complicated (at least in general). So, here, we simply restrict our attention to some suitable subgroups of Φ and Ψ , imposing the following assumption on n;

$$\langle x \rangle \cap \langle y \rangle \cap \langle z \rangle = (1)$$
 on g.

This is satisfied if $\mathfrak g$ has trivial center, or if $\mathfrak F$ is pro-l and $\mathfrak n \subset [\mathfrak F, \mathfrak F]$. Let $\Psi_1 \subset \Psi$ be as given in (3-2), and put

$$\Phi_{1} = \Phi_{1,n} = \begin{cases}
\sigma x \approx x \\
\sigma \in \text{Aut } \mathfrak{F}; \sigma y \approx y \\
\sigma z \approx z
\end{cases} / \text{Int } (\mathfrak{F}; n),$$

where \approx denotes conjugacy by element of $\mathfrak n$, and Int $(\mathfrak F;\mathfrak n)$ denotes the group of inner automorphisms of $\mathfrak F$ of the form Int n $(n\in\mathfrak n)$. Under the above assumption on $\mathfrak n$, the canonical homomorphisms $\Phi_1 \to \operatorname{Out} \mathfrak F, \Psi_1 \to \operatorname{Out} \mathfrak F^*$ are injective; hence Φ_1 can also be considered as a subgroup of Φ . There is an obvious homomorphism

$$\gamma_1: \Phi_1 \longrightarrow \Psi_1,$$

and we have $\gamma_1 \circ \varphi(\rho) = \psi(\rho)$ for all $\rho \in G_{Q^*}$ such that $\varphi(\rho) \in \Phi_1$.

(P 10) What is the image of
$$\varepsilon \circ \gamma_1$$
 in $[1 + \mathcal{R}(x-1) \cap \mathcal{R}(y-1)]^{\times}$?

In the Fermat case, this is answered in [9] III (Theorem 8). Namely, the image of $\varepsilon \circ \gamma_1$ in this case is precisely the "odd part" of $[1 + \Re(x-1) \cap \Re(y-1)] = 1 + uvw\mathscr{A}$.

(3-9) Now put $\Theta = \operatorname{Ker} \gamma_1$ and $G_{k_{\psi}} = \operatorname{Ker} \psi$. It is easy to see that $\varphi(G_{k_{\psi}}) \subset \Phi_1$, and then that $\varphi(G_{k_{\psi}}) \subset \Theta$;

This defines a representation θ : $G_{k_{\psi}} \rightarrow \Theta$, which factors through a faithful representation $Gal(k_{\varphi}k_{\psi}/k_{\psi}) \rightarrow \Theta$. The question whether φ is richer than ψ , for a given \mathfrak{n} , is equivalent to asking whether θ is non-trivial. Interesting concrete problems arise if one specifies \mathfrak{n} and looks at the filtrations of these groups and morphisms compatible to the filtration of Φ defined in Section 2. But we shall restrict our attention to the Fermat case.

(3-10) Now, the Fermat case. In this case, $\Phi_1 = \Phi(1)$, and Φ_1 and Ψ_1 coincide with the groups treated in [9] under the same symbols. Obviously, $Q(\mu_{l^{\infty}}) \subset k_{\psi} \subset k_{\varphi}$. Moreover, k_{ψ} is abelian over $Q(\mu_{l^{\infty}})$ [9]. Define a filtration $\{\Psi_1(m)\}_{m\geqslant 1}$ of Ψ_1 using the descending central series $\{\mathfrak{F}^*(m)\}_{m\geqslant 1}$ of $\mathfrak{F}^*=\mathfrak{F}/[\mathfrak{I},\mathfrak{n}]=\mathfrak{F}/[\mathfrak{F}(2),\mathfrak{F}(2)]$. Namely, $\Psi(m)$ is the kernel of the canonical homomorphism $\Psi_1 \to \operatorname{Out}(\mathfrak{F}^*/\mathfrak{F}^*(m+1))$. Correspondingly, we define another filtration of G_Q , by $G_{Q[m]}=\psi^{-1}(\Psi_1(m))$. Then $Q[1]=Q(\mu_{l^{\infty}})$, and $\{Q[m]\}_{m\geqslant 1}$ satisfies all properties (a) \sim (d) for Q(m). (Besides this, $Q[m]/Q(\mu_{l^{\infty}})$ is abelian, and $\bigcup Q[m]=k_{\psi}$.) It is clear that $Q[m] \subset Q(m)$ for each $m\geqslant 1$.

Theorem 7. The Galois group Gal(Q[m]/Q[m+1]) $(m \ge 1)$ is a free Z_1 -module of rank $c'_m = 1$ $(m:odd \ge 3)$, = 0 (otherwise).

This is a direct consequence of the combination of [11] Theorem B (first proved by Coleman [4]) and [8] Theorem B (by C. Soulé). From all these follow that $k_{\varphi} = k_{\psi}$ if and only if $\mathbf{Q}[m] = \mathbf{Q}(m)$ for all $m \geqslant 1$, or equivalently, rank $\operatorname{gr}^m G_{\mathbf{Q}} = c'_m$ for all $m \geqslant 1$.

Corollary. θ in the Fermat case is non-trivial if and only if there exists some $m \ge 7$ with rank $\operatorname{gr}^m G_{\mathbf{0}} > c'_m$.

(Incidentally, Proposition 1 (§ 2) follows by using the above filtration of Ψ_1 . In fact, $\operatorname{Gal}(Q[m]/Q[m+1])$ can be regarded as a submodule of $\operatorname{gr}^m \Psi_1$, and it lies in $\operatorname{gr}^m S\Psi_1^-$, where-specifies the "odd part" [9] III, and S specifies the \mathfrak{S}_3 -symmetric part (analogous to $S\Phi$). The number $b_m = [(m+3)/6]$ is the rank of $\operatorname{gr}^m S\Psi_1^-$, and this gives Proposition 1.)

At present, it is only for l=2 that we know the non-triviality of θ ;

Proposition 3. When l=2, θ is non-trivial.

To prove the non-triviality of θ , it suffices to show that $k_{\varphi}/Q(\mu_{l^{\infty}})$ is non-abelian. When l=2, this last statement can be checked by using the following two special circumstances.

- (i) When l=2, the modular curves of 2-power levels constitute a pro-2 tower of coverings of P^1 unramified outside 0, 1, ∞ (because P^1 can be regarded as the modular curve of level 2 with cusps at 0, 1, ∞).
- (ii) There exists an elliptic curve over Q with conductor 2^7 , which is a Weil curve and has no CM [15].*)

For l>3, one may try to use Heisenberg curves instead, but at present, the author does not know whether their Jacobians do not really have enough CM.

^{*&#}x27; The author is grateful to M. Asada for pointing out this fact together with the reference.

References

- [1] Anderson, G., The hyperadelic gamma function, this volume,
- [2] Asada, M. and Kaneko, M., On the automorphism group of some pro-l fundamental groups, this volume,
- [3] Belyi G. V., On Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk. USSR, 43 (1979) 2; (Math. USSR Izv., 14 (1980) 2, 247-256).
- [4] Coleman, R, Algebra Colloquium lecture at Univ. of Tokyo, Oct. 22, 1985 (still unpublished).
- [5] Deligne, P., Letters to A. Grothendieck; Nov. 19 (1982), and an earlier one, undated.
- [6] —, Letters to S. Bloch; Feb. 2, March 14 (1984).
- [7] Grothendieck, A., Esquisse d'une programme, mimeographed note (1984).
- [8] Ichimura, H. and Sakaguchi, K., The non-vanishing of a certain Kummer character χ_m (after C. Soulé) and some related topics, this volume,
- [9] Ihara, Y., Profinite braid groups, Galois representations and complex multiplications, Ann. of Math., 123 (1986), 43-106.
- [10] —, On Galois representations arising from towers of covering of $P^1 \setminus \{0, 1, \infty\}$; Invent Math., **86** (1986), 427–459.
- [11] Ihara, Y., Kaneko, M. and Yukinari, A., On some properties of the universal power series for Jacobi sums, this volume
- [12] Kaneko, M., On conjugacy classes of the pro-l braid group of degree 2; Proc. Japan Acad., **62**A (1986), 274–277.
- [13] Koch, H., Galoissche Theorie der p-Erweiterungen, Springer (1970).
- [14] Kohno, T. and Oda, T., The lower central series of the pure braid group of an algebraic curve, this volume
- [15] Ogg, A. P., Abelian curves of 2-power conductor, Proc. Camb. Phil. Soc., **62** (1966), 143–148.

Department of Mathematics Faculty of Science University of Tokyo Hongo 7, Tokyo 113, Japan