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Introduction 

On the Automorphism Group of Some 
Pro-l Fundamental Groups 

Mamoru Asada and Masanobu Kaneko 

Let l be a fixed prime number and g;?:2 be an integer. Let G be the 
pro-/ completion of the fundamental group of a compact Riemann surface 
of genus g, i.e. G is a pro-/ group generated by 2g elements X 1, • • ·, X2g 

with one defining relation; 

[X1, Xg+1UX2, Xg+2]• • • • •[Xg, X2g]= 1 

G=<x1, Xz, • • ·, X2gl[x1, Xg+1]• • • • •[Xg, X2g]=l)pro-!• 

([,] denotes the commutator; [x, y]=xyx· 1y- 1.) Let f g denote the group 
of continuous automorphism of G and I' g denote the outer automorphism 
group of G; I' g=I' g/Int G, Int G being the inner automorphism group of 
G. (Note that every continuous automorphism of G is bi-continuous, as 
G is compact.) Our aim in this paper is to study these groups f g and I' g, 

as a generalization of Ihara [11] Chapter I and as a preliminary to the 
study of the Galois representations. We shall give filtrations off g and 
r g and prove a result on conjugacy classes of r g• 

Now we shall state our results. Let Gab denote the abelianized group 
of G, so Gab is a free Z 1-module of rank 2g with a basis x1, • • ·, Xzg· (Z 1 

denotes the ring of /-adic integers, and xi denotes the class of xi (1 <i< 
2g).) The group f g acts on Gab naturally and, with respect to the basis 
{.'\\}i,;;i,;;zg, we get a representation 

i: I'g~AutGab'.'.:::'.GL(2g; Z1). 

The group f g also acts naturally on the cohomology group Hi(G; Z1) 

(i= 1, 2). (The action of G on Z 1 is trivial.) Now the cup product 

defines a non-degenerate alternating form, and the action of f g on 
H'(G; Z1) (i= I, 2) are compatible with this cup product. It is well known 
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that, from this, the image of 2 is contained in the group GSp (2g; Z 1). In 
Section 1 we shall prove the following 

Proposition 1. The image of 2 coincides with GSp (2g; Z 1). 

This may be a well-known fact. But the authors could not find a 
suitable reference. We shall give a proof of Proposition 1 for the con­
venience of the readers. 

Let f g(I) denote the kernel of 1, so that we have an exact sequence 

In Section 2 we shall give a filtration {f g(m)}m;;,i off g· This is naturally 
induced by the descending central series of the group G; 

G=G(l)=:iG(2)=:i · · · =:iG(m)=:iG(m+l):J · · ·, 

G(m+ l)=[G, G(m)] (m> 1). We shall show that the filtration {f g(m)}m;;,i 
is central, i.e. [f g(m), f g(n)]cf g(m+n) (m, n>l), and, using a result of 
Labute [L], determine the structure of each f g(m)/f g(m+l) (m>l) as 
an abelian group (Theorem 1 and its Corollary). The filtration {f g(m)}m;;,i 
off g naturally induces a filtration {I' g(m)}m;;,i of I' g· In Section 3, we 
shall study this filtration and obtain a result similar to that for f g (Theo­
rem 2 and its Corollary). To study the filtration {I' g(m)}m;;,i, the crucial 
point is the following 

Proposition A. Form> 1, Cent(G/G(m+ 1)), the center of G/G(m+ 1), 
coincides with G(m)/G(m+ 1). 

The proof of Proposition A will be given in Section 4. The group f g 

and I' g act on themselves as inner automorphisms. In Section 5, we shall 
study these actions on the filtrations {f g(m)}m;;,i and {I' g(m)}m;;,i· 

The homomorphism 2 induces naturally a homomorphism 

A: I' g------+GSp (2g; Z 1). 

Concerning this homomorphism, U. Jannsen and Y. Ihara asked whether 
a conjugacy class in I' g can be characterized alone by its "abelian data", 
i.e. its image under A (up to GSp (2g; Z 1)-conjugacy). In Section 6, we 
shall answer this question in some special case, namely, we shall prove the 
following 

Theorem 3. Suppose that g > 3. Let A= (a;1) be an element of 
GSp (2g; Z1) satisfying the following conditions: 
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and C be the GSp (2g; Z 1)-conjugacy class of A. Then, .:1-1(C) contains 
more than one I' g-conjugacy class. 

Our motivation of the present work is as follows. This arises from 
the investigation of the Galois representations by the towers of pro-! cover­
ings of an algebraic curve. The study ( or proposal) of such Galois repre­
sentations appeared in Belyi [BJ, Deligne [DJ, Grothendieck [G], and 
Ihara [I,, I2]. (See also Kohno-Oda [KO] in the present volume.) Let k be 
a perfect field whose characteristic is not l and K be an algebraic function 
field of one variable over k with genus g. Let S={P 1, ···,Pr} be a set of 
distinct k-rational prime divisors of K (r :2::0). (If r=O, S means an empty 
set.) Let M be the maximum pro-! extension of Kk which is unramified 
outside the prime divisors in S. Thus, we have an exact sequence 

1-+Gal (M/ Kk)-+Gal (M/ K)-+Gal (Kk/ K)-+ I. 

I ( canon. 

Gal(k/k) 

(Gal ( /) denotes the Galois group of the extension in the parenthesis.) 
This gives a representation of the group Gal (k/k); 

cp: Gal (k/k)-+Aut G/Int G, 

where G=Gal(M/Kk). In the case of k=Q, K=Q (t) (t: a variable over 
Q) and r= 3, the above representation has been studied in [I1, I2]. In this 
case, the group G is isomorphic to the free pro-/ group F of rank 2, and 
the image of cp is contained in the "pro-! braid group" of degree 2 which 
is a subgroup of Aut F/Int F. In the case that the genus of the function 
field K is greater than or equal to 2 and Sis an empty set, Gal (M / Kk) is 
isomorphic to the group G defined by(*). But our knowledge about the 
groups f g and I' g is not so much. So, it seems that they are worth study­
ing as preliminaries for the investigations on the Galois representation cp. 

The composite of cp with .:1 gives an /-adic linear representation. This 
is nothing but the representation which arises from the action of Gal (k/k) 
on the Tate module Tz(X) of the Jacobian variety X/k of the complete 
non-singular model of K. Therefore, Theorem 3 suggests that the Galois 
representation cp is not determined only by the representation .:1 o cp. We 
can show that cp is actually not determined by .:1 o cp by giving expli::it 
examples. We shall give them in the forthcoming paper. 
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Our results as well as methods are completely parallel to those of [11] 

Chapter I. For the pro-/ braid group of arbitrary degree, see Oda [O] 
and Kaneko [K]. In [K], the case that g~ 1 and r= 1 is treated and 
similar group theoretical results are obtained. 

The authors wish to express their sincere gratitude to Professors Y. 
Ihara and Takayuki Oda for many valuable suggestions. 

§ 1. Action off g on Gab 

Let l be a fixed prime number and g~2 be an integer. Let G be the 
pro-/ completion of the fundamental group of a compact Riemann surface 
of genus g, i.e. G is a pro-/ group generated by 2g elements x1, ••• , x2g 
with one defining relation 

( 1 ) [x1, Xg+1][x2, Xg+2]• · · · •[xg, X2g]= 1, 

G=<x1, X2, • • ·, X2gl[x1, Xg+1l[x2, Xg+2l· • • • •[Xg, X2g]=l)pro-!· 

Let f g=Aut G be the automorphism group of G and I' g=Aut G/Int G 
be the outer automorphism group of G. (Int G denotes the inner auto­
morphism group of G.) Since G is a finitely generated pro-/ group, f g is 
isomorphic to the projective limit lim Aut (G/N), where N runs over all 
open characteristic subgroups of G. Hence, f g is a profinite group (cf. [11] 

Ch. I). 
Let Gab=G/[G, G] denote the abelianized group of G, so Gab is a free 

Z 1-module of rank 2g with a basis .x\, · · ·, x2g. (xi denotes the class of xi 
(1 <i~2g).) Then, f g acts on Gab naturally and, with respect to the basis 
{xi}i:;;i.,;2g, we get a continuous homomorphism 

1: fg~AutGab:::::GL(2g; Z1), 

namely, for a E I'g, 1(a)=(ai 1) E GL(2g; Z 1) is determined by 

(1 <i~2g). 

The group f g also acts naturally on the cohomology group Hi( G; Z 1) 

(i= 1, 2). (The action of G on Z 1 is trivial.) Now the cup product 

defines a non-degenerate alternating form, and the actions of f g on 
Hi(G; Z 1) (i=l, 2) are compatible with this cup product. From this, it 
follows that the image of l is contained in the group 

GSp (2g; Z 1)={A E GL(2g; Z 1) I tAJgA=µ(A)Jg, µ(A) E Zt}, 
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where Jg=(t-ig). Then, we have the following 

Proposition 1. The image of l coincides with GSp (2g; Z1). 

We shall give a proof of Proposition 1, which may be well known, 
for the convenience of the readers. 

Proof For A E GSp (2g; Z1), we construct an element <1 e f g with 
l(<1)=A by the method of "successive approximation". Let at denote the 
i-th column vector of A (1 <i<2g). For simplicity, x"' denotes x~".xg,", 
· ·. -x~;K', where a,=t(a!i, a2,, • • ·, a2g,) e Zf8. Let 

G=G(l):::)G(2):::i · · · :::iG(m):::iG(m+l):::) ... 

be the descending central series of G, i.e. G(m+ l)=[G, G(m)] (m> 1). We 
need the following 

Lemma 1. Let m > 1 and A= (a,) 1,,;,,,; 2g E GSp (2g; Z1). Suppose the 
elements Simi, ... , s~;-> e G(2) satisfy a congruence 

Then, there exist s1, • • • , s2g e G(2) such that 

( 3) (l<i<2g) 

The proof of Lemma 1 will be given later. 
Now, by the defining relation of G and the assumption on A, it is 

easily verified that 

So,(2)mis satisfied for m=l and sim>=l (l<i<2g). Thus, there exist 
s1, · · ·, s2g e G(2) satisfying the condition (3). We define <1 e f g by x; = 
s,x"' (1 <i<2g). As the following argument shows, this is well-defined. 
Let F be the free pro-/ group of rank 2g generated by x1, •• ·, x2g and R 
be the closed normal subgroup of F which is normally generated by [xi, 
x 8 +1J• • • • •[xg, X2g], so that G=F/R. Let ii be the homomorphism F-G 
defined by xf =s,x"' (1 <i<2g). Since s,x"' (1 <i<2g) generate the group 
G/G(2), s,x"' (1 <i<2g) generate the group G (Burnside's theorem), hence 
ii is surjective. Obviously, RcKerii, so ii induces a surjective homomor­
phism a: G-G. Since G is a finitely generated pro-/ group, <1 is bijective, 
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i.e. a is an automorphism.<*) As ~(a)=A, this completes the proof of 
Proposition 1. 

Proof of Lemma I. The proof is similar to that of Lemma 1 of [l1]. 
It suffices to prove that there exist s;m+ll=s;mlmodG(m+l) (l<i<2g) 
satisfying the "next" higher congruence (2)m+i· Put s;m+ll=Sis;ml with 
Si E G(m+ 1) (I ~)<2g). We shall show that we can choose Si suitably 
so that s;m+ll (1 ~)<lg) satisfy (2)m+i· We use the following general 
identity 

(4) [ab, cd]=a[b, c]a- 1[a, c]ca[b, d]a- 1[a, d]c- 1 

and calculate (2)m+i· For I <i<2g, put a=Si, b=s;mlxa', c=Sg+i, d= 
sJ/:lixag+'. Then, 

[a, c]=[Si, Sg+i], 

[b, d]=[s;m)Xa', sf';:l1Xag+i], 

[a, d]=[Si, sf';:lixag+i] 

=[Si, sr+lJs1",'.li[Si, xag+']sfr;:t'. 

Here, [s;mi, Sg+i], [Si, Sg+i], [Si, s1",'.~] belong to [G(2), G(m+ l)]cG(m+3) 
and [xa', Sg+i], [Si, xag+i] E [G, G(m+ l)]=G(m+2) are central mod G(m 
+ 3). Hence, we obtain 

[Sis;mlxa', Sg+is1",'.1ixag+i] 

= [xa', S g+i][Si, xag+i]S g+iSi[s;m1 xa', si",'.~xag+'](S g+is,)- 1 

modG(m+3). 

(The last congruence follows from the fact that [Sg+iSi, [s;mlxa', sJ';';xag+i]] 
belongs to [G(m+l), G(2)]cG(m-l-3).) Put 

Then, we get 

[S1Sim)Xa1 , Sg+1s1"::)1Xag+1J· ... •[Sgstlx°g, S2gs~;)xa2g] 
g 

=P [1 [xa', Sg+i][Si, xag+i] mod G(m+3). 
i=l 

*> The proof of this fact is the same way as Mal'cev's theorem that "a finitely 
generated residually finite group cannot be isomorphic with one of its proper quoti­
ent groups" (cf. e.g. [MKS] p. 415). 
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Since xa' (I<i<2g) generate the group gr' G=G/G(2), 

g g 
grm+2 G = ~ [xa' mod G(2), grm+1G] + ~ [grm+i G, xag+1 mod G(2)] 

i=l i=l 

holds. Here, grk G=G(k)/G(k+l) (k>l) and the bracket operation [, ]: 
gr1 GXgrm+i G-+grm+z G is the one naturally induced by the commutator. 
Therefore, we can choose S1, • • ·, S2g such that the congruence 

mod G(m+3) 

holds. Then, s;m+Il=Sis;ml (1 <i~2g) satisfy the congruence (2)m+i, and 
the proof of Lemma I is completed. 

Remark. The surjectivity of 2 is also proved by using the Galois 
representation and a classical result of Nielsen. (This is suggested to the 
authors by Y. !hara and Takayuki Oda.) 

First, by a result of Nielsen (cf. e.g. [MKS] Section 3.7 Th. N 13.), 
Im 2 contains Sp (2g; Z), the symplectic group of degree 2g over z. Since 
Sp (2g; Z) is everywhere dense in Sp (2g; Zi) and f g is compact, it follows 
that Im 2 :J Sp (2g; Zi), Therefore, to prove the surjectivity of 2, it suffices 
to show that 

µo2: tg~zt 
is surjective. Here,µ: GSp (2g; Z 1)~Zt is the "multiplicator". Now, 
let K be an algebraic function field of one variable over Q with genus g 
and M be the maximum unramified pro-/ extension of KQ. Thus, we 
have an exact sequence 

l~Gal(M/KQ)~Gal(M/K)~Gal(KQ/K)~l. 

II le canon. 

G Gal(Q/Q) 

This gives a representation <p of the group Gal (Q/Q); 

cp: Gal (Q/Q)~Aut G/Int G=I' g· 

The homomorphism 2 naturally induces a homomorphism 

A: I' g~GSp (2g; Z 1). 

Then, A o <p: Gal (Q/ Q)~GSp (2g; Z 1) is the /-adic linear representation 
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arising from the action of Gal (Q/ Q) on the Tate module Ti(X) of the 
Jacobian variety X/Q of the complete non-singular model of K. Thus, 

µ o). ocp: Gal (Q/Q)--+Zt 

is the /-cyclotomic character, which is surjective. Therefore, µ o l is 
surjective. 

§ 2. Filtration of f' g 

In this section, we shall study a filtration of the group f' g· 

Let {G(m)}m;;,i be the descending central series of G. For each non­
negative integer m, put 

I'g(m)={a e I'g(l)\x•x- 1 e G(m+l) Vx e G}. 

Then, f' g(m) is a subgroup of f' g (in fact, normal in f' g (See Theorem 1 
(i) below)) and 

i' g=I' g(O)--::JI' g(l)--::JI' g(2)--::J ···-::JI' g(m)-:::JI' g(m+ 1)--::J · • ·. 

In general, for an element a of f' g, put 

(l<i<2g). 

As G is topologically generated by x1, • • ·, X 2g, a belongs to f' g(m) if and 
only if all sh) (1 <i<2g) belong to G(m+ 1). 

For each m> 1, let im denote the following Z 1-linear homomorphism: 

jm: (grm+1 G)2g--+grm+2 G 
g 

(si)1,:;i,:;2g~ Z: ([.x,:, sg+,:]+[s,:, Xg+iD· 
i=l 

Our result in this section is the following 

Theorem 1. (i) [f' g(m), i' g(n)]ci'g(m+n) m, n>O. 
(ii) The Z 1-module I'g(m)/I'g(m+l) is isomorphic to Kerjm, the 

kernel of im (m> 1). 

Proof (i) For any two elements a, 1: of f' g, it is easily verified 
that 

(5) si(a1:)=slfY)'sh:) 

sla- 1) = {stCa)"-1}- 1• 

Using these formulas, we can easily show that 
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(l<i<2g). 

Assume that u e i'g(m) and 1: e i'g(n), so that sh) e G(m+l) and sh) e 
G(n+ 1) (1 <i<2g). As u acts trivially on G/G(m+ 1), it is easily verified 
that u acts trivially on G(n+ 1)/G(m+n+ 1). Therefore, sh){sh)- 1}6 e 
G(m + n + 1). Similarly, st(q)'st(q)- 1 e G(m + n + 1). As [s.(u), sh)] 
belongs to [G(m+ 1), G(n+ l)]cG(m+n+2), we see that s.([u, 1:]) e G(m+ 
n+ 1) (1 <i<2g). (Note that all G(m) (m> 1) are characteristic sub­
groups of G.) Therefore, [u, 1:] e i' g(m+n). 

(ii) Let u be an element of i' g(m), so s.(a) e G(m+ 1) (1 <i<2g). 
For each m> 1, let iim be the following map; 

fim: f'g(m)--+(grm+l G)2g 

m--~(sh) mod G(m+2))1:,;;i:,;;2g· 

Since i' g(m) acts trivially on G(m+ 1)/G(m+2), by the formula (5), fi.m is 
a homomorphism. The kernel of iim is i' g(m+ 1). We first show that the 
image of iim is contained in Ker fm· By the relation (1), we get 

We use the general identity (4) and calculate (7) mod G(m+3). Put a= 
s.(u), h=xi, c=sg+lu), d=xg+i (1 <i<2g). Then, by simple calculations 
similar to those in the proof of Lemma 1, we obtain 

[s.(u)xi, sg+/a)xg+i1 

=[xi, Xg+t][xi, sg+/u)][s.(u), Xg+tl modG(m+3). 

Thus, by the relation (1), we see that (7) mod G(m+3) is equivalent to the 
following congruence: 

mod G(m+3), 

which means that the image of iim is contained in Ker J m• 
To show that the image of iim coincides with Ker J m, let s = 

(sim+ii mod G(m+ 2))1:,;;i:,;;zg be any element of Ker fm (sim+ii E G(m + 1) 
(l<i<2g)). Then, (2)m~i is satisfied for A=lzg· So, by Lemma 1, there 
exist 2g elements s1, ... , s2g e G(m + 1) satisfying the condition (3) (m 
being replaced by m+l) for A=lzg· By the same argument as in the 
proof of Proposition 1, this implies that there exists an automorphism u of 
G such that xf =sixi, i.e. sh)=si (1 <i::S:::2g). Thus, we have shown that 
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the image of fim coincides with Ker jm, and the proof of Theorem 1 is 
completed. 

By a result of Labute [L], grm G is a free Z 1-module of rank 

(µ denotes the Mobius function). Thus, we obtain 

Corollary 1. For m >I, f' g(m )/ f' g(m + 1) is a free Z 1-module of rank 
2gw(m+ I)-w(m+2). 

The following corollary will be used to prove Theorem 3 in Section 6. 

Corollary 2. Suppose g>3. Then, there exists an element p of I'g(I) 
satisfying the condition: 

{
slp) mod G(3), ss(p) mod G(3) e G(2)1G(3)/G(3) 

s1(p) mod G(3) ~ G(2)1G(3)/G(3). 

Proof Put s=(st mod G(3))1,;;t,;; 2g with s1 = [xg+8, Xg+2], s2 = [x8 +i, 
x8 +s1, S 3= [xg+2, X8 +1] and s1= 1 (4<j<2g). Then, it is easily verified that 
s belongs to Ker j 2 (Jacobi's identity). An element p off' g(I) correspond­
ing to s via h2 satisfies the above condition. 

§ 3. Filtration of I' g 

In this section, we shall study a filtration of the group I' g· 

As before, let I' g = f' 8 /Int G denote the outer automorphism group 
of G. Put I' 8 (l)=I' g(l)/Int G. As Int G acts trivially on Gab, the homo­
morphism ~ induces a homomorphism 

-<: I' 8 ~GSp (2g; Z1), 

and I' g(l)=Ker J. By Proposition 1, we have an exact sequence 

1~r g(l)~r g~GSp (2g; Zi)~l. 

We have a natural filtration induced by that off' g, namely, 

I' g(m)=I' g(m) Int G/Int G 

Then, I' g(m) is a normal subgroup of I' g and 

(m>O). 

To study this filtration, the following proposition is crucial. 
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Proposition 2. Int G n f g(m)=Int 0 G(m) (m~ 1), where 

Int 0 G(m)={a e Int G[~g e G(m) x"=gxg- 1 'lfx e G}. 

Let a be an element of Int G, so x" =gxg- 1 (x e G) with some g e G. As 
x•x- 1 = [g, x], a belongs to f g(m) if and only if [g, x] belongs to G(m + 1) 
for all x e G. Thus, Proposition 2 is equivalent to the following 

Proposition A. Form~ 1, Cent(G/G(m+ 1)), the center of G/G(m+ 1), 
coincides with G(m)/G(m+l). 

Since nm::ei G(m)={l}, we obtain 

Corollary. The center of G is trivial, so that Int G ::::'. G. 

The proof of Proposition A will be given in Section 4. 
By Proposition 2, we have 

I' g(m)::::'.I' g(m)/Int 0 G(m), 

I' g(m)/I' g(m+ l)::::'.f g(m)/f g(m+ 1) Int 0 G(m) (m~l). 

Fix an integer m> 1. Let fm: (grm+i G)2g~grm+z G be the Z 1-linear homo­
morphism defined in Section 2. Set 

Then, Hm is a Z 1-submodule of (grm+i G)2g. By Jacobi's identity and 
l::f=1 [xi, Xg+il=O (in gr2 G), it is easily verified that HmcKerfm. So, fm 
induces a Z 1-linear homomorphism 

Then, we obtain the following 

( 8) 

Theorem2. (i) [I'g(m),I'g(n)]CI'g(m+n) m,n>O. 
(ii) The Z 1-module Hm is isomorphic to grm G and 

(m~l). 

Proof (i) This is immediately obtained from Theorem 1 (i). 
(ii) By Proposition A, it follows that the mapping 

grmG~Hm 

~i---------+([~, X1], • • ·, [~, Xzg]) 

is a Z 1-linear isomorphism. 
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To show (8), let iim: f g(m)-.(grm+i G)2K be the Z,-linear homomor­
phism defined in the proof of Theorem 1 (ii). We have already shown 
that iim induces an isomorphism; 

f g(m)/f g(m+ 1):::::Kerjmc(grm+i G)2K. 

As the image of lnt 0 G(m)(cfg(m)) under iim is Hm, we have an iso­
morphism 

f g(m)/f g(m+ 1) lnt 0 G(m):::::Kerfm, 

and the proof is completed. 

By using a result of Labute (cf. Corollary 1 of Theorem 1), we obtain 

Corollary. For m> l, I' g(m)/I' g(m+ 1) is a finitely generated Z 1-

module and the rank of its free part is 2gm(m+l)-m(m+2)-m(m). 

The authors do not know whether I' g(m)/I' g(m+ 1) is torsion-free 
or not. 

§ 4. Proof of Proposition A 

To prove Proposition A, we need a result of Labute on the structure 
of the graded Lie algebra associated with the group with one defining 
relation. We shall briefly recall it. 

Fix an integer g > 2. Let F be the free pro-/ group of rank 2g gener­
ated by Xi, X2, • · · , X2g and 

be the descending central series of F. Then, the bracket operation [ , ] 
naturally defines a Lie algebra structure on gr F=EBm;;:i grm F (grm F= 
F(m)/F(m+ 1)), and gr F is a free Lie algebra over Z 1 . generated by 
x 1 mod F(2), · · ·, X2g mod F(2) e gr1 F (Witt [W]). For simplicity, 
Xi mod F(2) is denoted by Xi (l < i < 2g ), if there is no confusion. Let R 
be the closed normal subgroup of F which is normally generated by [xi, 
Xg+iJ• ... •[xg, x 2g], so that G=F/R. Let~ be the ideal of gr F generated 
by .L::f=1 [xi, Xg+t1 e gr1 F. Then, the canonical projection F-.G induces a 
surjective Lie algebra homomorphism 11:: gr F-.gr G. 

Theorem L (Labute [L]). The kernel of 11: coincides with ~, so that 
(gr F)/~-==.grG. 

The proof of Proposition A reduces to the following 
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Proposition A'. Let e be an element of grk F for some k > 1. Assume 
that 

(9) (1~)<2g). 

Then, e E &. 

In fact, let g be an element of G such that g mod G(m + 1) belongs to 
Cent (G/G(m+ 1)). Suppose that g e G(k) for some k<m-1. Put ~= 
gmod G(k+l) e grk G. By the assumption, [xi, g] e G(m+l) (1 <i<2g), 
so that [xi, ~]=0 in gr G. By Theorem L, a representative~ of~ in gr F 
satisfies [xi, e] E & (1 <i<2g). By Proposition A', this implies e E &, 
hence ~ = 0, i.e. g e G(k + 1 ). Repeating this argument if necessary, we 
conclude that g e G(m). Hence, Cent (G/G(m + 1)) C G(m)/G(m + 1). 
Obviously Cent(G/G(m+l)):JG(m)/G(m+l), as G(m+l)=[G, G(m)]. 

We shall prove Proposition A' in five steps. We use the terminologies 
in [MKS]. 

Step 1. Let d be the non-commutative polynomial ring of 2g vari­
ables X1, X 2, • • • , X 2g over Z 1 ; 

By Lemma 5.5 and Theorem 5.8 in [MKS], there exists an injective Lie 
algebra homomorphism cp: gr F---+d, i.e. 

cp(ae) = acp(e) a E Zi 

cp(~ +1J)=cp(e) +cp(7j) 

cp([e, 7JD = cp(e)cp(7J)-cp(7j)cp(e) ~' 7J E gr F 

satisfying cp(xi)=Xi (I <i<2g). In the following, we identify gr F with 
its image cp(gr F)cd. 

Step 2. For n> I, we define a subset DnJ of d and an element Zn of 
DnJ inductively as follows. Put D 1l={x 1, x2, • • ·, X2g} and z1=Xzg· For 
n>2, suppose that Dn-tJ and zn-t are defined. Then, DnJ is "the set of the 
elements arising by elimination of Zn-1 from Dn-l)", i.e. if Dn-l)={Zn-1' 
Yi, y 2, • • • }, then, 

Dnl={y~k)lk=0, 1,2, · · ·, i!=l,2, · · ·}, 

where y~0'=Y. and y?+1>=[y~k>, zn_1] (k>0, it> 1). If 2<n<g, we put 
Zn=Xzg-(n-1), and if n>g+ 1, Zn is any element of Dn> whose degree is the 
minimum in Dnl. 
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For n> 1, let Sn denote the associative subalgebra generated by the 
elements of DnJ and 1. By Lemma 5.6 in [MKS], the elements of Dnl and 
1 are free generators of Sn. 

Step 3. Let I; be an element of gr F whose degree is at least 2. Then, 
/; is a Lie element in Dg+ 1>, i.e. /; is contained in the free Lie algebra 
generated by the elements of Dg+IJ in Sg+i· In fact, by Lemma 5.6 and 
Lemma 5.7 in [MKS], an element of gr F which does not contain a term 
of the form ax 2g (a e Z 1) is a Lie element in D 2'. In particular, /; is a Lie 
element in D 2'. By the same lemmas, a Lie element in D 2' which does 
not contain a term of the form ax 2g (a e Z1) is a Lie element in D 8'. In 
particular,/; is a Lie element in D 3'. Repeating this argument, we obtain 
the claim. 

Step 4. Let /; be an element of gr F satisfying (9). Put Y = I:f =1 [xi, 
Xg+il· We shall show that /; belongs to (Y), the two-sided ideal of Sg+t 

generated by Y. First, we see that /; = 0 or the degree of /; is at least 2. 
In fact, assume that the degree of/; is at most 1, so /; is expressed as 

By the assumption we have 
2g 

[x1, I;]= I; ai[x1, xi] e ~-
i=2 

As [xi, x 1] mod G(3) (1 <i<j<2g, (i,j)-:f.=(g, 2g)) is a Zcbasis of gr2 G, it 
follows that at=0 (2<i<2g). Then, we have 

[x2, /;]=[x 2, a1X1]=aJx2, X1] e ~­

Thus, a 1 =0, hence /;=0. 
If /;=0, obviously/; e (Y). Assume that the degree of/; is at least 2. 

Then, by the claim in Step 3, /; e S8 +i· By Step 2, the elements of f<g+ 1> 

=(D 8+1'\{[x 8, x 28]}) U {Y} and I are free generators of S8+i· Therefore, 
/; can be expressed as the following form; 

w ~ (Y), w1 e (Y). 

As [x I, !;] e ~c(Y), x I!;-!;x 1 e (Y), hence x 1w--wx 1=0. Since x I is a 
free generator of S8 + 1, we see that w is a polynomial of x 1 (See e.g. [MKS] 
Problem 5.6-5). Similarly, we see that w is a polynomial of x2• Thus, w 
must be 0 and we have shown that/; e (Y). 

Step 5. We shall show that/; e ~- By Step 3, /; is a Lie element in 
Dg+ll, As [xg, X2g]= Y- I:r::-f [xi, Xg+tl and [X1, Xg+11, .. ·, [xg-1, X2g-1] 
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e Dg+ii, ~ is a Lie element in fcg+ii, i.e. ~ is contained in the free Lie 
algebra~ generated by the elements of fcg+ 1>. Therefore, ~ can be ex­
pressed uniquely as follows; 

'T), 'T/' E ~' 

where 'T/ belongs to the ideal of ~ generated by Y, but r/ does not. Obvi­
ously 'T/ e (Y), and by Step 4, ~ e (Y). Thus, as an element of Sg+t, 'T/' =0. 
By the Poincare-Birkhoff-Witt theorem, this implies that 'T/' =0. Therefore, 
~ belongs to the ideal of ~ generated by Y, hence ~ e ~-

§ 5. Actions of f g and I' g on the filtrations 

The group f g and I' g act on themselves as inner automorphisms. In 
this section, we shall study these actions. First, we treat the action of f g· 

By Theorem 1 (ii), for each m> 1, we have an isomorphism 

grm t g =I' g(m)/ t g(m+ 1)::::: Ker lm c(grm+I G)2g 

-r: mod f g(m+ l)~(slr) mod G(m+2)) 1,;;t,;; 2g-

We shall identify these two modules. 
Let a be an element off g and Int (a) denote the inner automorphism 

of I'g induced by a; Int(a)(-r:)=<11:a-1 (-r: e I'g). By Theorem 1 (i), Int(a) 
preserves the filtration {f g(m)}m~,-

Proposition 3. For each m> I, the action of Int (a) on grm f g is de­
scribed as 

(s.(aw- 1)mod G(m+2)) 1,;;t,;; 2g=(s.{7.-)mod G(m+2))r;;,;; 2g·i(a) -r: e f g(m), 

where the action off g on (grm+t G)2K is the one induced naturally from that 
of a on G and the action of GSp (2g; Z1) on (grm+t G)2K is right multiplica­
tion of matrix. 

Proof For simplicity, we employ the following abbreviations. For 
a=t(a 1, •• ·, a2g) e Z~K, x" denotes xf1 • • • .xg,;ii-as in the proof of Propo­
sition 1. A column vector i(o, · · · , 0, 1, 0, . · . , 0) e z~g is denoted by et 

i 

(1 <i~2g). For a e f g, the i-th column vector of i(a) e GSp (2g; Z1) is 
denoted by ..<.(a) (1 <i<2g). 

Now, we shall calculate s.(aw- 1) mod G(m+2) (1 <i<2g). Fix an 
integer i. By using formulas (5), we can easily show that 

(10) 

As 

(l<i<2g). 
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there exists an element u; of G(2) such that 

As sh)=xrxi"\ by the formula (10), we have 

Since 1: acts trivially on G(2)/G(m+2), U1,=Ut mod G(m+2). Furthermore, 
for any r e Z 1, 

(xrt=(xIY 

=(sh)x;)' 

=si<1:Yxr modG(m+2), 

as sh) e G(m+ 1) is central mod G(m+2). Therefore, we have 

modG(m+2). 

(We employ the additive notation, namely, the right hand side of the above 
congruence means s1(1:t 1 • • • • •s2g(1:)a•g if J;(o)=t(a 1, • • ·, a2g).) Thus, we 
have 

(s;(aw- 1) mod G(m+2))1,;:;s:2g=(sh) mod G(m+2))r~t':s:2gl(u). 

The action of I' g is described similarly. By Theorem 2 (ii), for each 
m> 1, we have an isomorphism 

grm I'g=I'g(m)/I'g(m+l) 

=I' g(m)/I' g(m+ 1) lnta G(m)-:::::.Kerfm C(grm+i G)2K/Hm 

1: mod f g(m+ 1) lnta G(m)~(s;(1:) mod G(m+2)) 1,;:wg mod Hm. 

We shall identify these two modules. 
Let a be an element of I' g and Int (a) denote the inner automorphism 

of I'g induced by a; Int(a)(t)=lfta- 1 (t e I'g). By Theorem 2 (i), it 
follows that Int (a) preserves the filtration {I' g(m)}m;;,1, and by Proposition 
3, we obtain the following 

Proposition 4. For each m> I, the action of Int (lf) on grm I' g is de­
scribed as 

(s;(uw- 1) mod G(m+2))1,;:i,;:2g 

=(sh) mod G(m+2))r~t's:2gl(u) modHm 1: E I'g(m), 
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where <1 is a representative of a in f' g· 

Remark. It is easily verified that the action of" e f' g on gr"' G(m> 1) 
is completely determined by its action on gr1 G, i.e. by i(a). Hence, the 
action of Int (a) (ii e I' g) on gr"' I' g (m> 1) is completely determined by 
l(a). In particular, if l(a)=al 2g (a e Zt), then, 

(shw- 1) mod G(m+2))i,;;;,;; 2g 

=a"'(sh-) mod G(m+2)) 1,-;i,;2g mod Hm TE I'g(m). 

Corollary. Let a be an element of I' g such that l(a)=al 2g (a E Zr) 
and a is not a root of unity. Then, the centralizer ofa in I'g(l) is {1}. 

Proof Let -r be an element of the centralizer of a in I' g(l). Suppose 
that t* 1. Then, there exists an integer m> 1 such that t e I' g(m) and 
t ~ I' g(m+ 1). By the above remark, we have 

(a"'- l)(sh) mod G(m+2))1:s;£,;2g 

"(resp. -r) being a representative of a (resp. t) in I' g(l) (resp. I' g(m)). This 
is a contradiction, so t = 1. 

§ 6. Conjugacy classes of I' g 

In this section we shall prove the following 

Theorem 3. Suppose that g > 3. Let A= (at,) be an element of 
GSp (2g; Z1) satisfying the following conditions: 

{
mod/ 

A=:=12g 
mod/ 2 

and C be the GSp (2g; Z 1)-conjugacy class of A. Then, 1- 1(C) contains 
more than one I' g-conjugacy class. 

Proof We need the following lemma whose proof will be given later. 

Lemma 2. Let A be as in Theorem 3. Then, there exists an element 
q e j- 1(A) cf' g satisfying the following conditions: 

(11) x:; = cix"i, Ci e G(2) 

Ci mod G(3) e G(2)1G(3)/G(3) (1-:;)<2g). 

Here, ai denotes the i-th column vector of A. 
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Now, let a be an element off g satisfying the condition in Lemma 2. 
We shall show that there exists an element of .i!-1(A) which is not I' g­

conjugate to a mod Int G. Equivalently, we shall show that there exists an 
element p of f g(l) satisfying the following conditions: 

(C) p Int (t)=i= [a, r] 

for any t e G anJ any r E f g such that [a, r] E f g(I). Let p be an ele­
ment off g(I) satisfying the condition in Corollary 2 of Theorem I. We 
shall show that 

(C*) (s;(p Int (t)) mod G(3))i,;;j,;;2g 

=i=(s/[a, r]) mod 0(3))1,;;j,;;zg (in (gr2 G)2g) 

for any t E G and any r E f g such that [a, r] E f g(I), which is stronger 
than (C). We shall calculate both sides of (C*). 

Calculations of s;(p Int (t)) mod G(3) (1-:;,j<2g). First 

s;(p Int (t))-==s;(p)sj (Int (t)) 

-==s;(p)[t, xj] 

mod G(3) 

mod G(3) 

holds, as Int (t)(x;)x:;1= tx 11- 1x:;1= [t, xJ Since x 1 mod G(2) (I -:;,j-:;,2g) 
is a Zcbasis of gr1 G, there exist a 1, • • ·, a 2 g E Zz such that 

Then, it is easy to see that 

Therefore, we obtain 

(12) 

mod G(2). 

mod G(3) 

mod G(3). 

mod G(3). 

Calculations of s/[a, r]) mod G(3) (I <j-:;,2g). We use the formula 
(6). As s/a)=x 1x:;1=cjxa;x:;1 by (11) and as s/r)=x 1x:;1, we get 

s/[a, r])'" = (c1xa;x:;1)'x1x;1{x /x 1)-1}{x/x 1)-1}" 

= C1(Xa;)'{(x1)-1}". 

Put (b;j)=.i!(r) E GSp (2g; Zz), so that x1 is of the following form; 
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X1=U1X6' uj e G(2) (1 <j<2g), 

h1 being the j-th column vector of (b;1). Then, we have 

si([a, ·r])'a =c;(.x";)'{(x 6')"}- 1(u-;1)" 

=c;(xf''· · · · -~?'>'{(xf''• · · · 0 xg;g1)•J-1(u-;1)" 

=c;(xoa,, •... •(X2g)a•g1{(xi)b''· ... •(X2gY•g1J-1(u.11Y 
= c;(u1x6')a,, • • • • 0 (u2gxb•g)a•g j 

X (Czgt''gtb•g; • · · · •(c1t' 1)-b 11(u-;1)". 

As u1, · · ·, Uzg, c1, • • ·, Czg e G(2) are central mod G(3), we obtain 

si([a, -r])'"=(Xb't''• ... •(xb•g)a•gJ(t'•gtb•g; •... •(t'')-b•J 
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We shall show that the right hand side of this congruence is an /-th power 
mod G(3). First, by the assumption on c; (1 <i<2g), c;c;b''• .. · •c;;/•g; 
is an /-th power mod G(3). Secondly, by the assumption on A, lft'1 is an 
!-th power mod G(3) if i-=/=j. As for the term u1"(u-;1)", it suffices to show 
that [xm, xnJ-au[xm, xn]" (1 <m<n<2g (m, n)-=/=(g, 2g)) are all !-th powers 
mod G(3), because [xm, xn] (1 <m<n<2g (m, n)-=/=(g, 2g)) is a Z 1-basis of 
gr2G. Wehave 

=[xm, Xn]-au n [x;, Xk]a,makn 
1:S:i,k:S:2g 

mod G(3) 

mod G(3) 

=[Xm, Xn]-a;J+ammann n [X;, xk]a;makn mod G(3). 
(i,k),.(m,n) 

By the assumption on A, this is an !-th power mod G(3). Lastly, using the 
following identity 

a«ba=[a, b](l/Z)a(a-l)(abl mod G(3) a, be G 

( cf. e.g. [I1] Ch I § 4) successively, we get 

(xb;)a''=(xf11 •... •xg;gt)a;J 

=xb"a,, • ... •Xb,g ,a,; n [x X 1-bmtbnt(lf2)a;;(a;1-I) mod G(3), 
- 1 2g m, n 

1:S:m<n:S:Zg 
(t't)b''=(xf11· ... ·x~;K'Y'' 

= x'{libiJ • ...• xa•g ;bij n [x X 1-am;a,.;(I/Z)b;J(b;J-I) mod G(3). 
- 1 2g m., n 

l:S:m<n:S:2g 

By the assumption on A, fa;i{a;J-1) and am;an; (m-=/=n) belong to lZz. 
Put 
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P=(xb')a,1 •... •(xb•g)a,g1 

Q=(xa•g)-b•gJ •. • • •(xa1)-b1J. 

Then, we have 

mod G(2)1G(3) 

mod G(2) 1G(3). 

Using that ab=[a, b]ba (a, b E G) and the assumption on A, we obtain 

mod G(2)1G(3), 

where (ciJ)=BA E GSp (2g; Z 1). Similarly, we obtain 

mod G(2) 1G(3), 

where (dij) = AB E GSp (2g; Z 1). As [a, r-] E f g(I ), BA= AB. Thus, we 
have PQ==. I mod G(2) 1G(3), i.e. PQ is an !-th power mod G(3). Therefore, 
we conclude that s/[a, r]) (1-:;;,j-:;;,2g) are all !-th powers mod G(3). 

Now we can show (C*). In fact, assume (C*) does not hold, i.e. 

mod G(3) (1-::;;,j <2g). 

Then, for j = 4 and 5, we see by the assumption on p and (12) that 
CT!!1 [xi, x4r and CT~!1 [xi, x5]"' are both !-th powers mod G(3). Since 
[xm, xn] mod G(3) (1-::;;,m<n<2g (m, n)=/=(g, 2g)) is a Z 1-basis of gr2 G, it 
follows that a 1, • • ·, a 2g E lZ 1• Then, for j=I, s1(pint(t)) is not an !-th 
power mod G(3) by (12), while si([a, r]) is. This is a contradiction. Thus, 
(C*) is verified and the proof of Theorem 3 is completed. 

Proof of Lemma 2. The proof is completely parallel to that of Propo­
sition 1. First, we see that the following congruence holds. 

(13) mod G(3)1G( 4). 

In fact, for each i (I <i-::;;,g), we have 

[xai, xag+i]==[xili· ... •xg;g\ xc;-1g+i •... •xg;gg+i] 

==[Xili, [xg2i •... •xg;g\ xf1g+i •••• •xg;gg+i]] 

X[xg2i •... •xt;K\ xc;-ig+i •... •xg;gg+i][xc;-u, xc;,ig+i •... •xg;gg+t]. 

Repeating this expansion successively and using the assumption on A, we 
see that 
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[x'", x"gH]= n [x~', x~ng+i] mod G(3)1G(4). 
1:,;m,n:,;2g 

(Note that [G(2), G(2)]cG(4), hence elements in G(2) are commutative 
mod G(4).) Furthermore, we have 

[-.Amt ~ng+•]=[x [X X ]]<IJ2)am,ang+i(am,-1) ""'m , n - m, m, n 

By the assumption on A, ½am,ang+tCam,-1) and ½am,ang+iCang+;-1) 
belong to 1Z1• Thus, 

= (lJi [x,, Xg+,l)µ<A> 

=1 

mod G(3)1G( 4) 

mod G(3)1G( 4) 

mod G(3)1G(4). 

(µ denotes the "multiplicator".) Therefore, we have shown (13). Then, 
using the following sublemma, we see that there exists an element a e 
j- 1(A) satisfying (11) by the same argument as in the proof of Proposition 
1. This completes the proof of Lemma 2. 

Sublemma. Let m>l and A=(a, 1) e GSp(2g;Z 1). Let sfm>, · · ·, 
s~;"' be elements of G(2)1G(3) satisfying a congruence 

[sfm'x"', si':'1x"g+i]• · · · •[st'x"K, s~;"'x"•K]~ 1 mod G(m+2)1G(m+3). 

(a, denotes the i-th column vector of A.) Then, there exist s1, • • ·, S2g e 
G(2)1G(3) such that 

s,=sfml mod G(m+ 1)1G(m+2) (l<i<2g) 

The proof of this sublemma is similar to that of Lemma 1. The point is 
that 

G(m+2)1G(m+3)/G(m+3) 
g 

= I:; {[x"t, G(m+ 1)1G(m+2)/G(m+2)] 
i=l 

+[x"K+£, G(m+ 1)1G(m+2)/G(m+2)]}. 

We omit the details here. 

Remarks. 1. It is plausible that Theorem 3 is true for g=2. But it 
is also plausible that fg(l)=lntG-fg(2) holds if g=2. At any rate, 
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f'/1)/Int G-f/2) is a finite abelian /-group (Corollary 1 of Theorem 1). 
Suppose that fz(l)=lnt G-f/2) holds. So, for any p E fz(l), there exists 
an element t e G such that p Int (t) E fz(2). Then, for -r= 1 we have 

(sh Int (t)) mod G(3))1 ,;; 1,;;2g=(s/[a, -r]) mod G(3))i,;;J,;:zg=0 in (gr2G)2g. 

Thus, we can not show (C*). Therefore, our method, "calculations 
mod G(3)" is no longer valid. 

2. If we replace G by p<rl, the free pro-/ group of rank r > 3, our 
theorem is true. The proof is just the same. (In the case of p<rl, the 
image of "l" is GL(r; Zi), which is a direct consequence of Burnside's 
theorem.) It is plausible that our theorem is true for r=2. But note that 
the method adopted here to prove Theorem 3 is no longer valid for r = 2. 
In fact, in the case of r = 2, Q(l) = Int F<2l · Q(2) holds, so that our 
method, "calculations mod F<2l(3)", gives us no information. Here, 
{F<2l(m)}m;;,i is the descending central series of F( 2l and 

(m>l). 

The proof that Q(l)=Int F<2l. Q(2) is as follows. Let a be an element 
of Q(l). Then, there exist c1, c2 E F(2) (F=F< 2l) such that 

x,, x2 being the generators of F. As F(2)/F(3) is a free Zr-module of rank 
1 generated by [x1, x2] mod F(3), there exist a, b e Zi such that 

c, = [x,, x,]a 

C2=::[X1, X2P 
modF(3) 

modF(3). 

Put t=X1bxr. Then, it is easily verified that 

Xf Int (t) = Xi modF(3) (i= 1, 2), 

which means aint(t) e Q(2). Hence, Q(l)=IntF-Q(2). 
Therefore, to prove our theorem in the case of F<2l, it seems that 

"calculations mod F<2l(4)" is necessary. 

Added in proof Prof. John Labute has kindly pointed out that our 
proof of Prop. A' in Section 4 is incorrect. The inclusion Uc(Y) in 
Step 4 (p. 150, !. 29) does not hold because (Y) is a two-sided ideal of 
Sg+1· 

Prof. Labute has given much simpler proof of Prop. A' which is 
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outlined as follows. 
Let H be the ideal of gr F generated by x1, ••• , xg. Then, gr F~H 

~U and (gr F)/H is a free Lie algebra generated by (the class of) xg+b 

· · ·, x2g. Furthermore, H/U is also a free Lie algebra. In order to see 
this, we take a free generator system S (as Lie algebra) of Hin the same 
manner as in Prop. 1.1 in G. Viennot: Algebres de Lie libres et mono­
ides libres, Lecture Notes in Math. 691. Then, it can be shown that as 
an ideal of H, U is generated by a subset of S, hence H/U is free. 

By hypothesis, [xi, ~] e Uc H (g+ 1 < i :S: 2g), so ~ e H because 
(gr F)/ His free. Again, [xi, ~] e U (1 < i < g ), . so ~ e U because H/U is 
free. 
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