Littlewood's Formulas and their Application to Representations of Classical Weyl Groups

Kazuhiko Koike* and Itaru Terada

Introduction

The reciprocity between the representations of the general linear groups and the symmetric groups is well known. For example, in I.G. Macdonald's book [M], this reciprocity is described as a ring isomorphism between the ring Λ of symmetric functions in countably many variables (see [M], [K-T]) and the graded ring $R=\oplus_{n} R\left(\mathbb{S}_{n}\right)$, where $R\left(\mathbb{S}_{n}\right)$ is the free \boldsymbol{Z}-module generated by the irreducible characters of the symmetric group of degree n and the multiplication in R is defined for $f \in R\left(\mathbb{S}_{n}\right)$ and $g \in R\left(\widetilde{S}_{m}\right)$ by $f \cdot g=\operatorname{ind}_{\mathbb{S}_{n} \mathbb{\Phi}_{n+m} \times \Phi_{m}}(f \times g)$. In an analogous manner, we define a graded ring $R_{W}=\oplus_{n} R\left(W\left(B_{n}\right)\right)$ using the characters of the Weyl groups $W\left(B_{n}\right)$ of type B_{n} and a homomorphism from this ring R_{W} to Λ. This homomorphism clarifies the relationship between the representations of $G L(n)$ and the rule of decomposition (into irreducible constituents) of the representations of $\mathbb{S}_{2 n}$ induced by an irreducible representation of $W\left(B_{n}\right)$. In this procedure, Littlewood's formulas play a crucial role. Here, Littlewood's formulas mean the expansion formulas of the following four symmetric rational functions into Schur functions:

$$
\begin{align*}
& \prod_{1 \leqq i<j \leqq n}\left(1-z_{i} z_{j}\right)^{-1}, \tag{1}\\
& \prod_{1 \leqq i \leq j \leqq n}\left(1-z_{i} z_{j}\right)^{-1}, \\
& 1 \leqq i<j \leqq n \\
& \prod_{1 \leqq i \leqq j \leqq n}\left(1-z_{i} z_{j}\right), \\
& \left.\prod_{i} z_{j}\right) .
\end{align*}
$$

These formulas are also essential in describing the relations between the representations of $G L(n)$ and those of $S p(2 n)$ and $S O(n)$ (see [K-T]).

§ 1. Littlewood's formulas

The four rational functions listed in the introduction are all \widetilde{S}_{n} invariant (where \mathfrak{S}_{n} acts by the permutations of variables $\left\{z_{i}\right\}_{i=1}^{n}$), There-

[^0]fore if we embed the rational functions (1), (2), (3), and (4) into the formal power series ring $C\left[\left[z_{1}, z_{2}, \cdots, z_{n}\right]\right]$, they can be expressed as linear combinations (finite or infinite) of Schur functions $\chi_{G L(n)}(\lambda)(z)$'s. Here, $\chi_{G L(n)}(\lambda)(z)\left(z=\left(z_{1}, z_{2}, \cdots, z_{n}\right)\right)$ is the irreducible character of $G L(n, C)$ corresponding to the Young diagram (or equivalently partition) λ, restricted to the standard maximal torus $T=\left\{\operatorname{diag}\left(z_{1}, z_{2}, \cdots, z_{n}\right)\right\}$. We must prepare a few notations first.

For a partition $\kappa=\left(k_{1}, k_{2}, \cdots, k_{n}\right), 2 \kappa$ denotes the even partition $2 \kappa=\left(2 k_{1}, 2 k_{2}, \cdots, 2 k_{n}\right)$. For a distinct partition $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}\right)$ $\left(\alpha_{1}>\alpha_{2}>\cdots>\alpha_{s} \geqq 1\right), \Gamma(\alpha)$ denotes the partition $\Gamma(\alpha)=\left(\alpha_{1}-1, \alpha_{2}-1\right.$, $\left.\cdots, \alpha_{s}-1 \mid \alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}\right)$, using the Frobenius notation. The Frobenius notation ($\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r} \mid \beta_{1}, \beta_{2}, \cdots, \beta_{r}$) expresses the Young diagram $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$ whose diagonal consists of r squares and the α_{i}, β_{i} ($1 \leqq i \leqq r$) and the $\lambda_{i}(1 \leqq i \leqq n)$ are combined with the relations:

$$
\alpha_{i}=\lambda_{i}-i, \quad \beta_{i}=\lambda_{i}^{\prime}-i, \quad 1 \leqq i \leqq r
$$

where we put ${ }^{t} \lambda=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \cdots, \lambda_{l}^{\prime}\right)$. Here, ${ }^{t} \lambda$ denotes the transposed Young diagram of λ. In terms of Young diagrams, $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r} \mid \beta_{1}, \cdots, \beta_{r}\right)$ is the diagram illustrated in Figure 1a. For example, $\Gamma(3,2)$ is the one in Figure 1b.

Fig. 1a

Fig. 1b

The following Lemma 1.1, 1)-4) was found by D.E. Littlewood (see [L, p. 238]). Under the setting of modern terminology, I.G. Macdonald [M, p. 45] gave the detailed proof of 1) and 2). But in [M, p. 46], he gave only an outline of the proof of 3) and 4). In view of the importance of this lemma, here we give the complete proof of 3) and 4).

Lemma 1.1 (D.E. Littlewood).

$$
\begin{equation*}
\frac{1}{\prod_{1 \leqq i<j \leqq n}\left(1-z_{i} z_{j}\right)}=\sum_{f=0}^{\infty} \sum_{\substack{k \\ d(k) \leqq j \\ d(k)}} \chi_{G L(n)}\left({ }^{t}(2 \kappa)\right)(z), \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \frac{1}{\prod_{1 \leqq i \leqq j \leqq n}\left(1-z_{i} z_{j}\right)}=\sum_{f=0}^{\infty} \sum_{\substack{(\kappa)=f \\
(\kappa) \leqq n}} \chi_{G L(n)}(2 \kappa)(z), \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \prod_{1 \leqq i \leq j \leqq n}\left(1-z_{i} z_{j}\right)=\sum_{f=0}^{n(n+1) / 2} \sum_{\substack{\left.\mid \alpha \alpha=f \\
\alpha=\left(\alpha, \alpha, \ldots, \alpha_{s}\right) \\
\alpha_{1}>\alpha=2, \lambda, \alpha\right) \\
d(t \Gamma(\alpha)) \leqq n}}(-1)^{|\alpha|} \chi_{G L(n)}(t \Gamma(\alpha))(z) \text {. } \tag{4}
\end{align*}
$$

Proof of (3). We shall use the denominator formula of H . Weyl for the Lie algebra $\mathfrak{s o}(2 n, C)$. We define $\mathfrak{s o}(2 n, C)$ to be $\left\{X \in \mathfrak{S l}(2 n, C) \mid X J_{o}+\right.$ $\left.J_{o}{ }^{t} X=0\right\}$, where J_{o} is the following matrix:

As a Cartan subalgebra we take $\mathfrak{h}=\left\{H=\operatorname{diag}\left(h_{1}, \cdots, h_{n},-h_{n}, \cdots,-h_{1}\right)\right\}$. Let $\varepsilon_{i}: \mathfrak{h} \rightarrow \boldsymbol{C}$ be defined by $\varepsilon_{i}(H)=h_{i}$, and Δ_{D} be the root system of $\mathfrak{S o}(2 n, C)$ with respect to h. Fix a set of positive roots $\Delta_{D}^{+}=\left\{\varepsilon_{i} \pm \varepsilon_{j} ; i<j\right\}$ and let ρ_{D} denote the half sum of the positive roots, i.e.

$$
\rho_{D}=\frac{1}{2} \sum_{\alpha \in \Delta_{D}^{+}} \alpha=(n-1) \varepsilon_{1}+(n-2) \varepsilon_{2}+\cdots+\varepsilon_{n-1} .
$$

Then the denominator formula of H . Weyl is given by

$$
\sum_{w \in W\left(D_{n}\right)} \operatorname{det}(w) e^{w \rho_{D}}=\prod_{\alpha \in \Delta_{D}^{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)=e^{\rho} \prod_{\alpha \in \Delta_{D}^{+}}\left(1-e^{-\alpha}\right),
$$

where $W\left(D_{n}\right)$ is the Weyl group of type D_{n} and "det" denotes the linear character of $W\left(D_{n}\right)$ taking the determinant of the representation of $W\left(D_{n}\right)$ on $\mathfrak{h}_{\boldsymbol{R}}^{*}$. We shall define $\phi_{i} \in G L\left(\mathfrak{h}_{\boldsymbol{R}}^{*}\right), i=1,2, \cdots, n$ by $\phi_{i}\left(\varepsilon_{j}\right)=\varepsilon_{j}$ if $j \neq i$, $\phi_{i}\left(\varepsilon_{i}\right)=-\varepsilon_{i}$. Then $W\left(D_{n}\right)=\left\langle\widetilde{S}_{n}, \phi_{i} \phi_{j}(1 \leqq i<j \leqq n)\right\rangle$ where \mathbb{S}_{n} acts on $\mathfrak{G}_{\boldsymbol{R}}^{*}$ by the permutations of the base elements ε_{i} of $\mathfrak{h}_{\boldsymbol{R}}^{*} . \quad W\left(D_{n}\right)$ has the following coset decomposition with respect to \mathbb{S}_{n} :

$$
W\left(D_{n}\right)=\sum_{1 \leqq i_{1}<i_{2}<\cdots<i_{2} \leq n} \Im_{n} \phi_{i_{1}} \phi_{i_{2}} \cdots \phi_{i_{22}} .
$$

We put

$$
\begin{aligned}
\rho_{D, i_{1}, i_{2} \cdots, i_{2} t} & =\phi_{i_{1}} \phi_{i_{2}} \cdots \phi_{i_{2 t}} \rho_{D} \\
& =\rho_{D}-2\left(n-i_{1}\right) \varepsilon_{i_{1}}-2\left(n-i_{2}\right) \varepsilon_{i_{2}}-\cdots-2\left(n-i_{2 t}\right) \varepsilon_{i_{2 t}} .
\end{aligned}
$$

Since $\phi_{n}\left(\rho_{D}\right)=\rho_{D}$, we have

$$
\sum_{w \in W\left(D_{n}\right)} \operatorname{det}(w) e^{w \rho_{D}}=\sum_{1 \leqq i_{1}<\cdots<i_{k} \leqq n-1} \sum_{w \in \Theta_{n}} \operatorname{det}(w) e^{w \rho_{D}, i_{1}, i_{2}, \cdots, i_{k}} .
$$

We put $e^{-\varepsilon_{i}}=z_{i}(i=1,2, \cdots, n)$ in the denominator formula. Since

$$
\begin{aligned}
e^{\rho_{p}} \prod_{\alpha \in \Lambda_{D}^{+}}\left(1-e^{-\alpha}\right) & =z_{1}^{-(n-1)} z_{2}^{-(n-2)} \cdots z_{n-1}^{-1} \prod_{1 \leqq i<j \leqq n}\left(1-z_{i} z_{j}\right)\left(1-z_{i} z_{j}^{-1}\right) \\
& =\prod_{1 \leqq i<j \leqq n}\left(1-z_{i} z_{j}\right)\left(z_{i}^{-1}-z_{j}^{-1}\right) \\
& =\prod_{1 \leqq i<j \leqq n}\left(1-z_{i} z_{j}\right) \times\left|z^{-(n-1)}, z^{-(n-2)}, \cdots, z^{-1}, 1\right|
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{w \in \Theta_{n}} \operatorname{det}(w) e^{w\left(\rho_{D, i_{1}, i_{2}}, \cdots, i_{k}\right)} \\
& \quad=\left|z^{-(n-1)}, z^{-(n-2)}, \cdots, z^{\left(i_{1}\right)}{ }^{n-i_{1}}, \cdots, z^{\left(i_{2}\right)}{ }^{n-i_{2}}, \cdots, z^{\left(i_{k}\right)}, \cdots, z^{-1}, 1\right|
\end{aligned}
$$

(the numbers i_{l} above the determinant signify the positions of the corresponding columns), we have

$$
\begin{aligned}
& \prod_{1 \leqq i<j \leqq n}\left(1-z_{i} z_{j}\right) \\
& \quad=\sum_{1 \leqq i_{1}<\cdots<i_{k} \leqq n-1} \frac{\left|z^{-(n-1)}, \cdots, z^{n-i_{1}}, \cdots, z^{n-i_{k}}, \cdots, z^{-1}, 1\right|}{\left|z^{-(n-1)}, z^{-(n-2)}, \cdots, z^{-1}, 1\right|}=* *
\end{aligned}
$$

Multiplying both the denominator and the numerator on the right-hand side of the above equality by $\left(z_{1} z_{2} \cdots z_{n}\right)^{n-1}$ and permuting the columns, we have

$$
* *=\prod_{1 \leqq i_{1}<\cdots<i_{k} \leq n-1} \frac{\left|z^{n-1}, \cdots, z^{n-s_{k}}, z^{\left(s_{k}+1\right)}, z^{\left(s_{1}+1+s_{k}\right.}, \cdots, z^{n-1+s_{1}}, \cdots, z, 1\right|}{\left|z^{n-1}, z^{n-2}, \cdots, z, 1\right|}
$$

where we have put $s_{1}=n-i_{1}, s_{2}=n-i_{2}, \cdots, s_{k}=n-i_{k}$. Since $i_{k} \leqq n-1$, $1 \leqq s_{k}<s_{k-1}<\cdots<s_{1} \leqq n-1$.

Claim. $\frac{\left|z^{n-1}, \cdots, z^{n-s_{k}}, z^{\left(s_{k}+1\right)},{ }_{n}^{n-1+s_{k}}, \cdots, z^{\left(s_{1}+1\right)}, \cdots, s^{n-1+s_{1}}, \cdots, z, 1\right|}{\left|z^{n-1}, z^{n-2}, \cdots, z, 1\right|}$

$$
=(-1)^{|s|} \chi_{G L(n)}(\Gamma(s)),
$$

where $s=\left(s_{1}, s_{2}, \cdots, s_{k}\right)$ and $|s|=s_{1}+s_{2}+\cdots+s_{k}$.
Proof of (3). We use induction on k.
If $k=1$, the numerator on the left-hand side of the claim equals

$$
\left|z^{n-1}, \cdots, z^{\substack{\left(s_{1}\right) \\-1+s_{1}}}, \cdots, z, 1\right| .
$$

If we exchange the columns, we have

$$
\begin{aligned}
& \left|z^{n-1}, \cdots, z^{n-1+s_{1}}, \cdots, z, 1\right| \\
& \quad=(-1)^{s_{1}}\left|z^{n-1+s_{1}}, z^{n-1}, \cdots, z^{n-s_{1}}, z^{n-s_{1}-2}, \cdots, 1\right| .
\end{aligned}
$$

Owing to H. Weyl's character formula (see [W, p. 201, Theorem 7.5B]) it follows that

$$
\frac{\left|z^{n-1}, \cdots, z^{n-1+s_{1}}, \cdots, z, 1\right|}{\left|z^{n-1}, \cdots, z, 1\right|}=(-1)^{s_{1}} \chi_{G L(n)}\left(\Gamma\left(s_{1}\right)\right) .
$$

Assume that the claim holds for $k-1$. If we put $s^{\prime}=\left(s_{1}, s_{2}, \cdots, s_{k-1}\right)$ and exchange the columns, we have
(the numerator of the claim)

$$
=(-1)^{\left|s^{\prime}\right|} \mid z^{n-1+s_{1}}, \cdots, z^{n-1+s_{k-1}}, z^{n-1}, \cdots, z^{\frac{\left(k+s_{k}\right)}{n-1+s_{k}}, \cdots, 1 \mid . ~ . ~ . ~}
$$

Moreover if we move the $\left(k+s_{k}\right)$-th column to just behind the column $z^{n-1+s_{k-1}}$, we have
(the numerator of the claim)

$$
=(-1)^{|s|}\left|z^{n-1+s_{1}}, \cdots, z^{n-1+s_{k-1}}, z^{n-1+s_{k}}, z^{n-1}, \cdots, 1\right| .
$$

In the above determinant, we denote the set of exponents of z by

$$
I_{s}=(n-1+s_{1}, \cdots, \overbrace{n-1-s_{k}}^{n-1+s_{k}}, n-1, \cdots, \overbrace{n-1-s_{1}}, \cdots, 1,0),
$$

and also the exponents of z in the denominator of the claim by $\partial=$ ($n-1, n-2, \cdots, 1,0$). Then if we put $\lambda=I_{s}-\partial$, according to the character formula, the left-hand side of the claim exactly expresses $(-1)^{|s|} \chi_{G L(n)}(\lambda)$. On the other hand, if we use the induction hypothesis for $s^{\prime}=\left(s_{1}, s_{2}, \cdots, s_{k-1}\right)$ we have

$$
I_{s^{\prime}}=(n-1+s_{1}, \cdots, n-\frac{1+s_{k-1}}{n-1-s_{k-1}}, \cdots, \overbrace{n-1-s_{1}}, \cdots, 1,0)
$$

and $I_{s^{\prime}}-\delta=\Gamma\left(s^{\prime}\right)$. Comparing I_{s} with $I_{s^{\prime}}$, the variation of exponents is exactly caused by exchanging the $\left(k+s_{k}\right)$-th exponent of $I_{s^{\prime}}$ for $n-1+s_{k}$ and moving the $\left(k+s_{k}\right)$-th column $z^{n-1+s_{k}}$ to right behind the column $z^{n-1+s_{k-1}}$. But if we refer to the case $k=1$, this variation corresponds to adding the hook of Fig. 2 diagonally to the Young diagram

$$
\Gamma\left(s^{\prime}\right)=\left(s_{1}-1, s_{2}-1, \cdots, s_{k-1}-1 \mid s_{1}, s_{2}, \cdots, s_{k-1}\right)
$$

Hence the claim is proved.

Fig. 2
(3) follows immediately from the above claim.

Proof of (4). We use Weyl's denominator formula for $\mathfrak{g p}(2 n)=$ $\left\{X \in \mathfrak{Z l}(2 n) \mid X J_{S p}+J_{S p}{ }^{t} X=0\right\}$, where $J_{S p}$ is the following matrix:

\mathfrak{G} and the ε_{i} are defined in the same manner as in the proof of (3). Let $\Delta_{C}^{+}=\left\{\varepsilon_{i} \pm \varepsilon_{j}(i>j), 2 \varepsilon_{i}\right\}$ be a set of positive roots of $\mathfrak{j p}(2 n)$ and let $\rho_{C}=$ $1 / 2 \sum_{\alpha \in \Delta_{c}^{+}} \alpha$ be the half sum of the positive roots, then ρ_{C} is given by $\rho_{C}=n \varepsilon_{1}+(n-1) \varepsilon_{2}+\cdots+\varepsilon_{n}$. Let us recall Weyl's denominator formula:

$$
\sum_{w \in W\left(C_{n}\right)} \operatorname{det}(w) e^{w \rho_{c}}=e^{\rho} c \prod_{\alpha \in \Delta_{C}^{+}}\left(1-e^{-\alpha}\right),
$$

where $W\left(C_{n}\right)=\left\langle\Im_{n}, \phi_{i}(1 \leqq i \leqq n)\right\rangle$. As before $W\left(C_{n}\right)$ has the coset decomposition with respect to \mathbb{S}_{n} as follows:

$$
W\left(C_{n}\right)=\bigcup_{1 \leqq i_{1}<i_{2}<\cdots<i_{k} \leqq n} \widetilde{S}_{n} \phi_{i_{1}} \phi_{i_{2}} \cdots \phi_{i_{k}} .
$$

If we put $e^{-\varepsilon_{i}}=z_{i}(1 \leqq i \leqq n)$ and take the sum for every coset, we have

$$
\prod_{1 \leqq i \leqq j \leqq n}\left(1-z_{i} z_{j}\right)=\sum_{1 \leqq i_{1}<\cdots<i_{k} \leqq n} \frac{\left|z^{-n}, \cdots, z^{\left(i_{1}\right)} \begin{array}{c}
\left(i_{1}-i_{1}\right.
\end{array}, \cdots, z^{n+1-i_{k}}, \cdots, z^{-1}\right|}{\left|z^{n-1}, z^{n-2}, \cdots, z, 1\right|}
$$

Multiplying both the denominator and the numerator by $\left(z_{1} z_{2} \cdots z_{n}\right)^{n}$ and permuting the columns, we have

$$
\prod_{1 \leqq i \leqq j \leqq n}\left(1-z_{i} z_{j}\right)=\sum_{1 \leqq i_{1}<\cdots<i_{k} \leqq n} \frac{\left.\mid z^{n-1}, \cdots, z^{\left(s_{k}\right)}, s_{k}\right)}{\left|z^{n-1}, z^{n-2}, \cdots, z^{\left(s_{1}\right)}, z, 1\right|}
$$

where $s_{1}=n+1-i_{1}, s_{2}=n+1-i_{2}, \cdots, s_{k}=n+1-i_{k}$ and $1 \leqq s_{k}<s_{k-1}<$ $\cdots<s_{1} \leqq n$.

Therefore we have only to prove the next claim.

But the proof is similar to that of (3), so we omit it.

§ 2. Relations between the classical Weyl groups and the Universal Character Ring

In this section we deal with the relations between the Weyl group $W\left(B_{n}\right)=W\left(C_{n}\right)$, referred to as W_{n} hereafter, and the Universal Character Ring Λ. First, let us recall the definition of the ring Λ (cf. [M]).

Let $\Lambda_{n}=Z\left[t_{1}, t_{2}, \cdots, t_{n}\right]^{\Xi_{n}}=R_{+}(G L(n))$ be the graded algebra consisting of the symmetric polynomials in n variables and let $\tilde{\rho}_{m, n}: Z\left[t_{1}, \cdots, t_{m}\right]$ $\rightarrow Z\left[t_{1}, \cdots, t_{n}\right](m \geqq n)$ be the homomorphism of graded algebras defined by $\tilde{\rho}_{m, n}\left(t_{i}\right)=t_{i}$ if $1 \leqq i \leqq n$ and $\tilde{\rho}_{m, n}\left(t_{i}\right)=0$ if $n<i$. $\quad \tilde{\rho}_{m, n}$ induces a homomorphism $\rho_{m, n}: \Lambda_{m} \rightarrow \Lambda_{n}$. Then $\left(\Lambda_{n}, \rho_{m, n}\right)$ becomes a projective system and the projective limit of this system in the category of graded algebras is denoted by Λ, i.e. $\Lambda=\varliminf \Lambda_{n}$. We call Λ the Universal Character Ring.
 (Λ_{n}^{k} is the homogeneous part of degree k of Λ_{n}). Note that Λ can be considered as the ring consisting of symmetric functions in countably
many variables $t_{1}, t_{2}, \cdots, t_{n}, \cdots$ Let $\pi_{n}: \Lambda \rightarrow \Lambda_{n}$ be the natural projection.

As is well known, $\left\{\chi_{G L(n)}(\lambda)\right\}_{\lambda: \text { partition }, a(\lambda) \leq n}(d(\lambda)$ denotes the depth of the Young diagram λ) is a Z-base of $\Lambda_{n}=R_{+}(G L(n))$. (Here we are using $t_{1}, t_{2}, \cdots, t_{n}$ as variables of $\chi_{G L(n)}(\lambda)$, instead of $z_{1}, z_{2}, \cdots, z_{n}$.) It is known that for $m \geqq n \geqq d(\lambda)$ we have $\rho_{m, n}\left(\chi_{G L(m)}(\lambda)\right)=\chi_{G L(n)}(\lambda)$ and for $d(\lambda)>k$ we have $\rho_{n, k}\left(\chi_{G L(n)}(\lambda)\right)=0$. Hence the $\chi_{G L(n)}(\lambda)$'s form a projective system and we may define $\chi_{G L}(\lambda) \in \Lambda$, where $\pi_{n}\left(\chi_{G L}(\lambda)\right)=\chi_{G L(n)}(\lambda)$ if $n \geqq d(\lambda)$ and $\pi_{n}\left(\chi_{G L}(\lambda)\right)=0$ if $n<d(\lambda) . \quad\left\{\chi_{G L}(\lambda)\right\}_{\text {:partition }}$ becomes a Z-linear base of Λ.

If we take $\lambda=(f)$, we also denote $\chi_{G L}(\lambda)=\chi_{G L}((f))$ by $p_{f} . \quad \pi_{n}\left(p_{f}\right)$ is the sum of all monomials with coefficient 1 in t_{1}, \cdots, t_{n} of degree f. If we take $\lambda=\left(1^{f}\right)=(1,1, \cdots, 1)(f$ times $)$, then we also denote $\chi_{G L}(\lambda)=$ $\chi_{G L}\left(\left(1^{f}\right)\right)$ by e_{f}. If $n \geqq f, \pi_{n}\left(e_{f}\right)$ is the f-th elementary symmetric polynomial in t_{1}, \cdots, t_{n}.

Our arguments here are based on the following theorem due to H . Weyl. Let $V=C^{m}$ be the natural $G L(m)$-space. The symmetric group \mathfrak{S}_{k} naturally acts on $\otimes^{k} V$, that is, $\sigma \in \mathbb{S}_{k}$ acts on $x_{1} \otimes x_{2} \otimes \cdots \otimes x_{k} \in \otimes^{k} V$ by

$$
\sigma\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{k}\right)=x_{\sigma-1(1)} \otimes x_{\sigma-1(2)} \otimes \cdots \otimes x_{\sigma-1(k)}
$$

On the other hand, $A \in G L(m)$ acts on $\otimes^{k} V$ by

$$
A \cdot\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{k}\right)=A x_{1} \otimes A x_{2} \otimes \cdots \otimes A x_{k}
$$

and this action commutes with that of \widetilde{S}_{k} defined above.
Theorem 2.1 (H. Weyl's reciprocity). If we regard $\otimes^{k} V$ as a $G L(m)$ $\times \mathfrak{S}_{k}$-module, it decomposes as

$$
\otimes^{k} V=\sum_{\substack{\lambda: \operatorname{partitition} \\ d(\lambda)=m \\|\lambda|=k}} V_{\lambda}^{G L(m)} \otimes V_{\lambda}^{\varsigma_{n}}(\text { direct sum }) .
$$

Here $V_{\lambda}^{G L(m)}$ is the irreducible $G L(m)$-module corresponding to the character $\chi_{G L(m)}(\lambda)$, and $V_{\lambda}^{\mathcal{E}_{k}}$ is the irreducible \widetilde{S}_{k}-module corresponding to the Young diagram λ. (For the parametrization of the irreducible representations of © $_{k}$, see [J-K, Chap. 2]).

Since the equivalence classes of irreducible representations of \mathbb{S}_{k} are parametrized by the partitions of size k, we denote by $\chi_{\Xi_{k}}(\lambda)$ the irreducible representation of \widetilde{S}_{k} or its character corresponding to a partition λ with $|\lambda|=k$.

Let R^{k} denote the character ring of $\widetilde{S}_{k}($ over $\boldsymbol{Z})$. Their module
direct sum $R=\oplus_{k \geq 0} R^{k}$（where $R^{0}=\boldsymbol{Z}$ ）can be made into a graded algebra over Z with the multiplication－defined by

$$
f \cdot g=\operatorname{Ind}_{⿷_{m}^{m+n}}^{\mathbb{S}_{m} \times ⿷_{n}}(f \times g) \in R^{m+n} \quad \text { for } f \in R^{m}, g \in R^{n}
$$

The Z－linear map defined by

$$
\begin{aligned}
& \mathrm{ch}: R \longrightarrow \Lambda \\
& \boldsymbol{\omega} \\
& \chi_{\Phi_{n}}(\lambda) \longrightarrow \chi_{G L}(\lambda)
\end{aligned}
$$

gives an isomorphism of graded algebras，in virtue of the above theorem （H．Weyl＇s reciprocity）．（See［M，p．61，（7．3）］）
W_{n} is embedded into $\mathfrak{S}_{2 n}$ as the centralizer：

$$
W_{n}=C_{\Xi_{2 n}}((1,2)(3,4) \cdots(2 n-1,2 n))
$$

$C_{⿷_{2 n}}(1,2)(3,4) \cdots(2 n-1,2 n)$ ．More precisely，if we define an injective homomorphism $\Delta: \mathbb{S}_{n} \rightarrow \widetilde{S}_{2 n}$ by

$$
\Delta(\tau):\left\{\begin{array}{l}
2 i-1 \longrightarrow 2 \tau(i)-1 \\
2 i \longrightarrow 2 \tau(i)
\end{array} \quad(i=1,2, \cdots, n) \quad \text { for } \tau \in \mathbb{S}_{n}\right.
$$

and put $\sigma_{i}=(2 i-1,2 i), i=1,2, \cdots, n$ ，then we have

$$
W_{n}=\left\langle\Delta\left(\left(\mathbb{S}_{n}\right), \sigma_{1}, \cdots, \sigma_{n}\right\rangle=\Delta\left(\mathbb{S}_{n}\right)\right) \ltimes H
$$

where $H=\left\langle\delta_{1}, \sigma_{2}, \cdots, \sigma_{n}\right\rangle \simeq Z_{2}^{n}$ ．
For each $i=0,1,2, \cdots, n$ ，define a representation ρ_{i} of H by

$$
\rho_{i}\left(\sigma_{j}\right)=\left\{\begin{aligned}
1 & \text { if } 1 \leqq j \leqq i \\
-1 & \text { if } i+1 \leqq j \leqq n
\end{aligned}\right.
$$

Noting that $W_{n} / H \simeq \widetilde{S}_{n}$ ，we denote by $\chi_{W_{n}}(\lambda, \phi)$ the pull－back of the character $\chi_{\Im_{n}}(\lambda)$ to W_{n}（ ϕ denotes the empty diagram）．On the other hand，the representation ρ_{0} of H can be extended to that of W_{n} by letting $\Delta\left(\mathbb{S}_{n}\right)$ act trivially，since ρ_{0} is $\Delta\left(\mathbb{S}_{n}\right)$－invariant．Denote this character by $\chi_{W_{n}}(\phi,(n))$ and put $\chi_{W_{n}}(\phi, \lambda):=\chi_{W_{n}}(\lambda, \phi) \otimes \chi_{W_{n}}(\phi,(n))$ ．Corresponding to each representation ρ_{i} of H ，a subgroup $W_{i} \times W_{n-i}$ is defined by

$$
W_{i}=\left\langle\Delta\left(\widetilde{S}_{i}\right), \sigma_{1}, \sigma_{2}, \cdots, \sigma_{i}\right\rangle \text { and } W_{n-i}=\left\langle\Delta\left(\mathbb{S}_{n-i}\right), \sigma_{i+1}, \sigma_{i+2}, \cdots, \sigma_{n}\right\rangle
$$

where

$$
\begin{aligned}
& \mathfrak{S}_{i}=\langle(1,2),(2,3), \cdots,(i-1, i)\rangle \quad \text { and } \\
& \mathfrak{S}_{n-i}=\langle(i+1, i+2),(i+2, i+3), \cdots,(n-1, n)\rangle
\end{aligned}
$$

are subgroups of $\mathfrak{S}_{2 n}$ ．Then，according to so－called＂Mackey－Wigner＇s
little group method" (See [S, p. 62, Proposition 25]), we have an irreducible representation $\chi_{W_{n}}(\mu, \nu)$ by putting

$$
\chi_{W_{n}}(\mu, \nu)=\operatorname{Ind}_{W_{i} \times W_{n-i}}^{W_{W_{i}}}\left(\chi_{W_{i}}(\phi) \times \chi_{W_{n-i}}(\phi, \nu)\right)
$$

Then the $\chi_{W_{n}}(\xi, \psi)(\xi, \psi$ are partitions with $|\xi|+|\psi|=n)$ constitute a complete set of representatives of the equivalence classes of irreducible representations of W_{n}. Just as we did for \Im_{n}, we shall write $V_{(\xi, \psi)}^{W_{n}}$ for the irreducible W_{n}-module with character $\chi_{W_{n}}(\xi, \psi)$.

If we denote the character ring of W_{n}^{n} (over \boldsymbol{Z}) by R_{W}^{n}, then their module dirct sum $R_{W}=\oplus_{n \geqq 0} R_{W}^{n}$, with $R_{W}^{0}=Z$, can be made into a graded algebra over \boldsymbol{Z} with the multiplication defined by

$$
f \cdot g=\operatorname{Ind}_{W_{n} \times W_{m}}^{W_{n}+m}(f \times g) \in R_{W}^{n+m} \quad \text { for } f \in R_{W}^{n}, g \in R_{W}^{m}
$$

Now we define another (noncommutative) multiplication in Λ. Recall that an element of Λ can be regarded as a certain infinite Z-linear combination of monomials in countably many variables t_{1}, t_{2}, \cdots. Let $f, g \in \Lambda$ and put $g=\sum_{\lambda} u_{\lambda} t^{\lambda}$, where $u_{\lambda} \in Z$ and λ runs through multi-indices, namely the infinite sequences of nonnegative integers with finitely many nonzero terms. Suppose all $u_{\lambda} \geqq 0$. If we bring u_{λ} copies of each t^{λ}, then altogether we have a collection of countably many monomials. Arrange them in one sequence and label them s_{1}, s_{2}, \ldots (the order is arbitrary). If we substitute s_{i} for each variable t_{i} in f, we get a new symmetric function in Λ, which is denoted by $f \circ g$. This multiplication \circ is extended for all $g \in \Lambda$ by Z-linearity. This notion has been introduced and called plethysm by D.E. Littlewood (see [L]).
$\pi_{n}\left(\chi_{G L}(\lambda) \circ \chi_{G L}(\mu)\right)$ is the character of the representation of $G L(n)$ obtained as the composite of the following two homomorphisms:

$$
G L(n) \xrightarrow{\rho_{\mu, G L(n)}} G L\left(V_{\mu} \xrightarrow{\rho_{\lambda, G L\left(V_{\mu}\right)}} G L\left(V_{\lambda}^{G L(V \mu)}\right) .\right.
$$

We define a Z-linear map $\mathrm{ch}_{W}: R_{W} \rightarrow \Lambda$ by

$$
\operatorname{ch}_{W}\left(\chi_{W_{n}}(\lambda, \mu)\right)=\left(\chi_{G L}(\lambda) \circ p_{2}\right)\left(\chi_{G L}(\mu) \circ e_{2}\right)
$$

It is easy to see that ch_{W} is an algebra homomorphism.
Caution. In general, ch_{W} is not injective. However, the significance of ch_{W} lies in the following fact.

Proposition 2.2. The decomposition coefficients of

$$
\left(\chi_{G L}(\lambda) \circ p_{2}\right)\left(\chi_{G L}(\mu) \circ e_{2}\right)
$$

into Schur functions coincide with those of $\chi_{W_{n}}(\lambda, \mu) \uparrow_{W_{n}}^{\oplus_{2 n}}$ into irreducible constituents. That is, if we put

$$
\left(\chi_{G L}(\lambda) \circ p_{2}\right)\left(\chi_{G L}(\mu) \circ e_{2}\right)=\sum_{\nu} d_{\lambda, \mu}^{\nu} \chi_{G L}(\nu)
$$

and

$$
\left.\chi_{W_{n}}(\lambda, \mu)\right|_{W_{n}} ^{\mathscr{E}_{2 n}}=\sum_{\nu} \tilde{d}_{\lambda \mu}^{\nu} \chi_{\mathbb{S}_{2 n}}(\nu)
$$

then we have $d_{\lambda \mu}^{\nu}=\tilde{d}_{\lambda \mu}^{\nu}$ for all λ, μ, and ν.
Proof. Fix an $m \geqq 2 n$, and put $|\lambda|=i$. We shall show that $d_{\lambda, \mu}^{\nu}$ and $\tilde{d}_{\lambda \mu}^{\nu}$ are both equal to the multiplicity of the irreducible $G L(m) \times W_{i} \times$ W_{n-i}-module

$$
\begin{equation*}
V_{\nu}^{G L(m)} \otimes V_{(\lambda, \phi)}^{W_{i}} \otimes V_{(\varphi, \mu)}^{W_{n}^{n-i}} \tag{*}
\end{equation*}
$$

in $\otimes^{2 n} \boldsymbol{C}^{m}$. Here $\otimes^{2 n} \boldsymbol{C}^{m}$ is regarded as a $G L(m, \boldsymbol{C}) \times \widetilde{S}_{2 n}$-modules as in H. Weyl's reciprocity, and $W_{i} \times W_{n-i} \subset W_{n} \subset \mathbb{S}_{2 n}$.

By H. Weyl's theorem, $\otimes^{2 n} \boldsymbol{C}^{m}$ decomposes as

$$
\otimes)^{2 n} C^{m}=\sum_{|\nu|=2 n} V_{\nu}^{G L(m)} \otimes V_{\nu}^{\Xi_{2 n}} .
$$

On the other hand, the definition of $\tilde{d}_{\lambda \mu}^{\nu}$ can be read as follows. Since $\chi_{W_{n}}(\lambda, \mu)=\operatorname{Ind}_{W_{i} \times W_{n-i}}^{W^{n}}\left(\chi_{W_{i}}(\lambda, \phi) \times \chi_{W_{n-i}}(\phi, \mu)\right)$, we have

$$
\left.\chi_{W_{n}}(\lambda, \mu)\right|_{W_{n}} ^{\mathbb{C}_{2 n}}=\chi_{W_{i}}(\lambda, \phi) \times\left.\chi_{W_{n-i}}(\phi, \mu)\right|_{W_{i} \times W_{n-i}} ^{\mathbb{S}_{2 n}}
$$

Frobenius' reciprocity shows that $V_{\nu}^{⿷_{2 n}}$, regarded as a $W_{i} \times W_{n-i}$-module, contains $\tilde{d}_{\lambda \mu}^{\nu}$ times of $V_{(\lambda, \phi)}^{W_{i}} \otimes V_{(\phi, \mu)}^{W_{n}-i}$. \quad So the multiplicity of $(*)$ in $\otimes^{2 n} C^{m}$ is also $\tilde{d}_{\lambda \mu}^{\nu}$.

Next we consider $d_{\lambda \mu}^{\nu}$. Any submodule of $\otimes^{2 n} \boldsymbol{C}^{m}$ isomorphic to ($*$) is contained in the ρ_{i}-isotypical component of $\otimes^{2 n} C^{m}$ with respect to $H \subset W_{n}$, because $\chi_{W_{i}}(\lambda, \phi) \times \chi_{W_{n-i}}(\phi, \mu) \downarrow_{H}$ is a multiple of ρ_{i}. The $\rho_{i^{-}}$ isotypical component is:

$$
\left(\otimes^{i} S_{2}\left(\boldsymbol{C}^{m}\right)\right) \otimes\left(\otimes^{n-i} \Lambda^{2}\left(\boldsymbol{C}^{m}\right)\right)
$$

where S_{2} [resp. $\left.\Lambda^{2}\right]$ denotes the symmetric [resp. alternating] product of rank 2. $W_{i} \times W_{n-i}$ stabilizes this space, since it stabilizes ρ_{i}. We are going to take out its $\chi_{W_{i}}(\lambda, \phi) \times \chi_{W_{n-i}}(\phi, \mu)$-isotypical component.
$\Delta\left(\varsigma_{i}\right)$ acts on $(\#)$ as the permutations of the i tensor factors of $\otimes^{i} S_{2}\left(C^{m}\right)$. So if we regard it as a $G L\left(S_{2}\left(C^{m}\right)\right) \times \Delta\left(\Phi_{i}\right)$-module, then we have

$$
\otimes)^{i} S_{2}\left(C^{m}\right)=\sum_{\left|\lambda^{\prime}\right|=i} V_{\lambda^{\prime}}^{G L\left(S_{2}\left(C^{m}\right)\right)} \otimes V_{\lambda^{\prime}}^{\Delta\left(\mathcal{S}_{i}\right)}
$$

Taking the action of $\left\langle\sigma_{1}, \sigma_{2}, \cdots, \sigma_{i}\right\rangle$ into account, we see that $V_{\lambda^{\prime}}^{\Delta\left(\sigma_{n}\right)}$ becomes a W_{i}-module $V_{\left(x^{\prime}, \phi\right)}^{W_{i}}$.

On the other hand, $\Delta\left(\widetilde{S}_{n-i}\right)$ acts on $(\#)$ as the permutations of the $n-i$ tensor factors of $\otimes^{n-i} \Lambda^{2}\left(\boldsymbol{C}^{m}\right)$. So if we regard it as a $G L\left(\Lambda^{2}\left(\boldsymbol{C}^{m}\right)\right) \times$ $\Delta\left(\mathbb{S}_{n-i}\right)$-module, we have

$$
\otimes^{n-i} \Lambda^{2}\left(C^{m}\right)=\sum_{\left|\mu^{\prime}\right|=n-i} V_{\mu^{\prime}}^{G L\left(\Lambda^{2}\left(C^{m}\right)\right)} \otimes V_{\mu^{\prime}}^{\Delta\left(\varsigma_{n-i}\right)} .
$$

Taking the action of $\left\langle\sigma_{i+1}, \sigma_{i+2}, \cdots, \sigma_{n}\right\rangle$ into account, we see that $V_{\mu^{\prime}}^{\Delta\left(\Theta_{n-i)}\right.}$ becomes a W_{n-i}-module $V_{\left.\left(\phi, \mu^{\prime}\right)^{\prime}\right)}^{W_{n-i},}$.

Hence the $\chi_{W_{i}}(\lambda, \phi) \times \chi_{W_{n-i}}(\phi, \mu)$-isotypical component of $\otimes^{2 n} C^{m}$ is

$$
V_{\lambda}^{G L\left(S_{2}\left(C^{m)}\right)\right.} \otimes V_{\mu}^{G L\left(1^{2}\left(C C^{m)}\right)\right.} \otimes V_{(\lambda, \phi)}^{W_{i}^{i}} \otimes V_{(\phi, \mu)}^{W_{n}^{n-i}} .
$$

As a $G L(m, C)$-module, $V_{\lambda}^{G L\left(S_{2}\left(C^{m}\right)\right)} \otimes V_{\mu}^{G L\left(\Lambda^{2}(C)\right)}$ affords $\left(\chi_{G L}(\lambda) \circ p_{2}\right)\left(\chi_{G L}(\mu)\right.$ $\circ e_{2}$). By the definition of $d_{\lambda \mu}^{\nu}$, it contains $d_{\lambda \mu}^{\nu}$ times of $V_{\nu}^{G L(m)}$. So the multiplicity of ($*$) in $\otimes^{2 n} C^{m}$ is also $d_{\lambda_{\mu}}^{\nu}$.

By the definition of plethysm, the following four equalities hold:
i) $\frac{1}{\prod_{1 \leqq i<j \leqq n}\left(1-z_{i} z_{j}\right)}=\sum_{f=0}^{\infty} \pi_{n}\left(p_{f} \circ e_{2}\right)$,
ii)
iii)

$$
\frac{1}{\prod_{1 \leqq i \leqq j \leqq n}\left(1-z_{i} z_{j}\right)}=\sum_{f=0}^{\infty} \pi_{n}\left(p_{f} \circ p_{2}\right),
$$

$$
\prod_{1 \leqq i<j \leqq n}\left(1-z_{i} z_{j}\right)=\sum_{f=0}^{\infty} \pi_{n}\left(e_{f} \circ e_{2}\right),
$$

iv)

$$
\prod_{1 \leqq i \leqq j \leqq n}\left(1-z_{i} z_{j}\right)=\sum_{f=0}^{\infty} \pi_{n}\left(e_{f} \circ p_{2}\right)
$$

Comparing these with D.E. Littlewood's Lemma 1.1, we have:

Proposition 2.3.

i) $\quad p_{f} \circ e_{2}=\sum_{\substack{\varepsilon \text { partition } \\|\kappa|=f}} \chi_{G L}\left({ }^{t}(2 \kappa)\right)$,
ii) $\quad p_{f} \circ p_{2}=\sum_{\substack{\text { paprition } \\|k|=f}} \chi_{G L}(2 \kappa)$,
iii) $\quad e_{f} \circ e_{2}=\sum_{\substack{\left.\alpha=\left(\alpha 1, \alpha_{2}, \ldots, \alpha_{s}\right) \\ \alpha_{1}>\alpha_{2}\right\rangle \\|\alpha|=f}} \chi_{G L}(\Gamma(\alpha))$,
iv) $\left.\quad e_{f} \circ p_{2}=\sum_{\substack{\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right) \\ \alpha_{1}>\alpha_{2} \\|\alpha|=\alpha \\|\alpha|=\alpha_{s}>0}} \chi_{G L} t^{t} \Gamma(\alpha)\right)$.

Applying Proposition 2.2 to $\chi_{W_{n}}(\phi,(n)), \chi_{W_{n}}((n), \phi), \chi_{W_{n}}\left(\phi,\left(1^{n}\right)\right)$, and $\left.\chi_{W_{n}}\left(\left(1^{n}\right)\right), \phi\right)$, we have:

Proposition 2.3'.
i) $\left.\quad \chi_{W_{n}}(\phi,(n))\right|_{W_{n}} ^{\Theta_{2 n}}=\sum_{|\kappa|=n} \chi_{\Xi_{2 n}}\left({ }^{t}(2 \kappa)\right)$,
ii) $\left.\quad \chi_{W_{n}}((n), \phi)\right|_{W_{n}} ^{\mathscr{\Xi}_{2 n}}=\sum_{|\kappa|=n} \chi_{\Xi_{2 n}}(2 \kappa)$,
iii) $\left.\quad \chi_{W_{n}}\left(\phi,\left(1^{n}\right)\right)\right|_{W n} ^{\mathbb{E}_{2 n}}=\sum_{\substack{\left.\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\alpha}\right) \\ \alpha_{1}>\alpha_{2}\right\rangle,>\alpha_{s}>0 \\|\alpha|=n}} \chi_{\widetilde{m}_{2 n}}(\Gamma(\alpha))$,
iv) $\left.\quad \chi_{W_{n}}\left(\left(1^{n}\right), \phi\right)\right|_{W_{n}} ^{\Im_{2 n}}=\sum_{\substack{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right) \\ \alpha_{1}>\alpha_{2}>\\|\alpha|=n}} \chi_{\Xi_{2 n}}(t \Gamma(\alpha))$.

The formula ii) has been applied to the projective geometry over finite fields by J.G. Thompson [T].

Moreover, it should be noted that we can derive an algorithm to decompose the representation of $\Im_{2 n}$ induced by an arbitrary irreducible representation of W_{n}. For a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right)$ of depth k, we have

$$
\chi_{G L}(\lambda)=\operatorname{det}\left(\begin{array}{llll}
p_{\lambda_{1}} & p_{\lambda_{1}+1} & \cdots & p_{\lambda_{1}+(k-1)} \\
p_{\lambda_{2}-1} & p_{\lambda_{2}} & \cdots & p_{\lambda_{2}+(k-2)} \\
\vdots & \vdots & \ddots & \vdots \\
p_{\lambda_{k}-(k-1)} & p_{\lambda_{k}-(k-2)} & \cdots & p_{\lambda_{k}}
\end{array}\right)
$$

Hence, by ii) of Proposition 2.3, $\chi_{G L}(\lambda) \circ p_{2}$ is given by

$$
\chi_{G L}(\lambda) \circ p_{2}=\operatorname{det}\left(\begin{array}{llc}
\sum_{|\kappa|=\lambda_{1}} \chi_{G L}(2 \kappa) & \cdots & \sum_{|\kappa|=\lambda_{1}+(k-1)} \chi_{G L}(2 \kappa) \\
\sum_{|\kappa|=\lambda_{2}-1} \chi_{G L}(2 \kappa) & \cdots & \sum_{|\kappa|=\lambda_{2}+(k-2)} \chi_{G L}(2 \kappa) \\
\vdots & \ddots & \vdots \\
\sum_{|\kappa|=\lambda_{k}-(k-1)} \chi_{G L}(2 \kappa) & \cdots & \sum_{|\kappa|=\lambda_{k}} \chi_{G L}(2 \kappa)
\end{array}\right) .
$$

Similarly,

$$
\chi_{G L}(\lambda) \circ e_{2}=\operatorname{det}\left(\begin{array}{lll}
\sum_{|\kappa|=\lambda_{1}} \chi_{G L}\left({ }^{t}(2 k)\right) & \cdots & \sum_{|\kappa|=\lambda_{1}+(k-1)} \chi_{G L}\left({ }^{t}(2 k)\right) \\
\sum_{|\kappa|=\lambda_{2}-1} \chi_{G L}\left({ }^{t}(2 \kappa)\right) & \cdots & \sum_{|\kappa|=\lambda_{2}+(k-2)} \chi_{G L}\left({ }^{t}(2 k)\right) \\
\vdots & \ddots & \vdots \\
\sum_{|\kappa|=\lambda_{k}-(k-1)} \chi_{G L}\left({ }^{t}(2 \kappa)\right) & \cdots & \sum_{|\kappa|=\lambda_{k}} \chi_{G L}\left({ }^{t}(2 \kappa)\right)
\end{array}\right) .
$$

For partitions μ and $\nu, \chi_{G L}(\mu) \chi_{G L}(\nu)$ can be computed using Little-wood-Richardson's rule. Combining these facts with Proposition 2.2, we obtained an algorithm to write down the irreducible constituents of the representation of $\mathbb{S}_{2 n}$ induced by any irreducible representation of W_{n}.

References

[J-K] G. James and A. Kerber, "The Representation Theory of the Symmetric Groups," Encyclopedia of Mathematics and its Applications, Vol. 16, Addison-Wesley, Massachusetts, 1981.
[K-T] K. Koike and I. Terada, Young-diagrammatic methods for the representation theory of the classical groups of type B_{n}, C_{n}, D_{n}, to appear in J. Algebra.
[L] D. E. Littlewood, "The Theory of Group Characters and Matrix Representations of Groups, 2nd. ed.," Oxford University Press, London, 1950.
[M] I. G. Macdonald, "Symmetric Functions and Hall Polynomials," Oxford University Press, Oxford, 1979.
[S] J.-P. Serre, "Linear Representations of Finite Groups," Graduate Texts in Mathematics 42, Springer-Verlag, New York, 1977.
[T] J. G. Thompson, Fixed Point Free Involutions and Finite Projective Planes, "Finite Simple Groups II," edited by M. J. Collins, Academic Press, London, 1980.
[W] H. Weyl, "The Classical Groups, their Invariants and Representations, 2nd ed.," Princeton University Press, Princeton, New Jersey, 1946.

Kazuhiko Koike

Department of Mathematics
Aoyama Gakuin University
Setagaya-ku, Tokyo 157, Japan
Itaru Terada
Department of Mathematics
University of Tokyo
Bunkyo-ku, Tokyo 113, Japan

[^0]: Received October 28, 1985.

 * Supported by Grant Aid for Scientific Research.

