Constructible Sheaves Associated to Whittaker Functions

Tomohide Terasoma

Introduction

Let X_{0} be a proper smooth geometrically connected curve over the field F_{q} with q elements. Let K be the function field of X_{0} over F_{q}, A the adele ring of K, and ℓ a prime number prime to the characteristic of \boldsymbol{F}_{q}. Let $\pi_{1}\left(X_{0}\right)$ be the fundamental group of X_{0}. (For the fundamental group, see [8, p. 39].) We always assume that a continuous representation

$$
\rho: \pi_{1}\left(X_{0}\right) \longrightarrow \mathrm{GL}\left(n, \overline{\boldsymbol{Q}}_{\ell}\right) \quad\left(\overline{\boldsymbol{Q}}_{\ell}: \text { an algebraic closure of } \boldsymbol{Q}_{\ell}\right)
$$

of $\pi_{1}\left(X_{0}\right)$ factors through

$$
\rho: \pi_{1}\left(X_{0}\right) \longrightarrow \mathrm{GL}(n, E),
$$

where E is a finite extension of \boldsymbol{Q}_{ℓ}.
Such a ρ gives rise to an L-function

$$
L(\rho, s)=\prod_{v \in\left|X_{0}\right|} \operatorname{det}\left(1-\mathrm{Nm}(v)^{-s} \rho\left(\mathrm{Fr}_{v}\right)\right)^{-1} \in \overline{\boldsymbol{Q}}_{\delta}\left[\left[q^{-s}\right]\right],
$$

where $\left|X_{0}\right|$ is the set of closed points of X_{0}, and Fr_{v} is the geometric Frobenius substitution at v.

Langlands ([6, p. 211]) asked whether it is an automorphic L-function. (For the definition of automorphic L-function, see [2, p. 49]). Drinfeld (cf. [3]) has solved this problem for $n=2$. First he expressed the Whittaker function associated to ρ by the trace of the Frobenius substitution on some constructible sheaf. Next, he proved geometrically that the Shalika transform (cf. [9]) of the Whittaker function turns out to be an automorphic form.

For a representation ρ as above, we can associate a function f on $\operatorname{GL}(n, A)$ called the Whittaker function for ρ. By the functional equation satisfied by the Whittaker function, it can be regarded as a function on $U_{K} \backslash \mathrm{GL}(n, A) / \mathrm{GL}(n, \hat{O})$, where U_{K} is the subgroup of upper triangular
matrices in $\mathrm{GL}(n, K)$. On the other hand, we can define some moduli scheme ($J \times_{P}$ Flag $\left.{ }_{q}^{d, 0}\right)_{0}$ over \boldsymbol{F}_{g}, whose \boldsymbol{F}_{q}-rational points can be identified with some elements of $U_{K} \backslash \mathrm{GL}(n, A) / \mathrm{GL}(n, \delta)$. The purpose of this paper is to construct a constructible sheaf $\mathrm{Wh}_{\phi}^{d}(\rho)$ on $\left(J \times_{P} \mathrm{Flag}{ }_{q}^{d,}\right)_{0}$ with the following property: The value of the Whittaker function f at g corresponding to the element w of $\left(J \times{ }_{P} \text { Flag }_{\phi}^{d, 0}\right)_{0}$, can be expressed in terms of the trace of the Frobenius substitution at w on the geometric fiber $\mathrm{Wh}_{\mathscr{\otimes}}^{d}(\rho)_{\bar{w}}$ of $\mathrm{Wh}_{\mathscr{\varphi}}^{d}(\rho)$ at \bar{w}.

The author would like to thank S. Kato and T. Tokuyama for their advice on representation theory. He would also like to thank Professors T. Shioda and Y. Ihara for their kind advice.

§ 1. Motivation and group theoretic background

1.1. L-functions of class $\mathbf{1}$ principal series

We here recall necessary results of Godement-Jacquet [5] and Zevelinsky-Bernstein [1].

Let K_{v} be a nonarchimedean local field with a finite residue field \boldsymbol{F}_{q} with q elements. Let O_{v} be the ring of integers of K_{v}, t_{v} a uniformizing parameter, and || || its nonarchimedean absolute value.

Assume that we are given unramified characters

$$
\pi_{i}: K_{v}^{*} / O_{v}^{*} \longrightarrow C^{*} \quad \text { for } i=1, \cdots, n,
$$

satisfying the following condition:

$$
\begin{equation*}
\pi_{i}\left(t_{v}\right) \neq q \pi_{j}\left(t_{v}\right) \quad \text { for all } i \neq j . \tag{*}
\end{equation*}
$$

We then define a representation $\pi\left(\pi_{1}, \cdots, \pi_{n}\right)$ induced by π_{1}, \cdots, π_{n} as follows. Let $\pi\left(\pi_{1}, \cdots \pi_{n}\right)$ be the vector space of C-valued functions on GL (n, K_{v}) satisfying the following conditions (1) and (2):

$$
f\left(\left[\begin{array}{cc}
a_{1} & * \tag{1}\\
0 & \ddots \\
0 & a_{n}
\end{array}\right] g\right)=\prod_{a_{+} \neq \alpha}\left\|\alpha\left(a_{1}, \cdots, a_{n}\right)\right\| \prod_{i=1}^{n} \pi_{i}\left(a_{i}\right) f(g)
$$

for all $g \in \operatorname{GL}\left(n, K_{v}\right)$. Here, Δ_{+}is the set of positive roots of $\operatorname{GL}\left(n, K_{v}\right)$ with respect to the Borel subgroup of upper triangular matrices in $\mathrm{GL}\left(n, K_{v}\right)$,
(2) $\left\{h \in \mathrm{GL}\left(n, K_{v}\right) \mid f(g h)=f(g)\right.$ for all $\left.g \in \mathrm{GL}\left(n, K_{v}\right)\right\}$ is an open subgroup of GL $\left(n, K_{v}\right)$.
$\mathrm{GL}\left(n, K_{v}\right)$ acts on this space by right translation, and this space gives an irreducible representation which belongs to the class 1 principal series (cf. [1, p. 454]).

The L-function of this representation is defined by Godement-Jacquet ([5, p. 163]) as follows.

Definition (the spherical function of a class 1 principal series). Let (π, V) be an irreducible representation of $\mathrm{GL}\left(n, K_{v}\right)$ in the class 1 principal series and $\left(\pi^{\prime}, V^{\prime}\right)$ its dual. We can choose $v_{0} \in V, v_{0}^{\prime} \in V^{\prime}$ such that

$$
\pi(g) v_{0}=v_{0}, \pi(g) v_{0}^{\prime}=v_{0}^{\prime} \text { for all } g \in \operatorname{GL}\left(n, O_{v}\right) \text { and }\left\langle v_{0}, v_{0}^{\prime}\right\rangle=1
$$

We define the spherical function $f_{0}: \mathrm{GL}\left(n, K_{v}\right) \rightarrow C$ of π by

$$
f(g)=\left\langle\pi(g) v_{0}, v_{0}^{\prime}\right\rangle
$$

Note that f_{0} is uniquely determined by (π, V), because v_{0} and v_{0}^{\prime} satisfying the above conditions are unique up to constant multiple for an irreducible representation in class 1 principal series.

Definition (L-function). Let Φ be the characteristic function of $\mathrm{M}\left(n, O_{v}\right) \cap \mathrm{GL}\left(n, K_{v}\right), d x^{*}$ the Haar measure of GL $\left(n, K_{v}\right)$ normalized by $d x^{*}\left(\operatorname{GL}\left(n, O_{v}\right)\right)=1$. We define the L-function of an irreducible representation in the class 1 principal series (π, V) by using the spherical function f_{0} of π in the following way:

$$
L(\pi, s)=\int_{\mathrm{GL}\left(n, K_{v}\right)} \Phi(x) f_{0}(x)\|\operatorname{det}(x)\|^{s+(n-1) / 2} d x^{*}
$$

We can also describe the L-function in terms of the Hecke algebra

$$
H_{0}=\left\{\text { bi-GL }\left(n, O_{v}\right) \text {-invariant } C\right. \text {-valued functions with compact }
$$ support on $\left.\operatorname{GL}\left(n, K_{v}\right)\right\}$.

H_{0} becomes an algebra under the convolution product. An element φ of the Hecke algebra H_{0} acts on V by

$$
T(\varphi) v=\int_{G L\left(n, K_{v}\right)} \varphi(x)(\pi(x) v) d x^{*} \quad \text { for } v \in V
$$

Let $v_{0} \in V$ be an eigenvector with respect to the Hecke algebra H_{0}. If Φ_{m} is the characteristic function of $\left\{x \in \mathrm{M}\left(n, O_{v}\right)\left\|\|\operatorname{det}(x)\|=q^{-m}\right\}\right.$, and if $T\left(\Phi_{m}\right) v_{0}$ $=\lambda\left(\Phi_{m}\right) v_{0}$, then

$$
L(\pi, s)=\sum_{n=0}^{\infty} q^{-m(s+(n-1) / 2)} \lambda\left(\Phi_{m}\right)
$$

holds. Let δ_{i} be the characteristic function of

where t_{v} is a uniformizing parameter of K_{v} and let $\lambda\left(\delta_{i}\right)$ be the eigenvalue of $T\left(\delta_{i}\right)$:

$$
T\left(\delta_{i}\right) v_{0}=\lambda\left(\delta_{i}\right) v_{0}
$$

If μ_{1}, \cdots, μ_{n} are the roots of the equation

$$
\begin{equation*}
\sum_{i=0}^{n}(-1)^{i} q^{i(i-1) / 2} \lambda\left(\delta_{i}\right) x^{i}=0 \tag{1.1}
\end{equation*}
$$

in x, then we have (cf. [5, p. 77]).

$$
L(\pi, s)=\prod_{j=1}^{n}\left(1-\mu_{j} q^{-(n-1) / 2-s}\right)^{-1}
$$

which is known to be a rational function of q^{-s} (cf. [5]).

1.2. Shintani's formula and a formulation of Langlands' problem

Let K_{v} be a nonarchimedean local field and t_{v}, O_{v} its uniformizing parameter and the ring of integers, respectively. Let ψ be a nontrivial C valued additive character of K_{v}, and $U_{K_{v}}$ the subgroup of GL $\left(n, K_{v}\right)$ of unipotent upper triangular matrices. We define a character $\bar{\psi}$ of $U_{K_{v}}$ by

$$
\bar{\psi}\left(\left[\begin{array}{ccc}
1 & u_{1} & * \\
\ddots & \ddots & \\
& \ddots & u_{n-1} \\
0 & & 1
\end{array}\right]\right)=\psi\left(u_{1}+\cdots+u_{n-1}\right)
$$

We define the space ω of Whittaker functions by
$\omega=\left\{f \mid f\right.$ is a locally constant function on $\operatorname{GL}\left(n, K_{v}\right)$ such that

$$
\left.f(u g)=\bar{\psi}(u) f(g) \text { for all } g \in \operatorname{GL}\left(n, K_{v}\right), u \in U_{K_{v}}\right\} .
$$

This space is a representation of $\mathrm{GL}\left(n, K_{v}\right)$ under the right translation of $\mathrm{GL}\left(n, K_{v}\right)$. Any irreducible representation π_{v} of $\operatorname{GL}\left(n, K_{v}\right)$ in the class 1 principal series can be realized as a unique subrepresentation (π_{v}, ω_{v}) of ω (cf. [4, p. 315]). $\quad \omega_{v}$ is called the Whittaker model of π_{v}.

Theorem 1.1 (Shintani [11]). Suppose that ψ is trivial on O_{v} and nontrivial on $t_{v}^{-1} O_{v}$. In other words, the conductor of ψ is O_{v}. Let π_{v} be an irreducible representation in the class 1 principal series, $\left(\pi_{v}, \omega_{v}\right)$ the space defined as above, and μ_{i} the complex numbers defined in (1.1). Let f be an element of ω_{v} fixed under the action of $\pi_{v}\left(\mathrm{GL}\left(n, O_{v}\right)\right)$ such that $f(e)=1$.

Then the value $f\left(\operatorname{diag}\left(t_{v}^{f_{1}}, \cdots, t_{v}^{f_{n}}\right)\right)$ of f at the diagonal matrix $\operatorname{diag}\left(t_{v}^{f_{1}}, \cdots, t_{v}^{f_{n}}\right)$ is equal to

$$
\begin{equation*}
q^{e} \chi_{Y}(\mu) \quad \text { if } \quad Y=\left(f_{1}, \cdots, f_{n}\right), \quad f_{1} \geqq \cdots \geqq f_{n}, \quad f_{i} \in Z, \tag{1.2}
\end{equation*}
$$

where $e=\sum_{i=1}^{n}(i-n) f_{i}$, while $f\left(\operatorname{diag}\left(t_{v}^{f_{1}}, \cdots, t_{v}^{f_{n}}\right)\right)=0$ otherwise. Here χ_{Y} is the irreducible character of $\mathrm{GL}(n, C)$ associated to the Young diagram Y, and μ is the conjugacy class represented by the diagonal matrix $\operatorname{diag}\left(\mu_{1}, \cdots\right.$, μ_{n}).

Notice that f is uniquely determined because π_{v} belongs to class 1 principal series.

Remark 1 (cf. [11, p. 180]). Using the Cartan decomposition

$$
\mathrm{GL}\left(n, K_{v}\right)=U_{K_{v}} \cdot T_{K_{v}} \cdot \operatorname{GL}\left(n, O_{v}\right)
$$

with

$$
T_{K_{v}}=\left\{\left(\begin{array}{cc}
* & 0 \\
\cdot & \\
0 & \\
*
\end{array}\right) \in \operatorname{GL}\left(n, K_{v}\right)\right\}
$$

the values of a Whittaker function f on $\operatorname{GL}\left(n, K_{v}\right)$ are determined by the above formula (1.2). Conversely for given non-zero complex numbers μ_{1}, \cdots, μ_{n}, the Whittaker function determined by (1.2) generates an irreducible representation in the class 1 principal series contained in ω provided that
(*)

$$
\mu_{i} \neq q \mu_{j} \quad \text { for } \quad i \neq j
$$

Remark 2. Let f be a Whittaker function with respect to ψ, and a an element of K_{v}^{*}. The function $\gamma_{a}(f)$ on $\operatorname{GL}\left(n, K_{v}\right)$ given by

$$
\left(\gamma_{a}(f)\right)(g)=f\left(\operatorname{diag}\left(1, a, \cdots, a^{n-1}\right) g\right)
$$

is a Whittaker function with respect to $\psi \circ a^{-1}$. This transformation γ_{a} gives an equivalence of representations between the Whittaker models with respect to ψ and those with respect to $\psi \circ a^{-1}$.

Now we formulate the problem of Langlands. Let K be a global
field of characteristic $p>0$ and A its adele ring. Let χ be an unramified \boldsymbol{C}-valued character of $\boldsymbol{A}^{*} / K^{*}$ with absolute value 1 . We define the space $L_{0}^{2}(\mathrm{GL}(n, K) \backslash \mathrm{GL}(n, A), \chi)$ of cusp forms with a central character χ as the space of locally constant functions f on $\operatorname{GL}(n, A)$ satisfying the following four conditions:
i) $f(\gamma x)=f(x)$ for all $x \in \operatorname{GL}(n, A), \gamma \in \operatorname{GL}(n, K)$.
ii) $f(z x)=\chi(z) f(x)$ for all $z \in A^{*}, x \in \operatorname{GL}(n, A)$.
iii) $\int_{A^{*} \operatorname{GL}(n, K) \backslash \operatorname{GL}(n, A)}|f(\dot{x})|_{C}^{2} d \dot{x}<\infty$,
where $d \dot{x}$ is the measure induced by a Haar measure of $\operatorname{GL}(n, A)$ and $\left|\left.\right|_{c}\right.$ is the complex absolute value.
iv) For the unipotent radical U of any proper parabolic subgroup P of $\operatorname{GL}(n, K)$, we have

$$
\int_{U_{K} \backslash U_{A}} f(u x) d u=0 \text { for almost all } x \in \operatorname{GL}(n, A)
$$

where $d u$ is the measure induced by a Haar measure of U_{A}.
Let ℓ be a prime number different from p. From now on, we fix an identification of C and \bar{Q}_{ℓ}. Consider a continuous representation $\rho: \pi_{1}\left(X_{0}\right) \rightarrow \mathrm{GL}\left(n, \overline{\boldsymbol{Q}}_{\ell}\right)$, and assume that the following conditions hold:
(1.3) $\left|\operatorname{det}\left(\rho\left(F r_{v}\right)\right)\right|_{C}=1$ for all $v \in\left|X_{0}\right|$ under the fixed identification of \boldsymbol{C} and $\overline{\boldsymbol{Q}}_{\ell}$.
(1.4) For $v \in\left|X_{0}\right|$ let $\mu_{1} q^{-(n-1) / 2}, \cdots, \mu_{n} q^{-(n-1) / 2}$ be the inverse of the eigenvalues of $\rho\left(F r_{v}\right)$. Then the condition (*') holds for $\left\{\mu_{i}\right\}_{i=1, \cdots, n}$.

Let us formulate Langlands' problem. Let ψ_{v}^{\prime} be an additive character of K_{v} with the conductor O_{v}. The eigenvalues μ_{1}, \cdots, μ_{n} of $\rho\left(\mathrm{Fr}_{v}\right)$ define a Whittaker function f^{\prime} by Remark 1 to Theorem 1.1. Any additive character ψ_{v} of K_{v} can be written as $\psi_{v}^{\prime} \circ a^{-1}$, where the conductor of ψ_{v}^{\prime} is O_{v} and a an element of K_{v}. Thus by Remark 2 to Theorem 1.1, $\gamma_{a}\left(f^{\prime}\right)$ generates an irreducible subrepresentation $\left(\pi_{v}, \omega_{v}\right)$ of $\operatorname{GL}\left(n, K_{v}\right)$ in the space ω of Whittaker functions with respect to ψ_{v}.

Langlands' Problem. Let $\psi=\prod_{v} \psi_{v}$ be a quasi-character of A / K. Consider the Whittaker model $\left(\pi_{v}, \omega_{v}\right)$ with respect to ψ_{v} as above. Then is $\pi=\otimes_{v} \pi_{v}$ equivalent to some constituent of $L_{0}^{2}(\mathrm{GL}(n, K) \backslash \operatorname{GL}(n, A), \operatorname{det} \rho)$ as a representation of $\mathrm{GL}(n, A)$?

1.3. The Global Whittaker function and the Shalika transform

Let K be a global field of characteristic $p>0, X_{0}$ the corresponding
curve over \boldsymbol{F}_{q}, and ρ a continuous representation of $\pi_{1}\left(X_{0}\right)$ of degree n over $\overline{\boldsymbol{Q}}_{\ell}$. Assume that ρ satisfies the conditions (1.3), (1.4) of the previous paragraph. We also assume that the genus of X_{0} is positive. Let K_{v} be the completion of K at v, and O_{v} the ring of integers of K_{v}. Put $\hat{O}=\prod_{v} O_{v}$. We fix a nontrivial additive character $\psi=\prod_{v} \psi_{v}$ of $A /(K+O)$. Then the conductor of ψ_{v} is O_{v} for almost all v. For all v the additive character ψ_{v} of K_{v} can be written as $\psi_{v}^{\prime} \circ u_{v}^{-1}$, where the conductor of ψ_{v}^{\prime} is O_{v} and u_{v} an element of K_{v}. The eigenvalues μ_{1}, \cdots, μ_{n} of $\rho\left(\mathrm{Fr}_{v}\right)$ determine a Whittaker function f_{v} in view of Remark 1 to Theorem 1.1. Let $\tilde{f}_{v}:=$ $\gamma_{u_{v}}\left(f_{v}\right)$ and define the global Whittaker function f on $\operatorname{GL}(n, A)$ associated to ρ by

$$
f(g)=\prod_{v} \tilde{f}_{v}\left(g_{v}\right) \quad \text { for } \quad g=\left(g_{v}\right) \in \operatorname{GL}(n, A)
$$

We can define the global Whittaker model associated to ρ in the following way: Define a character $\bar{\psi}$ of U_{A} by

$$
\bar{\psi}\left(\left[\begin{array}{lll}
1 & u_{1} & * \\
& \ddots & \ddots \\
& \ddots & u_{n-1} \\
0 & & 1
\end{array}\right]\right):=\psi\left(u_{1}+\cdots+u_{n-1}\right)
$$

Let U_{A} be the subgroup of $\operatorname{GL}(n, A)$ of unipotent upper triangular matrices and ω_{K} the space consisting of locally constant functions f on GL (n, A) such that $f(u g)=\bar{\psi}(u) f(g)$ for all $u \in U_{A}$ and $g \in \operatorname{GL}(n, A)$. GL (n, A) acts on the space ω_{K} by the right translation. We can easily show that the global Whittaker function f belongs to ω_{K}. The subrepresentation of ω_{K} generated by this f is called the Whittaker model associated to ρ. It is irreducible, because ρ satisfies the condition (1.4) in the previous paragraph.

We omit the proof for the following, since it is standard.
Proposition 1.2 (Shalika transform). Let f be the global Whittaker function associated to ρ. The summation

$$
\varphi(g)=\sum_{U_{n-1}, K \backslash G L(n-1, K) \ni r} f\left(\left[\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right]\right) \quad \text { for } \quad g \in \operatorname{GL}(n, A)
$$

is essentially finite and defines a function on $\operatorname{GL}(n, A)$, where $U_{n-1, K}$ is the subgroup of $\mathrm{GL}(n-1, K)$ of unipotent upper triangular matrices. Moreover, the following equality holds for some constant $c \neq 0$:

$$
f(g)=c \int_{U_{K \backslash U_{A}}} \bar{\psi}\left(u^{*-1}\right) \varphi\left(u^{*} g\right) d u^{*},
$$

where $d u^{*}$ is the measure induced by a Haar measure of U_{A}.

Theorem 1.3 (Shalika [9]). Let $f \in L_{0}^{2}(\operatorname{GL}(n, K) \backslash \operatorname{GL}(n, A), \chi)$ and put

$$
W_{f}(g):=\int_{U_{K} \backslash U_{A}} \bar{\psi}\left(u^{*-1}\right) f\left(u^{*} g\right) d u^{*}
$$

Then we have

$$
f(g)=\sum_{U_{n-1}, K \backslash \operatorname{GL}(n-1, K) \ni r} W_{f}\left(\left[\begin{array}{ll}
\gamma & 0 \\
0 & 1
\end{array}\right] g\right) .
$$

Question. Is φ defined in Proposition 1.2 invariant under the left translation for $\operatorname{GL}(n, K)$?

The following sections are devoted to the geometric interpretation for the global Whittaker function.

§ 2. The construction of the Whittaker sheaves

2.1. Representability

Let X be a proper smooth absolutely irreducible curve over a field k. For an integer $n \geqq 2$, let \mathscr{L} be a locally free sheaf of rank n over X. We write $\boldsymbol{d}:=\left(d_{1}, \cdots, d_{n-1}\right)$ for integers d_{1}, \cdots, d_{n-1}. Consider the following functor

$$
\text { Flag }_{\mathscr{\varphi}}^{d}:(\text { Sch } / k)^{\circ} \longrightarrow \text { (Sets) }
$$

which sends T to the set of sequences $\mathrm{pr}_{1}^{*} \mathscr{L}=\mathscr{L}_{0} \supset \mathscr{L}_{1} \supset \cdots \supset \mathscr{L}_{n-1}$ of subsheaves of $\mathrm{pr}_{1}^{*} \mathscr{L}$ over $X \times{ }_{k} T$ such that
(i) \mathscr{L}_{i} is a locally free sheaf of rank $n-i$ over $X \times{ }_{k} T$,
(ii) $\mathscr{L}_{0} / \mathscr{L}_{i}$ is flat over T, and
(iii) $\operatorname{deg}\left(\left.\mathscr{L}_{i}\right|_{X \times\{t\}}\right)=d_{i}$ for all $t \in T$.

Theorem 2.1. The functor $\boldsymbol{F l a g}_{\mathscr{\infty}}^{d}$ is represented by a proper scheme over k.

For the proof of the above theorem, we show the following:
Proposition 2.2. Let n, m and d be integers such that $n \geqq m \geqq 1$. Let \mathscr{L} be a locally free sheaf of rank n. Then the functor

$$
\text { Flag }{ }_{\mathscr{A}, m}^{d}:(\mathrm{Sch} / k)^{\circ} \longrightarrow \text { (Sets) }
$$

which sends T to the set of locally free subsheaves \mathscr{L}_{1} of the locally free sheaf $\mathrm{pr}_{1}^{*} \mathscr{L}$ over $X \times{ }_{k} T$ such that
(i) rank $\mathscr{L}_{1}=m$,
(ii) $\mathrm{pr}_{1}^{*} \mathscr{L} \mid \mathscr{L}_{1}$ is flat over T, and
(iii) $\operatorname{deg}\left(\left.\mathscr{L}_{1}\right|_{X \times\{t\}}\right)=d$ for all $t \in T$.
is represented by a proper scheme over k.
Lemma 2.3. Assume that X has a k-rational point x_{0} which determines an invertible sheaf $O\left(x_{0}\right)$ of degree 1. Then there exists a natural number k_{0} depending only on X and \mathscr{L}, d, m such that any locally free subsheaf \mathscr{L}_{1} of \mathscr{L} of degree d and rank m have the properties that $\mathscr{L}\left(k x_{0}\right)$ and $\mathscr{L}_{1}\left(k x_{0}\right)$ are generated by global sections and that $h^{1}\left(\mathscr{L}_{1}\left(k x_{0}\right)\right)=0$ for any $k \geqq k_{0}$.

Proof. Step 1. Let g be the genus of X, and \mathscr{L}_{1} a locally free subsheaf of \mathscr{L} of rank m and degree d. Then any invertible quotient sheaf of \mathscr{L}_{1} has degree greater than or equal to $d-h^{0}(\mathscr{L})-(m-1)(g-1)$. Indeed, let \mathscr{L}^{\prime} be a invertible quotient sheaf of \mathscr{L}_{1}, and let $\mathscr{L}^{\prime \prime}:=$ $\operatorname{ker}\left(\mathscr{L}_{1} \rightarrow \mathscr{L}^{\prime}\right)$. Then by the Riemann-Roch theorem we have

$$
\operatorname{deg} \mathscr{L}^{\prime \prime}=h^{0}\left(\mathscr{L}^{\prime \prime}\right)-h^{1}\left(\mathscr{L}^{\prime \prime}\right)+(m-1)(g-1)
$$

Thus,

$$
\operatorname{deg} \mathscr{L}^{\prime \prime} \leqq h^{0}(\mathscr{L})+(m-1)(g-1)
$$

Hence

$$
\operatorname{deg} \mathscr{L}^{\prime}=d-\operatorname{deg} \mathscr{L}^{\prime \prime} \geqq d-h^{0}(\mathscr{L})-(m-1)(g-1)
$$

Step 2. In the notation of Step 1, there exists a natural number k_{0} such that $H^{1}\left(\mathscr{L}_{1}\left(k x_{0}\right)\right)$ and $H^{1}\left(\mathscr{L}_{1}\left(k x_{0}-x\right)\right)$ vanish, while $\mathscr{L}_{1}\left(k x_{0}\right)$ is generated by global sections for all $x \in X$ and $k \geqq k_{0}$. Indeed, by the Serre duality, we have

$$
\begin{aligned}
& H^{1}\left(X, \mathscr{L}_{1}\left(k x_{0}-x\right)\right)^{\vee} \simeq H^{0}\left(X, \mathscr{L}_{1}\left(k x_{0}-x\right)^{\vee} \otimes \Omega_{X}^{1}\right) \\
& \simeq \operatorname{Hom}\left(\mathscr{L}_{1}, \Omega_{X}^{1}\left(-k x_{0}+x\right)\right), \\
& H^{1}\left(X, \mathscr{L}_{1}\left(k x_{0}\right)\right)^{\vee} \simeq \operatorname{Hom}\left(\mathscr{L}_{1}, \Omega_{X}^{1}\left(-k x_{0}\right)\right) .
\end{aligned}
$$

Fix a natural number k_{0} such that

$$
2 g-2-k_{0}+1<d-h^{0}(\mathscr{L})-(m-1)(g-1)-m
$$

Then by Step 1 we have $\operatorname{Hom}\left(\mathscr{L}_{1}, \Omega_{X}^{1}\left(-k_{0} x_{0}+x\right)\right)=\operatorname{Hom}\left(\mathscr{L}_{1}, \Omega_{X}^{1}\left(-k_{0} x_{0}\right)\right)$ $=0$, for all $k>k_{0}$. In this situation, the homomorphism

$$
H^{0}\left(X, \mathscr{L}_{1}\left(k x_{0}\right)\right) \longrightarrow H^{0}\left(X, \mathscr{L}_{1}\left(k x_{0}\right) \otimes k(x)\right) \simeq \mathscr{L}_{1}\left(k x_{0}\right) \otimes k(x)
$$

is surjective for all $k \geqq k_{0}$ and $x \in X$. Therefore $\mathscr{L}_{1}\left(k x_{0}\right)$ is generated by global sections.

To show the rest of the lemma, it is enough to choose k_{0} large enough that $\mathscr{L}\left(k x_{0}\right)$ is generated by global sections for all $k \geqq k_{0}$. q.e.d.

Proof of Proposition 2.2. For the proof of the representability, we may assume that X has a rational point x_{0}, for otherwise choose a separable finite extension of k over which X has a rational point and use descent theory. Let us fix a natural number k greater than k_{0} as in Lemma 2.3. We have an isomorphism $\boldsymbol{F l a g}_{\mathscr{\mathscr { L } , m}}^{d} \simeq \boldsymbol{F l a g}_{\mathscr{\mathscr { C }}\left(k x_{0}\right), m}^{d+k m}$ of functors. By Lemma 2.3, we may assume that \mathscr{L} as well as any locally free subsheaf \mathscr{L}_{1} of \mathscr{L} of degree d and rank m are generated by global sections, and that $h^{1}(\mathscr{L})=$ $h^{1}\left(\mathscr{L}_{1}\right)=0$.

$$
\operatorname{Flag}_{\mathscr{\mathscr { L } , m}}^{d}(T) \ni\left(\mathscr{L}_{1} / X \times T\right) \longrightarrow\left(\operatorname{pr}_{2^{*}} \mathscr{L}_{1} / T\right) \in \operatorname{Grass}(T)
$$

gives an injective morphism of functors, where Grass is the Grassmannian functor with Grass (T) consisting of subvectorbundles of rank e in $H^{\circ}(\mathscr{L})$ $\otimes O_{T}$, where $e=d+m(1-g)$.

Let \mathscr{M} be the universal locally free subsheaf of $O_{\text {Grass }} \otimes_{k} H^{0}(\mathscr{L})$ on Grass and $p: X \rightarrow \operatorname{Spec} k$ the structure morphism. Consider the following natural homomorphisms of sheaves on $X \times_{k}$ Grass.

$$
\mathrm{pr}_{2}^{*} \mathscr{M} \longrightarrow H^{0}(\mathscr{L}) \otimes_{k} O_{X \times G r a s s} \simeq \mathrm{pr}_{1}^{*} p^{*} p_{*} \mathscr{L} \longrightarrow \mathrm{pr}_{1}^{*} \mathscr{L} .
$$

Let T be the stratum corresponding to the Hilbert polynomial $P(t)=$ $\operatorname{deg} \mathscr{L}+n(1-g)-(d+m(1-g))+t(n-m)$ of the flattening stratification of Coker $\left(\operatorname{pr}_{2}^{*} \mathscr{M} \rightarrow \mathrm{pr}_{1}^{*} \mathscr{L}\right)$ on Grass. For $\mathscr{L}_{1}:=\operatorname{Im}\left(\left.\left.\operatorname{pr}_{2}^{*} \mathscr{M}\right|_{T} \rightarrow \mathrm{pr}_{1}^{*} \mathscr{L}\right|_{T}\right)$, we can regard $\mathscr{L}_{1} \otimes_{o_{T}} k(t)$ as a subsheaf of $\mathscr{L} \otimes_{k} k(t)$ for all $t \in T$. The Hilbert polynomial of $\mathscr{L}_{1} \otimes k(t)$ is $d+m(1-g)+m t$ and this \mathscr{L}_{1} and T represent $\boldsymbol{F l a g}_{\mathscr{E}, m}^{d}$.

We now prove the properness of $\boldsymbol{F l a g}_{\mathscr{E}, m}^{d}$ by the valuative criterion. Let R be a discrete valuation ring over k, and K the field of fractions. Let \mathscr{M} be a locally free subsheaf of degree d and rank m of $\mathscr{L} \otimes_{k} K$ over $X \times_{k} K$. Put $V:=\Gamma(\mathscr{M}) \cap \Gamma\left(\mathscr{L} \otimes_{k} R\right)$ and consider the subsheaf \mathscr{F}^{\prime} of $\mathscr{L} \otimes_{k} R$ generated by V. Let \mathscr{C} be Coker $\left(\mathscr{F}^{\prime} \rightarrow \mathscr{L} \otimes R\right)$ modulo its R-torsion and let $\mathscr{F}:=\operatorname{Ker}(\mathscr{L} \otimes R \rightarrow \mathscr{C})$. The Hilbert polynomial of $\mathscr{F}_{t}(t \in \operatorname{Spec} R)$ is independent of t, because \mathscr{F} is R-flat and $O_{x} \otimes R$ is coherent. \mathscr{F}_{t} is a subsheaf of $\mathscr{L} \otimes_{k} k(t)$ for $t \in \operatorname{Spec} R$, because \mathscr{C} is R-flat. Therefore \mathscr{F}_{t} is a locally free sheaf over $X \times{ }_{k} k(t)$. q.e.d.

Proof of Theorem 2.1. Put $\boldsymbol{d}=\left(d_{1}, \cdots, d_{n-1}\right)$ and $Y=X \times_{k} \boldsymbol{F l a g}_{\mathscr{A}, n-1}^{d_{1}}$ $\times \cdots \times \boldsymbol{F l a g}_{\mathscr{Q}, 1}^{d_{n}{ }^{1}}$. For the universal sheaf \mathscr{L}_{i} on $X \times_{k} \boldsymbol{F l a g}_{\mathscr{Q}, n-i}^{d_{i}}$, its pull-back $\mathscr{M}_{i}=\operatorname{pr}_{1, i+1}^{*} \mathscr{L}_{i}(i=2, \cdots, n)$ is a locally free sheaf on Y. For each i, let T_{i} be the stratum corresponding to the Hilbert polynomial
$p(t)=0$ of the flattening stratification of $\boldsymbol{F l a g}_{\mathscr{Q}, n-1}^{d_{1}} \times \cdots \times \boldsymbol{F l a g}_{\mathscr{Q}, 1}^{d_{n-1}}$ for $\mathscr{M}_{i}+\mathscr{M}_{i+1} / \mathscr{M}_{i}$.
$\left(\mathscr{M}_{i}+\mathscr{M}_{i+1} / \mathscr{M}_{i}\right) \otimes k(t)=0$ if and only if $t \in T_{i}$. Therefore $T=\bigcap_{i} T_{i}$ represents the functor Flag $_{\mathscr{Q}}^{d}$. Let us prove the closedness of each T_{i} hence of T by using the valuative criterion. Let R be a discrete valuation ring over k and K be the field of fractions. If the locally free sheaves $\mathscr{L}_{0}, \mathscr{L}_{i}$, \mathscr{L}_{i+1} over $X \times \operatorname{Spec} R$ satisfy the conditions
a) $\mathscr{L}_{0} \supset \mathscr{L}_{i} . \mathscr{L}_{0} \supset \mathscr{L}_{i+1}$,
b) $\mathscr{L}_{0}\left|\mathscr{L}_{i}, \mathscr{L}_{0}\right| \mathscr{L}_{i+1}$ are R-flat,
c) $\mathscr{L}_{i} \otimes K \supset \mathscr{L}_{i+1} \otimes K$,
then $\mathscr{L}_{i} \supset \mathscr{L}_{i+1}$ holds. This proves the closedness of T_{i}. q.e.d.
Corollary 2.4. The functor $\boldsymbol{F l a g}_{\dot{q}}^{d, 0}:(\mathrm{Sch} / k)^{\circ} \rightarrow$ (Sets) which sends T to the set

$$
\left\{\left(\mathscr{L}_{0} \supset \cdots \supset \mathscr{L}_{n-1}\right) \in \operatorname{Flag}_{\mathscr{L}}^{d}(T)\left|\mathscr{L}_{i}\right| \mathscr{L}_{i+1} \text { is invertible on } X \times_{k} T \text { for any } i\right\}
$$

is represented by an open subscheme of Flag $_{\mathscr{s}}^{\boldsymbol{d}}$.

2.2. A double coset decomposition and the Lang sheaf

We use the same notation as in Sections 1.3 and 2.1.
Let U_{K} be the subgroup of $\operatorname{GL}(n, K)$ consisting of unipotent upper triangular matrices. We now show that
(2.1) $\quad U_{K} \backslash \mathrm{GL}(n, \boldsymbol{A}) / \mathrm{GL}(n, \hat{O})$ is in one-to-one correspondence with the set consisting of $\left(\mathscr{L}_{0} \supset \cdots \supset \mathscr{L}_{n-1} ; \gamma_{1}, \cdots, \gamma_{n}\right)$ where \mathscr{L}_{i} runs through locally free sheaves of rank $n-i$ over X such that $\mathscr{L}_{i-1} / \mathscr{L}_{i}$ is invertible for all i and γ_{i} rational sections of $\mathscr{L}_{i-1} / \mathscr{L}_{i}$.

This correspondence is given as follows. For a given element $g=$ $\left(g_{v}\right)_{v \in\left|X_{0}\right|}$ of $\operatorname{GL}(n, A)$, and $v \in\left|X_{0}\right|$, the stalk at v of the corresponding flag $\mathscr{L}_{0}, \cdots, \mathscr{L}_{n-1}$ is given by

$$
\begin{aligned}
\{w \in & \left.K^{n} \mid w g \in O_{v}^{n}\right\} \supset\left\{w \in 0 \oplus K^{n-1} \mid w g \in O_{v}^{n}\right\} \supset \cdots \\
& \supset\left\{w \in 0 \oplus \cdots 0 \oplus K \mid w g \in O_{v}^{n}\right\} .
\end{aligned}
$$

γ_{i} is the rational section corresponding to $(0, \cdots, \stackrel{i}{1}, \cdots, 0)$. This correspondence is well defined and one to one. The following proposition is easy to prove.

Proposition 2.5. Under the above correspondence (2.1), let

$$
g=\left[\begin{array}{cc}
a_{1} & * \\
\ddots & \\
0 & \\
a_{n}
\end{array}\right]
$$

correspond to $\left(\mathscr{L}_{0} \supset \cdots \supset \mathscr{L}_{n-1} ; \gamma_{1}, \cdots, \gamma_{n}\right)$. Then
(1) γ_{i} is a global section of $\mathscr{L}_{i-1} / \mathscr{L}_{i}$ if and only if $\operatorname{ord}_{v} a_{i} \geqq 0$ for all v.
(2) $\operatorname{ord}_{v} a_{i} \geqq \operatorname{ord}_{v} a_{i+1}$ if and only if $\operatorname{ord}_{v} \gamma_{i} \geqq \operatorname{ord}_{v} \gamma_{i+1}$.

Next we define some moduli schemes. Let S_{m} be the symmetric group of degree m which acts on X_{0}^{m} as permutations of factors. We write the quotient X_{0}^{m} / S_{m} by $X_{0}^{(m)}$. Let $X:=X_{0} \otimes \bar{F}_{q}$ and let $\operatorname{Pic}^{m}=\operatorname{Pic}^{m}(X)$ be the Picard variety of X of degree m. Denote by v : Flag $_{\mathscr{q}}^{d} \rightarrow P:=$ Pic $^{e_{1}} \times \cdots \times$ Pic $^{e_{n}}$ the map which sends $\left(\mathscr{L}_{0}, \cdots, \mathscr{L}_{n-1}\right)$ to $\left(\operatorname{det} \mathscr{L}_{0} \otimes \operatorname{det} \mathscr{L}_{1}^{-1}, \cdots\right.$, $\left.\operatorname{det} \mathscr{L}_{n-2} \otimes \operatorname{det} \mathscr{L}_{n-1}^{-1}, \mathscr{L}_{n-1}\right) \in P$, where $e_{1}=d_{0}-d_{1}, \cdots, e_{n-1}=d_{n-2}-d_{n-1}$, $e_{n}=d_{n-1}$. Let us denote $X^{(e)}$ by $X^{\left(e_{1}\right)} \times \cdots \times X^{\left(e_{n}\right)}$ where $\boldsymbol{e}=\left(e_{1}, \cdots, e_{n}\right)$. The variety $X^{(e)}=X_{0}^{(e)} \otimes \bar{F}_{q}$ represents the set of effective divisors of degree e on X. Denote by jac ${ }^{e}$ the Albanese map from $X^{(e)}$ to Pic^{e} and jac ${ }^{(e)}$ the map jac ${ }^{e_{1}} \times \cdots \times$ jac $^{e_{n}}$ from $X^{(e)}$ to P. If $Y=\left(e_{1}, \cdots, e_{n}\right)$ satisfies $e_{1} \geqq \cdots$ $\geqq e_{n} \geqq 0$, we can define the incidence variety I^{Y} as the closed subscheme of $X^{\left(e_{1}\right)} \times \cdots \times X^{\left(e_{n}\right)}$ defined by

$$
I^{Y}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in X^{\left(e_{1}\right)} \times \cdots \times X^{\left(e_{n}\right)} \mid x_{1} \geqq x_{2} \geqq \cdots \geqq x_{n} \text { as divisors }\right\} .
$$

The fiber of the morphism jac ${ }^{e}$ at $\mathscr{A} \in \mathrm{Pic}^{e}$ is identified with the set of effective divisors of degree e rationally equivalent to \mathscr{A} and it is identified with the projective space $\boldsymbol{P}\left(H^{0}(X, \mathscr{A})\right)$ associated to $H^{0}(X, \mathscr{A})$. Therefore the fiber of jac ${ }^{d}$ at $\left(\mathscr{A}_{1}, \cdots, \mathscr{A}_{n}\right)$ is identified with $\boldsymbol{P}\left(H^{0}\left(X, \mathscr{A}_{1}\right)\right) \times \cdots \times$ $\boldsymbol{P}\left(H^{0}\left(X, \mathscr{A}_{n}\right)\right)$. Let \mathscr{M}_{i} be the universal line bundle over $X \times \operatorname{Pic}^{e_{i}}$, $f_{i}: X \times \mathrm{Pic}^{e_{i}} \rightarrow \mathrm{Pic}^{e_{i}}$ the natural projection and V_{i} the variety Spec $\left(\operatorname{Sym}\left(f_{i^{*}} \mathscr{M}_{i}^{\vee}\right)\right)$ over Pic $^{e_{i}}$. For $X^{\left(e_{i}\right)}$ is naturally isomorphic to Proj (Sym $\left(f_{i^{*}} \mathscr{M}_{i}^{\vee}\right)$), there is a natural morphism from V_{i} to $X^{\left(e_{i}\right)}$. Let $V:=V_{1} \times \cdots$ $\times V_{n}$ and $J:=V \times_{X(e)} I^{Y}$. Consider the following diagram.

Proposition 2.6. Let $\left(J \times{ }_{P} \text { Flag }{ }_{q}^{d, 0}\right)_{0}$ denote $J \times{ }_{P} \boldsymbol{F l a g}_{\dot{q}}^{d, 0}$ over \boldsymbol{F}_{q}, In the same notation as above, let $B_{A, \mathscr{L}}^{d}$ be the subset of $\operatorname{GL}(n, A)$ consisting of upper triangular matrices

$$
g=\left(\begin{array}{cc}
a_{1} & * \\
\ddots & \\
0 & a_{n}
\end{array}\right) \in \mathrm{GL}(n, A)
$$

with
(1) $\operatorname{deg} a_{i}=e_{i}$ for $i=1, \cdots, n$,
(2) $\quad \operatorname{ord}_{v} a_{i} \geqq 0$ for all $v \in\left|X_{0}\right|$ for $i=1, \cdots, n$, and
(3) $\operatorname{GL}(n, K) g \mathrm{GL}(n, \hat{O})$ defines the isomorphism class of \mathscr{L}.

Let $J B_{A, \mathscr{L}}^{d}$ be the subset of $B_{A, \mathscr{L}}^{d}$ consisting of elements

$$
g=\left(\begin{array}{cc}
a_{1} & * \\
\ddots & \\
0 & \\
a_{n}
\end{array}\right) \in \mathrm{GL}(n, A)
$$

with $\operatorname{ord}_{v} a_{i} \geqq \operatorname{ord}_{v} a_{i+1}$ for all $v \in\left|X_{0}\right|$ and $i=1, \cdots, n$. Then under the correspondence of (2.1), we have the following identifications:

$$
\begin{aligned}
& U_{K} \backslash U_{K} B_{A, \mathscr{L}}^{d} \mathrm{GL}(n, \hat{O}) / \mathrm{GL}(n, \hat{O}) \simeq\left(\boldsymbol{V} \times{ }_{P} \boldsymbol{F l a g}_{\mathscr{Q}}^{d, 0}{ }_{0}\left(\boldsymbol{F}_{q}\right),\right. \\
& U_{K} \backslash U_{K} J B_{A, \mathscr{L}}^{d} \operatorname{GL}(n, \hat{O}) / \mathrm{GL}(n, \hat{O}) \simeq\left(J \times{ }_{P} \boldsymbol{F l a g _ { \mathscr { Q } } ^ { d , 0 }}\right)_{0}\left(\boldsymbol{F}_{q}\right) .
\end{aligned}
$$

Proof. Let $\left(\mathscr{L}_{1}, \cdots, \mathscr{L}_{n-1} ; \gamma_{1}, \cdots, \gamma_{n}\right)$ be the subbundles of \mathscr{L} and the rational section γ_{i} of $\mathscr{L}_{i-1} / \mathscr{L}_{i}$ corresponding to an element $g=\left(\begin{array}{ll}a_{1} & * \\ - & \\ 0 & a_{n}\end{array}\right)$ of $B_{A, \mathscr{L}}^{d}$. Then the invertible sheaf $\mathscr{L}_{i-1} / \mathscr{L}_{i}$ with the rational section γ_{i} corresponds to the invertible sheaf $O\left(-\Sigma_{v}\right.$ ord $\left.\left(a_{i, v}\right)\right)(v)$) with the rational section $1 \in O \otimes K \simeq O\left(-\Sigma_{v}\right.$ ord $\left.\left(a_{i, v}\right)(v)\right) \otimes K$. Therefore γ_{i} corresponds to a global section of $\mathscr{L}_{i-1} / \mathscr{L}_{i}$ if and only if ord $\left(a_{i, v}\right) \geqq 0$ for all $v \in\left|X_{0}\right|$. Therefore the set on the left is identified with the set of pairs $\left(\mathscr{L}_{1}, \cdots, \mathscr{L}_{n-1} ; \gamma_{1}, \cdots, \gamma_{n}\right)$ such that \mathscr{L}_{i} is a subbundle of \mathscr{L} and γ_{i} is a global section of the invertible sheaf $\mathscr{L}_{i-1} / \mathscr{L}_{i}$. On the other hand, the set of \boldsymbol{F}_{q}-rational points of \boldsymbol{V} corresponds to the set of invertible sheaves \mathscr{A}_{i} with their global sections γ_{i}. Thus the set on the left is in one-to-one correspondence with the set of \boldsymbol{F}_{q}-rational points of $\boldsymbol{V} \times{ }_{P} \boldsymbol{F l a g}{ }_{g}^{d, 0}$. q.e.d.

By the above proposition, the restriction of a Whittaker function to $U_{K} \backslash U_{K} J B_{A, \mathscr{L}}^{d} \operatorname{GL}(n, \hat{O}) / \mathrm{GL}(n, O)$ can be regarded as a function on $\left(J_{P} \times \boldsymbol{F l a g}_{\boldsymbol{q}}^{d, 0}\right)_{0}\left(\boldsymbol{F}_{q}\right)$.

In the rest of this paragraph, we define the Lang sheaf. Fix a_{1}, \cdots, a_{n} $\in A^{*}$. We can define the map α from

$$
U_{K} \backslash U_{K}\left\{g=\left(\begin{array}{cc}
a_{1} & * \\
\ddots & \\
0 & a_{n}
\end{array}\right) \in \operatorname{GL}(n, A)\right\} \operatorname{GL}(n, \hat{O}) / \mathrm{GL}(n, \hat{O})
$$

to

$$
\oplus_{i=1}^{n-1} A /\left(K+a_{i} / a_{i+1} \hat{O}\right)
$$

sending the class of

$$
g=\left(\begin{array}{ccc}
1 & u_{1} & * \\
\cdot & \cdot & u_{n-1} \\
0 & & 1
\end{array}\right)\left(\begin{array}{cc}
a_{1} & 0 \\
\ddots & \ddots \\
0 & \\
a_{n}
\end{array}\right)
$$

to the class of $\left(u_{1}, \cdots, u_{n-1}\right)$ in $\oplus_{i=1}^{n-1} A /\left(K+a_{i} / a_{i+1} \hat{O}\right)$.
Proposition 2.7. For an element a_{i} of A^{*}, define an invertible sheaf \mathscr{A}_{i} on X by

$$
\mathscr{A}_{i}(U)=\left\{K \ni f \mid \operatorname{ord}_{v} f+\operatorname{ord}_{v} a_{i} \geqq 0(v \in U)\right\} .
$$

Then we have the equality:

$$
A /\left(K+a_{i} a_{i+1}^{-1} \hat{O}\right) \simeq \operatorname{Ext}^{1}\left(\mathscr{A}_{i}, \mathscr{A}_{i+1}\right)
$$

Moreover, we have the following commutative diagram:
where $\tilde{\alpha}$ sends $\left(\mathscr{L}_{0} \supset \cdots \supset \mathscr{L}_{n-1} ; \gamma_{1}, \cdots, \gamma_{n}\right)$ to

$$
\left(0 \rightarrow \mathscr{L}_{i+1} / \mathscr{L}_{i+2} \rightarrow \mathscr{L}_{i} / \mathscr{L}_{i+2} \rightarrow \mathscr{L}_{i} / \mathscr{L}_{i+1} \rightarrow 0\right)_{i} .
$$

Proof. The first equality is derived from the exact sequence

$$
0 \longrightarrow \operatorname{Hom}\left(\mathscr{A}_{i}, \mathscr{A}_{i+1}\right) \longrightarrow K \longrightarrow K / \operatorname{Hom}\left(\mathscr{A}_{i}, \mathscr{A}_{i+1}\right) \longrightarrow 0,
$$

and

$$
H^{1}(X, K)=0, H^{0}\left(X, K / \operatorname{Hom}\left(\mathscr{A}_{i}, \mathscr{A}_{i+1}\right)\right) \simeq A / a_{i} a_{i+1}^{-1} \hat{O} .
$$

The last assertion can be shown by chasing the correspondence of (2.1). q.e.d.

Let us consider the additive character $\psi: A /(K+\hat{O}) \rightarrow \bar{Q}_{\ell}^{*}$. From now on, let us assume that there exists an additive character:

$$
\varphi: \boldsymbol{F}_{q} \longrightarrow \overline{\boldsymbol{Q}}_{\imath}^{*},
$$

and a differential $\omega \in H^{0}\left(X_{0}, \Omega_{K_{0}}^{1}\right) \simeq \operatorname{Hom}\left(H^{1}\left(X_{0}, O_{X_{0}}\right), \boldsymbol{F}_{q}\right)$ such that $\psi=$ $\varphi \circ \omega$. Let $\tilde{\mathscr{M}}_{i}$ be the universal line bundle on $X \times \operatorname{Pic}^{e_{i}}$ and \mathscr{M}_{i} the pulled back sheaf over $X \times P$. Let $\mathscr{E x t}_{P}^{1}\left(\mathscr{M}_{i}, \mathscr{M}_{i+1}\right)$ denote the sheaf of extensions over P. We will write W for $\operatorname{Spec}\left(\operatorname{Sym} \oplus_{i=1}^{n-1} \mathscr{E x t a}_{P}^{1}\left(\mathscr{M}_{i}, \mathscr{M}_{i+1}\right)\right)$). We can define a morphism τ over P from Flag $_{g}$ to W by sending $\left(\mathscr{L}_{0} \supset \cdots \supset \mathscr{L}_{n-1}\right)$ to ($\left.0 \rightarrow \mathscr{L}_{i+1} / \mathscr{L}_{i+2} \rightarrow \mathscr{L}_{i} / \mathscr{L}_{i+2} \rightarrow \mathscr{L}_{i} / \mathscr{L}_{i+1} \rightarrow 0\right)_{i}$. Summing these up, we can define the following maps:

$$
\begin{aligned}
&\left.J \times{ }_{P} F \operatorname{lag}_{\mathscr{\varphi}}^{d, 0} \underset{\mathrm{id} \times \tau}{ } J \times{ }_{P} W \xrightarrow[\beta]{\longrightarrow} P \times\left(H^{1}\left(X_{0}, O\right)\right)^{n-1} \underset{\mathrm{pr}_{2}}{\longrightarrow} H^{1}\left(X_{0}, O\right)\right)^{n-1} \\
& \xrightarrow[\Sigma]{\longrightarrow} H^{1}\left(X_{0}, O\right) \underset{\omega}{\longrightarrow} A^{1}
\end{aligned}
$$

where the map β from $J \times{ }_{P} W$ to $P \times\left(H^{1}\left(X_{0}, O\right)\right)^{n-1}$ on P is given fiberwise by the Serre duality

$$
\begin{aligned}
& \left(\left(\operatorname{Hom}\left(\mathscr{A}_{2}, \mathscr{A}_{1}\right)-\{0\}\right) \times \cdots \times\left(\operatorname{Hom}\left(\mathscr{A}_{n}, \mathscr{A}_{n-1}\right)-\{0\}\right)\right. \\
& \left.\quad \times\left(\operatorname{Hom}\left(O, \mathscr{A}_{n}\right)-\{0\}\right)\right) \\
& \quad \times\left(\operatorname{Ext}^{1}\left(\mathscr{A}_{1}, \mathscr{A}_{2}\right) \times \cdots \times \operatorname{Ext}^{1}\left(\mathscr{A}_{n-1}, A_{n}\right)\right) \\
& \quad \longrightarrow H^{1}\left(X_{0}, O\right)^{n-1} .
\end{aligned}
$$

We denote this composite by f. The Artin-Schreier covering

$$
\boldsymbol{A}^{1} \ni x \longrightarrow x^{q}-x \in \boldsymbol{A}^{1}
$$

defines an étale covering of \boldsymbol{A}^{1}, with the covering transformation group equal to \boldsymbol{F}_{q}. φ defines a smooth étale sheaf $\overline{\mathscr{L}}_{\varphi}$ of rank one over \boldsymbol{A}^{1}. The pulled-back sheaf $\mathscr{L}_{\varphi}=f^{*} \overline{\mathscr{L}}_{\varphi}$ over $J \times_{P}$ Flag ${ }_{\varphi}^{d, 0}$ will be called the Lang sheaf.

2.3. The construction of the Whittaker sheaves

For a given representation of $\rho: \pi_{1}\left(X_{0}\right) \rightarrow \mathrm{GL}\left(n, \overline{\boldsymbol{Q}}_{6}^{*}\right)$, we define a smooth étale sheaf $\mathscr{F}(\rho)$ on X_{0} associated to ρ (cf. [8, p. 43]). The symmetric group S_{m} of degree m acts on X_{0}^{m} as permutations of factors. There is an obvious equivariant action of S_{m} on $\mathrm{pr}_{1}^{*} \mathscr{F}(\rho) \otimes \cdots \otimes \mathrm{pr}_{m}^{*} \mathscr{F}(\rho)$, hence on $\pi_{m^{*}}\left(\operatorname{pr}_{1}^{*} \mathscr{F}(\rho) \otimes \cdots \otimes \mathrm{pr}_{m}^{*} \mathscr{F}(\rho)\right)$, where π_{m} is the natural projection from X_{0}^{m} to $X_{0}^{(m)}=X_{0}^{m} / S_{m}$. We define $\mathscr{E}^{(m)}(\rho)$ as the fixed subsheaf of $\pi_{m^{*}}\left(\mathrm{pr}_{1}^{*} \mathscr{F}(\rho) \otimes \cdots \otimes \mathrm{pr}_{m}^{*} \mathscr{F}(\rho)\right)$ under S_{m}.

Now for a Young diagram $Y=\left(e_{1}, \cdots, e_{n}\right)$ with $e_{1} \geqq \cdots \geqq e_{n} \geqq 0$ and a representation ρ of $\pi_{1}\left(X_{0}\right)$ as above, we define a sheaf on $X_{0}^{\left(e_{1}\right)} \times \cdots \times$ $X_{0}^{\left(e_{n}\right)}$ by $\mathscr{E}^{\mathscr{Y}}(\rho)=\operatorname{pr}_{1}^{*} \mathscr{E}^{\left(e_{1}\right)}(\rho) \otimes \cdots \otimes \mathrm{pr}_{n}^{*} \mathscr{E}^{\left(e_{n}\right)}(\rho)$. We denote by $\operatorname{Sym}^{Y}(\rho)$ the restriction of $\mathscr{E}^{Y}(\rho)$ to the incidence variety I^{Y}.

Let $X^{(m) 0}$ be the open subscheme of $X^{(m)}=X_{0}^{(m)} \otimes \bar{F}_{q}$ which corresponds to

$$
\left\{x=x_{1}+\cdots+x_{m} \in X^{(m)} \mid x_{i} \neq x_{j} \quad(i \neq j)\right\} .
$$

The natural projection $\pi_{m}: X^{m} \rightarrow X^{(m)}$ induces an étale Galois covering π_{m}^{0} : $X^{m, 0}=\pi_{m}^{-1}\left(X^{(m) 0}\right) \rightarrow X^{(m) 0}$, with the Galois group S_{m}. If we put $f=\left(e_{1}-e_{2}\right.$, \cdots, e_{n}), then the incidence variety I^{Y} can be identified with $X^{(f)}$ by the map sending the element $\left(x_{1}, \cdots, x_{n}\right)$ of $X^{(\mathcal{F})}$ to the element ($\sum_{i=1}^{n} x_{i}$, $\sum_{i=2}^{n} x_{i}, \cdots, x_{n}$) of $X^{(e)}$. Under this identification, let us define an open subvariety $I^{0}=\left(I^{Y}\right)^{0}$ of $I=I^{Y}$ by

$$
I^{0}=X^{\left(e_{1}-e_{2}\right) 0} \times \cdots \times X^{\left(e_{n}\right) 0}
$$

and an open set U of $X^{e_{1}-e_{2}} \times \cdots \times X^{e_{n}}$ by

$$
U=X^{e_{1}-e_{2}, 0} \times \cdots \times X^{e_{n}, 0}
$$

We define a marking t of a Young diagram $Y=\left(e_{1}, \cdots, e_{n}\right)$ to be the diagram

$$
t=\frac{t_{1}^{1}, \cdots \cdots \cdot t_{e_{1}}^{1}}{\left\lvert\, \frac{t_{1}}{n}\right., \cdots \cdot t_{e_{n}}^{n}}
$$

where $\left\{t_{1}^{i}, \cdots, t_{e_{i}}^{i}\right\}=\left\{1, \cdots, e_{i}\right\}$. For a given marking t, we can define the map G_{t} which sends the element $\left(x_{e_{1}}, \cdots, x_{1}\right)$ of $X^{e_{1}-e_{2}} \times \cdots \times X^{e_{n}}$ to the element $\left(\left(x_{t_{1}^{1}}, \cdots, x_{t_{e_{1}}^{1}}\right), \cdots,\left(x_{t_{1}^{n}}, \cdots, x_{t_{e_{n}}^{n}}\right)\right)$ of $X^{e_{1}} \times \cdots \times X^{e_{n}}$. Under this map we obtain the identification

$$
\begin{aligned}
G & =\operatorname{Gal}\left(U / I^{0}\right) \\
& \simeq\left\{h \in S_{e_{1}} \times \cdots \times S_{e_{n}} \subset \operatorname{Aut}\left(X^{e_{1}} \times \cdots \times X^{e_{n}}\right) \mid h\left(\operatorname{Im} G_{t}\right)=\operatorname{Im}\left(G_{t}\right)\right\} .
\end{aligned}
$$

We obtain the following diagram:

The sheaf $j^{*} \bar{\pi}^{*}\left(\operatorname{Sym}^{Y}(\rho)\right)$ is equal to

$$
j^{*} G_{t}^{*}\left(\mathrm{pr}_{1}^{*} \mathscr{F}(\rho) \otimes \cdots \otimes \mathrm{pr}_{e_{1}+\cdots+e_{n}}^{*} \mathscr{F}(\rho)\right)
$$

because π is étale for G acts on U freely. The natural map

$$
\begin{aligned}
G_{t}^{*}\left(\mathrm{pr}_{1}^{*} \mathscr{F}(\rho) \otimes\right. & \left.\cdots \otimes \mathrm{pr}_{e_{1}+\cdots+e_{n}}^{*} \mathscr{F}(\rho)\right) \\
& \longrightarrow j_{*} j^{*} G_{t}^{*}\left(\operatorname{pr}_{1}^{*} \mathscr{F}(\rho) \otimes \cdots \otimes \mathrm{pr}_{e_{1}+\cdots+e_{n}}^{*} \mathscr{F}(\rho)\right)
\end{aligned}
$$

is an isomorphism because $G_{t}^{*}\left(\mathrm{pr}_{1}^{*} \mathscr{F}(\rho) \otimes \cdots \otimes \mathrm{pr}_{e_{1}+\cdots+e_{n}}^{*} \mathscr{F}(\rho)\right)$ is a smooth sheaf. Thus we obtain the following composite:

$$
\begin{aligned}
\bar{\pi}^{*}\left(\operatorname{Sym}^{Y}(\rho)\right) & \longrightarrow j_{*} j^{*} \bar{\pi}^{*}\left(\operatorname{Sym}^{Y}(\rho)\right) \\
& \simeq j_{*} j^{*} G_{t}^{*}\left(\operatorname{pr}_{1}^{*} \mathscr{F}(\rho) \otimes \cdots \otimes \operatorname{pr}_{e_{1}+\cdots+e_{n}}^{*} \mathscr{F}(\rho)\right) \\
& \simeq G_{t}^{*}\left(\operatorname{pr}_{1}^{*} \mathscr{F}(\rho) \otimes \cdots \otimes \mathrm{pr}_{e_{1}+\cdots+e_{n}}^{*} \mathscr{F}(\rho)\right) .
\end{aligned}
$$

Let H_{t} be the subgroup of $\operatorname{Aut}\left(X^{e_{1}} \times \cdots \times X^{e_{n}}\right)$ consisting of $h \in S_{e_{1}+\cdots+e_{n}}$ \subset Aut $\left(X^{e_{1}} \times \cdots \times X^{e_{n}}\right)$ which is a permutation of coordinates and which preserve the number written on the marking t. Then there is an isomorphism

$$
H_{t} \simeq \underbrace{S_{n} \times \cdots \times S_{n}}_{e_{n}} \times \underbrace{S_{n-1} \times \cdots \times S_{n-1}}_{e_{n-1}-e_{n}} \times \cdots \times \underbrace{S_{1} \times \cdots \times S_{1}}_{e_{1}-e_{2}} .
$$

which gives rise to a character sign_{H} of H_{t} defined as the product of signatures of all symmetric factor groups. $G_{t}^{*}\left(\operatorname{pr}_{1}^{*} \mathscr{F}(\rho) \otimes \cdots \otimes \operatorname{pr}_{e_{1}+\cdots+e_{n}}^{*} \mathscr{F}(\rho)\right)$ is equal to $\operatorname{pr}_{t_{1}^{*}}^{*} \mathscr{F}(\rho) \otimes \cdots \otimes \mathrm{pr}_{t_{e_{n}}^{n}}^{*} \mathscr{F}(\rho)$. Therefore H_{t} acts on G_{t}^{*} $\left(\otimes_{i=1}^{e_{1}+\cdots+e_{n}} \operatorname{pr}_{i}^{*} \mathscr{F}(\rho)\right)$ as a sheaf on I^{Y}. By this action we can define an endomorphism $\Sigma_{H_{t} \ni g} \operatorname{sign}_{H}(g) g$. Let \mathscr{I}_{t} be the image of the composite map

$$
\begin{aligned}
& \bar{\pi}^{*}\left(\operatorname{Sym}^{Y}(\rho)\right) \longrightarrow G_{t}^{*}\left(\otimes_{i=1}^{e_{1}+\cdots+e_{n}} \operatorname{pr}_{i}^{*} \mathscr{F}(\rho)\right) \longrightarrow G_{t}^{*}\left(\otimes_{i=1}^{e_{1}+\cdots+e_{n}} \operatorname{pr}_{i}^{*} \mathscr{F}(\rho)\right) . \\
& \Sigma_{H_{t} \ni g} \operatorname{sign}_{H}(g) g
\end{aligned}
$$

We have a natural map $\gamma: \bar{\pi}^{*}\left(\operatorname{Sym}^{Y}(\rho)\right) \rightarrow \mathscr{I}_{t}$.
Definition. Let $\mathscr{E}\left(\chi^{Y}(\rho)\right)$ be the sheaf on I^{Y}, the image sheaf of

$$
\operatorname{Sym}^{Y}(\rho) \longrightarrow \bar{\pi}_{*} \bar{\pi}^{*} \operatorname{Sym}^{Y}(\rho) \xrightarrow{\bar{\pi} * * r} \bar{\pi}_{*} \mathscr{I}_{t} .
$$

Let D be an effective divisor of degree d. If $Y-d \delta=\left(e_{1}-d(n-1)\right.$, $\left.e_{2}-d(n-2), \cdots, e_{n}\right)$ is a Young diagram, then we can define the map

$$
i_{Y, D}: I^{Y-d \delta} \ni\left(x_{1}, \cdots, x_{n}\right) \longrightarrow\left(x_{1}+(n-1) D, x_{2}+(n-2) D, \cdots, x_{n}\right) \in I^{Y} .
$$

From now on we fix a differential ω on X and let D be $\operatorname{div}(\omega)$. Then let $\mathscr{F}\left(\chi_{Y}(\rho)\right):=i_{Y, D^{*}}\left(\mathscr{E}\left(\chi_{Y-d \delta}(\rho)\right)\right.$. We fix an isomorphism between C and $\overline{\boldsymbol{Q}}_{\ell}$ and the additive character φ of \boldsymbol{F}_{q}. Then we can define the Lang sheaf by ω.

Proposition 2.8. Let $Y=\left(e_{1}, \cdots, e_{n}\right)$ be a Young diagram which satisfies $\left(^{*}\right)$ as above. Let $g \in J B_{A, \mathscr{L}}^{d}$ be a diagonal matrix $\operatorname{diag}\left(a_{1}, \cdots, a_{n}\right)$ corresponding to $w \in\left(J \times{ }_{P} \text { Flag }{ }_{9}^{d, 0}\right)_{0}\left(\boldsymbol{F}_{q}\right)$ under the correspondence in Proposition 2.2. Let v be the image of w under the natural map $J \times{ }_{P} F l a g_{\mathscr{\&}}^{d, 0} \rightarrow I$ and \bar{v} a geometric point over v. Let f be the global Whittaker function defined in Section 1.3, and Fr_{v} the Frobenius substitution on $\mathscr{F}\left(\chi_{Y}(\rho)\right)_{\bar{v}}$. Then we have

$$
f(g)=q^{e} \operatorname{tr} \operatorname{Fr}_{v} \mid \mathscr{F}\left(\chi_{Y}(\rho)\right)_{\bar{v}}
$$

where $e=\sum_{i=1}^{n}(2 i-n+1)\left(e_{i}-(2 g-2)(n-i)\right) / 2$.
Definition. Let $\delta: J \times{ }_{P}$ Flag $_{q}^{d, 0} \rightarrow I$ be the natural homomorphism. The Whittaker sheaf $\mathrm{Wh}_{\mathscr{f}}^{d}(\rho)$ is defined by

$$
\mathrm{Wh}_{\mathscr{E}}^{d}(\rho)=\delta^{*}\left(\mathscr{F}\left(\chi_{Y}(\rho)\right)\right) \otimes \mathscr{L}_{\varphi},
$$

where \mathscr{L}_{φ} is the Lang sheaf defined in Section 2.2.
Theorem 2.9. Let g be an element of $J B_{A, \mathscr{L}}^{d}$, and w the corresponding element of $\left(J \times{ }_{P} \boldsymbol{F l a g}_{\mathscr{e}}^{d, 0}\right)_{0}(\boldsymbol{F})$. In the same notation as in Proposition 2.8, we have

$$
f(g)=q^{e} \operatorname{tr} \mathrm{Fr}_{v} \mid \mathrm{Wh}_{\mathscr{f}}^{d}(\rho)_{\bar{w}}
$$

where \bar{w} is a geometric point over w.
Proof of Proposition 2.8. Let I_{0} be the incidence variety defined over \boldsymbol{F}_{q}. First we look at the geometric fiber of $\mathscr{E}\left(\chi_{Y}(\rho)\right)$ at a geometric point \bar{v} over an element v of $I_{0}\left(\boldsymbol{F}_{q}\right)$. The point \bar{v} can be expressed as an element $\left(v_{1}, \cdots, v_{n}\right)$ of $X^{\left(e_{1}\right)} \times \cdots \times X^{\left(e_{n}\right)}$. Let x_{1}, \cdots, x_{l} be distinct closed points of X which appear in \bar{v}. Let $m_{i, j}$ be the multiplicity of x_{i} in v_{j}. Then $Y_{i}=\left(m_{i, 1}, \cdots, m_{i, n}\right)$ becomes a Young diagram. Under the componentwise sum of Young diagrams, we have $Y=Y_{1}+\cdots+Y_{l}$, i.e., $Y=$ ($\sum_{i=1}^{l} m_{i, 1}, \cdots, \sum_{i=1}^{l} m_{i, n}$). We denote the element \bar{v} as $\bar{v}=\sum_{i=1}^{l} Y_{i} x_{i} . \sigma \in$ $\mathrm{Gal}\left(\overline{\boldsymbol{F}}_{q} / \boldsymbol{F}_{q}\right)$ acts on $I_{0}\left(\overline{\boldsymbol{F}}_{q}\right)$ by $\sigma: \bar{v} \rightarrow \bar{v}^{\sigma}=\sum_{i=1}^{l} Y_{i} x_{i}^{\sigma}$, and $I_{0}\left(\boldsymbol{F}_{q}\right)$ can be regarded as the set of fixed elements in $I_{0}\left(\overline{\boldsymbol{F}}_{q}\right)$ under the action of $\operatorname{Gal}\left(\overline{\boldsymbol{F}}_{q} / \boldsymbol{F}_{q}\right)$. If $\bar{v}=\sum_{i=1}^{l} Y_{i} x_{i}$, then

$$
\mathscr{E}\left(\chi_{Y}(\rho)\right)_{\bar{v}} \simeq V_{Y_{1}}\left(\mathscr{F}(\rho)_{\bar{x}_{1}}\right) \otimes \cdots \otimes V_{Y_{l}}\left(\mathscr{F}(\rho)_{\bar{x}_{l}}\right)
$$

where $V_{Y_{i}}\left(\mathscr{F}(\rho)_{\bar{x}_{i}}\right)$ is the representation space of $\operatorname{GL}\left(\mathscr{F}(\rho)_{\bar{x}_{i}}\right)$ which corresponds to the Young diagram Y_{i} ([5, p. 129]). Moreover, the above isomorphism has the following meaning. Let y_{1}, \cdots, y_{k} be the orbits of x_{1}, \cdots, x_{l} under the action of $\operatorname{Gal}\left(\overline{\boldsymbol{F}}_{q} / \boldsymbol{F}_{q}\right)$. Then the Frobenius substitu-
tion $\mathrm{Fr}_{y_{j}}$ at y_{j} acts on the vector space $\otimes_{x_{i} \in y_{i}} V_{Y_{i}}\left(\mathscr{F}(\rho)_{\bar{x}_{i}}\right)$. The action of the Frobenius at v on the left and that of $\mathrm{Fr}_{y_{1}} \otimes \cdots \otimes \mathrm{Fr}_{y_{k}}$ on the right are equivariant under the isomorphism.

Now let us look more closely at the action of $\mathrm{Fr}_{y_{j}}$ on the vector space $\otimes_{x_{i} \in y_{j}} V_{Y_{i}}\left(\mathscr{F}(\rho)_{\bar{x}_{i}}\right)$. For a given étale $\overline{\boldsymbol{Q}}_{\ell}$-sheaf \mathscr{F} over $\operatorname{Spec} \boldsymbol{F}_{q}$, a $\operatorname{map} f: \operatorname{Spec} \boldsymbol{F}_{q^{n}} \rightarrow \operatorname{Spec} \boldsymbol{F}_{q}$, and $\tau \in \operatorname{Gal}\left(\boldsymbol{F}_{q^{n}} / \boldsymbol{F}_{q}\right)$, we have descent data $\sigma(\tau)$: $\tau_{*} f^{*} \mathscr{F} \rightarrow f^{*} \mathscr{F}$ on $f^{*} \mathscr{F}$ (cf. [8, p. 53]).

For $i \in \boldsymbol{Z} / n \boldsymbol{Z}$, let τ_{i} be the i-th power of the Frobenius in $\operatorname{Gal}\left(\overline{\boldsymbol{F}}_{q} / \boldsymbol{F}_{q}\right)$. The proof of the following lemma is an easy exercise of linear algebra.

Lemma 2.10. Fix a geometric point $\bar{v}: \operatorname{Spec} \overline{\boldsymbol{F}}_{q} \rightarrow \operatorname{Spec} \boldsymbol{F}_{q_{n}}$. Let A be $a \operatorname{Gal}\left(\overline{\boldsymbol{F}}_{q} / \boldsymbol{F}_{q^{n}}\right)$-module and A_{i} be copies of A for $i=1, \cdots, n$. The sheaf $\mathscr{G}=A_{1} \otimes \cdots \otimes A_{n}$ on $\operatorname{Spec} \boldsymbol{F}_{q^{n}}$ has descent data

$$
\Gamma\left(\bar{v}^{*} \tau_{i *} \mathscr{G}\right) \simeq A_{1+i} \otimes \cdots \otimes A_{n+i} \longrightarrow A_{1} \otimes \cdots \otimes A_{n} \simeq \Gamma\left(\bar{v}^{*} \mathscr{G}\right)
$$

which sends $\left(x_{1} \otimes \cdots \otimes x_{n}\right)$ to $\left(x_{1} \otimes \cdots \otimes x_{n}\right)$, where $A_{j}:=A_{j-n}$ if $j>n$. If F is the descended sheaf on $\operatorname{Spec} \boldsymbol{F}_{q}$, then

$$
\operatorname{tr} \operatorname{Fr}_{F_{q} \mid}\left|F_{\bar{v}}=\operatorname{tr} \operatorname{Fr}_{F_{q}{ }^{n}}\right| A
$$

Applying the above lemma to $\otimes_{x_{i} \in y_{j}} V_{Y_{i}}\left(\mathscr{F}(\rho)_{\bar{x}_{i}}\right)$, we have the following identity:

$$
\begin{aligned}
\operatorname{tr} \operatorname{Fr}_{y_{j}} \mid \otimes_{x_{i} \in y_{j}} V_{Y_{i}}\left(\mathscr{F}(\rho)_{\bar{x}_{i}}\right) & =\operatorname{tr} \operatorname{Fr}_{\operatorname{Im}\left(y_{j}\right)} \mid V_{Y_{i}}\left(\mathscr{F}(\rho)_{\bar{x}_{i}}\right) \\
& =\chi_{Y_{i}}\left(\rho\left(\operatorname{Fr}_{\operatorname{Im}\left(y_{j}\right)}\right),\right.
\end{aligned}
$$

where $\operatorname{Im}\left(y_{j}\right)$ is the corresponding closed point of X and χ_{Y} the character of the representation V_{Y}.

We define $w=v+D \delta$ as the image of v under $i_{Y, D}$. Then we have the equality

$$
\operatorname{tr} \operatorname{Fr}_{w}\left|\mathscr{F}\left(\chi_{Y}(\rho)\right)_{\bar{w}}=\operatorname{tr} \operatorname{Fr}_{v}\right| \mathscr{E}\left(\chi_{Y}(\rho)\right)_{\bar{v}},
$$

hence

$$
\begin{equation*}
\operatorname{tr} \operatorname{Fr}_{w} \mid \mathscr{F}\left(\chi_{Y}(\rho)\right)_{\bar{w}}=\prod_{j=1}^{k}\left(\chi_{Y_{i}-D_{i} \delta}\left(\rho\left(\operatorname{Fr}_{\operatorname{Im}\left(y_{j}\right)}\right)\right)\right), \tag{2.2}
\end{equation*}
$$

where $Y_{i}-D_{i} \delta$ is the Young diagram obtained from the multiplicity of \bar{v} at $x_{i} \in y_{j}$. Now we compute the value of f at g.

$$
\begin{aligned}
f(g) & =\prod_{v} \tilde{f}_{v}\left(g_{v}\right) \\
& =\prod_{v} \gamma_{t_{v} D_{v}} \circ f_{v}\left(g_{v}\right)
\end{aligned}
$$

where D_{v} is the multiplicity of D at v. Recall that we defined f_{v} in Section 1.3. using the eigenvalues μ_{1}, \cdots, μ_{n} of $\rho\left(\mathrm{Fr}_{v}\right)$ and the equality (1.2). Therefore we have

$$
\begin{aligned}
& \prod_{v} \gamma_{t_{v}-D_{v}} \circ f_{v}\left(g_{v}\right)=\prod_{y_{j}}\left(q^{\sum_{r=1}^{n}(r-n)\left(m_{i}, r-D_{i}(n-r)\right) \operatorname{deg} y_{i}}\right) \\
& \times\left(\chi_{Y_{i-D_{i}}}\left(\rho\left(\operatorname{Fr}_{\operatorname{Im}\left(y_{j}\right)}\right) q^{(n-1) \operatorname{deg} y_{j} / 2}\right)\right) \\
&= \prod_{y_{j}}\left(q^{\Sigma_{r=1}^{n}\left((r-n)\left(m_{i, r}-D_{i}(n-r)\right)+(n-1) \operatorname{deg}\left(Y_{i}-D_{i} \delta\right) / 2\right) \operatorname{deg} y_{j}}\right) \\
& \times\left(\chi_{Y_{i}-D_{i} \delta}\left(\rho\left(\operatorname{Fr}_{\operatorname{Im}\left(y_{j} j\right.}\right)\right)\right)
\end{aligned}
$$

By the equality (2.2), it is equal to

$$
q^{e} \operatorname{tr} \operatorname{Fr}_{w} \mid \mathscr{F}\left(\chi_{Y}(\rho)\right)_{\bar{w}}
$$

where

$$
\begin{aligned}
e & \left.=\sum_{j=1}^{n}(j-n)\left(e_{j}-\operatorname{deg} D(n-j)\right)+(n-1) \operatorname{deg}(Y-D \delta) / 2\right) \\
& =\sum_{j=1}^{n}(2 j-n+1)\left(e_{j}-(2 g+2)(n-j)\right)
\end{aligned}
$$

Proof of the Theorem. We have
$f(g)=\psi\left(u_{1}+\cdots+u_{n-1}\right) f\left(\left[\begin{array}{cc}a_{1} & 0 \\ \cdot & \\ 0 & a_{n}\end{array}\right]\right) \quad$ for $g=\left(\begin{array}{ccc}1 & u_{1} & * \\ \ddots & \ddots & u_{n-1} \\ 0 & & 1\end{array}\right)\left(\begin{array}{cc}a_{1} & 0 \\ \ddots & \\ 0 & a_{n}\end{array}\right)$.
By the commutativity of the Proposition 2.7 and the definition of the Lang sheaf \mathscr{L}_{φ}, we have

$$
\psi\left(u_{1}+\cdots+u_{n-1}\right) f\left(\left[\begin{array}{cc}
a_{1} & 0 \\
\ddots & \\
0 & a_{n}
\end{array}\right]\right)=\left(\operatorname{tr} \operatorname{Fr} \mid \mathscr{L}_{\varphi, \bar{w}}\right) \times\left(\operatorname{tr} \operatorname{Fr} \mid \delta^{*} \mathscr{F}\left(\chi_{Y}(\rho)\right)_{\bar{w}}\right) . \quad \text { q.e.d. }
$$

Remark. The natural surjective morphism $\operatorname{Sym}^{Y}(\rho) \rightarrow \mathscr{E}\left(\chi_{Y}(\rho)\right)$ splits. This can be shown by the specialization argument and by the Richardson rule for the representations of general linear groups (cf. [7]).

References

[1] Bernstein, I. N. and Zelevinsky, A. V., Induced representations of Reductive p-adic groups I: Ann. Sci. École Norm. Sup. $4{ }^{e}$ series, 10 (1977), 441-472.
[2] Borel, A., Automorphic L-functions, Proc. Symp. in Pure Math. 33, Amer. Math. Soc., Automorphic forms, representations and L-functions, edited by A. Borel and W. Casselman, 1976, Part 2, 27-61.
[3] Drinfeld, V. G., Two dimensional ℓ-adic representations of the fundamental
group of a curve over a finite field and automorphic forms on $G L(2)$, Amer. J. Math., 105 (1983), 84-114.
[4] Gelfand, I. M. and Kajdan, D. A., Representations of GL(n, K) where K is a local field, Func. Anal. Appl., 6. 4 (1972), 315-317.
[5] Godement, R. and Jacquet, H., Zeta functions of simple algebras, Lecture Notes in Math. 260, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[6] Langlands, R. P., Automorphic representations, Shimura varieties, and Motieves. Ein Märchen, Proc. Symp. in Pure Math. 33, Amer. Math. Soc., Automorphic forms, representations and L-functions, edited by A. Borel and W. Casselman, 1979, Part 2, 205-246.
[7] Macdonald, I. G., Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979.
[8] Milne, J. S., Etale Cohomology, Princeton Univ. Press, 1980.
[9] Shalika, J. A., The multiplicity one theorem for GL_{n}, Ann. of Math., 100 (1974), 171-193.
[10] Shimura, G., Introduction to Arithmetic Theory of Automorphic Functions, Iwanami-Shoten, Tokyo and Princeton Univ. Press, 1971.
[11] Shintani, T., On an Explicit Formula for Class-1 "Whittaker Functions" on GL $_{n}$ over p-adic Fields, Proc. Japan Acad., 52 (1976), 180-182.
[12] Weyl, H., The Classical Groups, Princeton Univ. Press, 1938.
Department of Mathematics,
Faculty of Science,
University of Tokyo,
Hongo, Tokyo 113, Japan

