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Stability of the Pluricanonical Maps of Threefolds 

Masaki Hanamura 

Introduction 

Let X be a non-singular projective variety with the non-negative 
Kodaira dimension &(X) defined over the field of complex numbers. 

Letting Kx to be a canonical divisor of X, we denote by <PlnKxl the 
rational map associated with the linear system InKxl. Then there exists 
some positive integer n such that dim (1m <PlnKxl) =.t(X) and that the generic 
fiber of <PlnKxl: X.··~lm <PlnKxl is geometrically irreducible. Such a fibration 
is called the stable canonical map or the Iitaka fibration. 

In this paper we consider the following problem: 
Let X be a non-singular projective variety with .t(X) >0. For which 

value of n, does InKxl define the stable canonical map? 
For surfaces, this problem was studied in detail by Bombieri [2], 

Kodaira [17] and litaka [6]. For non-singular threefolds of general type 
with Kx numerically effective, Wilson [27], Benveniste [1] and Matsuki [21] 
treated the problem. Recently Kollar [18] investigated threefolds with 
irregularity >4. 

The purpose of the present paper is to generalize their results. 
In Section 3, we study the birationality of the pluricanonical maps of 

threefolds of general type. Our result is stated as follows: 

Theorem (3.4). Let X be a non-singular threefold of general type which 
has a minimal model of index r. Then <PlnKxl is a birational map for n>no 

where 

no=9 

no=13 

no=4r+4 

no=4r+3 

if r= 1, 

ifr=2, 

if3<rs:.5, 

ifr>6. 

For the definition of the minimal model and its index, see Section 1. 
Note that the index is independent of the choice of a minimal model. 
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In Section 4, we consider threefolds X with A:(X) = 1 or 2, and treat 
the stability of the pluricanonical maps. The result is roughly stated as 
follows: there exists a positive integer n such that for a threefold X with 
/i:(X) = 1 or 2, (/)lnKxl is the stable canonical map unless 

(I) the irregularity q(X)=O, or 
(II) q(X)= 1 or 2 and X is a certain type of quotient of (curve) X 

(surface). (See (4.6) for the precise statement). 
In Section 5, we give a couple of general results on the pluricanonical 

systems of varieties of arbitrary dimension. 
The author expresses his gratitude to Professors S. Iitaka and Y. 

Kawamata for their invaluable advice and warm encouragement. In par­
ticular Professor Y. Kawamata kindly pointed out that the results in 
Section 3 can be improved to the present form. 

§ 1. Preliminaries 

Throughout this paper, we consider varieties over C. 

(1.1) Let X be a normal projective variety of dimension n. We 
denote by Div X the group of Weil divisors on X. An element D e (Div X) 
®Q is said to be a Q-divisor. A Q-divisor D is said to be a Q-Cartier divisor 
if mDis a Cartier divisor for some positive integer m. For a Q-Cartier 
divisor D, we can define the intersection number (D. C) for any irreducible 
curve CcX, and the self-intersection number (Dn). We say that a Q-Cartier 
divisor is nef (or numerically effective) if (D. C»O for any curve CcX. 
A nef Cartier divisor D is called big if (Dn»o. Further, D is said to be 
ample if mD is an ample Cartier divisor for some positive integer m. If 
every Weil divisor on X is a Q-Cartier divisor, we say that X is Q-factorial. 

There is a one-to-one correspondence between the isomorphism classes 
of reflexive sheaves of rank one on X and the linear equivalence classes of 
Weil divisors on X. For a Weil divisor D, the corresponding reflexive 
sheaf is denoted by (f) x(D). Kx means a canonical divisor of X, that is, a 
Weil divisor satisfying (f)x(Kx)=(t}:})**, the right hand side denoting the 
double dual of t}:}. We shall also write (J)~p instead of (f)x(sKx) for a posi­
tive integer s. 

Let D=2tatDt be a Q-divisor where {Dt } are distinct prime divisors, 
and at e Q. We define the integral part of D, the round-up of D, and the 
fractional part of D by: 

[D):=2t [at]Dt, [at]=the integral part of at, 

rDl:=_[_D], 

{D}:=J(D-[D])'. 
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(1.2) Definition (Reid [22]). Let X be a normal projective variety, 
and K z a canonical divisor. We say that X has only canonical singularities, 
if Kz is a Q-Cartier divisor and for a resolution of singularities p~2-+x, 
there are natural morphisms p*a/;p-+a/j' for any positive integer s. The 
index of X is defined to be the smallest positive integer r such that rKx is a 
Cartier divisor. 

(1.3) Definition (Reid [23]). Let X be a normal projective variety. 
X is said to be minimal or a minimal model, if X has only canonical 
singularities and K z is nef. Moreover if Kz is ample, we say that X is a 
canonical variety. 

(1.4) Proposition (birational invariance of the index). If X and X, 
are birationally equivalent minimal models of general type, they have the same 
index. 

Proof By Kawamata [13], for a positive integer m which is large 
enough and is a multiple of the index of X, the linear system I mKz I is base­
point free and cp:=!PlmKXI is a birational morphism onto 

which is the canonical model of X. 
Let r=(index of X). We know that 

rKz = cp*L 

for an ample divisor L on X.an. We see immediately that L=rKzcan' Thus 
the index s of X.an divides r. We can write 

sKz = cp*(sKzcan) + LI 

for an effective Weil divisor LI. Multiplying both sides with rls and com­
paring the result with the above, we get LI=O. Hence sKz is a Cartier 
divisor and we must have r=s. 

(1.5) For the definition of the Kodaira dimension .t(X) of an algebraic 
variety X, we refer the reader to Iitaka [5] or [7]. X is said to be of general 
type (resp. of fiber type) if .t(X) = dim X (resp. 0 < .t(X) < dim X). 

(1.6) A surjective morphism f: X-+Y between projective algebraic 
varieties is called a fiber space if the generic fiber Xv of f is geometrically 
irreducible, 7) denoting the generic point of Y. 

In this case we define .t(f): = .t(Xv)' The variation var (f) of a fiber 
space f: X -+ Y is defined to be the minimum of the dimensions of algebraic 
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varieties Y' which are subject to the following condition: There exist a 
fiber space f': X'-+ Y' between projective varieties, a projective variety Y, a 
generically finite map 1:: Y -+ Y and a surjective morphism g: Y -+ Y' such 
that the main components of Xx y Yand X' X y' Yare birational over Y. 

§ 2. Vanishing theorems and the plurigenus formula 

We describe vanishing theorems which 'will be used in Sections 3 
and 5. 

(2.1) Lemma. Let X be a normal projective variety with only canonical 
singularities. Let D be a Q-Cartier Wei! divisor such that D - Kx is nef and 
big. Then Hi(X, mx(D»=Ofor any i>O. 

For the proof, we refer the reader to Kawamata-Matsuki-Matsuda 
[16]. 

(2.2) Lemma (Kawamata [10], Viehweg [25]). Let X be a non-singular 
projective variety, and D a Q-divisor on X. Assume that the fractional part 
{D} is a divisor with normal crossings and that D-Kx is nef and big. Then 
Hi(X, mx(Kx+rDl»=Ofor i>O. 

(2.3) Lemma. Let X be a minimal threefold of general type with index 
r. Then we have 

hO(X, mx((mr+s)Kx» 

=(1/12). (mr+s)(mr+s-l)(2mr+2s-1)(K~)+am+cs 

for O::;:s<r, mr+s~2, where a and Cs are constants. 

Proof Let fl: X-+X be a resolution of singularities such that the 
exceptional locus is a divisor with normal crossings and 

Kg=fl*(Kx)+.:1 

with an effective divisor .:1, where fl(.:1) consists of finite number of points. 
By Lemma (2.2), 

Hi(X, mg(Kg+r(n-l)fl*Kx l»=O 

for n~2 and i>O. Thus 

hO(X, mx(nKx» 

=hO(X, @g(Kg+r(n-l)fl*Kxl» 

=X(X, mx(Kg+r(n-l)fl*Kxl» 

={1/6)(Kg+r(n-l)fl*Kx l)3_(1/4)(Kg + r(n-l)fl*Kx l)2 .Kg 

+(1/12)(Kx +r(n-l)fl*Kx l). (K:r + c2(X» + (1/24)X(mx) 
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by the Riemann-Roch formula. Hence we get the desired expression with 
a=(1/12). (clf'). p.*(rKx)). 

§ 3. Stability of the pluricanonical maps of threefolds of general type 

In the rest of the paper, we shall denote simply by Pen) the n-genus 
Pn(X) of X. 

(3.1) Lemma (Benveniste [1], Matsuki [21]). Let S be a non-singular 
surface, R a nef and big divisor on S, and m a positive integer. Then the 
rational map tPlKs+mRI is a birational map if the following conditions are 
satisfied: 

(1) Given any two distinct points x, YES, let p.: S-+S be the blow­
ing up of S at x and y. Then HO(S, (!}s(p.*(mR)-2Lx-2Ly))-=J:O, where 
L x=p.-l(X) and L y =p.-l(y). 

(2) m>4, or 
(2)' m=3 and (R2):2:2. 

(3.2) Lemma. Let X be a minimal threefold of general type with index 
r;;:;;2. 

(i) P(n)-=J:0for any n>r+2. P(mr» I2for any m:2:3. 
(ii) The linear system l(mr+s)Kxl has dimension >3 and is not com-

posed of a pencil, if the triple (r, s, m) satisfies one of the following conditions: 
Case r=2: m>3. 
Case r=3: m>2. 
Case r=4, 5: 0::;;s<2 and m:2:2; s>3 and m:2:1. 
Case r>6: O;;:;;s< 1 and m;;:;;2; s;;:;;2 and m:2: 1. 

Proof By Lemma (2.2), we can put 

( 1 ) P(mr+s)=(1/I2)(mr+s)(mr+s-I)(2mr+2s-I)(K'!t-)+am+c., 

where a and Cs (O:::;s<r) are constants. We consider the right hand side 
of (1) as a polynomial in m and denote it by P.(m). Let Q.(m) be the first 
term of Ps(m), i.e., 

Ps(m)=Qs(m)+am+cs· 

Obviously, 

(2 )s,m P.(m) >0 for m>l or m=O, s:2:2. 

Assume m< -1. By the Grothendieck duality, we have 
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Since l!i.l.«mr+s)Kx) is a Cohen-Macaulay sheaf (see [19]), we have 

RHom (l!ix«mr+s)Kx), w:r)=l!ix{{1-mr-s)Kx)[3]. 

Hence we get 

where the symbol' denotes the dual vector space. Thus 

-X{l!Ix{{mr+s)Kx))=X(l!ix<{1-mr-s)Kx)) 

=hO{l!ix{{l-mr-s)Kx))zO 

by Lemma (2.1). Therefore 

(2 ).,m -P.{m) >0 for m<-1. 

We shall estimate the numbers a and c. on the basis of (2).,m (mzl 
or m=O, sz2 or m< -I). For any rand s, 

{2 ) •. 1 

and 

(2),._1 

induce 

(3), a>{1/2){Q.{ -1)-Q.{1)}-(1/12){2r2+(6s2-6s+ 1)}{rK~). 

The last term decreases in s; thus 

a> -(1/12)(2r2+ l)(rK~) 

is the strongest bound among (3),. Moreover if r>3, we have for s>2, 

(2 ) •. 0 

By (2).,_1 and (2)0, 

a>-Q.(O)+Q.(-I) 
(4 ). 

=(1/12){ -2r 2+{6s-3)r-{6s2-6s+ 1)}(rK~). 

Among them, the most strict estimate is 

( 4 )(T+1)/2 

( 4 )(T/2) 

az{I/12){ -(1/2)r2+1/2}{rK~) 

a>(1/12){ -(1/2)r2~1}(r.,K3x) 

if r is odd, 

if r is even. 
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Next we assume that InKxl is composed of a pencil. Lettingf: X'--+X 
to be a resolution of singularities of X and the base locus of (/JlnKXI' we get 
a diagram 

X'~W~ 

f 1 (b1:KXI h 1 
X ··.· .. ····+Wncpp(n)-I. 

Here Wn=Im (/JlnKxl is a curve and X'~W~~Wn is the Stein factori­
zation of (/JlnKXI of: X'--+Wn. Put a=deg Wn, b=degh and let F be the 
fixed part of InKx' I. Then we have 

nKx,~abS+F, 

where S is a general fiber of g and the symbol ~ denotes numerical equi­
valence. Multiplying this with rf*(Kx)2, which is a nef I-cycle, we get 

rn(K'"x) ;;;'ab(rS· f*(K~)) >a. 

But we know that a> P(n)-I since Wn is a non-degenerate curve in pp(n)-I. 
Thus 

( 5 ) 1 "'?P(n)-n(rK'"x) 

must be satisfied. 
Now we divide the lemma into cases according to the value s. We 

first estimate the plurigenus formula (1) from below by a polynomial, using 
the restrictions on the pair (a, c.) obtained before. (i) follows directly from 
the estimate. Combining this estimate with (5), we get the assertion (ii). 

Case 1: r>3, s>2. If r is odd, by (2) •. 0 and (4)(r+l)/2' we have 

P(mr+s);;;'Qs(m)+m.( -I/I2)·(I/2·r2+ 1/2)· (rK'"x)-Q.(O) 

"'?(1/I2)[(mr+s)(mr+s-I)(2mr+2s-I) 

+m{ -(I/2)r3+(I/2)r}-s(s-I)(2s-1)](K'"x). 

From this inequality we deduce 
(i) P(mr+s»O for m> 1. 
(ii) P(mr+s)-(mr+s)(rK'"x» 1 aridP(mr+s) >4 ifm>2 or m= 1, 

s;;;'3, r;;;'5 or m= 1, s=2, r"'?7. ' 
If r is even, by (2) •. 0 and (4)':/2' we obtain 

P(mr + s)"'? (I/12)[2r 2m3 + (6s - 3)rm2 + (6s2 - 6s - (I/2)r2)m ](r K'"x). 

Hence 
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(i) P(mr+s»Oform?:'l. 
(ii) P(mr+s)-(mr+s)(rK~J> 1 and P(mr+s»4if mz3 or m=2, 

s~3, rz4 or m=2, s=2, rZ6. 

Case 2: s= 1. By (2)1,1 and (2)1,_1, we get 

P(mr+ 1)~{l/12)(m2-1)r(2rm+3)(rKi). 

Hence 
(i) P(mr+ 1»0 for mz2. 
(ii) P(mr+ 1)-(mr+ 1)(rKi)> 1 and P(mr+ 1)~4 ifm~3 or m=2, 

r?:. 3. 

Case 3: s=O. By (2)0,1 and (2)0,-1, we have 

P(mr)~{l/12)(m2-1)r(2rm-3)(rKi). 

Thus 
(i) P(mr»Oformz2. P(mr)~12form~3. 

(ii) P(mr)-mr(rKi)> 1 and P(mr)~4 if m>3 or m=2, r:2':4. 
For r=3, using (4)2 and (2)0,1> we get 

P(3m)-3m(3Ki» 1 for m=2. 

(3.3) Proposition. Let X be a minimal threefold of index r>2. Then 
~lnKxl is a birational map if s, a, k, n are integers satisfying the following 
conditions: 

(1) O<s<r, 
(2) l(ar+s)Kxl is not composed of a pencil, 
(3) P(n-ar-s)-:::j=:O, 
(4) P(n-kr-s-1)-:::j=:0, 
(5) k-a>3, 
(6) P(ar+s»4, 
(7) P((k-a)r):2':9. 

Proof Combining!(2) and (3), we obtain the following diagram: 

X' 

fi~w 
ar+$ 

: •• ::>r 
d)lnKxl: ••••••• 

~ ••••••• h 

W" 

Here f is a proper birational morphism resolving singularities of X and the 
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base locus of I (ar + s)Kx I, g:=!PI(ar+slKxl of, and h is the projection induced 
from an inclusion I (ar + s)Kx I C1nKx I· We denote by IMI the movable 
part of l(ar+s)Kx,l, which is an irreducible linear system by Bertini's 
theorem. Obviously, !PlnKxl of=!P1nKX'I. By (3), we have inclusions 

InKx,I::JI(n-kr-s)Kx,+(k-a)f*(rKx)+SI 

::JIKx,+(k-a)f*(rKx)+SI 

for a general member S E IMI. Note that S is a non-singular irreducible 
surface. Thus !P1nK.i'1 is birational if so is !P1KX'+(Tc-al!*(rKXl+sl. 

The exact sequence 

O~{!/x,(Kx,+(k-a)f*(rKx»~{!/x,(Kx,+(k-a)f*(rKx)+S) 

~(!/S<Ks+(k-a)f*(rKx)ls)~O 

induces the long exact sequence of cohomologies: 

O~HO(X', (!/x,(Kx,+(k-a)f*(rKx ))) 

~HO(X', {!/x' (Kx , + (k-a)f*(rKx) + S» 

~HO(S, (!/s(Ks+(k-a)f*(rKx)ls» 

~Hl({!/x,(Kx,+(k-a)f*(rKx))), 

where H 1(X', (!/x,(Kx,-t-(k-a)f*(rKx)))=O by Lemma (2.1), sincef*(rKx) 
is nef and big. Therefore, letting R=f*(rKx), we have !PIKx,+(k-al!*(rKxl+slls 
=!PIKs+(k-alRI. Hence, !PIKX,+ (k-al!*(rKxl +Sl is birational if and only if so 
is !PIKs+(k-alRI. We shall show that !PIKs+(k-alRI is a birational map by 
making use of Lemma (3.1). 

First note that (R2)=(f*(rKx)2·S)=r(rf*(Ki)·S)zrz2, and k-a 
:2::3. Given two points x, y of S, we denote by p.: X'_X' the blow-up of 
X' at x and y, which induces a birational morphism p.s: S_S. We put 
E",=p.-l(X), Ey=p.-l(y) and L",=ExnS, Ly=EynS. The linear system 
l(k-a)p.*f*(rKx)-2Ex-2Eyl is not empty, since its dimension :2::P«k­
a)r)-9>O by (7). 

Claim. S ~ F, where F is defined to be the fixed part of 

l(k-a)p.*f*(rKx)-2E",-2Eyl· 

Proof Otherwise hO(X', (!/g,(S» = 1. On the other hand, S=p.*(S) 
-Ex-Ey. Thus 

hO(X', (!/x,(p.*(S)-E",-Ey»> P(ar+s)-2>2, 

by (6), a contradiction. 
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By the above claim we deduce 

HO(S, (!)s((k-a)R-2L;c-2L y )),*O. 

Now we have checked all the conditions needed. Applying Lemma (3.1), 
we complete the proof of Proposition (3.3). 

(3.4) Theorem. Let X be a non-singular threefold of general type which 
has a minimal model of index r. Then <PlnKxl is a birational map for n>no' 
where 

no=9 ifr=l, 

no= 13 if r=2, 

no=4r+4 if 3<r5:.5, 

no=4r+3 ifr>6. 

Proof To prove the theorem we may assume that X is itself a minimal 
model. 

When r=l, under the notation of Lemma (2.3), (clX)·LI)=O (see 
Reid [22]), hence we have the same plurigenus formula as that for a non­
singular minimal threefold. Thus we can prove that dim <PlnKxl >2 for 
n>4 by the argument of Benveniste [1] or Matsuki [21, Theorem 7], and 
thus conclude that <PlnKxl is birational for n>9 by the argument of [21, 
Theorem 8, Case 1]. 

We shall next assume r>2 and shall apply Proposition (3.3). Let 
(r, s, m) satisfy the condition (ii) in Lemma (3.2). Put a=m, k=a+3, 
n=kr+s+ 1. We check the conditions (1) through (7) in Proposition (3.3). 
(1) and (5) are trivial. (2) and (6) are satisfied by Lemma (3.2), (ii), while 
(7) by Lemma (3.2) (i). (4) is clear, since n-kr-s-l=O. The rest of 
the proof is quite easy. 

(3.5) Remark. Recently the author learned that, for a minimal 
threefold X, 

(1) we can find a terminal minimal model which is Q-factorial 
(Kawamata); 

(2) letting p: Y~X be a resolution of singularities, the I-cycle 
p*(3c2(y)-C1(y)2) is pseudo-effective (Miyaoka). 

Using these results, we can prove that, in case r= 1, we can take no=7. 

(3.6) In our theorem, the number no depends on r. It is natural to 
pose: 

Problem 1. Is it possible to choose an no such that for any non­
singular threefold of general type X, <PlnoKxl is a birational map? 
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We feel that such an absolute number no might not exist. By Kollar 
[18], we know that the above problem is equivalent to the following: 

Problem 2. Does there exist a positive integer nl such that Pnl(X)~2 
for any non-singular threefold of general type? 

Even the answer to the following question is unknown. 

Problem 3. For an arbitrarily large m, does there exist a non­
singular threefold of general type X with P m(X)=O? 

It is certain by Lemma (3.2) that if such examples exist and they have 
minimal models, the indices are unbounded. 

§ 4. Stability of the pluricanonical maps of threefolds of fiber type 

(4.1) In this section we let Xto be a non-singular projective threefold 
with IC(X)= 1 or 2. We use the following notation: 

Assume that ifJllKxl is the stable canonical map, where I is a positive 
integer. By taking suitable non-singular birational models X' and Y of 
X and 1m ifJllKxl' respectively, we get a morphism X'--+Y. Replacing X' 
by X, we have a fiber space f: X --+ Y which is birationally equivalent to the 
stable canonical map. 

Let IX: X--+A be the Albanese map of X, IX(X) the image of IX, and 

X~Z-~-M(X) the Stein factorization of a: X --+IX(X). Put P(n)= 
dim HO(X, m~n) as before. 

(4.2) Proposition. Let X be a non-singular projective threefold with 
/i:(X) = 1 or 2. Suppose P(n»2for some positive integer n. 

(1) If IC(X) = 1, there exists a positive integer ml, depending only on n, 
such that ifJI12mKxl is the stable canonical map for m>ml. 

(2) If /i:(X) =2, there exists a positive integer m 2, depending only on n, 
such that ifJlmKxl is the stable canonical map for m>m2• 

Remark. As the proof below shows, the following suffice: 

ml = 12.(24n2+26n+ 1); 

m2 =2n2+28n+ 13. 

Proof We use an argument similar to that in Kollar [18, Theorem 
4.6]. 

Assume that IC(X) =2 (resp. 1). Take a subpencil A of the linear system 
InKxl. By blowing up the base locus of A, we get a birational morphism 
X'--+X and a morphism g: X'--+pl. Replacing X' by X, we may assume 
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that we have a morphism g: X-+pl and an inclusion of invertible sheaves 
g*@Pl(l)-+(»~n. 

We denote by S a general fiber of g, which is a non-singular surface, 
not necessarily connected. By the easy addition formula of the Kodaira 
dimension (see Iitaka [7]) applied to the Stein factorization of g, we have 
K(X)=2 (resp. 1)~K(So)+ 1, where So is a connected component of S. 
Hence K(SO) > 1 (resp. 0). 

Let k be a positive integer such that 

k is divisible by 12 if K( So) = 0, 

k~14 if K(SO) = 1, 

k~5 if K(SO) =2. 

Claim. A general fiber of the (2nk + n + k)-ple canonical map of X is 
irreducible. 

Proof g*«(»~Jpl) is a semipositive vector bundle on pi by Kawamata 
[12]. Thus it can be expressed in the form EBI=I @Pl(a i ), where r= 
rankg*«(»~Jpl) and ai are non-negative integers. Hence we obtain the 
inclusions of the linear systems: 

1(2nk+n+k)Kxl:JlkKx+(2k+ l)g* HI:Jlg* HI, 

where we denote by H the hyperplane section of pl. Thus if we denote 
by W the image of the rational map WI (2nk+n+k)Kxl' there exists a rational 
map h: W ......... pl and a commutative diagram: 

X~PI 
. " 

(/)1 (2nk+n+k)Kxl ~ •• ····h 
-1-." 
w 

From the above diagram we see easily that the claim is equivalent to saying 
that the restriction of W I(2nk+n+k)KXI to S is a fiber space. Thus it suffices 
to prove that the restriction of W lkKx +(2k+1)g*HI to S is a fiber space with 
the image of dimension K(So)' 

Since g*@x(kKx+(2k+l)g*H)=g*«(»~Jpl)®H is a vector bundle 
generated by global sections, the restriction map 

is surjective for a general S. This means that the restriction of 
W lkKx+(2k+l)g*HI to S coincides with WlkKsl' By Bombieri [2] and Katsura­
Ueno [8], we know that the k-ple canonical map of S is stable. 
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We go back to the proof of the proposition. Assume that K(X)=2 
(the case K(X)=I is similar). We infer that K(S)=I, since dim W=K(S) 
+1=2. For each iwithO<i<n, let ti=f(14-i)jnl. Since tin+i::;:::14, 
the {(2n+I)·(tin+i)+n}-ple canonical map is stable. By tin<13-i+n, 
we have (2n+ 1)(tin+i)+n<2n2+28n+ 13. Any integer m2::2n2+28n+ 13 
can be written as m=(2n+ I)(tin+i)+n+(some positive multiple of n), 
where i=m modulo n. Hence we complete the proof of Proposition (4.2). 

(4.3) Recall a conjecture by Iitaka and Viehweg: Let f: V--+W be 
a fiber space between non-singular projective varieties with dim V =n and 
dim V=m. Then the following "addition formula" should hold: 

if K(W)~O. 

This "addition formula" is known to be true in some cases among which 
are: 

C :,n-l by Viehweg [25]; 

C:,n_2 by Kawamata [14]. 

(4.4) If we apply to f: X --+ Y the addition formulas C ~l and C ~2' we 
obtain 

(C+)j: K(X)~Max (K(Y), var (f)) if K(Y)~O. 

Ifthe right hand side is positive, we can estimate P(n) from below: 

(4.5) Proposition. We have some positive integer no which satisfies 
the following: 

Let X be a non-singular threefold with K(X) = 1 or 2. Suppose that 
K(Y»O, and Max (K(Y), var(f))>O. Then P(no»2. 

Remark. It suffices to put no = 2 . 242. 

Proof (I) K(X)=1. 
( i ) Case var (f) > O. A general fiber off is a non-singular surface 

with the Kodaira dimension O. Therefore, in the argument of Kawamata 
[14, Section 6 and Step 1 of Section 7], we can take mo= 12, i= 13, m=24, 
and k=m2 =242, and we have K(f*(Q/jJy), Y)=1. Hence d:=degf*«(t)~JY) 
>0. 

Using the Riemann-Roch formula, we deduce 

hO(y, (f*«(t)~7y))01®(t)~kl»X(Y, (f*«(t)~7y))01®(t)~kl) 

=(1-g(Y))+dl+kl(2g(Y)-2)~dl::;:::2 
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for any integer 1>2, g(Y) being the genus of Y. Since there is a natural 
inclusion (f*(a/ik»®!-+f*(w~k!), we get P(kl)?:..2 for 1>2. 

(ii) Case 1C(y»0. In this case, g(y»O and degf*(w~}})?:..O. Thus 

hO(Y,f*(w~12»>X(Y,f*(w~12» 

=23(g(Y)-I)+degf*(w~}}»23. 

Hence P(12»2. 
(2) 1C(X)=2. 
We may assume, by changing models, that there exists a Zariski open 

subset Yo of Y over which f is smooth and D: = Y\ Yo is a divisor with 
normal crossings on Y. 

(i) Case var (f»0. Let {Di} be the irreducible components of D. 
The canonical bundle formula in Kawamata [12] says that 

(f*(wX/y»®12 =@y(2(12a; . D;»)®J*@PI, 

where a; are non-negative rational numbers determined by the types of the 
singularities over general points of D; and J is the period map associated 
withf We thus have inclusions 

f*(W~12)~(f*(WX»®12~J*@PI 

since W~12 has a global section. Hence P(12)>h°(Pl, @pl(I»=2. 
(ii) Case IC( Y) = 1. In this case, by the same canonical bundle 

formula as above, we havefiwx/y)®12~@y. Hence 

f*(W~24)~(f*(WX»®24~W~24 

and thus P(24»2 by Katsura-Ueno [8]. 
(iii) Case 1C(Y)=2. Similar to the case (ii) above. The inclusions 

f*(W~12)~(f*(wx»®12~W~12 

and P12(y»2 imply that P(12)?:..2. 

(4.6) Theorem. There exist positive integers n1 and n2 such that the 
follOWing holds: 

For a non-singular projective threefold X with IC(X) = I or 2, (/.ilnKxl is 
the stable canonical map for 

n= 12n', n'>n1 

n?:..n2 

if 1C(X)=I; 

if 1C(X)=2, 

provided that X belongs to one of the families Si (i = 0, 1, .. " 4) below (see 
(4.1) for the notation): 
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So: = {XI IC(Y) >0, and Max (IC(Y), var (f)) >O.}; 
SI:={Xlq(X»O, and a is not surjective.}; 
S2:={Xlq(X)=3, and a is surjective.}; 
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S3: = {XI q(X) = 1 or 2, a is surjective, IC(p) =0, and Max (var (p), IC(Z)) 
>O.}; 

S4:={Xlq(X)=1, a is surjective, and var (p»O}. 

Those X which belong to neither of the families above are classified as 
follows; note that we have either (I) q(X) =0, or (II) q(X) = 1 or 2 and X is 
a quotient by a finite group of (curve) X (surface); more precisely, var(f)=O 
or var (m =0 in each case. 

(I) Case q(X) =0. 
(O.a) IC(Y) = - 00; 
(O.b) IC(Y)=var(f)=O. 

(II) Case q(X) = 1 or 2, and a is surjective. 
Sub case 1. IC( Y) = var (f) = 0 and IC(p) = var (p) = IC( Z) = O. 
(La) q(X) = K(X) = 1 ; 
(lob) q(X)=2, and K(X)=l; 
(I.c) q(X) =IC(X) =2. 
Subcase 2. K(Y) =var (f) =0, and K(p»O. 
(2.a) q(X)=l, and IC(X)=2; 
(2.b) q(X) =2, and K(X) =2, andvar(p)=O. 
Sub case 4. K(y)= -00, and K(P»O. 
(4. a) q(X) =IC(X) = 1, and var(p)=O; 
(4.b) q(X)=2, K(X) = 1, andvar(p)=O; 
(4. c) q(X)=l, K(X) =2, andvar(p)=O; 
(4.d) q(X)=K(X)=2, and var (f) =0. 

Remark. (i) Let k i be the following integers: 

k o=2·242, k 1 =6, k2=4, k 3 =2·242, k 4=2·282 • 

Then Pki(X)~2 for any X E Si. We thus can calculate the values of n1 

and n2 by making use of Remark to Proposition (4.2): 

n1 = 12· (24 .22 .244+26.2.242 + 1); 

n2 =2 .22 .284 +28 .2.282 + 13. 

(ii) There is no Subcase 3 in (II) for a reason having to do with the 
way the proof is organized. 

Proof Let us say that a family S of threefolds with the Kodaira 
dimension 1 or 2 satisfies the condition (*) if there exists a positive integer 
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n such that P(n)"Z.2 for all XeS. 
By Proposition (4.5), the family So satisfies the condition (*). We 

next claim that S1 satisfies (*). 

Indeed, note that for any X e S1' a(X) is not·· a translation of an 
abelian subvariety of A. Thus .t(a(X))>O and for some abelian subvariety 
BcA, we have the following Cartesian diagram: 

a(X)~ A 

p 1 l~ 
Z ~A/B, 

where 7r denotes the natural projection and p: a(X)~Z is an analytic fiber 
bundle with fiber B over a subvariety ZCA/B of general type (see Ueno 
[24]). By assumption, dim Z = 1 or 2. The same argument as that in 
Kollar [18, Theorem 6.1] proves that P(6»2. (See the Case 2 and replace 
Q)~}~ by Q)~~c in the Case 3.) 

The family S2 satisfies (*). This fact is also contained in Kollar [18, 
Proposition 4.3], where he proved that P(4) >2 for all X e S2' 

By the same argument as in Proposition (4.5), we can show that Sa 
satisfies (*). S, also satisfies (*) by the same argument as in Proposition 
(4.5), (1) (i). . 

It remains to classify those X which belong to neither of the families 
St. They satisfy: 

(1) .t(y)=-oo or .t(Y) =var (f)=0. 
(2) q(X)~2, and a is surjective. 
(3) If q(X)=1 or 2, then .t({3»0 or .t({3) =var ({3) =.t(Z) =0. 
(4) If q(X)= 1 and a is surjective, then var ({3)=0. 

In the case q(X) =0, we have (O.a) or (O.b); we thus assume q(X)= 1 or 2 
in the following. 

1. Case where .t(Y)=var(j)=O and, moreover, .t({3)=var({3)=.t(Z)=O. 
Since a general fiber of {3 is contracted to a point by f, there exists a rational 
map h: Z ...... ~Ywhich makes the following diagram commutative: 

X~Y 
pl .. ·····; 
Z 

Therefore, q(X».t(X), hence the possible cases are: 
(1.a) q(X) =.t(X) = 1; 
(1.b) q(X)=2 and .t(X)=I; 
(1.c) q(X)=.t(X)=2. J 
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2. Case where .I:(y) =var (f)=0 and, moreover, .1:([3»0. We shall prove 
.I:(X) = 2 in this case. Assume .I:(X) = 1. Since Y is an elliptic curve, we 
have a morphism g: A --+ Y and a commutative diagram: 

X~Y 

Y1~ 
Z~A 

r 
If q(X)=l, then g must be an isomorphism, A~Z and a=[3. This 

contradicts .1:([3) > O. 
If q(X) =2, take a general point y E Yand consider the fibers Xy and 

Zy of r 0 g, respectively. Denote by [3y: Xy--+Zy the induced fiber space. 
By the addition formula C~l in (4.4), we have 

.I:(Xy) =O~.I:([3)+ .I:(Zy). 

But .1:([3»0 and .I:(Zy)~O by our hypothesis, which is in contradiction to 
the above inequality. Thus we have either 

(2.a) q(X)=l, IC(X)=2, and var ([3) =0, or 
(2.b) q(X)=2 and IC(X)=2. 

3. Case where IC(Y)=-OO and, moreover, .I:([3)=var([3)=.I:(Z)=O. As 
in the case 1, we have a commutative diagram: 

X~Y 
fi 1 .... ...: 
Z 

If dim Z = dim Y, then h is a birational map. This contradicts .1:( Y) 
= - 00 and .I:(Z) =0. Thus we have dim Z =2 and dim Y = 1, which we 
now show to be a contradiction. 

Indeed, a general fiber Zy of h is an irreducible curve. Applying to 
[3y: Xy--+Zy the addition formula C~l> we have IC(Xy)=O>.I:(X.)+.I:(Zy), 
where X. is a general fiber of [3. Hence .I:(Zy)=O. By Veno [24], Zy is a 
translate of an abelian subvariety of Z. Since there exist only countably 
many abelian subvarieties of Z, we can take an abelian subvariety EcZ 
of dimension one in such a way that the set {y E YI the fiber Zy over yare 
translations of E.} is a dense subset of Y. Therefore, h factors through 
the quotient map q: Z--+Z/E: 

h 1 Z ...... -'>p 

q1/ 
Z/E 
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Since g is a fiber space, we necessarily have Z/ E ~ pI, which is a contra­
diction. 

4. Case where K(Y) = - 00 and moreover K«(3»O. Assume q(X)=2 and 
K(X)=1. Then we must have K«(3)=1 and var «(3) =0 by C~I in (4.3). 

Next we consider the case q(X)=K(X)=2. A general fiber Xy of f 
cannot be contracted by 13. Thus a(Xy) is an elliptic curve. Hence we 
have var(f)=O. 

Thus the following four cases are possible and we conclude the proof 
of the Theorem (4.6): 

(4.a) q(X)=K(X) = 1 and var(j3)=O; 
(4.b) q(X)=2, K(X)=1 and var(j3)=O; 
(4.c) q(X) = 1, K(X)=2 and var(j3)=O; 
(4.d) q(X)=K(X)=2 and var(f)=O. 

(4.7) Remarks. (1) We have examples of varieties for each type 
(n, a) (n=O, 1,2,4; a=a, b, c, d) listed in the statement, though we shall 
not describe them in this paper. 

(2) The author does not know whether there exists a positive integer 
nl (resp. n2) such that 1J 1n,Kxl (resp. 1Jln.Kxl) is the stable canonical map for 
any threefold X with K(X) = 1 (resp. K(X) = 2). 

(3) Another possible approach to the problem of stability is to 
establish an "exact" plurigenus formula (cf. an asymptotic one in (5.2)). 

(4.8) Example. Here is a sample question to show that the remain­
ing cases in (4.6) are not so easy to deal with: for an arbitrarily large integer 
n, is there a non-singular projective surface S of general type which admits 
an action of a cyclic group G such that HO(S, (!}s(nKs))G=O? We show 
below that, if such an S exists, the answer to the question (2) is negative. 

Take an elliptic curve E. Let a E E be a point of order m = #G, and 
let g be a generator of G. Define an action of G on E as g·x=x+a for 
any x E E. Consider the diagonal action of G on S X E. Letting X = 
(SXE)/G, we obtain the following diagram: 

Here 'r and 1C are the quotient maps, P2 the second projection, and f the 
induced morphism. Since 1C is etale, we have K(X)=K(SXE)=2. For 
the integer n in question we have 
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HO(X, (i)x(nKx))=HO(SXE, (i)sxE(nKsXEW 

=HO(S, (i)sCnKsW=O 

§ 5. Further results on pluricanonical systems on varieties of arbitrary 
dimension 
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We now turn to the case of an arbitrary dimension. It is rather easy 
to derive the following general theorem, although the evaluation is far 
from the best possible one. 

(5.1) Theorem. Let d be a fixed positive integer. There exists a 
linear function no( r) of r such that for any minimal d-fold X of general type 
with index r, the n-ple canonical map tjj InKxl is birational for n > no(r). 

Proof We put P(n)=hO(X, w~]) as before. By the Riemann-Roch 
formula and Lemma (2.l), we can write 

with 

where ai (1 <i~d) are rational numbers. We shall prove that there exists 
a number mo such that for some m with 2;;;;'m;;;;'mo, 

is satisfied. Then by Lieberman-Mumford [20, Lemma 2.l], tjjlmrKxl is a 
generically finite map. By Wilson [27], we conclude that tjjl(l+mr)Kxl is a 
birational map. 

We may assume that (*) is not satisfied for 2<m<d+1. Then 

or explicitly, 

Thus the d-ple (aI, .. " ad) must be contained in a bounded set in Rd. In 
particular, there exists a positive number M such that ai > -M for all i. 
Hence, if we take a number mo sufficiently large, then we have 
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Po(m)-(md-'+d»(md/d!-M·md-l- . .. -M)-(md- 1 +d):2::0 

for any m;;:;,mo, which shows our claim. 

(5.2) Proposition (asymptotic plurigenus formula). Let X be a good 
minimal model (see Kawamata [15] for the definition) with index r, and the 
Kodaira dimension K=K(X). Then there exists a positive integer m which 
is a multiple of r, a positive rational number a, and polynomials P.(t) E Q[t] 
(O;;::;;s<m) such that 

PB(t)=o, or 

P 8(t)=a· t'+(lower terms) 

for each s (O;;::;;s<m) and that 

P(km+s)=PB(k) for any positive integer k. 

Proof Let m be a sufficiently large multiple of r such that the inver­
tible sheaf (!)xCmKx) is generated by global sections. Taking a general 
member DE ImKxl, we construct the cyclic covering 

1':: X' = Spec EB;n~ol (!) x( - iK x)---+ X 

in a natural manner. Kawamata [15] proved that X, has only rational 
Gorenstein singularities. 

Let SO = <PlmKxl : X--?Y =Im <PlmKxl be the associated projective mor­
phism. There exists an ample line bundle Lon Y such that mKx=SO*L. 
Let SO' = SO a 1':: X' --? Y be the composition. 

For any positive integer k, we have Hi(Y, SO~(!)x,(Kx,)Q9LQ9k)=O for 
i>O by the vanishing theorem of Kollar [18]. Hence 

Hi(Y, SO*(!)x(sKx)Q9LQ9k) =0 

for i>O, k>O, and s (O~s<m). Thus 

HO(X, (!)x«km+s)Kx))=HO(Y, SO*(!)y(sKx )0LQ9k) 

=X(Y, SO*(!)y(sKx)0LQ9k). 

Hence we are done by the Riemann-Roch formula. 
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