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Coverings of Algebraic Varieties 

Rajendra Vasant Gurjar* 

Introduction 

In this article we survey and prove some of the results about (un­
ramified) coverings of algebraic varieties. Recently Madhav Nori has 
asked the following question. 

Conjecture A. Let S be a projective, non-singular surface over the field 
of complex numbers C. Suppose D is an effective divisor on S with D2 >O. 
Let N be the normal subgroup of 1t'1(S) generated by the images of the 
fundamental groups of the non-singular models of all the irreducible com­
ponents of D. Then the index [1t'I(S) : N] is finite. 

If the conjecture is true, then any surface (smooth, projective) possess­
ing a (possibly singular) rational curve of positive self-intersection would 
have a finite fundamental group! In [7] Nori verifies the conjecture in a 
special case. Surprisingly, this conjecture is related to the following old 
question: 

Conjecture B. Let X be a smooth, projective variety over C. Then the 
universal covering space of X is holomorphically convex. 

Recall that a complex manifold M is said to be holomorphically 
convex if given a sequence of distinct points Xl' x2, • •• in M without a 
limit point in M, there exists a holomorphic function f on M such that the 
set {f(xn)}n=I.2 •... is unbounded. 

A compact, complex manifold is vacuously holomorphically convex. 
We will prove the following results in this paper. 

( 1) (See § 1, Proposition 1). Suppose every covering space S~S is 
holomorphically convex. Then Conjecture A is validfor S, if D is an irre­
ducible curve. If the universal covering space is holomorphically convex, 
then Conjecture A is true, if D is a rational curve (possibly singular). 

(2) (See § 1, Theorem). Let 1t': S~L1 be an elliptic surface. If 
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XeS, (8)=L;i(-I)idimcHJ(S, ( 8»0, then any covering space of S is 
holomorphically convex. If XeS, ( 8)=0, then the universal covering space 
of S is holomorphically convex. 

First we discuss related results and then turn to the sketch of the 
proofs. 

(i) If C is a rational curve on S with C 2 >0, then we shall show that 
HI(S, 0)=0 and hence XeS, 0»0. In particular, if S is an elliptic surface 
then Nori's conjecture is valid for S in the case C is a rational curve on S 
with C 2 >0. Hence trl(S) is finite. 

(ii) There exists an elliptic surface S:::: CI X C2 , where Ci are elliptic 
curves, such that S has a covering space which is not holomorphically 
convex. See [3] for details. 

(iii) Using the Enriques classification of surfaces it follows that Con­
jecture B is verified for all algebraic surfaces which are not of general type. 

(iv) The universal covering S of a projective, non-singular surface S 
may not be embeddable as an analytic subset (open or closed) in any en. 
For, if C e S is a rational curve, then there exists a lift C--+S where C is the 
non-singular model of C. Since C::::PI , the map C--+S must be constant 
(if SeCn). 

Conjecture B has been verified in some cases. In [9] Siegel proved 
that if S is a bounded open subset of en, then S is a Stein manifold. 
Recently Mok and Wong have generalized this to coverings of quasi-pro­
jective varieties. See [6]. 

Using results of Kajiwara-Sakai, James Carlson and Reese Harvey 
have verified Conjecture B for a compact Moishezon manifold whose uni­
versal covering space is a domain spread over an open subset of a Stein 
manifold. See [2]. 

In [8] Shabat has proved that if tr: S--+i1 is a holomorphic map with 
i1 a compact Riemann surface of genus > 2 and all fibres of tr are compact 
Riemann surfaces of genus :?: 2, then the universal covering space of S is 
holomorphically convex. 

A result of Griffiths asserts that any smooth projective variety has a 
Zariski open subset whose universal covering space is a bounded domain 
in en (and holomorphically convex). The results of Griffiths and Shabat 
are easy consequences of Bers' simultaneous uniformization theorem. See 
[1]. 

§ 1. 

We sketch the proofs of some of the results. 

Proposition 1. Suppose every regular covering space S of S is holo­
morphically convex. If CeS is an irreducible curve with C 2>0, then the 
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normal subgroup generated by the image 0/11:1(C) in 11:1(S) has finite index. 
(Here C is the non-singular model of C). 

Proof Let H=image {11:1(C)~11:1(S)} and consider the covering q;: 
S~S such that q;*11:1(S) is the normal subgroup generated by H. By 
assumption, Sis holomorphically convex. 

By generalization of the Lefschetz hyperplane section theorem proved 
in [7], it follows that 11:1(C)~11:1(S) is surjective (since C2>O). Hence q;-I(C) 
is a connected curve on S. By construction, there exists a lift C~S. Let 
q;-I(C)= Ur=l Ct , where Ct are irreducible components of q;-I(C). Cor­
responding to any Ct , there exists a lift C~S with image Ct , because q; is 
a regular covering. Thus each Ct is compact. Choose points X t e Ct. If 
the set {Xt} is infinite, it has no limit point in S. There exists a holomorphic 
functionf on S which is unbounded on {Xl' X2 , ••• }. ButfJ Ct is constant 
for every i and Ut=l Ct is connected, a contradiction. 

The main result in this paper is the following. 

Theorem. Let 11:: S~L1 be an elliptic surface (which is projective). 
IfX(S, l!J»O, then any covering space of Sis holomorphically convex. If 
XeS, l!J)=o, then the universal covering space of Sis holomorphically convex. 

It is easy to see that, for proving the above result, we can assume 
that no fibre of 11: contains an exceptional curve of the first kind. The 
proof depends on the following: 

Proposition 2. Let 11:: S~L1 be a minimal elliptic fibration with L1 a 
compact Riemann surface of genus g. For a general fibre F of 11:, let I denote 
the image of 11:1(F) in 11:1(S). Then we have an exact sequence 

(1)---*1 ---*11:1(S)---*r ---*(1); 

where r= <xi,Yt, a}; l<i<g, l<j<rJ Df=l[Xt,Yt] DJ=la j =l, ajJ=l). 
Here r is the number of singular fibres of 11:, with multiplicities ml, ... , mr 
(~1). If 11: has at least one singular fibre not of the type mIo, then I is 
a cyclic group of odd order. Iffurther g=O, then I={I}. 

We will refer the reader to the paper [3] for the proof of this propo­
sition. The proof involves detailed description of the singular fibres and 
the monodromy around singular fibres described in the fundamental papers 
of Kodaira [4], [5]. To deduce the Theorem from Proposition 2, we use: 

Lemma 1. Suppose L1~pl and 11: has at most two singular fibres, both 
of type mIo. Then S is birationally a ruled surface and henc~ any convering 
of S is holomorphically convex. 
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Proof The fact that InK.I=s6 for all n>l follows easily from the 
canonical bundle formula for S. For a ruled surface X~C, any covering 
X of X arises from a covering of C and base change. Finally, one knows 
that any Riemann surface is holomorphically convex, from which it follows 
trivially that X is holomorphically convex. 

Proof of Theorem. It is easy to see that for a minimal elliptic fibra­
tion IT: S~il, XeS, @»Oifand only if IT has at least one singular fibre not 
of type m1o. Suppose first g=O. If XeS, @»O and IT has at most two 
multiple fibres, then we can show that ITl(S) is finite. For a proof, see [3]. 
In this case the universal covering space S of S is compact and we are 
done. If XeS, @)=O and IT has at most two singular fibers (necessarily of 
type m1o), then by Lemma 1 we are done. So we can assume that either 
g>O or g=O and IT has more than two multiple fibres. In the exact 
sequence 

the significance of the group r is as follows. 
There exists a ramified (possibly infinite) covering ,y.: ,3 ~ il such that 

r acts as a properly discontinuous group of analytic automorphisms of il 
and ,y. is the quotient map ,3~,3/r::::::.il. Further, letting ai E il be the 
point for which the singular fibre IT*(ai ) has multiplicity mi , for every point 
p E ,3 with ,y.(P)=ai, the local ramification index of,y. at P is mi' 

Suppose first that XeS, @»O. Then I is finite. For any subgroup 
H of ITl(S), let r l=s6(H) and Hl=s6-1(rl)=I.H. Then H is a subgroup 
of finite index in HI' Letting S be the universal covering of S, S/ H ~S/ HI 
is a finite, unramified map. To show that S/H is holomorphically convex, 
it suffices to show that Sf HI is holomorphically convex. But we obtain 
S/Hl by pulling back the elliptic fibration via base change ill~il where 
ill=il/rl. The fibration S=ill X 4S, after normalization, gives an un­
ramified covering of S which is nothing but S/Hl • 

Since ill is holomorphically convex and the fibres of S/Hl~L11 are 
compact, S/ HI is also holomorphically convex. 

Now consider the case XeS, @)=O. In this case, we consider ,3~L1 
and the pulled-back elliptic fibration A: s'~,3. Then S' is an unramified 
covering of S, A has no singular fibres, all the fibres of A are complex­
analytically the same and ,3 is contractible. Then by a theorem of Grauert, 
S' is biholomorphic with ,3 X E, E being isomorphic to a fibre of A. Clearly, 
Sis biholomorphic with ,3 X C as the universal covering of E is C. Then 
S is trivially holomorphically convex. 

To complete the arguments, we prove: 
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Lemma 2. Let S be a smooth, projective surface over C. If CcS is 
a rational curve with C 2 >0, then H'(S, (!))={O}. 

Proof (by M. P. Murthy). Consider the Albanese morphism f: S~ 
Alb(S). Then, on the one handf(C) generates Alb(S) as C2>0, on the 
other handf(C) is a point since C is a rational curve. Hence Alb(S)={O} 
and Hl(S, (!))={O}. 

Note: Added in proof In the situation of Proposition 2, I is actually 
trivial if XeS, (98»0. For a proof, see D. A. Cox and S. Zucker's paper, 
"Intersection Numbers of Sections of Elliptic Surfaces", Invent. Math., 
Vol. 53, Fasc. 1, 1979. 
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