On the de Rham Cohomology Group of a Compact Kähler Symplectic Manifold

Akira Fujiki
Dedicated to Professor Masayoshi Nagata on his sixtieth birthday

Introduction

Let X be a connected compact Kähler manifold. Let b_{k} be the Betti numbers of X. Then we know that 1) b_{k} is even if k is odd, and 2) the inequalities $b_{k} \leqq b_{k+2}$ hold for $0 \leqq k<\operatorname{dim} X$. Indeed, these are immediate consequences of the usual Hodge and the Lefschetz decomposition theorems for the (complex) cohomology group of X respectively, which in turn are obtained via Hodge's theory of harmonic integrals (cf. [27] [28]). On the other hand, Chern in [8] showed that the Lefschetz decomposition theorem is actually a special case of a more general decomposition theorem for harmonic forms which are formulated for a general compact Riemannian manifold M with prescribed holonomy group G. Indeed, the case where G is the unitary group $U(n)$ corresponds just to the Kähler case, where $2 n=\operatorname{dim}_{R} M$; while the case $G=\operatorname{Sp}(\mathrm{n}), 4 n=\operatorname{dim}_{R} M$, corresponds in a certain sense (cf. below) to a compact Kähler symplectic manifold, that is, a compact Kähler manifold which admits a nondegenerate holomorphic 2 -form. The main purpose of this paper is then to obtain certain analogues in this context of the Hodge and the Lefschetz decomposition theorems for a compact Kähler symplectic manifold Y in general (cf. Theorems 3.11 and 3.16). At least they give as corollaries the following: 1) Every odd dimensional Betti number is divisible by four and 2) the inequalities $b_{k}+3 b_{k-4} \leqq 3 b_{k-2}+b_{k-6}$ for Betti numbers hold for $k \leqq(1 / 2) \operatorname{dim} Y$. Moreover, with some more efforts we also obtain a more specific topological property of Y to the effect that the homogeneous form g of degree $2 n$ on $H^{2}(Y, Q)$ defined by the cup product, $g(x)=x^{2 n}[Y]$, is an n-ple power of a nondegenerate quadratic form up to constant (Theorem 4.7), the result which might have been expected by the results of Beauville [1].

We are also interested in the quaternionic Kähler case, that is, the
case $G=\operatorname{Sp}(n) \operatorname{Sp}(1)$ (cf. Salamon [22]). In this case we obtain an analogue of the Lefschetz decomposition theorem in the positive scalar curvature case, and as an application, show that for such a manifold the associated quadratic form on the middle dimensional cohomology is always definite, though the proof in this case depends on the results of [22] while the harmonic theory as above serves only as a guide in formulating the results.

Now the outline of each section is as follows. Section 1 is preliminary. In Section 2 we consider a compact Lie subgroup G of $\mathrm{SO}(\mathrm{d})$ together with its action on the complexified exterior algebra $\wedge F_{C}$, where $F=\boldsymbol{R}^{d}$. Namely we study the canonical decomposition of $\wedge F_{C}$ as G - and H modules, where H is a commutor of G in $\mathrm{GL}_{d}(\boldsymbol{R})$. Our main interest here is in the following three cases: 1) $G=\mathrm{U}(\mathrm{n}), d=2 n, 2) G=\mathrm{Sp}(\mathrm{n})$, $d=4 n, 3) G=\operatorname{Sp}(\mathrm{n}) \operatorname{Sp}(1), d=4 n$. Then in Section 3 using the results of Section 2 first we formulate two decomposition theorems for a general compact Riemannian manifold with holonomy group (contained in) G, and then, corresponding to the above three cases, specialize successively to the Kähler, hyperkähler, and quaternionic Kähler cases. In the Kähler case they reduce respectively to the Hodge and the Lefschetz decompositions, and in the hyperkähler and quaternionic Kähler cases we obtain the above mentioned results. (Here we note that any hyperkähler manifold has necessarily a structure of a Kähler symplectic manifold, and vice versa in our compact case (cf. [1] [6] [14])). In Section 4 we treat compact Kähler symplectic manifolds and translate the above results for hyperkähler manifolds into those for such manifolds. Also we prove Theorem 4.7 mentioned above. For the proof we use the unobstructedness theorem for the Kuranishi family due to Bogomolov [3], for which we shall give a simple alternative proof at the end of this section by using the Calabi family; the latter is a holomorphic family of compact Kähler symplectic manifolds parametrized by the projective line \boldsymbol{P}^{1}, naturally associated with any hyperkähler manifold (cf. [6] [22]). In Section 5 we study some of its properties in connection with the results obtained in the previous sections.

Finally we note that all the above results including the Bogomolov unobstructedness theorem should be true for any compact symplectic V manifold with Kähler V-metric. Indeed, the arguments should work word for word for V-manifolds under a suitable interpretation, though we have not checked this in every detail. In view of the existence of natural examples (cf. [10]) such a generalization would also be of some interest.

Notation. a) For a rational number $\gamma,[\gamma]$ denotes the greatest integer which does not exceed γ. For integers $a, b, m, " a \equiv b(m)$ " means that m divides $a-b$. Then for any nonnegative integer k we set

$$
\begin{equation*}
\Delta(k)=\{r ; 0 \leqq r \leqq k, k \equiv r(2)\} \tag{0.1}
\end{equation*}
$$

For an integer r we set $r^{+}=\max (r, 0)$. b) For a complex vector space E, $\boldsymbol{P}(E)$ will denote the projective space of lines of E. c) For an algebra A over a field K and an element a of A the K-linear transformation of A defined by the left multiplication by a is called simply the a-multiplication operator and will often be denoted by $L_{a}: A \rightarrow A$. d) $\boldsymbol{Q}, \boldsymbol{R}, C$: the fields of rational, real, and complex numbers, respectively. $\boldsymbol{Q}^{\times}=\boldsymbol{Q}-\{0\}, \boldsymbol{R}^{\times}=$ $\boldsymbol{R}-\{0\}$, and $\boldsymbol{C}^{*}=\boldsymbol{C}-\{0\}$.

§ 1. Preliminaries

Let \boldsymbol{H} be the real quaternion division algebra with standard real basis $1, i, j, k$. Let $\boldsymbol{H}^{\times}=\boldsymbol{H}-0$. We always consider \boldsymbol{H}^{n} as a right \boldsymbol{H}-module with standard quaternion inner product \langle,$\rangle . Denote by P$ the real subspace of pure quaternions. We have $\boldsymbol{H}=\boldsymbol{R} \oplus P$, and accordingly \langle,$\rangle is decomposed into R$ - and P-parts

$$
\begin{equation*}
\langle,\rangle=(,)+\langle,\rangle_{P} \tag{1.1}
\end{equation*}
$$

where (,) is the standard inner product on $\boldsymbol{H}^{n}=\boldsymbol{R}^{4 n}$ and \langle,\rangle_{P} is a P-valued real alternating form on $\boldsymbol{H}^{n}=\boldsymbol{R}^{4 n}$.

The unitary symplectic group $\operatorname{Sp}(\mathrm{n})$ is by definition the group of \boldsymbol{H}-linear automorphisms of \boldsymbol{H}^{n} preserving \langle,$\rangle . Especially \mathrm{Sp}(1)$ is identified with the group of quaternions of norm 1. We set

$$
C=\left\{\lambda \in \operatorname{Sp}(1) ; \lambda^{2}=-1\right\} .
$$

Then \boldsymbol{H}^{\times}acts transitively on C by inner automorphisms, with stabilizer at $i \in C$ given by $C^{*}=\{a+b i\} \subseteq \boldsymbol{H}^{\times}$. Therefore we have the natural identifications

$$
\begin{equation*}
C=\boldsymbol{H}^{\times} / \boldsymbol{C}^{*}=\boldsymbol{P}^{1} \tag{1.2}
\end{equation*}
$$

which will be fixed throughout this paper, where \boldsymbol{P}^{1} is the complex projective line. Note that the naturally induced map $\pi: H^{\times} \rightarrow C$ is given by

$$
\begin{equation*}
\lambda=\pi(h)=\operatorname{hih}^{-1}, \quad h \in \boldsymbol{H}^{\times} . \tag{1.3}
\end{equation*}
$$

Now we shall review some of the well-known facts on the (finite dimensional) representations of classical groups. We refer to [5] for the following terminology. A (complex or real) representation ρ of a group G is said to be isotypical if it is equivalent to a direct sum of one and the same irreducible representation, say ρ_{1}. In this case ρ is also called $\rho_{1}-$ isotypical, or V_{1}-isotypical if V_{1} is the G-module corresponding to ρ_{1}. Let
$\Re=\Re_{G}$ be the set of equivalence classes of irreducible complex representations of G. Then, if G is a compact Lie group, any G-module admits a unique direct sum decomposition

$$
V=\bigoplus_{\rho \in \mathfrak{r}} V_{\rho}
$$

of V into " ρ-isotypical components" V_{ρ}. The same is also true for real representations. In general for any group such a decomposition, if any, is called the canonical (G-) decomposition of V.

Representations of $\mathrm{U}(\mathrm{n})$ and $\mathrm{Sp}(\mathrm{n})$ (cf. [29; VII]): The set of equivalence classes of irreducible complex representations of the unitary group $\mathrm{U}(\mathrm{n})$ (resp. the unitary symplectic group $\mathrm{Sp}(\mathrm{n})$) is in natural bijective correspondence with the set of non-increasing sequences

$$
\underline{f}:=\left(f_{1}, \cdots, f_{n}\right), \quad f_{1} \geqq f_{2} \geqq \cdots \geqq f_{n}
$$

of integers (resp. nonnegative integers) f_{i}. If $\rho_{\underline{\underline{I}}}$ is an irreducible representation corresponding to \underline{f}, then \underline{f} is called the signature of ρ_{f}.

Let $\mathrm{D}(\mathrm{n})$ be the subgroup of diagonal elements of $\mathrm{U}(\mathrm{n})$ (resp. $\mathrm{Sp}(\mathrm{n})$);

$$
\begin{align*}
\mathrm{D}(\mathrm{n})= & \left\{\operatorname{diag}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right)\left(\text { resp. } \operatorname{diag}\left(\varepsilon_{1}, \cdots, \varepsilon_{n}, \varepsilon_{1}^{-1}, \cdots, \varepsilon_{n}^{-1}\right)\right) ;\right. \\
& \left.\varepsilon_{i} \in C,\left|\varepsilon_{i}\right|=1\right\} . \tag{1.4}
\end{align*}
$$

Let $\chi_{\underline{f}}$ be the character of $\rho_{\underline{f}}$. Then $\chi_{\underline{f} \mid D(n)}$ is a Laurent polynomial of $\varepsilon_{1}, \cdots, \varepsilon_{n}$, i.e., a finite linear combination of the "Laurent monomials" $\varepsilon_{1}^{i_{1}} \cdots \varepsilon_{n}^{i_{n}}, i_{\alpha} \in \boldsymbol{Z}$. On the set of such Laurent monomials one puts the lexicographical order with respect to their indices $I=\left(i_{1}, \cdots, i_{n}\right)$. Then the highest nonzero term which appear in the polynomial expression for χ_{f} is just $\varepsilon_{1}^{f_{1}} \cdots \varepsilon_{n}^{f_{n}}$. This fact indeed characterizes $\rho_{\underline{f}}$.

Representations of $\mathrm{Sp}(1)$ and \boldsymbol{H}^{\times}(cf. [5; II.5]): Irreducible complex representations of $\mathrm{U}(1)$ (resp. $\mathrm{Sp}(1)$) are up to equivalences indexed by integers (resp. nonnegative integers), say r. In the case of $\mathrm{U}(1)=$ $\{\varepsilon \in C ;|\varepsilon|=1\}$ these are 1 -dimensional and given by $\rho_{r}(\varepsilon)=\varepsilon^{r}$. In the case of $\mathrm{Sp}(1)$ they are described as follows. Let V_{1} be the underlying complex vector space of the right \boldsymbol{H}-module \boldsymbol{H} with respect to the inclusion $\boldsymbol{C}=\{a+b i\} \cong \boldsymbol{H} . \quad V_{1}$ is then naturally a complex $\mathrm{Sp}(1)$-module, and the induced $\mathrm{Sp}(1)$-modules

$$
V_{r}:=\mathrm{S}^{r}(V), \quad r>0
$$

are all irreducible, where S^{r} denote the symmetric products. We let $V_{0}=C$ be the trivial $\mathrm{Sp}(1)$-module. Then these V_{r} give the desired repre-
sentations ρ_{r}. They are all self-conjugate in the sense that ρ_{r} is equivalent to its complex conjugate $\bar{\rho}_{r}$ (cf. (1.7) (1.8)).

Consider \boldsymbol{C}^{*} and \boldsymbol{H}^{\times}naturally as real algebraic groups Then any rational complex representation of $C^{*}=\mathrm{U}(1) \times{ }_{Z_{2}} \boldsymbol{R}^{\times}$(resp. $\boldsymbol{H}^{\times}=\mathrm{Sp}(1)$ $\times{ }_{z_{2}} \boldsymbol{R}^{\times}$) is equivalent to exactly one of the following representations $\rho_{k, r}, r$, $k \in Z, r \geqq 0, k \equiv r(2) ;$

$$
\begin{equation*}
\rho_{k, r}(g)=t^{k} \rho_{r}(\varepsilon), g=(\varepsilon, t) \in \mathrm{U}(1) \times_{Z_{2}} R^{\times}\left(\text {resp. } \mathrm{Sp}(1) \times_{z_{2}} R^{\times}\right) . \tag{1.5}
\end{equation*}
$$

We shall denote by $V_{k, r}$ the corresponding \boldsymbol{H}^{\times}-module.
Real representations of $\mathrm{Sp}(1)$ and \boldsymbol{H}^{\times}: i) When $r=2 s-1, s \geqq 1$, is odd, then the underlying real representation ρ_{r}^{\prime} of ρ_{r} is irreducible. The corresponding real $\mathrm{Sp}(1)$-module, denoted by $V_{r}^{R}\left(=V_{r}\right)$, has the natural structure of a right \boldsymbol{H}-module and the action of $\mathrm{Sp}(1)$ is \boldsymbol{H}-linear. Correspondingly we have

$$
\begin{equation*}
\operatorname{dim}_{R} V_{r}^{R}=4 s \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{r}^{\prime} \otimes C \cong \rho_{r} \oplus \rho_{r} . \tag{1.7}
\end{equation*}
$$

ii) Let $r=2 s, s \geqq 0$, be even. Then the right multiplication by j on $\boldsymbol{H}=V_{1}$ induces a \boldsymbol{C}-antilinear involution j_{r} on $V_{r}, r \geqq 1$. Further we define j_{0} as the complex conjugation of C. Then the set V_{r}^{R} of fixed points of j_{r} is a $2 s+1$ dimensional real vector space preserved by $\operatorname{Sp}(1)$. The induced real representation ρ_{r}^{\prime} of $\operatorname{Sp}(1)$ on V_{r}^{R} is irreducible and

$$
\begin{equation*}
\rho_{r}^{\prime} \otimes C \cong \rho_{r} \tag{1.8}
\end{equation*}
$$

iii) The above representations $\rho_{r}^{\prime}, r \geqq 0$, exhaust all the real irreducible representations of $\mathrm{Sp}(1)$ up to equivalence.
iv) V_{2}^{R} is equivalent to the Lie algebra $\mathfrak{z p}(1)$ of $\mathrm{Sp}(1)$ with the adjoint representation.

Any real rational irreducible representation ρ of \boldsymbol{H}^{\times}is up to equivalence of the form $\rho(g)=t^{k} \rho_{r}^{\prime}(\varepsilon)$ for some $k \in Z$ and $r \geqq 0$ in the notation of (1.5). The corresponding real \boldsymbol{H}^{\times}-module will be denoted by $V_{k, r}^{R}$. We note in particular that for any irreducible representation of \boldsymbol{H}^{\times}its restriction to $\mathrm{Sp}(1)$ also is irreducible.

Hodge decomposition associated to a real representation of \boldsymbol{C}^{*} and \boldsymbol{H}^{\times}: A real (rational) C^{*} (resp. \boldsymbol{H}^{\times}) module W is said to be of weight k if $t \in \boldsymbol{R}^{\times}$acts via the multiplication by t^{k}. In the case of a C^{*}-module, W
then has the Hodge structure of weight k, i.e., the canonical decomposition of its complexification W_{C} has the following form;

$$
W_{\boldsymbol{C}}=\bigoplus_{p+q=k} W^{p, q}, \quad \bar{W}^{p, q}=W^{q, p}
$$

where $W^{p, q}$ is the $\rho_{k, p-q}$-isotypical component. We set $h^{p, q}=\operatorname{dim} W^{p, q}$ and call it the Hodge number of W. We shall say that W is regular if $h^{p, q}=0$ for $p<0$ or $q<0$.

Let W be a real \boldsymbol{H}^{\times}-module of weight k. Any $\lambda \in C$ defines an embedding of real algebraic groups;

$$
\begin{equation*}
\lambda_{*}: \boldsymbol{C}^{*} \longrightarrow \boldsymbol{H}^{\times}, \quad \lambda_{*}(a+b i)=a+b \lambda, \quad a, b \in \boldsymbol{R} . \tag{1.9}
\end{equation*}
$$

Via λ_{*}, W has the structure of a real C^{*}-module of weight k, and hence we have the associated Hodge decomposition with respect to λ;

$$
\begin{equation*}
W_{\boldsymbol{C}}=\bigoplus_{p+q=k} W^{p, q}(\lambda), \quad \bar{W}^{p, q}(\lambda)=W^{q, p}(\lambda) \tag{1.10}
\end{equation*}
$$

The Hodge numbers $h^{p, q}(W(\lambda))$ are actually independent of λ so that we may denote it by $h^{p, q}(W)$.

First we consider the case $W=V_{k, k}^{R}$. As the complexification of $\mathfrak{j p}(1)$ the Lie algebra $\mathfrak{Z l}_{2}(\boldsymbol{C})$ acts \boldsymbol{C}-linearly on $W_{\boldsymbol{C}}$. Let

$$
H=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

be the standard C-basis of $\mathfrak{l l}_{2}(C)$. For any $\lambda \in C$ let

$$
H_{\lambda}=a d(h) H, \quad X_{2}=a d(h) X, \quad Y_{2}=a d(h) Y
$$

where $h \in \boldsymbol{H}^{\times} \subseteq \mathrm{GL}_{2}(\boldsymbol{C})$ is any element with $\lambda=\pi(h)$ (cf. (1.3)) and ad denotes the adjoint action. Then (1.10) is just the eigenspace decomposition of $W_{\boldsymbol{C}}$ with respect to the action of H_{λ}, where $W^{p, q}(\lambda)$ corresponds to the eigenvalue $p-q$. Further, from the standard facts on the representa-
 $q \leqq k$, $\operatorname{dim} W^{p, q}(\lambda)=2$ or 1 according as k is odd or even; otherwise, $W^{p, q}(\lambda)=0$. In fact, the actions of X_{λ} and Y_{λ} have the property:

$$
\begin{align*}
& X_{\lambda}: W^{p, q}(\lambda) \leftrightarrows W^{p+1, q-1}(\lambda), 0 \leqq p<k, X_{\lambda}\left(W^{k, 0}(\lambda)\right)=0 \tag{1.11}\\
& Y_{\lambda} ; W^{p, q}(\lambda) \leftrightarrows W^{p-1, q+1}(\lambda), 0<p \leqq k, Y_{\lambda}\left(W^{0, k}(\lambda)\right)=0
\end{align*}
$$

Suppose next that W is isotypical so that $W \cong\left(V_{k, r}^{R}\right)^{\oplus h_{0}}$ for unique $k \in Z$ and $r, h_{0} \geqq 0$. Then by (1.7) and (1.8) W_{C} is again isotypical as a complex \boldsymbol{H}^{\times}-module with $W_{\boldsymbol{C}} \cong V_{k, r}^{\oplus h}$, where $h=h_{0}$ if k is even and $=2 h_{0}$
if k is odd. Then by what we have seen above we get the next lemma easily.

Lemma 1.1. If W is isotypical as above, then in the Hodge decomposition (1.10) of $W_{c}, W^{p, q}(\lambda) \neq 0$ if and only if $(k-r) / 2 \leqq p, q \leqq(k+r) / 2$; moreover for any p, q in this range we have $h^{p, q}=h$ independently of (p, q), where h is even if k is odd.

In the general case, we say that an \boldsymbol{H}^{\times}-module W is regular if it is regular as a real C^{*}-module via some, and hence for any, $\lambda \in C$. For a regular \boldsymbol{H}^{\times}-module W its canonical decomposition takes the following form

$$
W=\underset{r \in\lrcorner(k)}{\oplus} W^{k ; r}
$$

(cf. (0.1)), where $W^{k ; r}$ is the $V_{k, r}^{R}$-isotypical component, and the Hodge decomposition (1.10) of W_{C} is the direct sum of those of $W_{c}^{k ; r}$. We set

$$
h^{k ; r}(W):=(1 /(r+1)) \operatorname{dim}_{R} W^{k ; r} .
$$

This equals any nonzero Hodge number $h^{p, q}\left(W^{k ; r}\right)$ of $W^{k ; r}$. Then in view of Lemma 1.1 together with (1.6) and (1.11) we get the following:

Lemma 1.2. Suppose that W is regular of weight k as above. 1) If k is odd, then any Hodge number $h^{p, q}(W)$ is even and $4 \mid \operatorname{dim}_{R} W$. 2) For any $p \geqq q>0$ with $p+q=k$ we have the inequality $h^{p, q}(W) \geqq h^{p+1, q-1}(W)$; more precisely we have $h^{p, q}(W)-h^{p+1, q-1}(W)=h^{k ; p+q-2}(W)$. 3) An element α of $W^{p, q}(\lambda)$ is contained in $W^{k ; p-q}$ if and only if $X_{2} \alpha=0$.

We also note the obvious relations between $h^{p, q}(W)$ and $h^{k ; r}(W)$;

$$
h^{p, q}(W)=\sum_{r \geq 2 p-k} h^{k ; r}(W)
$$

and

$$
h^{k ; r}(W)=h^{p+1, q-1}(W)-h^{p, q}(W), \quad p=(k+r) / 2, \quad q=(k-r) / 2 .
$$

Returning again to the irreducible case of $W=W_{s}:=V_{2 s, 2 s}$ we shall consider the associated period map $p_{s}: C \rightarrow \boldsymbol{P}_{s}:=\boldsymbol{P}(W)$ defined by $p_{s}(\lambda)=$ the line $W^{2 s, 0}(\lambda)$ in W.

Lemma 1.3. p_{s} is isomorphic to the Veronese embedding $\boldsymbol{P}^{1} \rightarrow \boldsymbol{P}^{2 s}$. Further if we identify the tangent space of \boldsymbol{P}_{s} at $p_{s}(\lambda)$ canonically with $\operatorname{Hom}_{c}\left(H^{2 s, 0}(\lambda), H^{2 s-1,1}(\lambda) \oplus \cdots \oplus H^{0,2 s}(\lambda)\right)$, the differential $d p_{s}$ of p_{s} at λ factors through the subspace $\operatorname{Hom}_{c}\left(H^{2 s, 0}(\lambda), H^{2 s-1,1}(\lambda)\right)$ and gives an isomor-
phism $T_{\lambda} \leftrightharpoons \operatorname{Hom}_{c}\left(H^{2 s, 0}(\lambda), H^{2 s-1,1}(\lambda)\right)$, where T_{λ} is the tangent space of C at λ.

Proof. Take any $h \in \boldsymbol{H}^{\times}$with $\lambda=\pi(h)=h i h^{-1}$ (cf. 1.3)). Then we have $\lambda h=h i$; in other words the line $h C$ is the eigenspace with eigenvalue $\sqrt{-1}$ of the λ-action on $\boldsymbol{H}=V_{1}$. Hence $H^{2 s, 0}(\lambda)=\mathrm{S}^{2 s}(h C)$ (symmetric product); this implies that p_{s} is just the Veronese embedding. Let $C_{s}=p_{s}(C)$ and $\lambda_{s}=p_{s}(\lambda)$. Let $\pi_{s}: W-\{0\} \rightarrow \boldsymbol{P}_{s}$ be the natural projection and $\tilde{C}_{s}=\pi_{s}^{-1}\left(C_{s}\right)$. Let $\tilde{\lambda}_{s}$ be any point of $\pi_{s}^{-1}\left(\lambda_{s}\right)$. Now consider any element A of $\mathfrak{l l}_{2}(\boldsymbol{C})$ as a vector field on W with respect to its action on W. Note that A is tangent to \tilde{C}_{s} at any of its point. Then we see readily that the image of $\left.Y_{\lambda}\right|_{\tilde{c}_{s}}$ by $d \pi_{s}$ at $\tilde{\lambda}_{s}$ is nonzero and thus generates the image $d p_{s}\left(T_{i}\right)$ over C. The result then follows from (1.11).

Clebsch-Gordan formula: Recall finally the Clebsch-Gordan formula (cf. [5]) which gives the isomorphism of $\mathrm{Sp}(1)$-modules

$$
\begin{equation*}
V_{k} \otimes_{c} V_{l} \cong \oplus_{s} V_{k+l-2 s}, \quad 0 \leqq s \leqq \min (k, l) \tag{1.12}
\end{equation*}
$$

From this we get the irreducible decomposition of the symmetric product $\mathrm{S}^{l}\left(V_{2}\right)$ of V_{2} as an $\mathrm{Sp}(1)$-modules;

$$
\begin{equation*}
\mathrm{S}^{l}\left(V_{2}\right) \cong \bigoplus_{s \in \Delta(l)} V_{2 s} . \tag{1.13}
\end{equation*}
$$

Let Φ_{0} be any element of $\mathrm{S}^{2}\left(V_{2}\right)$ corresponding to the nonzero element of $V_{0}=C$ in the above isomorphism $\mathrm{S}^{2}\left(V_{2}\right) \cong V_{4} \oplus V_{0}$. Then the multiplication by Φ_{0} gives an embedding of $\mathrm{Sp}(1)$-modules $\mathrm{S}^{l-2}\left(V_{2}\right) \longrightarrow$ $\mathrm{S}^{l}\left(V_{2}\right)$ so that we have

$$
\begin{equation*}
\mathbf{S}^{l}\left(V_{2}\right)=\Phi_{0} \cdot \mathbf{S}^{l-2}\left(V_{2}\right) \oplus V_{2 l} . \tag{1.14}
\end{equation*}
$$

Using (1.12) and (1.13) we can also show the following:
Lemma 1.4. Let $l \equiv \varepsilon(2)$, where $\varepsilon=0$ or 1 . Let r be a nonnegative integer. Then the canonical decomposition of the $\mathrm{Sp}(1)$-module $\mathbf{S}^{l}\left(V_{2}\right) \otimes_{c} V_{r}$ is given by

$$
\mathrm{S}^{l}\left(V_{2}\right) \otimes_{c} V_{r} \cong \oplus_{d} V_{d}^{\pi(d)}
$$

where the nonnegative integer $\pi(d)=\pi(d, l, r)$ is given by

$$
\pi(d)=(\min ((l+\varepsilon) / 2,[(r+d+2 \varepsilon) / 4])+[-(|d-r|+2 \varepsilon) / 4]+1)^{+} .
$$

In particular $\pi(d) \neq 0$ if and only if $\max \left(r-2 l,\left|r_{0}\right|\right) \leqq d \leqq r+2 l$, where r_{0} is defined by $r+2 \varepsilon \equiv r_{0}(4)$ and $-1 \leqq r_{0} \leqq 2$.

§ 2. Representations on complexified exterior algebra

For a positive integer d let $V_{R}:=\boldsymbol{R}^{d}$ be the Euclidian space with the standard inner product (,). Let $V \cong C^{d}$ be the complexification of $V_{\boldsymbol{R}}$ and $\wedge V=\oplus_{k=0}^{d} \wedge^{k} V$ the exterior algebra of V over C.

Let G be a compact Lie subgroup of $\mathrm{SO}(d)$ acting naturally on $V_{\boldsymbol{R}}$. The action extends to an action on $\wedge V$ as C-algebra automorphisms. Let $\Re=\Re_{G}$ be the set of equivalence classes of irreducible complex representations of G. (We often identify a representation and its equivalence class.) Let

$$
\begin{equation*}
\wedge^{k} V=\underset{\rho \in \mathscr{M}}{\oplus} V_{\rho}^{k} \tag{2.1}
\end{equation*}
$$

be the canonical G-decomposition of $\wedge^{k} V$ into ρ-isotypical components V_{ρ}^{k}. For any $\rho \in \mathfrak{R}$ we set $V_{\rho}^{*}=\oplus_{k \geq 0} V_{\rho}^{k}$. Then we have $\wedge V=\oplus_{\rho \in \mathscr{R}} V_{\rho}^{*}$.

Let $o \in \Re$ be the class of the trivial representation. Then

$$
V_{o}^{*}=\oplus_{k} V_{o}^{k} \subseteq \wedge V
$$

is a graded subalgebra of $\wedge V$ and each V_{ρ}^{*} becomes a graded V_{o}^{*}-module.
Let H be a commutor of G in $\mathrm{GL}_{d}(\boldsymbol{R})$. Then H acts naturally on $\wedge V$ and we have again the canonical decomposition

$$
\begin{equation*}
\wedge^{k} V=\bigoplus_{\mu \in \Re^{\prime}} V_{\mu}^{k}, \quad \Re^{\prime}=\Re_{H} \tag{2.2}
\end{equation*}
$$

of $\wedge^{k} V$ into μ-isotypical components V_{μ}^{k}. Moreover, the decompositions (2.1) and (2.2) are compatible with each other.

The inner product (,) and the standard orientation of V_{R} induce the Hodge $*$-operator

$$
\begin{equation*}
*: \wedge^{k} V \underset{\rightarrow}{\hookrightarrow} \wedge^{d-k} V \tag{2.3}
\end{equation*}
$$

It is G - and H_{1}-equivariant and induces the isomorphisms

$$
*_{\rho}: V_{\rho}^{k} \leftrightarrows V_{\rho}^{d-k},
$$

where $H_{1}=H \cap \mathrm{SO}(\mathrm{d})$.
We also remark on the real structures of V_{ρ} and V_{μ}.
Lemma 2.1. 1) V_{ρ} is defined over R, i.e., $V_{\rho}=\bar{V}_{\rho}$ if and only if ρ is self-conjugate. 2) Suppose that $\mu_{H_{1}}$ is irreducible. Then V_{μ} is defined over \boldsymbol{R} if and only if $\left.\mu\right|_{H_{1}}$ is self-conjugate.

Proof. 1) The necessity is obvious. So suppose that ρ is equivalent to its complex conjugate $\bar{\rho}$. Let \Re_{o} be the set of equivalence classes of
real irreducible representations of G. Let $\wedge V_{R}=\oplus_{\rho_{0} \in \mathscr{R}_{0}} V_{\rho_{0}}$ be the (real) canonical decomposition of $\wedge V_{\boldsymbol{R}}$. Then there exists a unique $\rho_{o} \in \mathfrak{R}_{o}$ such that $V_{\rho} \subseteq V_{\rho_{0}, c}$. By our assumption either $\rho_{o, C}$ is irreducible or $\rho_{o, C}$ $\cong \rho_{1} \oplus \rho_{1}$ for some $\rho_{1} \in \Re$ (cf. [5; II. §6]). In either case we have $V_{\rho}=$ $V_{\rho_{0}, c}$. The proof of 2) is the same.

Now the purpose of this section is to study more closely the above general construction in the following three special cases: 1) $d=2 n$ and $G=\mathrm{U}(\mathrm{n}), 2) d=4 n$ and $G=\mathrm{Sp}(\mathrm{n})$, and 3) $d=4 n$ and $G=\operatorname{Sp}(\mathrm{n}) \mathrm{Sp}(1)$.

Case 1: $d=2 n$ and $G=\mathrm{U}(\mathrm{n})$ (cf. Chern [8; §4]): In this case we consider $V_{\boldsymbol{R}}=\boldsymbol{R}^{2 n}$ as the underlying real Euclidian space of the complex Euclidian space $E=C^{n}$ with the standard Hermitian inner product \langle,$\rangle .$ Then the natural action of G on E induces the embedding $G \subset \mathrm{SO}(2 \mathrm{n})$. Then as a G-module V is the direct sum $V=E \oplus \bar{E}$, where \bar{E} is the complex conjugate of E.

In this case $H=C^{*}$ and the canonical H-decomposition (2.2) is just the usual type decomposition

$$
\bigwedge^{k} V=\bigoplus_{p+q=k} V^{p, q}, \quad V^{p, q}=\wedge^{p} E \otimes \bigwedge^{q} \bar{E}
$$

which is also the Hodge decomposition associated to the real C^{*}-module $\wedge^{k} V_{R}$ of weight k.

Let $\omega \in V_{\boldsymbol{R}}^{1,1}$ be the fundamental 2-form associated to the Hermitian inner product \langle,$\rangle . This is G$-invariant, and in fact we have

$$
\begin{equation*}
V_{0}^{*}=\bigoplus_{k \geqq 0} C \omega^{k} \tag{2.4}
\end{equation*}
$$

in this case (cf. [2; IV. 2]). As usual let $L: \wedge V \rightarrow \wedge V$ be the ω-multiplication operator and set $\Lambda=*^{-1} L *$. Then an element v of $\wedge V$ is called effective (or primitive) if $\Lambda v=0$. Denote by V_{e}^{k} the subspace of effective elements of $\wedge^{k} V$, and set $V_{e}^{p, q}=V_{e}^{k} \cap V^{p, q}$. Further for any integer $p, q \geqq 0$ with $p+q \leqq n$ we denote by $\rho(p, q)$ the representation of G of signature $\left(1^{p}, 0^{n-(p+q)},-1^{q}\right)(\mathrm{cf} . \S 1)$. Let $W(p, q)$ be the corresponding G-module. We know that (cf. [29; (5.14)])

$$
\begin{equation*}
\operatorname{dim} W(p, q)=\binom{n+1}{p}\binom{n+1}{q}(n+1-(p+q)) /(n+1) \tag{2.5}
\end{equation*}
$$

Then the following is essentially due to Chern [8; §4].
Proposition 2.2. 1) $V_{\rho}^{*} \neq 0$ if and only if $\rho=\rho(p, q)$ for some p, q as above. 2) $V_{e}^{p, q}$ is an irreducible G-module isomorphic to $W(p, q)$ and we have $V_{\rho}=\oplus_{r} L^{r} V_{e}^{p, q}, 0 \leqq r \leqq n-(p+q)$, for $\rho=\rho(p, q)$. 3) The natural map $\boldsymbol{C} \omega^{r} \otimes_{C} V_{e}^{p, q} \rightarrow L^{r} V_{e}^{p, q}$ is isomorphic for any r as in 2).

Here are some consequences of the proposition. From 1) and 2) we get the decomposition $V^{p, q}=\oplus_{r} L^{r} V_{e}^{p-r, q-r}, r \geqq(p+q-n)^{+}$, of $V^{p, q}$, or summing these up with respect to p, q get the decomposition

$$
\begin{equation*}
\bigwedge^{k} V=\bigoplus_{p+q=k}\left(\underset{r \geqq(k-n)^{+}}{ } L^{r} V_{e}^{p-r, q-r}\right)=\bigoplus_{r \geqq(k-n)+} L^{r} V_{e}^{k-2 r} . \tag{2.6}
\end{equation*}
$$

The first equality gives the canonical decomposition (2.1) in our special case and the third term gives the Lefschetz decomposition of the exterior algebra (cf. [28; V.3]). 3) then gives the isomorphism

$$
\begin{equation*}
L^{n-k}: \bigwedge^{k} V \rightarrow \wedge^{2 n-k} V, \quad k<n \tag{2.7}
\end{equation*}
$$

(the strong Lefschetz theorem for exterior algebra). The subsequent proof of the proposition thus gives an alternative proof for these facts.

Proof of Proposition 2.2. Fix an orthonormal basis z_{1}, \cdots, z_{n} of E. Let $\mathrm{D}(\mathrm{n})$ be the diagonal group of $\mathrm{U}(\mathrm{n})$ as in (1.4). Then $z_{i_{1}} \wedge \cdots \wedge z_{i_{p}}$ $\wedge \bar{z}_{j_{1}} \wedge \cdots \wedge \bar{z}_{j_{q}}$ form a C-basis of $\wedge V$ consisting of eigenvectors of the induced $\mathrm{D}(\mathrm{n})$-action with eigenvalues $\varepsilon_{i_{1}} \cdots \varepsilon_{i_{p}} \varepsilon_{j_{1}}^{-1} \cdots \varepsilon_{j_{q}}^{-1}$ in the notation of (1.4). From this and the characterization of representations by their characters as mentioned in Section 1 one already sees that $V_{\rho}=0$ unless $\rho \cong \rho(p, q)$ for some p and q.

Now fix $p, q \geqq 0$ with $p+q \leqq n$. Let

$$
z(p, q)=z_{1} \wedge \cdots \wedge z_{p} \wedge \bar{z}_{n-q+1} \wedge \cdots \wedge \bar{z}_{n} .
$$

Then it is immediate to see that $z(p, q) \in V_{e}^{p, q}$ (cf. [27; I, $\left.\mathrm{n}^{\circ} 4\right]$). Moreover, the eigenvalue $\varepsilon_{1} \cdots \varepsilon_{p} \varepsilon_{n-q+1}^{-1} \cdots \varepsilon_{n}^{-1}$ corresponding to $z(p, q)$ appears as the unique largest term in the character polynomial in $\varepsilon_{1}, \cdots, \varepsilon_{n}$ of $D(n)$ on $V^{p, q}$ in the lexicographical order of indices. This implies that there exists a unique irreducible G-submodule, say $W_{e}^{p, q}$, of $V_{e}^{p, q}$ containing $z(p, q)$ and isomorphic to $W(p, q)$. Recall now that ω can be written in the form $\omega=(\sqrt{-1} / 2) \sum_{i=1}^{n} z_{i} \wedge \bar{z}_{i}$ and hence if we set $k=p+q$,

$$
\omega^{n-k} \wedge z(p, q)=(\sqrt{-1} / 2)^{n-k}\left(\prod_{p+1 \leqq i \leqq n-q} z_{i} \wedge \bar{z}_{i}\right) \wedge z(p, q) \neq 0
$$

Since $W(p, q)$ is irreducible and L is G-equivariant, this implies that $L^{r}: W_{e}^{p, q} \rightarrow L^{r} W_{e}^{p, q}$ is isomorphic for any $r \leqq n-k$. Since p, q were arbitrary, we get the inequality

$$
\binom{n}{p}\binom{n}{q}=\operatorname{dim} V^{p, q} \geqq \sum_{r=(p+q-n)+}^{\min (p, q)} \operatorname{dim} W(p-r, q-r)
$$

But, using (2.5) we calculate easily that this is actually an equality. Hence
$V^{p, q}$ is the direct sum of $L^{r} W_{e}^{p-r, q-r}$. Since $V_{e}^{p, q}$ is a G-submodule of $V^{p, q}$, if it is not irreducible, it contains $L^{r} W_{e}^{p-r, q-r}$ for some $r>0$ other than $W_{e}^{p, q}$, and hence in particular $L^{r} z(p-r, q-r) \in V_{e}^{p, q}$. However this is impossible because $\Lambda L^{r} z(p-r, q-r) \neq 0$ as a simple computation shows. Therefore $V_{e}^{p, q}$ are always irreducible and we get the direct sum decomposition $V^{p, q}=\bigoplus_{(p+q-n)+\leqq r} L^{r} V_{e}^{p-r, q-r}$ and natural map $C \omega^{r} \otimes_{C} V_{e}^{p, q} \rightarrow$ $L^{r} V_{e}^{p, q}$ is injective. From these all the assertions of the proposition follow.

Case 2: $d=4 n$ and $G=\operatorname{Sp}(\mathrm{n})$. In this case we consider $V_{\boldsymbol{R}}=\boldsymbol{R}^{4 n}$ as the underlying real Euclidian space of the right \boldsymbol{H}-module \boldsymbol{H}^{n} with the standard quaternion inner product. Then the natural action of G on \boldsymbol{H}^{n} induces the natural inclusion $G \hookrightarrow \mathrm{SO}(4 n)$ (cf. (1.1)).

The centralizer H of G is identified with H^{\times}and $H_{1}:=H \cap \mathrm{SO}(4 \mathrm{n})$ with $\mathrm{Sp}(1)$ with the actions induced by the right \boldsymbol{H}-module structure of \boldsymbol{H}^{n} via the inclusions $\mathrm{Sp}(1) \subseteq \boldsymbol{H}^{\times} \subseteq \boldsymbol{H}$. Any $\lambda \in \boldsymbol{C}$ defines a complex structure J_{λ} on $V_{\boldsymbol{R}}$ via the right multiplication. Associated to J_{λ} we get the usual type decomposition

$$
\bigwedge^{k} V=\bigoplus_{p+q=k} V^{p, q}(\lambda)
$$

of $\wedge^{k} V$ into (p, q)-covectors, and this coincides by definition with the Hodge decomposition of the H^{\times}-module $\wedge^{k} V$ with respect to λ (cf. (1.10)). It follows that $\wedge^{k} V$ is a regular \boldsymbol{H}^{\times}-module of weight k, and the canonical \boldsymbol{H}^{\times}-decomposition of $\wedge^{k} V$ takes the form

$$
\begin{equation*}
\bigwedge^{k} V_{R}=\underset{r \in \Delta(\hat{k})}{ } V^{k ; r}, \quad \hat{k}=\min (k, 4 n-k) \tag{2.8}
\end{equation*}
$$

where $V^{k ; r}$ is the $V_{k, r}^{R}$-isotypical component (cf. (0.1)). Here the inequality $r \leqq 4 n-k$ comes from the $*$-isomorphism (2.3).

Now for any $\lambda \in C$ let $\omega_{\lambda} \in V_{0, \boldsymbol{R}}^{2} \cap V^{1,1}(\lambda)$ be defined by

$$
\begin{equation*}
\omega_{\lambda}(x, y)=(x, y \lambda), \quad x, y \in V_{\boldsymbol{R}}=\boldsymbol{H}^{n} \tag{2.9}
\end{equation*}
$$

where we have identified $V_{\boldsymbol{R}}$ with its dual via the inner product (,). (ω_{λ} is just the fundamental 2-form associated to (,) and the isometric complex structure J_{λ}.) Then $V_{0, R}^{*}$ is generated by $\omega_{\lambda}, \lambda \in C$, as an R-algebra (cf. [2; IV. 2]). More precisely we have the following:

Lemma 2.3. $V_{0}^{k}=0$ if k is odd. If $k=2 l$ is even, then $V_{0}^{k} \cong \mathrm{~S}^{l}\left(V_{2,2}\right)$ as an \boldsymbol{H}^{\times}-module if $k \leqq 2 n$ and in general the canonical \boldsymbol{H}^{\times}-decomposition of V_{0}^{k} takes the form $V_{0}^{k}=\oplus_{s \in \Delta(\hat{\imath})} V_{0}^{k ; 2 s}, \hat{l}=\min (l, 2 n-l)$, where $V_{0}^{k ; 2 s} \cong$ $V_{k, 2,}^{R}$. In particular $V_{0}^{2} \cong V_{2,2}^{R}$.

Proof. The first assertion is clear. So let $k=2 l$. Then we have the natural surjection $\mathrm{S}^{l}\left(V_{2}\right) \rightarrow V_{0}^{k}$. For $k \leqq 2 n$, in view of (1.13) it thus suffices
to show that $\operatorname{dim} V_{0}^{k}=\operatorname{dim} \mathrm{S}^{l}\left(V_{2}\right)=(s+1)(s+2) / 2$. This in fact will be shown in a more general setting in the proof of Proposition 2.4,5) below. (So we omit the proof here.) The case $k>2 n$ then follows from this and the $*$-isomorphism (2.3).

We next study the structure of each V_{ρ} as a V_{0}-module. For any $\lambda \in C$ let $L_{\lambda}: \wedge V \rightarrow \wedge V$ be the ω_{λ}-multiplication operator and set $\Lambda_{\lambda}=$ $*^{-1} L_{\lambda^{*}}$. Then an element $\alpha \in \bigwedge^{k} V$ is said to be universally effective if $\Delta_{\lambda} \alpha=0$ for any $\alpha \in C$. We denote by V_{ε}^{k} the subspace of all the universally effective k-covectors. Then V_{ε}^{k} is G-invariant, each λ being G-invariant. Moreover, since $g\left(\omega_{\lambda}\right)=\omega_{g-1 \lambda g}$ for any $\lambda \in C$ and any $g \in H^{\times}, V_{\varepsilon}^{k}$ is even an \boldsymbol{H}^{\times}-module. Therefore if we set $V_{\varepsilon}^{k ; r}=V_{\varepsilon}^{k} \cap V_{C}^{k ; r}$ we have the canonical decomposition of V_{ε}^{k} as a complex \boldsymbol{H}^{\times}-module;

$$
\begin{equation*}
V_{\varepsilon}^{k}=\underset{r \in \Delta(\hat{k})}{\bigoplus} V^{k ; r} . \tag{2.10}
\end{equation*}
$$

We also set $V_{\varepsilon}^{*}=\oplus_{k \geqq 0} V_{\varepsilon}^{k}$.
Define the set Ψ of pairs of integers by

$$
\begin{equation*}
\Psi=\{(k, r) ; r \in \Delta(k), k+r \leqq 2 n\} . \tag{2.11}
\end{equation*}
$$

For any pair of integers $(k, r) \in \Psi$ we denote by $\rho(k ; r)$ the irreducible representation of G of signature $\left(2^{(k-r) / 2}, 1^{r}, 0^{n-(k+r) / 2}\right)$ (cf. § 1). Let $W(k ; r)$ be the corresponding G-module. We denote by

$$
\begin{equation*}
\operatorname{Sp}(\mathrm{n}) \mathrm{Sp}(1) \tag{2.12}
\end{equation*}
$$

the subgroup of $\mathrm{SO}(4 \mathrm{n})$ generated by $G=\mathrm{Sp}(\mathrm{n})$ and $\mathrm{Sp}(1)$.
Proposition 2.4. 1) For any $\rho \in \Re, V_{\rho}^{*} \neq 0$ if and only if $\rho \cong \rho(k ; r)$ for some $(k, r) \in \Psi . \quad V_{\rho}^{*}$ is always defined over \boldsymbol{R}. 2) $V_{\varepsilon}^{k ; r}$ if and only if (k, r) $\in \Psi$. 3) If, further, $k \leqq n$, then $V_{\varepsilon}^{k ; r}$ is an irreducible $\neq 0 \mathrm{Sp}(\mathrm{n}) \mathrm{Sp}(1)$-module isomorphic to $W(k ; r) \otimes_{C} V_{r}$. In particular $V_{\varepsilon}^{k ; r} \subseteq V_{\rho(k ; r)}$. 4) $\wedge V$ is generated by V_{ε}^{*} as a V_{0}^{*}-module. Further for any $l \leqq n$ and any $\rho=\rho(k ; r)$, V_{ρ}^{l} is generated by $V_{\varepsilon}^{k ; r}$ as a V_{0}^{*}-module; $V_{\rho}^{l}=V_{0}^{l-k} \wedge V_{\varepsilon}^{k ; r}$. 5) For any triple (l, k, r) of integers such that $(l, r) \in \Psi, k \in \Delta(l), r \in \Delta(k)$ (cf. (0.1)) and $k \leqq n$ the natural linear map $V_{0}^{l-k} \bigotimes_{C} V_{\varepsilon}^{k ; r} \rightarrow V_{0}^{l-k} \wedge V_{\varepsilon}^{k ; r}$ is isomorphic.

Remark 2.5. It seems that 3) is true for any $(k, r) \in \Psi$. Then the proof below would show that 4) is also true for any l and 5) is true without the assumption that $k \leqq n$ (though the assumption on (l, r) is necessary).

The above proposition completely determines the structure of $\wedge^{l} V$ for $l \leqq n$ as an $\operatorname{Sp}(\mathrm{n}) \mathrm{Sp}(1)$-module; namely we have

$$
\wedge^{l} V=\underset{k \in \mathcal{A}(l)}{\oplus} \oplus \oplus_{r \in \Delta(k)} V_{\rho(k ; r)}^{l}, \quad l \leqq n+1
$$

where for $l \leqq n$

$$
V_{\rho(k ; r)}^{l} \cong V_{0}^{l-k} \otimes_{C} V_{\varepsilon}^{k ; r} \cong\left(V_{0}^{l-k} \otimes_{C} V_{r}\right) \otimes_{C} W(k ; r)
$$

as an $\mathrm{Sp}(\mathrm{n}) \mathrm{Sp}(1)$-module. Further the structure of $V_{0}^{l-k} \otimes_{C} V_{r}$ as an $\mathrm{Sp}(1)$-module can be determined completely by Lemmas 1.4 and 2.3.

Before the proof of Proposition 2.4 we make some preliminary considerations. Choose the orientation of the space P of pure quaternions by requiring i, j, k to be an oriented basis of P. Let λ be any element of C. Take $\lambda_{1}, \lambda_{2} \in C$ in such a way that $\left\{\lambda, \lambda_{1}, \lambda_{2}\right\}$ is an oriented orthonormal basis of P. We set

$$
\begin{equation*}
\varphi_{\lambda}=\omega_{\lambda_{1}}+\sqrt{-1} \omega_{\lambda_{2}} . \tag{2.13}
\end{equation*}
$$

(Up to multiplicative constants a with $|a|=1, \varphi_{\lambda}$ depends only on λ but not on the choice of λ_{1}, λ_{2}.) Then we have

$$
\begin{equation*}
\varphi_{\lambda} \in V_{0}^{2,0}(\lambda), \quad \omega_{\lambda} \in V_{0}^{1,1}(\lambda), \quad \bar{\varphi}_{\lambda} \in V_{0}^{0,2}(\lambda) ; \tag{2.14}
\end{equation*}
$$

in particular $\varphi_{\lambda}, \omega_{\lambda}, \bar{\varphi}_{\lambda}$ form a C-basis of V_{0}^{2}, where $\bar{\varphi}_{\lambda}=\omega_{\lambda_{1}}-\sqrt{-1} \omega_{\lambda_{2}}$ is the complex conjugate of φ_{2}.

In what follows we shall consider only the case $\lambda=i$, and accordingly, we omit the index λ in the relevant notation, for instance $V^{p, q}=V^{p, q}(\lambda)$ and (2.14) will be denoted by $\varphi \in V^{2,0}, \omega \in V^{1,1}, \bar{\varphi} \in V^{0,2}$. We set $E=V^{1,0}$ and $\bar{E}=V^{0,1}$. Let $L_{\varphi}\left(\right.$ resp. $\left.L_{\bar{\varphi}}\right): \wedge V \rightarrow \wedge V$ be the φ - (resp. $\bar{\varphi}$-) multiplication operator and set $\Lambda_{\varphi}=*^{-1} L_{\bar{\varphi}} *$. Then Λ_{φ} sends $V^{p, q}$ into $V^{p-2, q}$. Then we have the following:

Proposition 2.6. 1) We have the direct sum decomposition

$$
\begin{equation*}
V^{p, 0}=\bigoplus_{r \geqq(n-p)^{+}} L^{r} V_{e(\varphi)}^{p-2 r}, \quad r \geqq(n-p)^{+} \tag{2.15}
\end{equation*}
$$

which is orthogonal with respect to the natural Hermitian metric on $V^{p, 0}$, where $V_{e(\varphi)}^{s, 0}:=\left\{\alpha \in V^{s, 0} ; \Lambda_{\varphi} \alpha=0\right\}$ is the space of φ-effective holomorphic s-forms. 2) The linear map $L_{\varphi}^{n-p}: V^{p, 0} \rightarrow V^{2 n-p, 0}$ is isomorphic for any $p<n$.

Proof. (cf. also [5; p 271 ff$]$). As in Weil [27; I, $\mathrm{n}^{\circ} 3.4$] one can readily show that for any $p \geqq 0$

$$
\left[L_{\varphi}, \Lambda_{\varphi}\right]:=L_{\varphi} \Lambda_{\varphi}-\Lambda_{\varphi} L_{\varphi}=4(p-n) i d, \quad \text { on } V^{p, 0}
$$

where id denotes the identity. As usual, this implies the existence of the natural action of the Lie algebra $\mathfrak{ß l}_{2}(C)$ on the vector space $\wedge E$ and this
leads to the results 1) and 2) (cf. [28; V]). Note that the orthogonality of (2.15) follows from the fact that L_{φ} and Λ_{φ} are adjoint to each other with respect to the metric on $V^{p, 0}$.

As in [27; p. 28, Cor.] we obtain the following:
Corollary 2.7. 1) $V_{e(\varphi)}^{p, 0} \neq 0$ if and only if $0<p \leqq n$, and 2) in this range a p-form α is φ-effective if and only if $L_{\varphi}^{n-p+1} \alpha=0$.

We now fix once and for all a basis

$$
\begin{equation*}
z_{1}, \cdots, z_{n}, z_{1}^{\prime}, \cdots, z_{n}^{\prime} \tag{2.16}
\end{equation*}
$$

of E such that with respect to this basis φ and ω are written in the form

$$
\begin{equation*}
\varphi=\sum_{i=1}^{n} z_{i} \wedge z_{i}^{\prime} \quad \text { and } \quad \omega=(\sqrt{-1} / 2)\left(\sum_{i=1}^{n} z_{i} \wedge \bar{z}_{i}+\sum_{j=1}^{n} z_{j}^{\prime} \wedge \bar{z}_{j}^{\prime}\right) . \tag{2.17}
\end{equation*}
$$

We also need the following lemmas.
Lemma 2.8. Let $X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in \mathfrak{E l} l_{2}(C)$. Let $X_{*}: \bar{E} \rightarrow E$ be the C-linear isomorphism with respect to the action of $\mathfrak{\zeta l}_{2}(C)$ on $V=E \oplus \bar{E}$ induced by the action of $\mathfrak{j p (1) ~ o n ~} V_{R}(c f .(1.11))$. Then there exists a nonzero constant c such that $X_{*}\left(\bar{z}_{i}\right)=c z_{i}^{\prime}$ and $X_{*}\left(\bar{z}_{j}^{\prime}\right)=-c z_{j}$ for any i and j.

Proof. Let $\varphi_{*}: E \rightarrow E^{*}$ and $\omega_{*}: \bar{E} \rightarrow E^{*}$ be the C-linear isomorphisms induced respectively by φ and ω, where φ (resp. ω) is considered as a nondegenerate alternating (resp. Hermitian) form on E and E^{*} is the dual of E. Since both X_{*} and $\varphi_{*} \omega_{*}^{-1}$ are $\operatorname{Sp}(\mathrm{n})$-isomorphisms and since both E and \bar{E} are $\operatorname{Sp}(\mathrm{n})$-irreducible, by Schur's lemma $X_{*}=c \varphi_{*} \omega_{*}^{-1}$ for some nonzero constant c. The lemma then follows from this and (2.17).

Lemma 2.9. Let G be a group acting on a complex vector space F. Let \bar{F} be the complex conjugate of F as $a G$-module. Suppose that there exists a G-invariant Hermitian inner product \langle,$\rangle on F$ and a decomposition $F=F_{1} \oplus \cdots \oplus F_{k}$ of F into a direct sum of G-modules. Then if $\operatorname{dim}_{C}\left(\bar{F} \otimes_{C} F\right)^{G}$ $=k$, each F_{i} is an irreducible G-module, where ()G denotes the set of G invariants.

Proof. \langle,$\rangle induces the natural G$-isomorphism of \bar{F} with the dual F^{*} of F. It follows that the condition of the lemma is equivalent to: $\operatorname{dim}_{C} \operatorname{End}_{G} F=k$, where $\operatorname{End}_{G} F$ is the vector space of G-linear endomorphisms of F. Then from

$$
\sum_{i=1}^{k} \operatorname{dim}_{C} \operatorname{End}_{G} F_{i} \leqq \operatorname{dim}_{C} \operatorname{End}_{G} F
$$

we see that $\operatorname{dim}_{C} \operatorname{End}_{G} F_{i}=1$; hence F_{i} is irreducible.
Lemma 2.10. Let G, H be compact (real) Lie groups. Let U, V and W be complex $(G \times H)$-modules. Let $f: V \otimes_{C} W \rightarrow U$ be a $(G \times H)$-homomorphism. Suppose that V is $(G \times H)$-irreducible and W is G-trivial. Suppose further that there exists a nonzero irreducible H-submodule V^{\prime} of V such that the induced homomorphism $\left.f\right|_{V^{\prime} \otimes_{C^{W}}}: V^{\prime} \otimes_{C} W \rightarrow U$ is injective. Then f itself is injective.

Proof. From the $(G \times H)$-irreducibility of V follows the existence of an irreducible G-module V_{1} and an irreducible H-module V_{2} such that there exists an isomorphism $h: V \rightarrow V_{1} \otimes_{C} V_{2}$ of $(G \times H)$-modules. Moreover, we can find a nonzero vector $u \in V_{1}$ such that $h\left(V^{\prime}\right)=C u \otimes V_{2}$. The kernel K of f is a $(G \times H)$-submodule of $V \otimes_{C} W \cong V_{1} \otimes_{C}\left(V_{2} \otimes_{C} W\right)$. Hence, since V_{1} is H-irreducible and W is G-trivial there exists an H-submodule M of $V_{2} \otimes_{C} W$ such that $K=V_{1} \otimes_{C} M$. Then by our assumption, $C u \otimes_{C} M$ $=\left(V_{1} \otimes_{C} M\right) \cap\left(C u \otimes_{C} V_{2}\right)=0$. Hence $M=K=0$.

Proof of Proposition 2.4. We use the basis (2.16) of E. Then the totality of $z_{I} \wedge z_{J}^{\prime} \wedge z_{K} \wedge z_{L}^{\prime}$, where $I=\left(i_{1}, \cdots, i_{s}\right), J=\left(j_{1}, \cdots, j_{s^{\prime}}\right), K=$ $\left(k_{1}, \cdots, k_{t}\right), L=\left(l_{1}, \cdots, l_{t^{\prime}}\right), s, s^{\prime}, t, t^{\prime} \geqq 0$, are any increasing sequences of integers from $\{1, \cdots, n\}$, forms a basis of $\wedge V$ consisting of eigenvectors for the action of the diagonal group $D(n)$ of $S p(n)$ with eigenvalues $\varepsilon_{I} \varepsilon_{J}^{-1} \varepsilon_{K}^{-1} \varepsilon_{L}$. Here the multi-index notation is used. Now set for any $0 \leqq p$, $q \leqq n$

$$
\begin{equation*}
\alpha_{p, q}=z_{1} \wedge \cdots \wedge z_{p} \wedge \bar{z}_{1}^{\prime} \wedge \cdots \wedge \bar{z}_{q}^{\prime} \tag{2.18}
\end{equation*}
$$

If $q \leqq p$, the eigenvalue $\varepsilon_{1}^{2} \cdots \varepsilon_{q}^{2} \varepsilon_{q+1} \cdots \varepsilon_{p}$ of $\alpha_{p, q}$ appears as the highest term in the character polynomial in $\varepsilon_{1}, \cdots, \varepsilon_{n}$ of the induced action of $\mathrm{D}(\mathrm{n})$ on the $\mathrm{Sp}(\mathrm{n})$-module $V^{p, q}$ with respect to the lexicographical order. From these we conclude as in the proof of Proposition 2.2 the first assertion of 1).

The second assertion can be seen as follows. For any $\rho \in \mathfrak{R}, V_{\rho}^{k}$ is also an $\mathrm{Sp}(1)$-module. Since any complex $\mathrm{Sp}(1)$-module is self-conjugate, by Lemma $1.4 V_{\rho}^{k}$ is defined over \boldsymbol{R}.

Next we show 2). For any pair (k, r) of nonnegative integers with $r \in \Delta(k)$ we set $p=(k+r) / 2$ and $q=(k-r) / 2$. Suppose first that $k+r \leqq 2 n$, i.e., $(k, r) \in \Psi$. Then $\alpha=\alpha_{p, q}$ makes sense and we compute readily that $\Lambda_{\varphi} \alpha=\Lambda_{\bar{\varphi}} \alpha=\Lambda_{\omega} \alpha=0$. Since Λ_{β} is linear with respect to β and $\{\varphi, \bar{\varphi}, \omega\}$ is
a basis of V_{0}^{2}, this implies that $\alpha \in V_{\varepsilon}^{p, q}:=V^{p, q} \cap V_{\varepsilon}^{k}$. Moreover by Lemma 2.8 we get that $X_{*}(\alpha)=0$, by noting that X_{*} operates on $\wedge V$ as a derivation. Hence by 3) of Lemma 1.2, $\alpha \in V_{\varepsilon}^{k ; r}$, and hence $V_{\varepsilon}^{k ; r} \neq 0$. Suppose next that $k+r>2 n$, i.e., $p>n$. Then by 2) of Proposition 2.6 $L_{\varphi}: V^{p-2, q} \rightarrow V^{p, q}$ is surjective. Hence its Hermitian adjoint $\Lambda_{\varphi}: V^{p, q} \rightarrow$ $V^{p-2, q}$ is injective so that the Hodge (p, q)-component of $V_{\varepsilon}^{k ; r}$ must vanish. In view of Lemma 1.1 this implies that $V_{\varepsilon}^{k ; r}=0$ as $V_{\varepsilon}^{k ; r}$ is $V_{k, r^{-}}^{R}$ isotypical.

Proof of 3): For simplicity we consider only the case where k is even. Write $k=2 s$. Denote by $\hat{V}, \hat{V}_{\varepsilon}^{k}, \hat{V}_{\varepsilon}^{k ; r}$ the Hodge (s, s)-components of $\wedge^{k} V, V_{\varepsilon}^{k}, V_{\varepsilon}^{k ; r}$ respectively. First we shall show that $\hat{V}_{\varepsilon}^{k ; r}$ is $\operatorname{Sp}(\mathrm{n})-$ irreducible. From (2.8) we have the direct sum decomposition $\hat{V}_{\varepsilon}^{k}=$ $\oplus_{r \in \Delta(k)} \hat{V}_{\varepsilon}^{k ; r}$, where, since $k \leqq n$, each summand $\hat{V}_{\varepsilon}^{k ; r}$ is nonzero by 2) so that the number of summands equals $s+1$. Set

$$
B=\hat{V}_{\varepsilon}^{k} \otimes_{C} \hat{V}_{\varepsilon}^{k} \quad \text { and } \quad C=\hat{V}^{k} \otimes_{C} \hat{V}^{k}
$$

Then by Lemma 2.9 it suffices to show that $\operatorname{dim}_{C} B^{G} \leqq s+1$ for $G=\operatorname{Sp}(\mathrm{n})$. First we note that $B^{G} \subseteq C^{G}$. Set

$$
\begin{array}{lll}
\varphi_{1}=\varphi \otimes 1 \in V^{2,0} \otimes V^{0,0}, & \varphi_{2}=1 \otimes \varphi \in V^{0,0} \otimes V^{2,0}, & \omega_{1}=\omega \otimes 1 \in V^{1,1} \otimes V^{0,0} \\
\bar{\varphi}_{1}=\bar{\varphi} \otimes 1 \in V^{0,2} \otimes V^{0,0}, & \bar{\varphi}_{2}=1 \otimes \bar{\varphi} \in V^{0,0} \otimes V^{0,2}, & \omega_{2}=1 \otimes \omega \in V^{0,0} \otimes V^{1,1} .
\end{array}
$$

We regard C as a subspace of $\wedge E \otimes \wedge \bar{E} \otimes \wedge E \otimes \wedge \bar{E}$ via the natural isomorphism $C \cong \wedge^{s} E \otimes \wedge^{s} \bar{E} \otimes \wedge^{s} E \otimes \wedge^{s} \bar{E}$. Let K be the subspace of C generated by those elements which are multiples of any of $\varphi_{i}, \bar{\varphi}_{j}, \omega_{k} \in$ $(\wedge E \otimes \wedge \bar{E} \otimes \wedge E \otimes \bar{E})^{G}$. By the orthogonality of the Lefschetz decompositions (2.6) and (2.12) we see that K is orthogonal to B with respect to the natural induced metric on C. Therefore it suffices to show that $\operatorname{dim}_{C} C^{a} / K^{G} \leqq s+1$. In fact, we can find $s+1$ elements of C^{G} which generate C^{G} / K^{G} as follows. Let $j_{14}: \wedge E \otimes \wedge \bar{E} \rightarrow \wedge E \otimes \wedge \bar{E} \otimes \wedge E \otimes \wedge \bar{E}$ be the inclusion defined by $j_{14}(x \otimes y)=x \otimes 1 \otimes 1 \otimes y, x \in \wedge E, y \in \wedge \bar{E}$. Similarly, we define the inclusions j_{32}, j_{13}, j_{24}. Then we set

$$
\omega_{14}=j_{14}(\omega), \quad \omega_{32}=j_{32}(\omega), \quad \varphi_{13}=j_{13}(\varphi), \quad \bar{\varphi}_{24}=j_{24}(\varphi)
$$

under the identification

$$
\omega \in E \otimes \bar{E} \subseteq \wedge E \otimes \wedge \bar{E} \quad \text { and } \quad \varphi \in \wedge^{2} E \subseteq E \otimes E \subseteq \wedge E \otimes \wedge E
$$

Then by using the classical invariant theory [29] one sees readily that the elements

$$
\omega_{14}^{s-j} \otimes \omega_{32}^{s-j} \otimes \varphi_{13}^{j} \otimes \bar{\varphi}_{24}^{j}, \quad 0 \leqq j \leqq s
$$

have the required properties. Thus $\hat{V}_{\varepsilon}^{k ; r}$ is $\mathrm{Sp}(\mathrm{n})$-irreducible.
Since any nonzero Hodge component $W_{\varepsilon}^{s, t}$ of $V_{\varepsilon}^{k ; r}$ are $\mathrm{Sp}(\mathrm{n})$-isomorphic to one another (cf. (1.11)), this implies in particular that $W_{\varepsilon}^{p, q}$ is $\mathrm{Sp}(\mathrm{n})$-irreducible, where $p=(k+r) / 2$ and $q=(k-r) / 2$ as before. Then since $\alpha_{p, q} \in W_{\varepsilon}^{p, q}$, by the first part of the proof we see that $W_{\varepsilon}^{p, q} \cong W(k ; r)$ as an $\mathrm{Sp}(\mathrm{n})$-module (cf. the proof of Proposition 2.2). Finally since $V_{\varepsilon}^{k ; r} \cong W_{\varepsilon}^{p, q} \otimes_{C} V_{r}$ as an $\mathrm{Sp}(\mathrm{n}) \mathrm{Sp}(1)$-module, 3) follows.

Proof of 4). Let α be any element of $\wedge^{l} V$. Then by using the Lefschetz decomposition (2.6) with respect to ω_{λ} for $\lambda=i, j, k$, we conclude easily that there exists a (non-commutative) polynomial $\Phi\left(X, Y, Z ; X^{\prime}, Y^{\prime}\right.$, $\left.Z^{\prime}\right)$ with rational coefficients such that if we set $\alpha_{0}=\Phi\left(L_{i}, L_{j}, L_{k} ; \Lambda_{i}, \Lambda_{j}\right.$, $\left.\Lambda_{k}\right) \alpha$, then $\alpha_{0} \in \wedge^{k} V, \Lambda_{\lambda} \alpha_{0}=0$ for $\lambda=i, j, k$ and α is written in the form $\alpha=L_{i}^{s} L_{j}^{t} L_{k}^{u} \alpha_{0}$ for some $s, t, u \geqq 0$, where $k=l-2(s+t+u$) (cf. [27; p. 26, Th. 3], [28; V. Th. 3.12]). Since Λ_{λ} is linear with respect to λ and i, j, k form a basis of $V_{0, R}^{2}$ it follows that $\alpha_{0} \in V_{\varepsilon}^{k}$. This shows the first half of 4). Further, in this argument if $\alpha \in V_{\rho}^{l}$ for some ρ, then we have again $\alpha_{0} \in V_{\rho}^{k}$ since both L_{λ} and Λ_{λ} are $\operatorname{Sp}(\mathrm{n})$-invariant. In particular if $\rho=\rho(k ; r)$ and $k \leqq n$, this implies that $\alpha_{0} \in V_{\rho}^{k} \cap V_{\varepsilon}^{k}=V_{\varepsilon}^{k ; r}$ by 3). This proves the second statement.

Proof of 5). Let $p=(k+r) / 2$ and $q=(k-r) / 2$ as before. Let $m=$ $n-p$. Set $u_{i}=z_{q+i}, u_{i}^{\prime}=z_{q+i}^{\prime}, 1 \leqq i \leqq r$. Further we set $\beta=\prod_{i=1}^{q} z_{i} \wedge z_{i}^{\prime}$. For any $0 \leqq u, v \leqq r$ with $u+v=r$ we define

$$
Z_{u v}=\beta \wedge \sum_{I} s(I) u_{I} \wedge \bar{u}_{I^{\prime}}^{\prime}
$$

where the summation is over all the ordered u-tuples $I=\left(i_{1}, \cdots, i_{u}\right)$ with $1 \leqq i_{1}<\cdots<i_{u} \leqq r, I^{\prime}=\left(j_{1}, \cdots, j_{v}\right), 1 \leqq j_{1}<\cdots<j_{v} \leqq r$ with $\{1, \cdots, r\}=$ $\left\{i_{1}, \cdots, i_{u}, j_{1}, \cdots, j_{v}\right\}, s(I)$ is the signature of the permutation $\left(I, I^{\prime}\right)$ of $\{1, \cdots, r\}$, and $u_{I}=u_{i_{1}} \wedge \cdots \wedge u_{i_{u}}, u_{I^{\prime}}^{\prime}=u_{j_{1}}^{\prime} \wedge \cdots \wedge u_{j_{v}}^{\prime}$. Let V^{\prime} be the smallest complex $\operatorname{Sp}(1)$-submodule (or equivalently, $\mathfrak{S l}_{2}(C)$-submodule) of $V_{\varepsilon}^{k ; r}$ containing $Z_{r 0}= \pm \alpha_{p, q} \in V_{\varepsilon}^{k ; r}$ (cf. (2.18)). In view of Lemma 2.8, it then readily follows that $Z_{u, r-u}, 0 \leqq u \leqq r$, form a C-basis of V^{\prime}. Since $(l, r) \in \Psi$ we have

$$
\begin{equation*}
(l-k) / 2 \leqq n-(q+r) \tag{2.19}
\end{equation*}
$$

Let $s=(l-k) / 2$. For any integers $a, b, c \geqq 0$ with $a+b+c=s$, we set $\Omega_{a b c}=\varphi^{a} \bar{\varphi}^{b} \omega^{c}$. Let B be the set of all such $\Omega_{a b c}$. Then B is a C-basis of V_{0}^{l-k} (cf. the proof below for the case $k=0$ so that $V_{o}^{k ; r}=V_{0}^{0 ; 0}=C$). Therefore $A:=\left\{\Omega_{a b c} \otimes Z_{u v} ; \Omega_{a b c} \in B, u+v=r\right\}$ is a C-basis of $V_{0}^{l-k} \otimes V^{\prime}$. Now by 3) we can apply Lemma 2.10 to the case where $G=\operatorname{Sp}(\mathrm{n}), H=$ $\mathrm{Sp}(1), V=V_{\varepsilon}^{k ; r}, W=V_{0}^{l-k}, f$ is the linear map of the proposition and V^{\prime}
is as above; thus it suffices to show the injectivity of the natural map $V_{0}^{l-k} \otimes V^{\prime} \rightarrow \wedge^{l} V$. Let

$$
\bar{A}=\left\{\Omega_{a b c} \wedge Z_{u v} ; \Omega_{a b c} \otimes Z_{u v} \in A\right\} .
$$

We have only to show that the elements of \bar{A} are linearly independent; indeed, among the elements of $\bar{A}, \Omega_{a b_{c}} \wedge Z_{u v}$ is characterized, as one sees readily from (2.19), by the property that it contains the term

$$
\beta \wedge\left(\prod_{1}^{u} u_{\mu}\right) \wedge\left(\prod_{u+1}^{r} \bar{u}_{v}^{\prime}\right) \wedge\left(\prod_{1}^{a} w_{i} \wedge w_{i}^{\prime}\right) \wedge\left(\prod_{a+1}^{a+b} \bar{w}_{j} \wedge \overline{w_{j}^{\prime}}\right) \wedge\left(\prod_{a+b+1}^{m} w_{k} \wedge \overline{w_{k}^{\prime}}\right)
$$

with nonzero coefficients in the expansion in z_{i}, z_{i}^{\prime}, where $w_{j}=z_{p+j}$ and $w_{j}^{\prime}=z_{p+j}^{\prime}, 1 \leqq j \leqq m$.

Case 3: $d=4 n$ and $G=\operatorname{Sp}(\mathrm{n}) \mathrm{Sp}(1)$ with $V_{R}=\boldsymbol{H}^{n}$ as in Case 2 (cf. (2.12)). In this case $H=\{ \pm 1\}$ and the H-structure is uninteresting. The structure of V_{0}^{*} is as follows. Let $\mathrm{Sp}(1)$ act on P by the inner automorphism. Then $\langle,\rangle_{P}: \boldsymbol{H}^{n} \times \boldsymbol{H}^{n} \rightarrow P$ is $\mathrm{Sp}(1)$-equivariant (cf. (1.1)). We set

$$
\begin{equation*}
\Phi=N\left(\langle,\rangle_{P}\right), \tag{2.20}
\end{equation*}
$$

where N is the quaternion norm. If we consider \langle,\rangle_{P} as a P-valued 2-form on $V_{R}=H^{n}$ by identifying $V_{\boldsymbol{R}}$ with its dual via (,), then Φ may be regarded as a G-invariant 4 -form on V_{R}. We call Φ the Kraines form (cf. [19]). Then it is well-known and easy to verify that

$$
\begin{equation*}
V_{0}^{*}=\left(V^{\mathrm{spp}(\mathrm{n})}\right)^{\mathrm{spp}(1)}=\underset{0 \leq s \leq n}{ } \bigoplus C \Phi^{s} . \tag{2.21}
\end{equation*}
$$

Let L_{φ} be the Φ-multiplication operator on $\wedge V$. Let $\Lambda_{\varphi}=*^{-1} L_{\varphi} *$. Then L_{ϕ} and Λ_{Φ} are adjoint to each other with respect to the natural Hermitian inner product of $\wedge V$. We call an element $v \in \wedge V_{R} \Phi$-effective if $\Lambda_{\rho} v=0$. Let $V_{e(\varphi)}^{k}$ be the subspace of Φ-effective k-forms, which is clearly G-invariant. We set $V_{e(\phi)}^{k ; r}=V_{e(\Phi)}^{k} \cap V^{k ; r}$, where $V^{k ; r}$ is as in (2.8).

Proposition 2.11. For $l<n$ the linear map $L_{\varphi}: \wedge^{l} V \rightarrow \wedge^{l+4} V$ is injective and for $l \leqq n+3$ we have the natural direct sum decomposition: $\wedge^{l} V=\oplus_{0 \leq s \leq[/ / 4]} L_{\Phi}^{s} V_{e(\phi)}^{L-4 s}$.

This is essentially due to Kraines [19], where she has shown the injectivity for $l \leqq n-3$.

Proof. The second assertion follows from the first as in [19; Th. 2.6]. So we shall prove the first assertion. First we note that for any
integer $n \leqq t \leqq 2 n$ and $i \in \Delta(2 n-t)$ if we set $V_{0}^{2 t \mid 2 i}=\oplus_{s \in \Delta(i)} V_{0}^{2 t ; 2 s}$ then we have

$$
\begin{equation*}
V_{0}^{2 t \mid 2 i}=L_{\phi}^{(t-i) / 2} V_{0}^{2 i} \tag{2.22}
\end{equation*}
$$

where $V_{0}^{2 t ; 2 s}$ are as in Lemma 2.3. In fact this follows from the consideration of the natural surjections $u_{k}: S^{k}\left(V_{2}\right) \rightarrow V_{0}^{2 k}$ with the help of (1.14) and Lemma 2.3. Note that Φ_{0} in (1.14) is mapped by u_{2} to Φ up to multiplicative constants.

We show more precisely the injectivity of $L_{\Phi}^{\alpha}: V^{l ; s} \rightarrow V^{l+4 \alpha ; s}$ for any $s \in \Delta(l)$, where $\alpha=n-(l+s) / 2$. This is equivalent to the injectivity of $\Lambda_{\Phi}^{\alpha}=*^{-1} L_{\Phi}^{\alpha} *: V^{4 n-l ; s} \rightarrow V^{4 n-l-4 \alpha ; s}, *$ being isomorphic. Since L_{ϕ}^{α} and Λ_{Φ}^{α} are adjoint to each other, the latter is further equivalent to the injectivity of $L_{\Phi}^{\alpha}: V^{4 n-l-4 \alpha ; s} \rightarrow V^{4 n-l ; s}$. Hence it suffices to show that for each $\rho \in \mathfrak{R}$ $=\Re_{\mathrm{Sp}(\mathrm{n})}$ the induced linear mapping $L_{\Phi}^{\alpha}: V_{\rho}^{4 n-l-4 \alpha ; s} \rightarrow V_{\rho}^{4 n-l ; s}$ is surjective. By Proposition 2.4 and (2.3) we may assume that $\rho=\rho(k ; r)$ for some (k, r) $\in \Psi$ with $k \in \Delta(l)$, so that $V_{\rho}^{k ; r}=V_{\varepsilon}^{k ; r}$. Moreover, by 4) of Proposition 2.4, we have a) $V_{\rho}^{l ; s} \subseteq V_{0}^{l-k} \wedge V_{\rho}^{k ; r}$ and b) $V_{\rho}^{4 n-l ; s} \subseteq V_{0}^{4 n-l-k} \wedge V_{\rho}^{k ; r}$. In view of (1.12) from a) we get $k+r \leqq s+l$, and from b) we see that $V_{p}^{4 n-l ; s}$ $\subseteq V_{0}^{4 n-l-k \mid r+s+\varepsilon} \wedge V_{\rho}^{k ; r}$, where $\varepsilon=0$ or 2 is determined by $k+l+s+r \equiv$ ε (4). Then we have $\alpha \leqq \beta$ with

$$
\beta=n-(k+l+s+r+\varepsilon) / 4 .
$$

Hence by (2.22) we get $V_{\rho}^{4 n-l ; s} \subseteq L_{\Phi}^{\beta} V^{r+s+\varepsilon} \bigwedge V_{\rho}^{k ; r} \subseteq \operatorname{Im} L_{\Phi}^{\alpha}$ as desired.

§ 3. Decomposition theorem for the cohomology group of a Riemannian manifold

Fix a compact connected oriented C^{∞} manifold M of dimension d. Let $T_{\boldsymbol{R}}^{*}$ be the cotangent bundle of M. Let G_{0} be a closed subgroup of $\mathrm{GL}_{d}(\boldsymbol{R})$. The examples of G_{0} we have in mind are: Case $1, \mathrm{GL}_{n}(\boldsymbol{C})$ $(d=2 n)$; Case $2, \mathrm{GL}_{n}(\boldsymbol{H})(d=4 n)$; and Case $3, \mathrm{GL}_{n}(\boldsymbol{H}) \cdot \boldsymbol{H}^{\times}(d=4 n)$.

A G_{0}-structure is by definition a reduction of the structure group of $T_{\boldsymbol{R}}^{*}$ in G_{0}. Set $V_{\boldsymbol{R}}=\boldsymbol{R}^{d}$. Let $A:=\operatorname{End}_{G_{0}} V_{\boldsymbol{R}}$ be the \boldsymbol{R}-algebra of G_{0}-linear endomorphisms of $V_{\boldsymbol{R}}$. Then A naturally operates on $T_{\boldsymbol{R}}^{*}$ by bundle endomorphisms. The structures of A in the above three cases are given respectively by: Case $1, \boldsymbol{C}$; Case $2, \boldsymbol{H}$; and Case $3, \boldsymbol{R}$. Accordingly, in the first two cases we call the corresponding G_{0}-structure almost complex structure and almost quaternionic structure, respectively. In the thrid case we call the G_{0}-structure a twisted almost quaternionic structure.*) In fact,

[^0]in this case the bundle $\operatorname{End}_{R} T_{R}^{*}$ of algebras contains a subbundle of algebras whose fiber is isomorphic to \boldsymbol{H} (cf. [22]). In these cases if, further, the G_{0}-structure admits a torsion-free connection, we shall call it a complex structure, quaternionic structure, and twisted quaternionic structure, respectively. In fact, in Case 1, then the almost complex structure defined by $i \in \boldsymbol{C}$ is known to be integrable. Similarly in Case 2 the almost complex structures defined by $\lambda \in C \cong \boldsymbol{H}$ are all integrable, and hence we obtain a family of compact complex manifolds $\left\{M_{\lambda}\right\}_{\lambda \in C}$ parametrized by $C=\boldsymbol{P}^{1}$ (cf. [15, IX. 3]). We shall call this family the Calabi family associated to the given quaternionic structure (cf. [6]).

Now fix a Riemannian metric g on M. Let (,) be the standard Euclidian inner product of $V_{\boldsymbol{R}}$. Let K be the linear holonomy group of the Riemannian manifold associated to the Riemannian connection Γ considered as a subgroup of $\operatorname{SO}(\mathrm{d})$ (with respect to some reference point $x_{0} \in M$ and an isometry $u:\left(T_{x_{0}}^{*}, g_{x_{0}}\right) \leftrightarrows\left(V_{R},(),\right)$ (cf. [15]). Then the structure group T_{R}^{*} is naturally reduced to K; in particular if K is contained in $G:=G_{0} \cap \mathrm{SO}$ (d), M has naturally the associated G_{0}-structure with a torsion-free connection (cf. [15]). In the above three cases, $G=\mathrm{U}(\mathrm{n}), \mathrm{Sp}(\mathrm{n})$ and $\mathrm{Sp}(\mathrm{n}) \mathrm{Sp}(1)$, respectively. In these cases we call the Riemannian manifold (M, g) a Kähler manifold, a hyperkähler manifold (cf. [6]) and a quaternionic Kähler manifold, respectively, except that in the last case we assume that $n>1$ for some reason (cf. [22]). In fact in Case $1, g$ becomes a Kähler metric in respect to the underlying complex structure, and similarly in Case $2, g$ becomes a Kähler metric on each M_{λ} so that $\left\{M_{\lambda}\right\}$ is now a family of compact Kähler manifolds.

The importance of the above three cases comes from Berger's holonomy classification theorem [2], which tells us that if the identity component K_{0} of K acts irreducibly on V_{R}, and if (M, g) is not locally symmetric, K_{0} is equivalent to one of the following subgroups of $\mathrm{SO}(\mathrm{d})$: i) $\operatorname{SO}(\mathrm{d})$, ii) $\mathrm{U}(\mathrm{n})$ or $\mathrm{SU}(\mathrm{n})(d=2 n)$, iii) $\mathrm{Sp}(\mathrm{n})$ or $\operatorname{Sp}(\mathrm{n}) \mathrm{Sp}(1)(d=4 n)$ iv) $\operatorname{Spin}(7)$, v) G_{2}.

Now we shall fix a compact Lie subgroup G of SO(d) and assume that the holonomy group of (M, g) is contained in G. Let V be the complexification of V_{R} with the induced Hermitian inner product. Let $T^{*}=T_{R}^{*} \otimes C$ be the complexified cotangent bundle of M. Let $\wedge^{k} T^{*}$ be its k-th exterior power, which is considered as a C^{∞} complex vector bundle with typical fiber $\wedge^{k} V$ and with structure group G. Then for any G-invariant subspace F of $\wedge^{k} V$ we have the naturally associated vector subbundle of $\wedge^{\wedge} T^{*}$ with typical fiber F and with structure group G, which we shall call the subbundle associated to F. In general, we call such a subbundle of $\wedge^{k} T^{*}$ admissible.

Now let Δ_{k} be the Laplacian associated to the metric g operating on
the space $A^{k}(M)$ of $C^{\infty} k$-forms on M. Let $\mathscr{S}^{k}(M)$ be the subspace of harmonic k-forms with respect to Δ_{k}. For any subbundle W of $\wedge^{k} T^{*}$ a section of W will be called a W-form (of degree k). We denote by $\mathfrak{S}_{W}^{k}(M)$ the space of harmonic W-forms. The following theorem of Chern [8] is fundamental for our purposes.

Theorem (Chern). Let W be any admissible subbundle of $\wedge^{k} T^{*}$. Then the Laplacian Δ_{k} commutes with the orthogonal projection $p_{W}: \wedge^{k} T^{*}$ $\rightarrow W$ (with respect to the natural Hermitian structure of $\wedge^{k} T^{*}$). If $\wedge^{k} T^{*}$ is a direct sum of admissible subbundles $W_{i}, 1 \leqq i \leqq s$, then we have the direct sum decomposition $\mathfrak{S c}^{k}(M)=\oplus_{1 \leqq i \leqq s} \mathfrak{S}_{W_{i}}^{k}(M)$.

Let W be any complex (resp. real) C^{∞} subbundle of $\wedge^{k} T^{*}$ (resp. $\left.\wedge^{k} T_{R}^{*}\right)$. Then we denote by $H_{W}^{k}(M, K)$ the subspace of $H^{k}(M, K)$ consisting of those classes which are representable by d-closed $C^{\infty} W$-forms, where $K=C$ (resp. R). Then the de Rham isomorphism $\mathfrak{S}^{k}(M) \rightarrow H^{k}(M$, C) induces the natural injection $j_{W}: \mathfrak{S}_{W}^{k}(M) \rightarrow H_{W}^{k}(M, C)$. As an immediate consequence of the above theorem we note the following:

Lemma 3.1. If W is admissible, then j_{W} is isomorphic so that $\mathfrak{S}_{W}^{k}(M)$ $\cong H_{W}^{k}(M, C)$ naturally.

Proof. Let α be any d-closed $C^{\infty} W$-form. Let $H \alpha$ be the harmonic part of α. Then by the above theorem $H \alpha$ is again a W-form. (Since Δ_{k} commutes with p_{W}, the harmonic projection operator H also commutes with p_{W} (cf. [27; IV]).) This implies the surjectivity of j_{W}.

Now in the two theorems below we shall summarize some of the consequences which we shall draw from the above theorem. First, note that associated to the canonical G-decomposition $\wedge^{k} V=\oplus_{\rho \in \mathfrak{A}} V_{\rho}^{k}$ of (2.1) we have the natural decomposition of complex vector bundles

$$
\wedge^{k} T^{*}=\bigoplus_{\rho \in \mathscr{R}} W_{\rho}^{k}
$$

where W_{ρ}^{k} is the subbundle associated to the subspace V_{ρ}^{k}. Then for any $\rho \in \Re$ we set $H_{\rho}^{*}(M, C)=H_{W_{\rho}}^{*}(M, C)$.

Theorem 3.2. In the above notation and assumptions there exists a natural direct sum decomposition

$$
\begin{equation*}
H^{*}(M, C)=\underset{\rho \in \Re}{\oplus} H_{\rho}^{*}(M, C) . \tag{3.1}
\end{equation*}
$$

Moreover, if $0 \in \mathfrak{R}$ is the class of the trivial representation, then $H_{0}^{*}(M, C)$ is a subalgebra defined over \boldsymbol{R} of the cohomology ring $H^{*}(M, C)$ naturally
isomorphic to V_{0}^{*}, and each $H_{\rho}^{*}(M, C)$ is naturally a graded $H_{0}^{*}(M, C)-$ module so that (3.1) is a decomposition as an $H_{0}^{*}(M, C)$-module.

Let H be the commutor of G in $\mathrm{GL}_{d}(\boldsymbol{R})$ and G_{0} the commutor of H in $\mathrm{GL}_{d}(\boldsymbol{R})$. Then H operates naturally on $T_{\boldsymbol{R}}^{*}$ and this action induces the C-linear action on the bundle $\wedge^{k} T^{*}$. Then associated to the canonical H-decomposition $\wedge^{k} V=\oplus_{\mu \in \Re^{\prime}} V_{\mu}^{k}$ of (2.2) we have the canonical decomposition

$$
\begin{equation*}
\wedge^{k} T^{*}=\bigoplus_{\mu \in \Re^{\prime}} W_{\mu}^{k} \tag{3.2}
\end{equation*}
$$

of C^{∞} vector bundles, where W_{μ}^{k} is the subbundle associated to the subspace V_{μ}^{k}. Then we set $H_{\mu}^{k}(M, C)=H_{W_{\mu}}^{k}(M, C)$.

Theorem 3.3. In the above notation and assumptions $H^{*}(M, C)$ has the natural structure of an H-module defined over \boldsymbol{R} such that $H_{\rho}^{*}(M, C)$ and $H_{\mu}^{*}(M, C)$ are all H-submodules for any $\rho \in \Re$ and $\mu \in \mathfrak{R}^{\prime}$. Further, the canonical H-decomposition of $H^{*}(M, C)$ is of the form

$$
\begin{equation*}
H^{*}(M, C)=\underset{\mu \in \mathfrak{R}^{\prime}}{ } H_{\mu}^{*}(M, C) \tag{3.3}
\end{equation*}
$$

where $H_{\mu}^{*}(M, C)$ is the μ-isotypical component. Moreover, (3.3) depends only on the underlying G_{0}-structure, but not on the particular choice of the metric g.

Remark 3.4. The decompositions (3.1) and (3.3) are compatible; for instance if we set $H_{\mu, \rho}^{*}(M, C)=H_{\mu}^{*}(M, C) \cap H_{\rho}^{*}(M, C)$, then we have

$$
\begin{equation*}
H_{\mu}^{*}(M, C)=\oplus_{\rho \in \mathscr{M}} H_{\mu, \rho}^{*}(M, C) \tag{3.4}
\end{equation*}
$$

The following result due to Lichnerowicz is useful for our argument.
Lemma 3.5. 1) Let α be any parallel k-form and β a $C^{\infty} l$-form. Then $\Delta(\alpha \wedge \beta)=\alpha \wedge \Delta \beta$, where Δ is the Laplacian. In particular, α is harmonic. 2) Let h be a C^{∞} endomorphism of the bundle $\wedge^{k} T^{*}$. Suppose that h is parallel as an element of the bundle End $\wedge^{k} T^{*}$. Then for any C^{∞} k-form α we have $\Delta(h \alpha)=h \Delta \alpha$.

For the proof see Lichnerowicz [20] (cf. also [21; (4.3.88)]). We write $\mathfrak{S}_{\rho}^{s}(M)=\mathfrak{S}_{\mathrm{C}}{ }_{W_{\rho}}^{s}(M)$. Using the above lemma we show the following:

Lemma 3.6. 1) $A C^{\infty} k$-form α is in $\mathfrak{S}_{0}^{k}(M)$ if and only if it is parallel. 2) For any $\rho \in \mathfrak{R}$, any $\alpha \in \mathscr{S}_{0}^{k}(M)$ and $\beta \in \mathfrak{S}_{\rho}^{l}(M)$ we have $\alpha \wedge \beta \in$ $S_{\mathcal{C}}{ }_{\rho}^{k+l}(M)$.

Proof. 1) If α is parallel, then α is a W_{0}^{k}-form and further is harmonic by Lemma 3.5. Thus $\alpha \in \mathfrak{S}_{0}^{k}(M)$. Conversely, suppose that α is in $\mathscr{S}_{0}^{k}(M)$. We use the argument of Bochner-Yano for which we refer to Goldberg [11; p. 88]. Let

$$
\alpha=(1 / k!) \sum \alpha_{i_{1} \cdots i_{k}} d u_{i_{1}} \wedge \cdots \wedge d u_{i_{k}}
$$

be the local expression of α with respect to local coordinates u_{1}, \cdots, u_{d}, where $\alpha_{i_{1} \cdots i_{k}}$ are skew-symmetric in their indices. Let $R_{i j k l}, R_{i j}, D_{j}$ be the local expressions with respect to u_{i} of the Riemannian curvature tensor, the Ricci curvature tensor, and the covariant differentiation associated to the Riemannian connection Γ, respectively. Then the following is true (cf. [11; (3.2.9)]);

$$
\begin{equation*}
\int_{M}\left(F(\alpha)+D_{j} \alpha_{i_{1} \cdots i_{k}} D^{j} \alpha^{i_{1} \cdots i_{k}}\right) * 1=0 \tag{3.5}
\end{equation*}
$$

where

$$
F(\alpha)=R_{i j} \alpha^{i i_{2} \cdots i_{k}} \alpha_{{ }_{i}{ }_{2} \cdots i_{k}}+((k-1) / 2) R_{i j k l} \alpha^{i j i_{3} \cdots i_{k}} \alpha^{k l}{ }_{i_{3} \cdots i_{k}} .
$$

(If $k=1$, the second term is assumed to be zero.) However, the argument there certainly shows that if, further, α is parallel, then even the integrand of (3.5), which reduces to $F(\alpha)$ then, vanishes indentically on M. Since every element of each fiber of the bundle W_{0}^{k} is obtained as the restriction of some parallel k-forms, this in turn implies that even for any $C^{\infty} W_{0}^{k}{ }^{k}$ form $\beta, F(\beta)$ vanishes identically on M. Then we apply this fact to an arbitrary harmonic W_{0}^{k}-form α and then use (3.5) to conclude that $D_{j} \alpha_{i_{1} \cdots i_{k}}=0$, i.e., that α is parallel.
2) By 1) α is parallel. Hence the result follows from Lemma 3.5.

Corollary 3.7. Let $\alpha \in \mathfrak{S}_{0}^{k}(M)$ and $\bar{\alpha}$ corresponding cohomology class. Let $L_{\alpha}\left(\right.$ resp. $\left.L_{\bar{\alpha}}\right)$ be the α - (resp. $\bar{\alpha}$-) multiplication operator on $\mathfrak{S}_{2}{ }^{*}(M)$ (resp. $H^{*}(M, \boldsymbol{R})$). Then the de Rham isomorphism $\boldsymbol{S}_{\mathrm{C}}^{*}(M) \rightarrow H^{*}(M, \boldsymbol{R})$ induces the isomorphism of $\operatorname{Ker} L_{\alpha}$ and $\operatorname{Ker} L_{\alpha}$, where Ker denotes the kernel.

Let $P^{*}(M)$ be the space of parallel forms. By Lemma 2.6 we obtain the canonical isomorpnisms

$$
\begin{equation*}
H_{0}^{*}(M, C) \stackrel{d}{\stackrel{ }{\sim}} \mathfrak{S}_{0}^{*}(M)=P^{*}(M) \stackrel{r}{\sim} V_{0}^{*}, \tag{3.6}
\end{equation*}
$$

where d is the de Rham-Hodge isomorphism, the middle equality is just the content of 1) of Lemma 3.6 and r is obtained by restriction to the fiber ($\wedge^{*} T_{x_{0}}$) over x_{0} identified with $\wedge^{*} V$ by $\wedge^{*} u$. Now the proof of Theorem 3.2 is immediate.

Proof of Theorem 3.2. (3.1) is an immediate consequence of the theorem of Chern and Lemma 3.1. The second assertion follows from (3.6), since $P^{*}(M)$ is a C-subalgebra of $A^{*}(M)$ and r is an algebra isomorphism. Finally, the last assertion follows from Lemmas 3.1 and 3.6, 2).

Proof of Theorem 3.3. The definition of $H_{\mu}^{*}(M, C)$ depends only on the underlying G_{0}-structure (which determines H as the commutor of G_{0}); hence the same is true for (3.3) if such a decomposition exists. For the remaining assertions, by identifying $\mathfrak{S}_{\mu}^{*}(M):=\mathfrak{S}_{\mathcal{E}}^{*}{ }_{W_{\mu}}^{*}(M)$ with $H_{\mu}^{*}(M, C)$ and $\mathfrak{S}_{\rho}^{*}(M)$ with $H_{\rho}^{*}(M, C)$ by Lemma 3.1 , we have only to prove the corresponding assertions for the corresponding space of harmonic forms. First, we note that each $h \in H$, regarded as a section of the bundle End $\wedge^{k} T$ of endomorphisms of $\wedge^{k} T^{*}$, is clearly parallel with respect to Γ. Then by Lemma 3.5 the action of H preserves $\mathscr{S}^{k}(M)$ and is defined over \boldsymbol{R}. On the other hand, the action of H clearly preserves each subbundles W_{ρ}^{k} and W_{μ}^{k} and hence the spaces $\mathfrak{S}_{\mu}^{k}(M)$ and $\mathfrak{S}_{\rho}^{k}(M)$ also. Further, as an H-module $\mathfrak{S}_{\mu}^{k}(M)$ is clearly μ-isotypical. Hence the direct sum decomposition $\mathfrak{S}_{\mathrm{C}}^{k}(M)=\oplus_{\mu \in \mathfrak{R}}, \mathfrak{S}_{\mu}^{k}(M)$ associated to (3.2) by the theorem of Chern is just the canonical decomposition of $\mathscr{S}^{k}(M)$.

Remark 3.8. $H_{\rho}^{*}(M, C)$ is defined \boldsymbol{R} over if and only if ρ is selfconjugate. Similarly, if $\mu_{H_{1}}$ is irreducible, $H_{\mu}^{*}(M, \boldsymbol{C})$ is defined over \boldsymbol{R} if and only if $\left.\mu\right|_{H_{1}}$ is self-conjugate. These facts follow from the above proofs and Lemma 2.1. In these cases we can speak of the real cohomology groups $H_{\rho}^{*}(M, \boldsymbol{R})$ and $H_{\mu}^{*}(M, \boldsymbol{R})$.

Let $V_{i}, i=1,2$, be G-invariant subspaces of $\wedge^{k_{i}} V$ with $k_{1}<k_{2}$ such that the exterior product induces the linear map $\gamma: V_{0}^{s} \otimes V_{1} \rightarrow V_{2}$, where $s=k_{1}-k_{2}$. Let W_{i} be the associated subbundles of $\wedge^{k_{i}} V$ with fiber V_{i}. Then γ induces a bundle map $W_{0}^{s} \otimes W_{1} \rightarrow W_{2}$, and then by Lemma 3.6 it further induces linear map $\gamma_{\mathfrak{F}}: \mathfrak{S}_{0}^{s}(M) \otimes \mathfrak{S}_{W_{1}}^{k_{1}}(M) \rightarrow \mathfrak{S}_{W_{W_{2}}}^{k_{2}}(M)$ of the corresponding spaces of harmonic forms. Let $\gamma_{H}: H_{0}^{s}(M, C) \otimes H_{W_{1}}^{k_{1}}(M, C) \rightarrow$ $H_{W_{2}}^{k_{2}}(M, C)$ be the corresponding map of cohomology groups (cf. Lemma 3.1).

Lemma 3.9. If γ is injective, then γ_{H} also is injective. If γ is isomorphic, then γ_{H} also is isomorphic.

Proof. The first assertion is clear. We have only to show that $\gamma_{\mathfrak{j}}$ is surjective assuming that γ is isomorphic. Let β be any element of $\mathfrak{S}_{\mathrm{C}}^{k_{2}}(M)$. Fix a basis $\left\{\alpha_{1}, \cdots, \alpha_{b}\right\}$ of $\mathscr{S}_{0}^{s}(M)$. Since the restriction induces the isomorphism of $\mathfrak{S}_{0}^{s}(M)$ with each fiber of $W_{0}^{s} \rightarrow M$, the assumption that γ
is isomorphic implies that we can write $\beta=\sum_{i=1}^{b} \alpha_{i} \wedge \beta_{i}$ for some $C^{\infty} W_{1}$ forms $\beta_{1}, \cdots, \beta_{b}$. Applying the Laplacian Δ to this equality and using Lemmas 3.5 and 3.6 , we obtain $0=\Delta \beta=\sum_{i=1}^{b} \alpha_{i} \wedge \Delta \beta_{i}$. Since $\Delta \beta_{i}$ is again a W_{1}-form by the theorem of Chern, by the injectivity of γ we get that $\Delta \beta_{j}=0$ for any j. This implies that β_{j} are harmonic as desired.

Note that the lemma is still true if we replace V_{0}^{s} by any of its subspaces and $H_{0}^{s}(M, C)$ by the subspace correponding to it via (3.6). This is clear from the above proof.

Let $H_{1}=H \cap \mathrm{SO}(\mathrm{d})$. Then the Hodge $*$-operator $*: \wedge^{d} T \leftrightarrows \wedge^{d-k} T$ is both G - and H_{1}-equivariant. Therefore for any $\rho \in \mathfrak{R}$ it induces successively H_{1}-isomorphisms $\mathscr{S}_{\rho}^{k}(M) \rightrightarrows \mathfrak{S}_{\rho}^{d-k}(M)$ and

$$
\begin{equation*}
*: H_{\rho}^{k}(M, C) \leftrightharpoons H_{\rho}^{d-k}(M, C) . \tag{3.7}
\end{equation*}
$$

This reduces in principle the study of the structure of $H^{k}(M, C)$ to the case $k \leqq d / 2$. We note, however, that the definition depends explicitly on the choice of the metric.

It is interesting to ask if the following statement is true in general: Any element h of H acts on $H^{*}(M, \boldsymbol{R})$ as an algebra automorphism. If this is the case, then the Poincaré duality makes $H^{k}(M, \boldsymbol{R})$ and $H^{d-k}(M, \boldsymbol{R})$ into dual H_{1}-modules.

We now specialize the previous considerations to the three cases mentioned at the beginning of this section. We start with:

Kähler case (cf. Chern [8; § 4]): In this case $d=2 n, G=\mathrm{U}(\mathrm{n}), H$ $=C^{*}$ and $G_{0}=\mathrm{GL}_{n}(C)$. Further (M, g) has naturally the structure of a compact Kähler manifold, which we denote by (X, \tilde{g}). In this case Theorems 3.3 and 3.2 reduce to the usual Hodge and the Lefschetz decomposition theorems for X, respectively. We shall give these reductions briefly.

Let $H^{p, q}(X)$ be the subspace of $H^{p+q}(X, C)$ of those classes representable by d-closed (p, q)-forms. Then we have the Hodge decomposition

$$
H^{k}(X, C)=\underset{p+q=k}{\oplus} H^{p, q}(X), \quad \bar{H}^{p, q}(X)=H^{q, p}(X),
$$

which depends only on the underlying complex structures. This is just the canonical decomposition (3.3) of the C^{*}-module $H^{*}(M, C)$ defined over \boldsymbol{R}.

Let ω be the Kähler class corresponding to \tilde{g}. Then we have $H_{0}^{*}(X, \boldsymbol{R})=\oplus_{k \geq 0} \boldsymbol{R} \omega^{k}$ by (2.4) and (3.6). Let L be the ω-multiplication operator as usual on $H^{*}(M, \boldsymbol{R})$. For $k \leqq n$ we set

$$
H_{e}^{k}(X, \boldsymbol{R})=\left\{\alpha \in H^{k}(X, \boldsymbol{R}) ; L^{n-k+1} \alpha=0\right\}
$$

(the set of ω-effective (or primitive) classes) and set $H_{e}^{p, q}(X)=H_{e}^{k}(X, C) \cap$ $H^{p, q}(X)$. Then for the representation $\rho=\rho(p, q), p+q \leqq n$, we have $H_{\rho}^{*}(X, C)=\oplus_{r \geq 0} L^{r} H_{e}^{p, q}(X)$ and $H^{*}(X, C)$ is a direct sum of such submodules; in particular $H_{\rho}^{*}(X, C)=H_{0}^{*}(X, C) \cdot H_{e}^{p, q}(X)$. This follows from Proposition 2.2, Theorem 3.2 and Lemma 3.8. Moreover, adding with respect to (p, q) and taking the real part, we get the Lefschetz decomposition

$$
H^{k}(X, \boldsymbol{R})=\bigoplus_{(k-n)^{+} \leqq r} L^{r} H_{e}^{k-2 r}(X, \boldsymbol{R}) .
$$

Moreover by (2.7) and Lemma 3.9, we have the isomorphism

$$
L^{n-k}: H^{k}(X, \boldsymbol{R}) \leftrightarrows H^{2 n-k}(X, \boldsymbol{R}) \quad \text { (the strong Lefschetz theorem). }
$$

These depend only on the Kähler class but not on the metric itself.
Recall also two corollaries of the above decompositions for comparison with the hyperkähler case. Let b_{k} be the k-th Betti number of X. Then

$$
\begin{equation*}
b_{k} \text { is even if } k \text { is odd } \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{k}-b_{k-2}=b_{k, e} \geqq 0 \tag{3.9}
\end{equation*}
$$

where $b_{k, e}=\operatorname{dim} H_{e}^{k}(X, \boldsymbol{R})$.
We also quote the following fact (cf. [27; p. 74, Th. 4]):
Lemma 3.10. $H=C^{*}$ acts as algebra automorphisms on the cohomology ring $H^{*}(M, \boldsymbol{R})$.

Hyperkähler case: In this case $d=4 n, G=\operatorname{Sp}(\mathrm{n}), H=\boldsymbol{H}^{\times}$and $G_{0}=$ $\mathrm{GL}_{n}(\boldsymbol{H}) . \quad(M, g)$ is a hyperkähler manifold of dimension 4 n and admits a family of compact Kähler manifolds, $\left\{M_{\lambda}\right\}_{\ell \in C}$, the Calabi family associated to (M, g). In this case our results will be summarized in the two theorems (Theorems 3.11 and 3.16) below, which correspond to Theorems 3.3 and 3.2, respectively. The decomposition (3.2) in this case takes the form

$$
\begin{equation*}
\wedge^{k} T_{R}^{*}=\underset{r \in \mathcal{A}(k)}{\oplus} W^{k ; r} \tag{3.10}
\end{equation*}
$$

corresponding to the canonical H^{\times}-decomposition (2.8) of $\wedge^{k} V_{R}$. We set $H^{k ; r}(M, \boldsymbol{R})=H_{W}^{k} k ; r(M, \boldsymbol{R})$.

Theorem 3.11. Let (M, g) be a compact hyperkähler manifold of dimension $4 n$. Then the real cohomology ring $H^{*}(M, \boldsymbol{R})$ has the natural structure of an \boldsymbol{H}^{\times}-algebra, where the elements of \boldsymbol{H}^{\times}act as algebra automorphisms. With respect to this action the canonical \boldsymbol{H}^{\times}-decomposition of $H^{k}(M, \boldsymbol{R})$ is given by

$$
\begin{equation*}
H^{k}(M, \boldsymbol{R})=\underset{r \in A(\hat{k})}{\oplus_{i}} H^{k ; r}(M, \boldsymbol{R}), \quad \hat{k}=\min (k, 4 n-k) \tag{3.11}
\end{equation*}
$$

where $H^{k ; r}(M, \boldsymbol{R})$ is the $V_{k, r}^{R}$-isotypical component. Moreover, the above structure depends only on the underlying quaternionic structure but not on the particular metric g.

Remark 3.12. It is known that g is necessarily an Einstein metric which becomes a Kähler Einstein metric on each M_{λ}. Therefore the apparent freedom of g asserted in the last part of the theorem would actually be very little, unlike the Kähler case.

By Lemma 1.2 and Theorem 3.11, corresponding to (3.8) in the Kähler case we get:

Corollary 3.13. Every odd dimensional Betti number of M is divisible by 4.

Theorem 3.11 follows immediately from Theorem 3.3 and Remark 3.8 except possibly the following:

Lemma 3.14. Any element of \boldsymbol{H}^{\times}acts as an algebra automorphism of $H^{*}(M, \boldsymbol{R})$.

Proof. Let h be any element of \boldsymbol{H}^{\times}. We may write $h=a+b \lambda$ for unique $a, b \in R$ and $\lambda \in C$. On the other hand, λ defines a natural almost complex structure J_{λ} on M and the triple (M, g, J_{λ}) with g as above becomes a compact Kähler manifold as we have already remarked. Then by Lemma $3.10 h$ acts as an algebra automorphism of $H^{*}(M, \boldsymbol{R})$.

For any $\lambda \in C$ let $\tilde{\omega}_{\lambda}$ be the parallel 2 -form on M corresponding to the fundamental form $\omega_{\lambda} \in V_{0, R}^{2}$ (cf. (2.9)) by the isomorphism of (3.6). We shall denote again by the same letter ω_{λ} the de Rham class of $\tilde{\omega}_{\lambda}$ in $H^{2}(M, \boldsymbol{R})$. Then $\tilde{\omega}_{\lambda}$ is just the Kähler form, and hence ω_{λ} the Kähler class, associated to the Kähler metric defined by g on M_{λ} (cf. [6] [15; IX. 4]).

Definition. We call the real 3-dimensional subspace F of $H^{2}(M, \boldsymbol{R})$ generated by ω_{λ} for $\lambda \in C$ the hyperkähler (HK) 3-space associated to (M, g).

Note that F is an \boldsymbol{H}^{\times}-submodule of $H^{2}(M, \boldsymbol{R})$ isomorphic to $V_{2 ; 2}^{\boldsymbol{R}}$; further, $H_{0}^{*}(M, \boldsymbol{R})$ is an \boldsymbol{H}^{\times}-submodule by Theorem 3.3. From Lemma 2.3 and the isomorphism (3.6) we get the following:

Proposition 3.15. $H_{0}^{2}(M, \boldsymbol{R})=F$, and $H_{0}^{*}(M, \boldsymbol{R})$ is generated by F as an \boldsymbol{R}-algebra. If $k=2 l, H_{0}^{k}(M, \boldsymbol{R})$ is isomorphic as an \boldsymbol{H}^{\times}-module to $S^{l}(F)$ if $k \leqq 2 n$ and in general $H_{0}^{k}(M, \boldsymbol{R}) \cong \oplus_{s \in \Delta(\hat{l})} V_{k, 2 s}^{R}, \hat{l}=\min (l, 2 n-l)$.

For any $\lambda \in C$ let L_{λ} be the ω_{λ}-multiplication operator on $H^{*}(M, \boldsymbol{R})$. For any $k \leqq 2 n$ we set

$$
H_{\varepsilon}^{k}(M, \boldsymbol{R})=\left\{\alpha \in H^{k}(M, \boldsymbol{R}) ; L_{\lambda}^{2 n-k+1} \alpha=0, \lambda \in C\right\} .
$$

An element of $H_{\varepsilon}^{k}(M, \boldsymbol{R})$ is said to be universally effective. Since F is \boldsymbol{H}^{\times}-invariant, $H_{\varepsilon}^{*}(M, \boldsymbol{R})$ is an \boldsymbol{H}^{\times}-submodule of $H^{*}(M, \boldsymbol{R})$. Hence if we set $H_{\varepsilon}^{k ; r}(M, \boldsymbol{R})=H_{\varepsilon}^{k}(M, \boldsymbol{R}) \cap H^{k ; r}(M, \boldsymbol{R})$, the canonical \boldsymbol{H}^{\times}-decomposition of $H_{\varepsilon}^{k}(M, R)$ is clearly given by

$$
\begin{equation*}
H_{\varepsilon}^{k}(M, \boldsymbol{R})=\underset{r \in \Delta(k)}{\bigoplus} H_{\varepsilon}^{k ; r}(M, \boldsymbol{R}) . \tag{3.11}
\end{equation*}
$$

For simplicity we set $N^{*}=H_{0}^{*}(M, \boldsymbol{R})$.
Theorem 3.16. Let (M, g) be a compact hyperkähler manifold of dimension $4 n$ as above. Then we have the following: 1) As an N^{*}-module $H^{*}(M, \boldsymbol{R})$ is generated by the graded submodule $H_{\varepsilon}^{*}(M, \boldsymbol{R})$. 2) If $l \leqq n$, we have a natural direct sum decomposition of \boldsymbol{H}^{\times}-modules;

$$
\begin{equation*}
H^{l}(M, \boldsymbol{R})=\underset{k \in \Delta(l)}{\bigoplus} N^{l-k} H_{\varepsilon}^{k}(M, \boldsymbol{R}) \tag{3.12}
\end{equation*}
$$

Moreover in this case, the natural map

$$
\begin{equation*}
N^{l-k} \otimes_{R} H_{\varepsilon}^{k}(M, \boldsymbol{R}) \rightarrow N^{l-k} H_{\varepsilon}^{k}(M, \boldsymbol{R}) \tag{3.13}
\end{equation*}
$$

is an isomorphism of \boldsymbol{H}^{\times}-modules. 3) $H_{\varepsilon}^{k ; r}(M, \boldsymbol{R})=0$ unless $(k, r) \in \Psi$. 4) All the above structures depend only on the hyperkähler 3-space F associated to (M, g) but not on the particular metric (cf. Remark 3.12, however).

Remark 3.17. 1) (3.12) and (3.13) correspond, respectively, to (a weak version of) the Lefschetz decomposition and the strong Lefschetz theorems in the Kähler case. (3.12) is expected to be true in general, while (3.13) is in general not true for $l>n$; the problem would then to determine the kernel of the map exactly. 2) If $l \leqq n$, any element of $H^{l}(M, R)$ is written uniquely in the form $\alpha=\sum_{s, t, u \geqq 0} \omega_{i}^{s} \omega_{j}^{t} \omega_{k}^{u} \alpha_{s t u}$ by 3), where $\alpha_{s t u}$ are universally effective; moreover $\omega_{i}^{s} \omega_{j}^{t} \alpha_{s t u}$ is ω_{k}-effective etc. as follows from the uniqueness of the expression.

Proof of Theorem 3.16. Let $\mathscr{S}_{\varepsilon}^{k}(M)$ be the space of real harmonic k-forms α with $L_{\lambda}^{2 n-k+1} \alpha=0$ for any $\lambda \in C$. Then by Corollary 3.7 the natural injection $j: \mathfrak{S}_{\varepsilon}^{k}(M) \rightarrow H_{\varepsilon}^{k}(M, \boldsymbol{R})$ of \boldsymbol{H}^{\times}-modules is isomorphic. Further, by considering the isotypical components of both sides, we see that j induces an isomorphism $\mathfrak{S}_{\varepsilon}^{k ; r}(M) \leftrightarrows H_{\varepsilon}^{k ; r}(M, \boldsymbol{R})$, where $\boldsymbol{S}_{\varepsilon}^{k ; r}(M)=$ $S_{C}^{k}(M) \cap S_{\delta}^{k} W_{W}^{k ; r}(M)$. 3) then follows from Proposition 2.4.

For 1) we repeat formally the proof of Proposition $2.4,2$) with the l-covector α there replaced by a harmonic k-form in $\mathscr{S}^{k}(M)$ and with ω_{λ} considered as the corresponding Kähler class on M_{λ}. Then we have $\mathfrak{S}_{c}^{l}(M)=N^{l-k} \wedge \mathfrak{S}_{\varepsilon}^{k}(M)$, where N^{*} is identified with $\mathfrak{S}_{0}^{*}(M)$ via (3.6). In view of the above isomorphism $\mathscr{S}_{\varepsilon}^{k}(M) \cong H_{\varepsilon}^{k}(M, \boldsymbol{R})$, this gives 1).

The proof in fact shows more; namely, we have $\mathfrak{S}_{\rho}^{l}(M)=$ $N^{\imath-k} \wedge \mathfrak{S}_{\rho, \varepsilon}^{k}(M)$ for any $\rho \in \mathfrak{R}$, where $\mathfrak{S}_{\rho}^{k} k, \varepsilon(M)=\mathfrak{S}_{\rho}^{k}(M) \cap \mathfrak{S}_{\varepsilon}^{k}(M)$. On the other hand, by Proposition 2.4, if $l \leqq n$, then $\mathscr{S}_{\rho}{ }_{\rho}^{k}, \varepsilon, ~(M)=0$ unless $\rho=\rho(k ; r)$ for some $r \in \Delta(k)$, and in this case $V_{\rho, R}^{k}=V_{\varepsilon}^{k ; r}$. Hence $\mathscr{S}_{\mathcal{C}_{\rho, \varepsilon}}^{k}(M)$ coincides with $\mathscr{S}_{\varepsilon}^{k ; r}(M)$. In particular, we have obtained: $\mathscr{S}_{\mathrm{C}}^{\rho(k ; r)}{ }_{l}^{l}(M)=N^{l-k} \wedge \mathfrak{S}_{\varepsilon}^{k ; r}(M)$, or $H_{\rho(k ; r)}^{l}(M, \boldsymbol{C})=N^{l-k} H_{\varepsilon}^{k ; r}(M, \boldsymbol{R})$. Hence by Theorem 3.2, Remark 3.8 together with Proposition 2.4 we have the direct sum decomposition

$$
H^{l}(M, \boldsymbol{R})=\underset{k \in\lrcorner(l)}{\oplus} \underset{r \in\lrcorner(k)}{\oplus} H_{\rho(k ; r)}^{l}(M, \boldsymbol{R}) .
$$

Hence by (3.11)

$$
H^{l}(M, \boldsymbol{R})=\underset{k \in \Delta(l)}{\oplus} N^{l-k}\left(\underset{r \in \Delta(k)}{\oplus} H_{\varepsilon}^{k ; r}(M, \boldsymbol{R})\right)=\underset{k \in \Delta(l)}{\bigoplus} N^{l-k} H_{\varepsilon}^{k}(M, \boldsymbol{R})
$$

This shows (3.12). Finally by Lemma 3.9 the injectivity of

$$
N^{l-k} \otimes_{\boldsymbol{R}} H_{\varepsilon}^{k}(M, \boldsymbol{R}) \rightarrow N^{l-k} H_{\varepsilon}^{k}(M, \boldsymbol{R})
$$

would follow from the injectivity of $V_{0}^{l-k} \bigotimes_{R} V_{\varepsilon}^{k ; r} \rightarrow \wedge^{l} V$, and hence of $V_{0}^{l-k} \otimes_{R} V_{\varepsilon}^{k} \rightarrow \wedge^{l} V$, which is in fact true by Proposition 2.4. 2) is proved. Finally 4) is clear from the definitions.

By the above theorem and (3.11), as an \boldsymbol{H}^{\times}-module

$$
H^{l}(M, \boldsymbol{R}) \cong \bigoplus_{k \in \Delta(l)} \bigoplus_{r \in \Delta(k)} N^{l-k} \bigotimes_{R} H^{k ; r}(M, \boldsymbol{R}), \quad l \leqq n
$$

Therefore if $h_{\varepsilon}^{k ; r}:=\operatorname{dim} H_{\varepsilon}^{k ; r}(M, \boldsymbol{R})$ are given, the structure of $H^{k}(M, \boldsymbol{R})$ as a real \boldsymbol{H}^{\times}-module, namely the dimension $h^{k ; r}=\operatorname{dim} H^{k ; r}(M, \boldsymbol{R})$ of its isotypical components are determined by Lemma 1.4:

$$
\begin{equation*}
h^{k ; r}(M)=\sum_{k \in \Delta(l)} \sum_{r \in \Delta(k)} \sum_{d} \pi(d,(l-k) / 2, r) h_{\varepsilon}^{k ; r} . \tag{3.14}
\end{equation*}
$$

(See Lemma 1.4 for the definition of π.)

In addition to Corollary 3.13 , the theorem imposes some more topological restrictions on the underlying C^{∞} manifold of a hyperkähler manifold. Let b_{k} be the betti number of M and we set $b_{k, \varepsilon}=\operatorname{dim}_{R} H_{\varepsilon}^{k}(M, \boldsymbol{R})$. Then from Proposition 3.15 together with (3.12) (3.13) we get the following:

Corollary 3.18. Suppose that $l \leqq n$. Then we have

$$
\begin{equation*}
b_{l}=\sum_{k \in \Delta(l)}(1 / 8)(l-k+2)(l-k+4) b_{k, \varepsilon} . \tag{3.15}
\end{equation*}
$$

Taking the first, second and third differences of the sequence $\left\{b_{l}\right\}$ with unit difference 2 , we successively get the formulas

$$
\begin{aligned}
& b_{l}-b_{l-2}=\sum_{k \in \Lambda(l)}(1 / 2)(l-k+2) b_{k, \varepsilon} \\
& b_{l}-2 b_{l-2}+b_{l-4}=\sum_{k \in \Lambda(l)} b_{k, \varepsilon} \\
& b_{l}-3 b_{l-2}+3 b_{l-4}-b_{l-6}=b_{l, \varepsilon},
\end{aligned}
$$

where $b_{k}=0$ if $k<0$. In particular, corresponding to (3.9) in the Kähler case we get:

Corollary 3.19. If $l \leqq n$, we have the inequality

$$
b_{l}+3 b_{l-4} \geqq 3 b_{l-2}+b_{l-6} .
$$

Also from (3.15) we get for instance:

$$
\begin{array}{ll}
b_{2 s} \geqq(s+1)\left(\left(b_{2}-1\right) s+2\right) / 2 \geqq(s+1)(s+2) / 2, & 2 s \leqq n, \\
b_{2 s+1} \geqq s(s+1) b_{3} / 2 \quad \text { if } b_{1}=0, & 2 s+1 \leqq n .
\end{array}
$$

The above results show the rapidly increasing character of the Betti numbers of a hyperkähler manifold.

For any $\lambda \in C$ we have the Hodge decomposition

$$
\begin{equation*}
H^{k}(M, C)=\bigoplus_{p+q=k} H^{p, q}(M)_{\lambda} \tag{3.16}
\end{equation*}
$$

with respect to λ associated to the regular H^{\times}-module $H^{k}(M, R)$ (cf. (1.10)). The geometric interpretation of this decomposition is as follows.

Proposition 3.20. Let $\left\{M_{\lambda}\right\}_{\lambda \in C}$ be the Calabi family associated to (M, g). Then $H^{p, q}(M)_{\lambda}$ coincides with the Hodge (p, q)-component $H^{p, q}\left(M_{\lambda}\right)$ of the Kähler manifold $M_{\lambda} ; H^{p, q}(M)_{\lambda}=H^{p, q}\left(M_{\lambda}\right)$. In particular (3.16) is just the Hodge decomposition of M_{λ}.

Proof. This follows immediately from the definition of the \boldsymbol{H}^{\times}module structure of $H^{k}(M, \boldsymbol{R})$ and from the definition of the complex structure on M_{2} as that induced by the multiplication by λ on T_{R}^{*}.

From Lemma 1.2 we get the following:
Corollary 3.21. The Hodge number $h^{p, q}\left(M_{2}\right)$ is even if $p+q$ is odd. For any $p \geqq q \geqq 0$ we have the inequalities $h^{p, q}\left(M_{\lambda}\right) \geqq h^{p+1, q-1}\left(M_{\lambda}\right)$.

Quaternionic Kähler case: In this case $d=4 n, G=\operatorname{Sp}(n) \operatorname{Sp}(1), H=$ \boldsymbol{R}^{\times}, and $G_{0}=\mathrm{GL}_{4 n}(\boldsymbol{R}) . \quad(M, g)$ is a quaternionic Kähler manifold. Such a manifold has recently been investigated by Salamon [22] extensively. In order to give the reader an idea what the manifold is like, and also for later reference we shall recall some of its properties from [22] first: 1) (M, g) is an Einstein manifold so that in particular its scalar curvature t is constant. If $t>0$, then M is simply connected and every odd dimensional Betti number of M vanishes. 2) To (M, g) there is naturally associated a compact complex manifold Z with a C^{∞}-submersion $\pi: Z \rightarrow M$ with each fiber a complex projective line \boldsymbol{P}^{1} (called the twistor space of (M, g)). If $t>0, Z$ is a (projective) Fano manifold (i.e., $c_{1}(Z)$ is positive) with holomorphic contact structure. Further, the Hodge numbers satisfy

$$
\begin{equation*}
h^{p, q}(Z)=0 \quad \text { if } p \neq q \tag{3.17}
\end{equation*}
$$

the fact which holds for any Fano manifold with holomorphic contact structure. 3) When $t>0$, certain compact Riemannian symmetric spaces constructed by Wolf are the only known examples.

Now since $H=\boldsymbol{R}^{\times}$, Theorem 3.3 is uninteresting in this case. We shall see certain consequences of Theorem 3.2. Denote by the same letter Φ the parallel 4 -form corresponding to the Kraines form $\Phi \in V_{0, R}^{4}$ (cf. (2.20)). Let $[\Phi]$ be the de Rham cohomology class of Φ in $H^{4}(M, \boldsymbol{R})$. We call [Φ] the Kraines class of (M, g) (cf. [19]). Let L_{\varnothing} be the [Φ]multiplication operator on $H^{*}(M, \boldsymbol{R})$. Set $\Lambda_{\mathscr{\Phi}}=*^{-1} L_{\Phi} *$, where $*$ is defined by the isomorphism $H^{*}(M) \cong H^{*}(M, \boldsymbol{R})$. Then a class α of $H^{*}(M, \boldsymbol{R})$ is called Φ-effective if $\Lambda_{\Phi} \alpha=0$. Let $H_{e(\Phi)}^{*}(M, \boldsymbol{R})$ be the space of Φ-effective classes. Then the following is true:

Theorem 3.22. Let (M, g) be a quaternionic Kähler manifold of dimension $4 n$. Then 1) for any $k<n$, the linear map $L_{\oplus}: H^{k}(M, \boldsymbol{R}) \rightarrow H^{k+4}(M, \boldsymbol{R})$ is injective. In particular we have $b_{k} \leqq b_{k+4}$ in this range, where b_{k} denotes the Betti number. 2) We have the direct sum decomposition $H^{k}(M, \boldsymbol{R})=$ $\oplus_{0 \leq s \leq[k / 4]} L_{\Phi}^{s} H_{e(\Phi)}^{k-4 s}(M, R), k \leqq n+3$.

Proof. By (2.21) and (3.6) we have $H_{0}^{*}(M, \boldsymbol{R})=\oplus_{k \geqq 0} \boldsymbol{R}[\Phi]^{k}$. The
theorem then follows easily from Proposition 2.11, Theorem 3.2 and Lemma 3.9.

Note that 1) of Theorem 3.19 for $k \leqq n-3$ is already in Kraines [19], where the theorem of Chern is already used. Note also that since the decomposition (2.8) is $\mathrm{Sp}(\mathrm{n}) \mathrm{Sp}(1)$-invariant, by Theorem 3.2 the direct sum decomposition $H^{k}(M, \boldsymbol{R})=\oplus_{r \in \Delta(\hat{k})} H^{k ; r}(M, \boldsymbol{R})$ of Theorem 3.11 still holds though there is no natural action of H^{\times}in this case. On the other hand, 2) of the above theorem has the obvious disadvantage in that the definition of $H_{e(\Phi)}^{k}(M, R)$ depends explicitly on the metric and is not expressed purely in cohomological terms. In this respect it is interesting to consider the following variation of the definition of Φ-effectivity: We set

$$
H_{\varepsilon(\Phi)}^{k}(M, \boldsymbol{R})=\left\{\alpha \in H^{k}(M, \boldsymbol{R}) ; L_{\Phi}^{n-k+1} \alpha=0\right\} .
$$

The definition clearly depends only on the Kraines class [Φ] and not on the particular choice of the metric. In any case, we can get the "strong Kraines" and "Kraines decomposition" in either definition of Φ-effectivity when the scalar curvature t is positive, by using directly the results of Salamon mentioned earlier.

Theorem 3.23. Let M be a quaternionic Kähler manifold of dimension $4 n$ with positive scalar curvature. Then: 1) for any $0 \leqq k<n, L_{\phi}^{n-k}$ induces an isomorphism $L_{\Phi}^{n-k}: H^{2 k}(M, \boldsymbol{R}) \rightarrow H^{4 n-2 k}(M, \boldsymbol{R})$, and 2) for any $k \geqq 0$ we have the direct sum decompositions

$$
H^{2 k}(M, \boldsymbol{R})=\oplus_{r} L_{\Phi}^{r} H_{\varepsilon(\mathscr{Q})}^{2 k-4 r}(M, \boldsymbol{R}), \quad(k-n)^{+} \leqq r \leqq[k / 2] .
$$

Remark 3.24. As mentioned above, 2) also is true with $H_{\varepsilon(\boldsymbol{\phi})}^{2 k-4 r}(M, \boldsymbol{R})$ replaced by $H_{e(\Phi)}^{2 k-4 r}(M, \boldsymbol{R})$. Indeed, this can be proved in the same way as in [19; Th. 2.6] by using 1) and Corollary 3.7. It is expected that $H^{2 k}(M, \boldsymbol{R})=H^{2 k ;}(M, \boldsymbol{R})$ for any $k \geqq 0$ in this case.

Proof. We shall write $H^{k}(X)$ for $H^{k}(X, R), X=M, Z$, where Z is the twistor space of M. Let $\omega=c_{1}(Z)$. Then ω is a Kähler class on Z. As usual let L be the ω-multiplication operator on $H^{*}(Z)$. Since $\pi^{*}: H^{*}(M) \rightarrow H^{*}(Z)$ is injective by Leray-Hirsch, we consider $H^{*}(M)$ as a subring of $H^{*}(Z)$. Then we have the canonical direct sum decomposition

$$
\begin{equation*}
H^{i}(Z)=H^{i}(M) \oplus L H^{i-2}(M) \tag{3.18}
\end{equation*}
$$

and $\omega^{2}=a[\Phi]$ for some positive number $a>0$ so that

$$
\begin{equation*}
L^{2}=a L_{\oplus} \quad \text { on } \quad H^{*}(Z) \tag{3.19}
\end{equation*}
$$

A. Fujiki

(cf. [22; (2.6) and p. 151]). The strong Lefschetz theorem on Z gives us the isomorphism

$$
\begin{equation*}
L^{(2 n+1)-i}: H^{i}(Z) \leftrightarrows H^{2(2 n+1)-i}(Z), \quad i \leqq 2 n-1, \tag{3.20}
\end{equation*}
$$

In particular, we have the inclusion

$$
\begin{equation*}
L^{2 n-i}: H^{i}(Z) \hookrightarrow H^{4 n-i}(Z) \tag{3.21}
\end{equation*}
$$

Now we consider the case $i=2 k$. Then by (3.18) (3.19) and (3.21) we get the inclusion

$$
L_{\Phi}^{n-k}: H^{2 k}(M) \hookrightarrow H^{4 n-2 k}(M) .
$$

By the Poincaré duality this is actually isomorphic. This proves 1).
Next we show 2). We consider the Lefschetz decomposition on Z;

$$
\begin{equation*}
H^{2 k}(Z)=\oplus_{r} L^{r} H_{e}^{2 k-2 r}(Z), \quad(2 k-2 m-1)^{+} \leqq r \leqq k . \tag{3.22}
\end{equation*}
$$

Claim: For any $0 \leqq l \leqq n$ we have the inclusion $H_{e}^{2 l}(Z) \subseteq H^{2 l}(M)$ with respect to the decomposition (3.18).

Proof. First we note that for any $2 l \leqq 2 n$ and $u \in H^{2 l}(Z), u$ is an element of $H_{e}^{2 l}(Z)$ if and only if $L^{2(n-l+1)} u=L^{(2 n+1)-2 l+1} u=0$. On the other hand, by (3.19) we have $L^{2(n-l+1)}=a^{n-l+1} L_{\Phi}^{n-l+1}$. Hence $L^{2(n-l+1)}$ preserves each factor of (3.18). Therefore it suffices to show that $\left.L^{2(n-l+1)}\right|_{L^{2}{ }^{2 l-2}}(M)$ is injective. Indeed, this follows from the strong Lefschetz theorem on Z :

$$
L^{2(n-l+1)+1}=L^{(2 n+1)-(2 l-2)}: H^{2 l-2}(Z) \leftrightarrows H^{(4 n+2)-(2 l-2)}(Z)
$$

and the inclusion $H^{2 l-2}(M) \subseteq H^{2 l-2}(Z)$.
Now for any $\alpha \in H^{2 k}(M)$ write

$$
\alpha=\sum_{r} L^{r} \alpha_{r}, \quad \alpha_{r} \in H_{e}^{2 \kappa-2 r}(Z)
$$

according to (3.22). Then by Claim above $\alpha_{r} \in H^{2 k-2 r}(M)$. Hence if we set $\alpha^{\prime}=\sum_{r: \text { even }} L^{r} \alpha_{r}$ and $\alpha^{\prime \prime}=\sum_{r: \text { odd }} L^{r-1} \alpha_{r}$, then $\alpha^{\prime} \in H^{2 k}(M)$ and $\alpha^{\prime \prime} \in H^{2 k-2}(M)$ in view of (3.19) and $\alpha=\alpha^{\prime}+L \alpha^{\prime \prime}$. From (3.18) we get $L \alpha^{\prime \prime}=0$. Therefore $\alpha=\alpha^{\prime}=\sum_{r: \text { even }} L_{\phi}^{r / 2} \hat{\alpha}_{r}, \hat{\alpha}_{r}=\alpha_{r} / a^{r / 2}$ uniquely. Moreover from (3.18) and (3.19) we get $\hat{\alpha}_{r} \in H_{\varepsilon(\phi)}^{2 r-2 r}(M)$ with r even. This completes the proof.

Remark 3.25. The method of the above proof also gives another proof of the fact that $b_{i}(M)=0$ for any odd i. Indeed, from (3.20) we get the isomorphism $L_{\Phi}^{n-k}: H^{2 k+1}(M) \leftrightarrows H^{2(2 n+1)-(2 k+1)}(M)=H^{4 n-2 k+1}(M)$,
$1 \leqq i=2 k+1 \leqq 2 n-1$. Hence by the Poincaré duality $b_{2 k+1}(M)=$ $b_{4 n-2 k+1}(M)=b_{2 k-1}(M)$ for $0 \leqq k \leqq n-1$. Thus $b_{2 k+1}(M)=b_{-1}(M)=0$.

Note also that the following fact is proved in the course of the proof of the theorem:

$$
\begin{equation*}
H_{e}^{2 k}(Z)=H_{\varepsilon(\Phi)}^{2 k}(M) . \tag{3.23}
\end{equation*}
$$

Now we shall prove a theorem concerning the index of M as an application of the above theorem, just in the same way as the Hodge index theorem is proved by means of the Lefschetz decomposition (cf. [12] [27]). Recall first that M is naturally oriented so that the signature $\tau=\tau(M)$ of M can be defined as the signature of the quadratic form $h: H^{2 n}(M, \boldsymbol{R}) \times$ $H^{2 n}(M, \boldsymbol{R}) \rightarrow H^{4 n}(M, \boldsymbol{R}) \cong \boldsymbol{R}$.

Theorem 3.26. Let $b_{2 n}(M)$ be the $2 n-t h$ Betti number of M. Then we have $b_{2 n}(M)=(-1)^{n} \tau(M)$. In other words, h is positive or negative definite according as n is even or odd.

The theorem is due to Salamon when $n=2$ ([22; Th. 7.3]). See also [13] for the corresponding result when $n=1$. Now for any integer $k \geqq 0$ define a symmetric bilinear form A on $H^{2 k}(M, \boldsymbol{R})$ by

$$
A(a, b)=L_{\phi}^{n-k} a b[M] \in R,
$$

where [M] denotes the evaluation on the fundamental cycle of M. A reduces to h in the case $k=n$. Hence Theorem 3.26 is a special case of the following:

Theorem 3.27. The symmetric bilinear form $(-1)^{k} A(a, b)$ is positive definite on $H^{2 k}(M, R)$.

Proof. We write H_{ε}^{i} for $H_{\varepsilon(\Phi)}^{i}(M, R)$. The theorem clearly would follow if we show the following two facts: 1) With respect to $A, L_{\Phi}^{r} H_{\varepsilon}^{2 k-4 r}$ and $L_{\Phi}^{r^{\prime}} H_{\varepsilon}^{2 k-4 r^{\prime}}$ are orthogonal to each other if $\left.r \neq r^{\prime} .2\right)(-1)^{k} A$ is positive definite on $L_{\Phi}^{r} H_{\varepsilon}^{2 k-4 r}$ for any r.

Proof of 1). Let $a \in H_{\varepsilon}^{2 k-4 r}$ and $b \in H_{\varepsilon}^{2 k-4 r^{\prime}}$ be arbitrary elements. We may assume that $r^{\prime}<r$. Then $n-k+r+r^{\prime}>n-k+2 r^{\prime}+1$, which implies that $L_{\phi}^{n-k+r+r^{\prime}} H_{\varepsilon}^{2 k-4 r^{\prime}}=0$. Hence $L_{\Phi}^{n-k} L_{\Phi}^{r} a L_{\Phi}^{r^{\prime}} b=a L_{\Phi}^{n-k+r+r^{\prime}} b=0$.

Proof of 2). Let a be as above. Let C be the Weil operator on Z, i.e., the action of $i \in C^{*}$ on $H^{*}(M, C)$. Since a is real of type $(k-2 r$, $k-2 r$) by (3.17), we have $C \bar{a}=a$. Moreover by (3.23), a is ω-effective. Therefore by [27; p. 77, Cor] if $a \neq 0$ we have

$$
(-1)^{k} L_{\phi}^{2 n+1-(2 k-4 r)} a^{2}[Z]=(-1)^{k} L_{\phi}^{2 n+1-(2 k-4 r)} a C \bar{a}[Z]>0 .
$$

On the other hand, if we put $R=\int_{\pi^{-1}(x)} \omega>0$ for $x \in M$ (which is independent of x) we have by (3.19)

$$
A\left(L_{\Phi}^{r} a, L_{\Phi}^{r} a\right)=L_{\Phi}^{2 n-(2 k-4 r)} a^{2}[X]=\left(1 / R a^{n-k+2 r}\right) L^{2 n+1-(2 k-4 r)} a^{2}[Z]
$$

Thus 2) follows.
$A(a, b)$ is defined for any quaternionic Kähler and hyperkähler manifolds. It is interesting to study the properties of $A(a, b)$ in the general case.

§ 4. Compact Kähler symplectic manifolds

Let X be a compact Kähler manifold of even dimension $2 n$. Then X is said to be symplectic if there exists a holomorphic 2 -form φ on X which is nondegenerate, i.e., its n-th exterior power φ^{n} is nowhere vanishing. In partiuclar, in this case the first Chern class $c_{1}(X)$ of X vanishes. On the structure of such a manifold the Bogomolov splitting theorem is fundamental (cf. [4] [1] [14]).

Theorem. Let X be a compact Kähler symplectic manifold. Then there exists a finite unramified Galois covering $\tilde{X} \rightarrow X$ such that \tilde{X} is isomorphic to a product $T \times Y_{1} \times \cdots \times Y_{r}$, where T is a complex torus and Y_{i}, $1 \leqq i \leqq r$, are simply connected Kähler symplectic manifolds with $h^{2 k, 0}\left(Y_{i}\right)=1$ and $h^{2 k-1,0}\left(Y_{i}\right)=0$ for any $k \geqq 1$. Here the direct factors are uniquely determined by \tilde{X} up to permutation.

Remark 4.1. If $\operatorname{dim} T=0$ in the above theorem, then X itself is already simply connected so that it is isomorphic to $Y:=Y_{1} \times \cdots \times Y_{r}$; this is the case, for instance, if the fundamental group is finite, or if $h^{2,0}(X)$ $=1$ and $\operatorname{dim} X>2$. This can be deduced from the following two facts: 1) If Aut denotes in general the group of automorphisms, then Aut Y is naturally a semidirect product of the product of Aut $Y_{i}, 1 \leqq i \leqq r$, by the finite group of "permutations" of those factors which are isomorphic to each other. 2) For any i, Aut Y_{i} contains no finite symplectic automorphism groups acting freely on Y_{i}.

If (M, g) is a hyperkähler manifold, then in the associated Calabi family $\left\{M_{\lambda}\right\}_{\lambda \in C}$ each M_{λ} is a Kähler symplectic manifold; indeed, if φ_{λ} is element of $V_{0}^{2,0}(\lambda)$ defined by (2.13), then the parallel 2-form on M which corresponds to φ_{2} with respect to the isomorphism in (3.6) is a nondegenerate holomorphic 2-form on M_{λ}. We shall denote this form still by the same letter φ_{2} and call it the canonical holomorphic 2-form on M_{λ}.

Conversely, any compact Kähler symplectic manifold X determines naturally a family of hyperkähler structures on the underlying oriented C^{∞} manifold M, as was shown by Beauville [1], Kobayashi [14] and others by using the result of Yau [30]. To be more precise, let Ω be the open cone of $H^{1,1}(X)_{R}$ consisting of Kähler classes. For any class $\omega \in \Omega$ there exists a unique Kähler metric \tilde{g} with the vanishing Ricci curvature by Yau. Then the underlying Riemannian manifold of (X, \tilde{g}) is a hyperkähler manifold and gives rise to a quaternionic structure on M, which is unique exactly when X is simply connected (cf. Remark 4.1); moreover in this case the quaternionic structure depends only on the corresponding point $\bar{\omega}$ of the projectified cone $\Omega / \boldsymbol{R}^{+}$. We also note that the Calabi family $\left\{M_{\lambda}\right\}$ associated to any quaternionic structure on M as above contains (X, \tilde{g}) as one of the members. Now combining the above facts with those of Section 3 we get the following:

Theorem 4.2. Let X be a compact Kähler symplectic manifold. Then associated to any quaternionic structure on the underlying C^{∞} manifold M of X constructed as above we have the natural decompositions of $H^{k}(X, C)$ and $H^{k}(X, \boldsymbol{R})$ as stated respectively in Theorem 3.11 and Theorem 3.16. They are compatible with the Hodge decomposition of $H^{k}(X, C)$.

Remark 4.3. Let ψ be the canonical holomorphic 2-form on $X=M_{\lambda}$ for some $\lambda \in \Lambda$. Let ψ_{0}, ψ_{1} be the real and imaginary parts of ψ respectively. Then the space $H_{\varepsilon}^{k}(X, \boldsymbol{R})$ of universally effective classes in Theorem 3.16 can be described in terms of the holomorphic structure of X by $H_{\varepsilon}^{k}(X, \boldsymbol{R})$ $=\left\{\alpha \in H^{k}(X, R) ; L_{\omega}^{d} \alpha=L_{\psi_{0}}^{d} \alpha=L_{\psi_{1}}^{d} \alpha=0\right\}$, where $d=2 n-k+1$.

We put together some consequences of the above theorem which is independent of the choice of quaternionic structures.

Proposition 4.4. Let X be a compact Kähler symplectic manifold of dimension $2 n$. Let b_{i} be the Betti numbers of X. Then the following are true: 1) For any $l \leqq n, b_{l}+3 b_{l-2} \geqq 3 b_{l-4}+b_{l-6}$ and hence also $b_{l}+b_{l-4}$ $\geqq 2 b_{l-2}$. We have $b_{2 s} \geqq(s+1)\left(\left(b_{2}-1\right) s+2\right) / 2$ for $2 s \leqq n$ and $b_{2 s+1} \geqq$ $(s+1)(s+2) b_{3} / 2$ for $2 s+1 \leqq n$, if $b_{1}=0$. 2) b_{i} is divisible by 4 , if i is odd. A Hodge number $h^{p, q}$ of X is even, if $p+q$ is odd. 3) For any $p \geqq q \geqq 0$, we have the inequality $h^{p, q} \geqq h^{p+1, q-1}$.

We shall next give another result on the Hodge cohomology group $H^{q}\left(X, \Omega_{X}^{p}\right)$ of X. Let φ be a nondegenerate holomorphic 2-form with class $\psi \in H^{2,0}(X)$. Let $L_{\psi}: H^{q}\left(X, \Omega_{X}^{p}\right) \rightarrow H^{q}\left(X, \Omega_{X}^{p+2}\right)\left(r e s p . L_{\psi}: H^{q}\left(X, \Omega_{X}^{p}\right)\right.$ $\rightarrow H^{q+2}\left(X, \Omega_{x}^{p}\right)$) be the ψ^{-}(resp. $\left.\bar{\psi}^{-}\right)$multiplication operator on the graded ring $H^{*}\left(X, \Omega_{X}^{*}\right)$. We then define for $\gamma=\psi, \bar{\psi}$ the space of γ-effective Hodge classes by

$$
H_{e(\gamma)}^{q}\left(X, \Omega_{X}^{p}\right)=\left\{\alpha \in H^{q}\left(X, \Omega_{X}^{p}\right) ; L_{\gamma}^{n-s+1} \alpha=0\right\},
$$

where $s=p$ (resp. q), if $\gamma=\psi$ (resp, $\bar{\psi}$).
Theorem 4.5. 1) The linear maps $L_{\gamma}^{n-p}: H^{q}\left(X, \Omega_{X}^{p}\right) \rightarrow H^{q}\left(X, \Omega_{X}^{2 n-p}\right)$ for $p<n$, and $L_{\psi}^{n-q}: H^{q}\left(X, \Omega_{x}^{p}\right) \rightarrow H^{2 n-q}\left(X, \Omega_{x}^{p}\right)$ for $q<n$, are both isomorphic. 2) We have for any $p, q \geqq 0$ the direct sum decompositions

$$
\begin{aligned}
& H^{q}\left(X, \Omega_{X}^{p}\right)=\underset{r \geqq(n-p)+}{\oplus} L^{r} H_{\ell(\psi)}^{q}\left(X, \Omega_{X}^{p-2 r}\right), \quad \text { and } \\
& H^{q}\left(X, \Omega_{X}^{p}\right)=\underset{r \geqq(n-q)+}{\oplus} L^{r} H_{e((x)}^{q-2 r}\left(X, \Omega_{X}^{p}\right) .
\end{aligned}
$$

Proof. Let $L_{\varphi}: \Omega_{x}^{p} \rightarrow \Omega_{X}^{p+2}$ be defined by the exterior multiplication by φ. Then by Proposition 2.6 together with its corollary, we see that L_{φ}^{n-p} induces the isomorphism of O_{X}-modules $L_{\varphi}^{n-p}: \Omega_{X}^{p} \Im \Omega_{X}^{2 n-p}, p<n$, and moreover, that if $\Omega_{e(\varphi)}^{p}$ is the kernel of L_{φ}^{n-p+1}, we get the direct sum decomposition of O_{x}-modules

$$
\begin{equation*}
\Omega_{x}^{p}=\underset{r \geq(n-p)+}{\oplus} L_{\varphi}^{r} \Omega_{e(\varphi)}^{p-2 r} . \tag{4.1}
\end{equation*}
$$

From the first assertion, 1) for L_{ψ} follows at once. As for 2), we first note that from (4.1) we have the direct sum decomposition

$$
H^{q}\left(X, \Omega_{X}^{p}\right)=\underset{r \geqq(n-p)+}{\oplus} H^{q}\left(X, L_{\varphi}^{r} Q_{e(\varphi)}^{p-2 r}\right) .
$$

Hence it suffices to show that

$$
\begin{equation*}
H^{q}\left(X, L_{\varphi}^{r} \Omega_{e(\varphi)}\right) \cong L_{\psi}^{r} H_{e(\psi)}^{q}\left(X, \Omega_{X}^{p}\right) \tag{4.2}
\end{equation*}
$$

for general p. First we show that the natural inclusion (cf. (4.1)) $H^{q}\left(X, \Omega_{e(\varphi)}^{p}\right) \longrightarrow H_{e_{(\psi)}^{q}}^{q}\left(X, \Omega_{X}^{p}\right)$ is isomorphic. For this purpose we fix any hyperkähler structure (M, g) on X such that the associated $H K 3$-space contains ψ. Take any element $\bar{\alpha}$ of $H_{\epsilon(\psi)}^{q}\left(X, \Omega_{x}^{p}\right)$ and represent it by a harmonic (p, q)-form α. Let $\wedge^{p, 0} T^{*}$ and $\wedge^{0, q} T^{*}$ be the bundle of ($p, 0$)and $(0, q)$-forms. Let $\bigwedge_{e(\varphi)}^{p, 0} T^{*}$ be the subbundle of $\wedge^{p, 0} T^{*}$ corresponding to the subsheaf $\Omega_{e(\varphi)}^{p}$ of Ω_{X}^{p}. Let $W^{p, q}=\bigwedge_{e(\varphi)}^{p, 0} T^{*} \otimes \wedge^{0, q} T^{*}$. Then by Corollary 3.7 applied to the parallel form φ^{n-p+1} we see that $L_{\varphi}^{n-p+1} x=0$ on M and hence α is a harmonic $W_{\varphi}^{p, q}$-form. This implies that $\bar{\alpha} \epsilon$ $H^{q}\left(X, \Omega_{e(\varphi)}^{p}\right)$ as desired. (4.2) then follows from Lemma 3.9 and the ensuing remark. Finally the results for $\bar{\psi}$ is obtained, if we take the complex conjugation of the results for ψ.

Corollary 4.6. 1) $h^{p, q}(X)=h^{2 n-p, q}(X)=h^{p, 2 n-q}(X)$. 2) For any $p<n$ and any $q \geqq 0, h^{p, q}(X) \leqq h^{p+2, q}(X)$; for any $p \geqq 0$ and any $q<n, h^{p, q}(X) \leqq$ $h^{p, q+2}(X)$.

The corollary implies that among the Hodge numbers $h^{p, q}(X)$ of X those with $0 \leqq p, q \leqq n$ are really essential. In view of 1) above the inequlaities in 3) of Proposition 4.4 for $p>n$ follows from the relation $h^{s, t} \leqq$ $h^{s+1, t+1}, s, t \leqq 2 n$, which holds for any compact Kähler manifold.

Next, using the fact that \boldsymbol{H}^{\times}acts on $H^{*}(X, \boldsymbol{R})$ as algebra automorphisms, we shall prove a remarkable topological property of a compact Kähler symplectic manifold. Namely we show the following:

Theorem 4.7. Let X be a compact Kähler symplectic manifold with $h^{2,0}(X)=1$. Let $g(x)$ be the homogeneous form of degree $2 n$ on $H^{2}(X, \boldsymbol{Q})$ defined by $g(x)=x^{2 n}[X], x \in H^{2}(X, \boldsymbol{Q})$, where $[X]$ denotes the evaluation on the fundamental class of X. Then there exist a constant $c \in \boldsymbol{Q}^{+}$and a nondegenerate quadratic form f of singnature $(3, b-3)$ on $H^{2}(X, \boldsymbol{Q})$ such that $g=c f^{n}$, where $b=b_{2}(X)$.

We remark that by Beauville [1] it has already been known that g is divisible by a quadratic form f as above. Further, the theorem is known for two typical series of known examples of compact Kähler symplectic manifolds (cf. [1]).

For the proof we use the Bogomolov unobstructedness theorem [3]. Let X be a compact complex manifold. We say that X is unobstructed (under deformation) if the parameter space S of the Kuraniashi family ($f: X \rightarrow S, X_{o}=X, o \in S$) of X is (reduced and) nonsingular. Then the theorem is as follows.

Theorem. Any compact Kähler symplectic manifold is unobstructed in the sense defined above.

Using the Calabi family we shall give a simple alternative proof of this theorem at the end of this section. We shall also recall some basic facts on the period map of a symplectic compact Kähler manifold X with $h^{2,0}(X)=1$ (cf. [1] [10; § 4]).

Let $E=H^{2}(X, C)$. Let $\boldsymbol{P}=\boldsymbol{P}(E)$ be the associated projective space. Let $q \in \boldsymbol{P}$ be the line $H^{2,0}=H^{2,0}(X)$ of E. Then the (holomorphic) tangent space T_{q} of \boldsymbol{P} at q is naturally identified with $\operatorname{Hom}_{C}\left(H^{2,0}, H^{1,1} \oplus H^{0,2}\right)$. Now let ($f: X \rightarrow S, X_{o}=X, o \in S$) be a deformation of X. Let T be the Zariski tangent space of S at o. Let $\rho: T \rightarrow H^{1}\left(X, \Theta_{X}\right)$ be the KodairaSpencer map [17]. Let $p:(S, o) \rightarrow(\boldsymbol{P}, q)$ be the period map associated to 2-forms for f. Then $d p$ factors through the subspace $\operatorname{Hom}_{C}\left(H^{2,0}, H^{1,1}\right)$ of T_{q};

$$
\begin{equation*}
d p: T \rightarrow \operatorname{Hom}_{c}\left(H^{2,0}, H^{1,1}\right) \tag{4.3}
\end{equation*}
$$

The cup product $H^{1}\left(X, \Theta_{X}\right) \times H^{0}\left(X, \Omega_{X}^{2}\right) \rightarrow H^{1}\left(X, \Omega_{X}^{1}\right)$ defines a natural isomorphism $\alpha: H^{1}\left(X, \Theta_{X}\right) \rightarrow \operatorname{Hom}_{C}\left(H^{2,0}, H^{1,1}\right)$. Moreover we have the commutativity $d p=\alpha \rho$. If, further, f is the Kuranishi family of X, then ρ is isomorphic; hence (4.3) is isomorphic and p is an embedding. Note also that the Kuranishi family is universal for any compact Kähler symplectic manifold (cf. [10]).

On the other hand, let g be the homogeneous form of degree $2 n$ on E defined in Theorem 4.7. Let N be the (reduced) hypersurface of \boldsymbol{P} defined by $g=0$. Then $q \in N$ and the image of \boldsymbol{P} is contained in N;

$$
\begin{equation*}
p:(S, o) \rightarrow(N, q) \tag{4.4}
\end{equation*}
$$

By considering the dimensions we see that (4.4) is isomorphic if S is nonsingular; in particular N also is nonsingular at q.

Now we shall fix once and for all a Kähler class ω on X and a Kähler form $\tilde{\omega}$ which represents it. Let (M, g) be the hyperkähler manifold associated to ω by Theorem 3.1, where M is the underlying C^{∞} manifold of X. Let $F \subseteq H^{2}(M, R)$ be the corresponding $H K$ 3-space. Let $\left\{M_{\lambda}\right\}_{\lambda \in \mathrm{C}}$ be the Calabi family associated to (M, g). Let ω_{λ} be the canonical Kähler class on M_{λ} and φ_{2} the canonical holomorphic 2-form on M_{λ} with class $\psi_{2} \in H^{2,0}\left(M_{2}\right)$. Then in the canonical \boldsymbol{H}^{\times}-decompostion $H^{2}(M, \boldsymbol{R})$ $=H^{2 ; 2}(M, \boldsymbol{R}) \oplus H^{2 ; 0}(M, \boldsymbol{R})$ of $H^{2}(M, \boldsymbol{R})(c f .(3.11))$, we have $H^{2 ; 2}(M, \boldsymbol{R})$ $=F$ and

$$
\begin{equation*}
F=\left(C \psi_{\lambda} \oplus C \bar{\psi}_{\lambda}\right)_{R} \oplus \boldsymbol{R} \omega_{\lambda} \tag{4.5}
\end{equation*}
$$

for any $\lambda \in C$; in particular the Hodge decomposition of $H^{2}\left(M_{\lambda}, C\right)$ is of the form

$$
H^{2}\left(M_{\lambda}, C\right)=C \psi_{\lambda} \oplus\left(C \omega_{\lambda} \oplus H^{2 ; 0}(M, C)\right) \oplus C \bar{\psi}_{\lambda} .
$$

Now $\left\{M_{\lambda}\right\}$ forms a C^{∞} trivial holomorphic family $f_{C}: Z_{C} \rightarrow C, M_{\lambda}=f^{-1}(\lambda)$, by Salamon [22] (cf. Sect. 5 below). So we get a globally defined period map $p_{c}: C \rightarrow \boldsymbol{P}$, which factors through $\boldsymbol{P}\left(F_{C}\right) \subseteq \boldsymbol{P}$ by (4.5). Then the resulting map $p_{C}^{\prime}: C \rightarrow \boldsymbol{P}^{\prime}:=\boldsymbol{P}\left(F_{C}\right)$ may naturally be identified with the period map associated to the Hodge decomposition of $F_{\boldsymbol{C}} \Im V_{2,2}$ considered in Lemma 1.3. In particular, by that lemma the differential $d p_{C}$ of p_{C} at $\lambda \in C$ gives an isomorphism

$$
\begin{align*}
d p_{c}: & T_{\lambda} \subsetneq \operatorname{Hom}\left(H^{2,0}\left(M_{\lambda}\right), C \omega_{\lambda}\right) \tag{4.6}\\
& \cong \operatorname{Hom}\left(H^{2,0}\left(M_{\lambda}\right), H^{1,1}\left(M_{\lambda}\right) \oplus H^{0,2}\left(M_{\lambda}\right)\right),
\end{align*}
$$

where T_{λ} is the tangent space of C at λ.
We shall fix some more notation. Let $E_{R}=H^{2}(M, \boldsymbol{R})$. Let $\mathrm{Gr}_{\boldsymbol{R}}$
(resp. Gr) be the Grassmann manifold of 3-dimensional real (resp. complex) subspaces of E_{R} (resp. E). We identify an element of $\mathrm{Gr}_{\boldsymbol{R}}$ or Gr with the corresponding subspaces of E_{R} with E, respectively. Further, by identifying $F \in \mathrm{Gr}_{\boldsymbol{R}}$ with $F_{\boldsymbol{C}} \in \mathrm{Gr}$ we consider Gr_{R} as a real submanifold of Gr . Indeed, Gr may be considered as a complexification of Gr_{R} along $\mathrm{Gr}_{\boldsymbol{R}}$ in the sense that for any $x \in \mathrm{Gr}_{\boldsymbol{R}}$ we have an isomorphism

$$
\begin{equation*}
\left(\mathrm{Gr}, \mathrm{Gr}_{\boldsymbol{R}}, x\right) \cong\left(C^{N}, \boldsymbol{R}^{N}, 0\right), \quad N=3(b-3), \tag{4.7}
\end{equation*}
$$

as a germ of real analytic manifolds.
On the other hand, consider the triple

$$
\begin{equation*}
\left(Y, \omega_{Y}, u\right) \tag{4.8}
\end{equation*}
$$

consisting of a compact Kähler symplectic manifold Y with $h^{2,0}(Y)=1$, a Kähler class ω_{Y} on Y and a diffeomorphism $u: M \leftrightarrows Y$. Let \tilde{g}_{Y} be the Kähler-Einstein metric corresponding to the class ω_{Y}. Then by Theorem 4.1 if we set $g_{Y}=u^{*} \tilde{g}_{Y},\left(M, g_{Y}\right)$ is again a hyperkähler manifold. In this case (M, g), the corresponding $H K$ 3-space, the induced $\mathrm{Sp}(1)$-action on $H^{*}(M, C)$ etc. are all said to be associated to $\left(Y, \omega_{Y}, u\right)$. If $Y=X, \omega_{Y}=\omega$ and $u=$ identity, we denote by $F(X)$ the associated $H K$ 3-space. Further, we call a 3-space $F \in \mathrm{Gr}_{R} H K$ if it is the $H K$ 3-space associated to some triple (Y, ω_{Y}, u) as in (4.8).

Now we shall first show the following assertion (A) weaker than Theorem 4.7:
(A) There exists a quadratic form h on E such that $g=h^{n}$.

For this purpose it clearly suffices to prove the following three lemmas. (We identify g with its extensions to $E_{\boldsymbol{R}}$ and to E as above.)

Lemma 4.8. If $F \in \mathrm{Gr}_{\boldsymbol{R}}$ is $H K$, then there exists a definite quadratic form h_{F} on F such that $\left.g\right|_{F}= \pm h_{F}^{n}$.

Lemma 4.9. Let $B=\left\{F \in \mathrm{Gr}_{\boldsymbol{R}} ; F\right.$ is $\left.H K\right\}$. Then B is open in $\mathrm{Gr}_{\boldsymbol{R}}$ so that in particular B is Zariski dense in Gr .

Lemma 4.10. Let B be any Zariski dense subset of Gr. Suppose that for any $F \in B$ the conclusion of Lemma 4.8 is true. Then there exists a quadratic form h on E such that $g=h^{n}$.

Proof of Lemma 4.8. Let F be any $H K$ 3-space associated to the triple $\left(Y, \omega_{Y}, u\right)$ as in (4.8). Then with respect to the associated $\mathrm{Sp}(1)$ module structure, F is isomorphic to $\mathfrak{Z p}(1)$ with the adjoint representation (cf. Proposition 3.15). On the other hand, g is $\mathrm{Sp}(1)$-invariant by Lemma
3.14, and hence, $\left.g\right|_{F}$ is an $\operatorname{Sp}(1)$-invariant homogeneous form of degree $2 n$ on F. Since the invariant polynomial ring of $\mathfrak{j p}(1)$ is generated over \boldsymbol{R} by the Killing form of $\mathfrak{j p}(1)$ (cf. [15; XII]) it follows that we may write $\left.g\right|_{F}=$ $\pm h_{F}^{n}$ for some quadratic form h_{F} on F.

Proof of Lemma 4.9. Let F be the $H K$ 3-space associated to a triple $\left(Y, \omega_{Y}, u\right)$ as in (4.8). It suffices to show that for some neighborhood U of F in Gr_{R}, any element $F^{\prime} \in U$ is again an $H K$ 3-space. (The last assertion would then follow from (4.7)). Without loss of generality we may assume that $Y=X, \omega_{Y}=\omega$, and $u=$ identity, so that by (4.5) $F_{C}=$ $\left(H^{2,0}(X) \oplus H^{0,2}(X)\right) \oplus C \omega$. Let now $\left(f: X \rightarrow S, X_{o}=X, o \in S\right)$ be the Kuranishi family of X. By the Bogomolov unobstructedness theorem S is smooth. Let $(S, o) \rightarrow(N, q)$ be the associated period map (4.4). Let Gr_{2} be the Grassmann manifold of 2-planes in E_{R}. Let $L_{0}=\left(H^{2,0}(X) \oplus H^{0,2}(X)\right)_{R}$ $\in \operatorname{Gr}_{2}$. Then the map $l \mapsto e(l):=(l \oplus \bar{l})_{\boldsymbol{R}}$ is easily seen to define isomorphism $e:(N, q) \leftrightarrows\left(\mathrm{Gr}_{2}, L_{0}\right)$ of germs of real analytic manifolds.

On the other hand, let $\mu: H \rightarrow S$ be a real C^{∞} vector subbundle of the trivial bundle $E_{R} \times S \rightarrow S$ such that $H_{0}=H^{1,1}(M)_{R} \subseteq E_{R}$. Let σ be a C^{∞} section of H such that $\sigma(0)=\omega \in H_{0}$. Then in view of the direct sum decomposition $E_{R}=L_{0} \oplus H^{1,1}(M)_{R}$, by considering the differential at u, one sees readily that the map $v:(H, \omega) \rightarrow\left(\operatorname{Gr}_{R}, F\right)$ of real analytic manifolds defined by $v(\beta)=e p(\mu(\beta)) \oplus \boldsymbol{R} \beta \subseteq E_{\boldsymbol{R}}$ is a submersion, where $\beta \in H_{s}$ $\subseteq E \times s=E$.

Now we shall actually construct a vector subbundle $H \rightarrow S$ and a C^{∞} section σ as above. Fix a C^{∞}-family $\left\{u_{s}\right\}_{s \in S}$ of diffeomorphisms $u_{s}: X \rightarrow$ $X_{s}:=f^{-1}(s)$ with $u_{0}=$ identity. This induces the trivialization of the local system:

$$
\begin{equation*}
R^{2} f_{*} R \leftrightharpoons E_{R} \times S \tag{4.9}
\end{equation*}
$$

Let $\left\{\tilde{\omega}_{s}\right\}_{s \in S}$ be a C^{∞} family of Kähler forms $\tilde{\omega}_{s}$ on X_{s} with $\tilde{\omega}_{0}=\tilde{\omega}$. Let \mathscr{S}_{s} be the space of harmonic forms of type $(1,1)$ on X_{s} with respect to the Kähler metric associated to $\tilde{\omega}_{s}$. Then $H:=\bigcup_{s \in S} \mathscr{S}_{s} \rightarrow S$ has the natural structure of a C^{∞}-vector bundle on S, and $\sigma(s):=\tilde{\omega}_{s} \in \mathscr{S}_{s}$ defines a C^{∞} section σ of H. Identifying \mathfrak{S}_{s} with $H^{1,1}\left(X_{s}\right)_{R}$ naturally, and using (4.9), we may view H as a vector subbundle of $E_{R} \times S \rightarrow S$. Then it suffices to show that for the submersion $v:(H, \omega) \rightarrow\left(\mathrm{Gr}, F_{0}\right)$ associated to H and σ, the 3 -spaces in the image of v are all $H K$. In fact, if we take a neighborhood U of $\sigma(S)$ in H in such a way that any $\tilde{\beta} \in U_{s}:=U \cap f^{-1}(s)$ is a Kähler form on X_{s}, by our construction of v above it follows readily that for any $\tilde{\beta} \in U_{s}, v(\beta)$ is just the $H K$ 3-space determined by the triple (X_{s}, β, u_{s}), where β is the de Rham class of $\tilde{\beta}$.

Proof of Lemma 4.10. For any complex space Y let $Y_{\text {red }}$ denote the underlying reduced subspace. Let $\boldsymbol{P}=\boldsymbol{P}(E)$ as above. Let Z be the hypersurface of degree $2 n$ in \boldsymbol{P} defined by g so that $Z_{\text {red }}=N$. For any $P \in \mathrm{Gr}$ we set $Z_{P}=Z \cap P$. Then by our assumption, for any $F \in B$ we have

$$
\begin{equation*}
Z_{F_{\boldsymbol{C}}}=n Z_{F_{\boldsymbol{C}}, \text { red }} \quad \text { with } Z_{F_{\boldsymbol{C}}} \text { smooth. } \tag{4.10}
\end{equation*}
$$

Suppose first that N is reducible. Then there exists a nonempty Zariski open subset U of Gr such that for any $P \in U$, we have $P \nsubseteq Z$ and $N_{P, \text { red }}$ is reducible, where $N_{P}=N \cap P$. By (4.10) we must have $B \subseteq \mathrm{Gr}-U$, which contradicts the Zariski density of B. Hence N is irreducible. In particular, we may write $Z=k N$ for some $k>0$. Now take any Zariski open subset V of Gr such that for any $P \in V$, we have $P \nsubseteq N$ and N_{P} is reduced and irreducible. Then again by the Zariski density of B we have $B \cap U$ $\neq \varnothing$. Take any $P=F_{C} \in B \cap V$. Then by (4.10) we get $Z_{P}=n\left(Z_{P}\right)_{\text {red }}=$ $k N_{P}$; hence $k=n$ and $Z=n N$. Thus we have $g=h^{n}$ for a suitable quadratic form on E which defines N.

Next we show the following assertion (B):
(B) There exists a quadratic form f on $E_{Q}:=H^{2}(M, Q)$ and a constant $c \in \boldsymbol{Q}^{\times}$such that $g=c f^{n} .{ }^{*)}$

We first prove a lemma. Let $c_{2}=c_{2}(X) \in H^{4}(M, Q)$ be the (rational) second Chern class of X. Then define a homogeneous form g_{0} of degree $2 n-2$ on E_{Q} by

$$
g_{0}(x)=x^{2 n-2} c_{2}[M], \quad x \in E_{Q}=H^{2}(M, \boldsymbol{Q}) .
$$

Lemma 4.11. Let h be the quadratic form on E obtained in (A). Then there exists a nonzero constant $d \in C$ such that $g_{0}=d h^{n-1}$.

Proof. First we note that g_{0} is nonzero, since $g_{0}(\beta) \neq 0$ for any Kähler class β on X by Chen-Ogiue [8]. Let F be an $H K$ 3-space associated to some triple $\left(Y, \omega_{Y}, u\right)$ as in (4.8). Then since $c_{1}(Y)=0, u^{*} c_{2}(Y)$ $=-p_{1}(M) / 2$, where $p_{1}(M)$ is the first rational Pontrjagin class of M (cf. [12]). Since c_{2} is always of type (2,2), from this (cf. Lemma 5.4 below) we see that c_{2} is, and hence by Lemma $3.14 g_{0}$ also is, invariant under the $\operatorname{Sp}(1)$-action associated to $\left(Y, \omega_{Y}, u\right)$. Hence if h_{F} is as in Lemma 4.8 we can show that

[^1]\[

$$
\begin{equation*}
\left.g_{0}\right|_{F}=r h_{F}^{n-1} \tag{4.11}
\end{equation*}
$$

\]

for some nonzero constant r, by the same argument as in Lemma 4.8. Hence if Z_{0} is the hypersurface of \boldsymbol{P} of degree $2 n-2$ defined by g_{0}, then by the same proof as in Lemma 4.10 we see that we may write $Z_{0}=(n-1) \bar{N}$ for $\bar{N}:=Z_{0, \text { red }}$. On the other hand, by (4.11) for any $F \in B$ we have $\bar{N}_{F_{C}}=N_{F_{C}}$ in the notation of the proof of Lemma 4.10. Then again by using the Zariski density of B we see that $\bar{N}=N$. Hence $Z_{0}=(n-1) N$. The lemma follows from this at once.

Proof of (B). By Lemmas 4.10 and 4.11 we have $g=h^{n}$ and $g_{0}=d h^{n-1}$ in the complex polynomial ring $C[E]$. Since g and $g_{0} \in Q\left[E_{Q}\right], f:=g / g_{0}=$ $h / d \in Q\left[E_{Q}\right]$, where $E_{Q}=H^{2}(X, Q)$. Then we have $g=c f^{n}$ with $c=d^{n} \in \boldsymbol{Q}^{\times}$ as desired.

Remark 4.12. Let $C^{*}(X)$ be the subring of $H^{*}(X, Q)$ generated by the rational Chern classes $c_{i}(X) \in H^{2 i}(X, Q)$ of X. Note that since the structure group of X is reducible to $\operatorname{Sp}(n, C), c_{i}(X)=0$ for any odd i (cf. [15; XII]). Thus we may write $C^{*}(X)=\oplus_{k} C^{4 k}(X)$. Note further that since $c_{1}(X)=0$, each $c_{2 k}(X)$ is expressible in terms of universal rational polynomials of the Pontrjagin classes of M (cf. [12]). Thus $C^{*}(X)$ actually depends only on M, but not on the particular Kähler symplectic structure X on M. So denote it by $C^{*}(M)$. Now any homogeneous element α of $C^{4 k}(M)$ defines a homogeneous form g_{α} of degree $2(n-k)$ on $H^{2}(M, Q)$ by $g_{\alpha}(x)=\alpha x^{2(n-k)}[M]$. Then by the same argument as above we see that $g_{\alpha}=c_{\alpha} f^{n-k}$ for some $c_{\alpha} \in \boldsymbol{Q}$ and for the quadratic form f as in (B) which is independent of α. This defines a rational linear form $\alpha \rightarrow c_{\alpha}$ on the vector space $C^{4 k}(M)$ naturally associated to M.

In view of (B), Theorem 4.7 now follows from the next assertion (C). (This is essentially contained in Beauville [1], but for completeness we shall give a proof in our context.)
(C) Let f be as in (B). Then f is nondegenerate and its signature can be made into $(3, b-3)$ if we replace f by $-f$ if necessary.

Proof. Let W be the subspace of ω-effective classes of type $(1,1)$ in E_{R}. Let $F=F(X)$ be the $H K 3$-space associated to $\left(X, \omega, \mathrm{id}_{X}\right)$. Then we have the direct sum decomposition

$$
\begin{equation*}
E_{R}=F \oplus W, \tag{4.12}
\end{equation*}
$$

which coincides with the canonical \boldsymbol{H}^{\times}-decomposition

$$
E_{R}=H^{2 ; 2}(M, R) \oplus H^{2 ; 0}(M, R)
$$

associated to $\left(X, \omega, \mathrm{id}_{x}\right)$. (Note that $V^{2 ; 0}=V_{e, R}^{1,1}$ in the notation of Section 2.) In particular, (4.12) is orthogonal with respect to f, since f is $\mathrm{Sp}(1)$ invariant as well as g. We know already that (cf. Lemma 4.8) f is definite on F. Hence by replacing f by $-f$ if necessary, we may assume that f is positive definite on F. (C) then follows from:

Lemma 4.13. f is negative definite on W.
Proof. Let $E(\omega)=\left\{a \in E ; \omega^{2 n-1} a[X]=0\right\}$ be the hyperplane of E consisting of ω-effective classes and $\boldsymbol{P}(\omega):=\boldsymbol{P}(E(\omega))$ the associated hyperplane in \boldsymbol{P}. Let N be the quadric in \boldsymbol{P} defined by $f=0$. Set $N(\omega)=$ $\boldsymbol{P}(\omega) \cap N \subseteq \boldsymbol{P}(\omega)$. Let $\left(f: X \rightarrow S, X_{o}=X, o \in S\right)$ be the Kuranishi family of X and $p:(S, o) \rightarrow(N, q)$ the period map, which is isomorphic since S is nonsingular by the unobstructedness theorem.

Let $\left\{u_{s}\right\}$ be as in the proof of Lemma 4.9. Let $\omega_{s}=\left(u_{s}^{-1}\right)^{*} \omega \in$ $H^{2}\left(X_{s}, \boldsymbol{R}\right)$. Let $S(\omega)=\left\{s \in S ; \omega_{s}\right.$ is of type $(1,1)$ on $\left.X_{s}\right\}$. Then $o \in S(\omega)$ and $S(\omega)$ is a smooth hypersurface in S (cf. [10; Prop. 4.2], [1]). Then p maps $S(\omega)$ into $\boldsymbol{P}(\omega)$ and hence into $N(\omega)$ because $\omega_{s}^{2 n-1} \psi_{s}\left[X_{s}\right]=0$ for any element ψ_{s} of $H^{2,0}\left(X_{s}\right)$. Since $N(\omega)$ is also a hypesurface, we see that p induces an isomorphism of germs

$$
\begin{equation*}
(S(\omega), o) \cong(N(\omega), q) \tag{4.13}
\end{equation*}
$$

in partiuclar, $N(\omega)$ is smooth at q.
Now we define another quadratic form f_{ω} on E by $f_{\omega}(x)=\omega^{2 n-2} x^{2}[X]$. Since $f_{\omega}(\omega)>0, f_{\omega} \not \equiv 0$. Let $N^{\omega}=\left\{f_{\omega}=0\right\}$ be the quadric in \boldsymbol{P} defined by f_{ω}. Let $N^{\omega}(\omega)=N^{\omega} \cap \boldsymbol{P}(\omega)$. Since N^{ω} is irreducible as one sees by restricting f_{ω} to $F, N^{\omega}(\omega)$ is again a quadric in $\boldsymbol{P}(\omega)$. Now for any $s \in S(\omega), p(s) \in N^{\omega}$ because ψ_{s} is of type $(2,0)$. Therefore for the same reason as above p induces an isomorphism

$$
p:(S(\omega), o) \xrightarrow{\rightarrow}\left(N^{\omega}(\omega), q\right)
$$

It follows from this and (4.13) that $N^{\omega}(\omega)=N(\omega)$ because both are irreducible. Hence $f=c_{0} f_{\omega}$ on $E(\omega)_{R}$ for some nonzero constant $c_{0} \in \boldsymbol{R}$. On the other hand, we know that $E(\omega)_{R}=\left(H^{2,0}(X) \oplus H^{0,2}(X)\right)_{R} \oplus W$ and f_{ω} is negative definite on W and positive definite on F (cf. [27; p. 78, Cor.]). Therefore $c_{0}>0$ and the lemma, and hence Theorem 4.7 also, is proved.

Finally we shall prove the Bogomolov unobstructedness theorem stated after Theorem 4.7. We use the following lemmas.

Lemma 4.14. 1) Let $\pi: \tilde{X} \rightarrow X$ be a finite unramified Galois covering of compact Kähler symplectic manifolds. If \tilde{X} is unobstructed, then so is X.
2) Let Y and Z be compact complex manifolds. Let $X=Y \times Z$. Suppose that $H^{1}\left(Z, O_{Z}\right)=H^{0}\left(Z, \Theta_{Z}\right)=0$. Then if both Y and Z are unobstructed, X also is unobstructed.

Proof. By Kodaira-Spencer [18] for the unobstructedness of X it suffices to construct a deformation of X whose Kodaira-Spencer map is isomorphic. 1) Let G be the Galois group of π. By the universality of the Kuranishi family $\tilde{f}: \tilde{X} \rightarrow \tilde{S}, \widetilde{X}_{o}=X, o \in \tilde{S}, G$ acts naturally on \tilde{S} (cf. [10; §3]). Let $S:=\widetilde{S}^{G}$ be the set of fixed points, which is nonsingular since \tilde{S} is. Let $X=\tilde{X}_{S} / G$ and let $f: X \rightarrow S$ be the natural projection. Then as a deformation of $X=X_{o}$ the Kodaira-Spencer map of f is isomorphic in view of the natural isomorphism $H^{1}\left(\widetilde{X}, \Theta_{\tilde{X}}\right)^{G} \cong H^{1}\left(X, \Theta_{X}\right)$. 2) follows from the fact that the Kodaira-Spencer map of the product of the Kuranishi families of Y and of Z as a deformation of X is isomorphic in view of the natural isomorphism $H^{1}\left(X, \Theta_{X}\right) \cong H^{1}\left(Y, \Theta_{Y}\right) \oplus H^{1}\left(Z, \Theta_{Z}\right)$, which in turn comes from the Künneth formula and the assumption.

Let $S=(S, o)$ be a germ of complex spaces. Let T be the Zariski tangent space of S at o. An element $\theta \in T$ is said to be unobstructed if there exists a smooth analytic subspace A of S such that its tangent space T_{A} contains θ with respect to the natural inclusion $T_{A} \subseteq T$.

Lemma 4.15. Let U be the set of unobstructed elements of T. Suppose that T has a real structure in the sense that it admits an antilinear involution and that U contains an open subset V of the real part T_{R}. Then S is smooth.

Proof. Choose an embedding of S into T and consider S as a subspace of T. Let C be the tangent cone of S (in T). We may naturally consider C as a subspace of T. Then it suffices to show that $C=T$. For any smooth analytic subspace A of S we have the natural inclusion $T_{A} \subseteq C$. Hence C contains V so that any homogeneous polynomial f in the ideal of C vanishes on V. Since V is open in the real part T_{R}, f must vanish identically even in a neighborhood of V in T. This forces f to be identically zero on the whole T. Thus $C=T$ as desired.

Proof of the unobstructedness theorem. By the Bogomolov splitting theorem together with Lemma 4.14 we see that it suffices to show the theorem only for those X with $h^{2,0}(X)=1$. Let $\Omega=\left\{\omega \in H^{1,1}(X)_{R} ; \omega\right.$ is a Kähler class $\}$, which is open in $H^{1,1}(X)_{R}$. Take any element ω of Ω. Let $f_{c}: Z \rightarrow C$ be the Calabi family associated to (X, ω) and $\lambda \in C$ the point corresponding to X, i.e., $X=M_{\lambda}$ (cf. Theorem 4.1). Let ($f: X \rightarrow S, X_{o}=X$, $o \in S$) be the Kuranishi family of X and $\tau:(C, \lambda) \rightarrow(S, o)$ the universal
morphism associated to f_{C}. Let T_{λ} and T be the (Zariski) tangent spaces of (C, λ) and (S, o), respectively. Let p and p_{C} be the period maps associated to f and f_{C}, respectively. Then we have $p_{C}=p \tau$ with p_{C} an embedding. Hence τ also is an embedding, and in the natural identification of T with $\operatorname{Hom}_{c}\left(H^{2,0}(X), H^{1,1}(X)\right), d \tau\left(T_{\lambda}\right)$ is identified with the subspace $\operatorname{Hom}\left(H^{2,0}(X), C \omega\right)(c f .(4.3)(4.6))$. Now fix once and for all a nonzero element ψ of $H^{2,0}(X)$. Then since $h^{2,0}(X)=1$, we may further identify T with $H^{1,1}(X)$ and $d \tau\left(T_{\lambda}\right)$ with $C \omega$. Since ω was arbitrary, with this identification we have shown that any element of $\Omega \subseteq T$ is unobstructed in the sense defined before Lemma 4.15. Since Ω is open in the real part $H^{1,1}(X)_{R}$ of $H^{1,1}(X)$ with its natural real structure, S is smooth by Lemma 4.15 as desired.

§ 5. Calabi family associated to a hyperkähler manifold

Let M be an oriented C^{∞} manifold of dimension $4 n$. Then a quaternionic structure on M gives rise to a family of complex structures on M, $\left\{M_{\lambda}\right\}_{\lambda \in C}$, parametrized by C, which we have called the Calabi family associated to the structure. Salamon [22] further showed that there exists a natural structure of a complex manifold on the union $Z:=\bigcup_{\lambda} M_{\lambda}$ such that the natural projection $f: Z \rightarrow C$ is holomorphic. He also showed some remarkable properties of the complex manifold Z as in the case of the Penrose twistor construction when $n=1$. Especially we see that associated to any quaternionic structure on M we get canonically a triple

$$
\left(f: Z \rightarrow \boldsymbol{P}^{1}, \pi, \tau\right)
$$

consisting of 1) a smooth morphism $f: Z \rightarrow \boldsymbol{P}^{1}$ of complex manifolds, 2) a C^{∞} submersion $\pi: Z \rightarrow M$ such that $\mu:=\pi \times f: Z \rightarrow M \times \boldsymbol{P}^{1}$ is a diffeomorphism, and 3) an antiholomorphic involution τ of Z such that $\mu \tau \mu^{-1}=\operatorname{id}_{M} \times \tau_{0}$, where τ_{0} is the antiholomorphic fixed point free involution on \boldsymbol{P}^{1} induced by the right multiplication by j on \boldsymbol{H} with respect to the identification (1.2); further, f and π are required to have the following property: Let $Z_{m}=\pi^{-1}(m)$ be the fiber over $m \in M$. Then 1) Z_{m} is a complex submanifold of Z (which is mapped isomorphically to \boldsymbol{P}^{1} by f) and 2) the holomorphic normal bundle N_{m} of Z_{m} in Z is isomorphic to the direct sum $H^{\oplus 2 n}$ of the hyperplane bundle H on \boldsymbol{P}^{1};

$$
\begin{equation*}
N_{m} \cong H^{\oplus 2 n} \tag{5.1}
\end{equation*}
$$

Here, if $\left(f^{\prime}: Z^{\prime} \rightarrow \boldsymbol{P}^{1}, \pi^{\prime}, \tau^{\prime}\right)$ is another such triple, then we say that (f, π, τ) and $\left(f^{\prime}, \pi^{\prime}, \tau^{\prime}\right)$ are isomorphic if there exists a biholomorphic map $g: Z \rightarrow Z^{\prime}$ such that $f=f^{\prime} g, \pi=\pi^{\prime} g$ and $g \tau=\tau^{\prime} g$. In the next theorem
we shall show that the above correspondence is invertible. When $n=1$, this is a part of Penrose twistor programme (cf. [13] [24]) and the idea is essentially the same in the general case.

Theorem 5.1. There exists a natural bijective correspondence between the set of isomorphism classes of quaternionic structures on M and the set of isomorphism classes of the triples as above.

Let $V_{1}=\boldsymbol{H}$, considered as a complex vector space as in Section 1. Let j_{1} be the antilinear isomorphism on V_{1} induced by the right multiplication by j. The commutor K_{1} of j_{1} in $\mathrm{GL}_{2}\left(V_{1}\right)$ is naturally identified with \boldsymbol{H}^{\times};

$$
\begin{equation*}
K_{1}=\boldsymbol{H}^{\times} . \tag{5.2}
\end{equation*}
$$

We may naturally identify the dual V_{1}^{*} of V_{1} with $H^{0}\left(\boldsymbol{P}^{1}, H\right)$ as an $\mathrm{Sp}(1)$ module. For any $\lambda \in C=\boldsymbol{P}^{1}$ we get an exact sequence of complex vector spaces

$$
0 \longrightarrow K_{\lambda} \longrightarrow H^{0}\left(\boldsymbol{P}^{1}, H\right) \xrightarrow{r_{\lambda}} H_{\lambda} \longrightarrow 0
$$

where r_{λ} is the restriction map to the fiber H_{λ} over λ and K_{λ} is the kernel of r_{λ}. Since $\lambda \in \mathrm{Sp}(1)$ fixes $\lambda \in C, \lambda$ acts on this sequence.

Lemma 5.2. K_{λ} is just the eigenspace of λ with eigenvalue $-\sqrt{-1}$ in $H^{0}\left(\boldsymbol{P}^{1}, H\right)$.

Proof. The tautological line $L_{\lambda} \sqsubseteq E$ is just the eigenspace of λ with eigenvalue $\sqrt{-1}$ as we have seen in the proof of Lemma 1.3. On the other hand, K_{λ} is just the annihilator of L_{λ} with respect to the above identification $V_{1}^{*}=H^{0}\left(\boldsymbol{P}^{1}, H\right)$. From this the lemma follows immediately.

Proof of Theorem 5.1. First we recall how to construct Z from a given quaternionic structure on M [22]. We first define an almost complex structure J on $M \times C$ as follows. Let (m, λ) be an arbitrary point of $M \times C$. Then $J_{(m, \lambda)}$ is the direct sum $J_{(m, \lambda)}=J_{\lambda, m} \oplus \hat{J}_{\lambda}$, where J_{λ} is the almost complex structure of M defined by $\lambda \in C$ and \hat{J} is that induced on C by the complex structure of \boldsymbol{P}^{1}. Then by Salamon [22; Th. 4.1] J is integrable; further, if we define $f: Z \rightarrow C$ and $\pi: Z \rightarrow M$ by the natural projections and set $\tau=\mathrm{id}_{M} \times \tau_{0}$, then we see that (f, π, τ) is a triple with the desired property (cf. [22; 4.2]) for (5.1)).

Suppose conversely that we are given a triple $\mathscr{T}=\left(f: Z \rightarrow \boldsymbol{P}^{1}, \pi, \tau\right)$ as above. We shall construct a quaternionic structure on M naturally associated to \mathscr{T}.
a) Let D_{Z} be the Douady space of Z which parametrizes the universal family of compact complex subspaces of Z. Since M is naturally a parameter space of the C^{∞} family $\left\{Z_{m}\right\}_{m \in M}$ of compact submanifolds of Z, M is naturally considered as a subset of D_{z}. By (5.1) for any m we have

$$
\begin{equation*}
H^{1}\left(Z_{m}, N_{m}\right)=0 \quad \text { and } \quad \operatorname{dim} H^{0}\left(Z_{m}, N_{m}\right)=4 n \tag{5.3}
\end{equation*}
$$

Hence D_{z} is smooth of pure dimension $4 n$ along M by Kodaira [16]. Let U be a sufficiently small smooth neighborhood of M in D_{z}. Let $(\rho: B \rightarrow U$, $B \subseteq U \times Z$) be the universal family restricted to U :

We set $Z_{u}=\rho^{-1}(u)$ for $u \in U$ consistent with the previous notation Z_{m}.
b) Let N_{U} be the normal bundle of B in $U \times Z$ and \mathscr{N}_{U} the $O_{B^{-}}$ module of holomorphic sections of N_{U}. Then by (5.3) $\rho_{*} \mathscr{N}_{U}$ is locally free and if E is the corresponding holomorphic vector bundle, then for any u the fiber E_{u} is naturally identified with $H^{0}\left(Z_{u}, N_{u}\right)$, where N_{u} is the normal bundle of Z_{u} in Z. Further, there exists a natural isomorphism $\varphi: \Theta_{U} \rightarrow \rho_{*} \mathscr{N}_{U}$ of O_{U}-modules, where Θ_{U} is the sheaf of holomorphic vector fields on U (cf. [17; (12.2)]). We denote by $\phi: T_{U} \rightarrow E$ the corresponding isomorphism of vector bundles. Here T_{U} denotes the holomorphic tangent bundle of U.
c) Since τ is antiholomorphic, it induces a natural antiholomorphic involution of the universal family (5.4), and hence in particular, of B and D_{Z}, denoted respectively by τ_{B} and τ_{D}. Then τ_{D} and τ_{B} lift to antiholomorphic involutions τ_{D} and τ_{N} on the bundles $T_{U} \rightarrow U$ and $N_{U} \rightarrow B$, respectively, which are antilinear on the fibers $\left(\tau_{T}(v)=\overline{\left.\tau_{D *}(v)\right)}, v \in T_{U}\right.$ etc.). On the other hand, since τ preserves each Z_{m}, τ_{B} fixes any point of $M \subseteq$ D_{z}, and in fact one sees easily that M is precisely the fixed point submanifold of τ_{D} on U (by restricting U if necessary). Let T_{M} be the (real) tangent bundle of M. Then T_{M} is identified with the fixed point bundle of τ_{T} on $\left.T_{U}\right|_{M}$, namely, T_{M} is the real part of the real structure on $\left.T_{U}\right|_{M}$ induced by τ_{T}.
d) Identify $\rho^{-1}(M) \subseteq B$ with Z by the second projection in (5.4). Let N be the restriction of N_{U} to Z. Then τ_{B} preserves Z and τ_{N} acts as an antilinear involution on $N \rightarrow Z$. Let E_{M} be the restriction of E to M. E_{M} is a C^{∞} complex vector bundle on M such that for any open subset U of M a C^{∞} section of E on U is naturally identified with a C^{∞} section of the bundle N on $\rho^{-1}(U)$ which is holomorphic when restricted to each
fiber Z_{m}. It follows then that τ_{N} induces naturally an antilinear involution τ_{E} of the bundle E; further, from the naturality of the isomorphism ϕ we infer readily that ϕ is $\left(\tau_{T}, \tau_{E}\right)$-equivariant, i.e., preserves the real structures. Thus we have obtained the natural identification of T_{M} and the real part E_{M}^{\prime} with respect to τ_{E}.
$e)$ For each $u \in U$, let G_{u} be the group of bundle automorphisms of the vector bundle $N_{u} \rightarrow B_{u}$. Then G_{u} can be put together to form a complex Lie group over $U, G \rightarrow U$. By restricting U if necessary, we may assume by (5.1) that $\left(B_{u}, N_{u}\right) \cong\left(\boldsymbol{P}^{1}, H^{\oplus 2 n}\right)$ for any u so that in particular there exists a natural smooth morphism $\alpha_{u}: \boldsymbol{P}\left(N_{u}\right) \rightarrow \boldsymbol{P}^{2 n-1}$ defined up to automorphisms of $\boldsymbol{P}^{2 n-1}$. Therefore we get naturally a projective bundle $\boldsymbol{P}_{0} \rightarrow U$ with fiber $\boldsymbol{P}^{2 n-1}$ and a smooth morphism $\alpha: \boldsymbol{P}\left(N_{U}\right) \rightarrow \boldsymbol{P}_{0}$ over U inducing α_{u} on $\boldsymbol{P}\left(N_{u}\right)=\boldsymbol{P}\left(N_{U}\right)_{u}$. Let $\psi_{u}: N_{u}-\{0\} \rightarrow \boldsymbol{P}\left(N_{u}\right) \rightarrow \boldsymbol{P}^{2 n-1}$ be the composite map, where $\{0\}$ denotes the zero section. Let K_{u} be the subgroup of elements of G_{u} which induce the identity on $\boldsymbol{P}^{2 n-1}$ via ψ_{u}. The existence of α shows that K_{u} can be put together to form a complex Lie subgroup $K \rightarrow U$ of $G \rightarrow U$.
$f)$ The involution τ_{N} on N_{U} induces naturally an antiholomorphic involution on $G \rightarrow U$ (cf. (5.5) below). Further, if we let τ act on \boldsymbol{P}_{0} trivially, α is τ-equivariant; it follows that τ preserves K under this action. Let K_{0} be the fixed point set of τ on K. Then K_{0} is a real Lie subgroup over M of the restriction of $K \rightarrow U$ to M. By our construction G operates on $E \rightarrow U$ naturally and the induced action of K_{0} on $E_{M} \rightarrow M$ preserves the real part E_{M}^{\prime} by the definition of K_{0}. Thus via the identification $T_{M}=E_{M}^{\prime}$ in d), $K_{0} \rightarrow M$ becomes naturally a bundle of automorphisms of the tangent bundle T_{M}.
g) By restricting what we have obtained over each fiber Z_{m} we see that $K_{0} \rightarrow M$ is a C^{∞} fiber bundle with typical fiber \boldsymbol{H}^{\times}and with structure group \boldsymbol{H}^{\times}acting by adjoint action on itself. Indeed, we have by (5.2)

$$
\begin{align*}
& G_{u} \cong \mathrm{GL}_{2}(C) \times_{C^{*}} \mathrm{GL}_{2 n}(C), \quad K_{u} \cong \mathrm{GL}_{2}(C), \\
& K_{0, u}=\boldsymbol{H}^{\times}=\left\{\left(\begin{array}{rr}
x & -\bar{y} \\
y & \bar{x}
\end{array}\right) \in \mathrm{GL}_{2}(\boldsymbol{C}) ; x, y \in C\right\} . \tag{5.5}
\end{align*}
$$

Since the structure group of $K_{0} \rightarrow M$ factors through $\operatorname{PSp}(1) \cong \boldsymbol{H}^{\times} / \boldsymbol{R}^{\times}$and the corresponding principal $\mathrm{PSp}(1)$-bundle is associated to the $C^{\infty} \boldsymbol{P}^{1}$ bundle $\pi: Z \rightarrow M$ which is trivial by our assumption, $K_{0} \rightarrow M$ is actually trivial. Thus we get a global action of \boldsymbol{H}^{\times}on T_{M}.
h) For any $m \in M$, as a complex \boldsymbol{H}^{\times}-module we have

$$
T_{U, m} \cong E_{m} \cong H^{0}\left(Z_{m}, N_{m}\right) \cong H^{0}\left(\boldsymbol{P}^{1}, H\right)^{\oplus 2 n} \cong V_{1,1}^{\oplus 2 n}
$$

and hence as a real \boldsymbol{H}^{\times}-module $T_{M, m} \cong\left(V_{1,1}^{R}\right)^{\oplus 2 n}$. Therefore the action
actually comes from an \boldsymbol{H}-module structure of T_{M}, i.e., M has a natural almost quaternionic structure. We denote by J_{λ} the associated almost complex structures on T_{M} for any $\lambda \in C \subseteq H$.
i) Let \mathscr{F} be the almost complex structure on $M \times \boldsymbol{P}^{1}$ induced from Z by μ. For each $\lambda \in C=\boldsymbol{P}^{1}, \mathscr{J}$ induces an almost complex structure \mathscr{F}_{λ} on $M=M \times \lambda$. We shall show that under a natural identification,

$$
\begin{equation*}
J_{\lambda}=\mathscr{g}_{\lambda} . \tag{5.6}
\end{equation*}
$$

Let m be any point of M. Let T_{m} be the tangent space of M at m, and N_{m} the holomorphic normal bundle of Z_{m} in Z. Note that $N_{m}=N_{U \mid Z_{m}}$. Now μ induces the real linear isomorphism $N_{m, 2} \simeq T_{m}$ and the resulting complex structure on T_{m} is just the one given by \mathscr{J}_{2}, where $N_{m, 2}$ is the fiber of N_{m} over (m, λ). On the other hand, the complex structure on T_{m} induced by J_{λ} is induced via the isomorphisms

$$
T_{m} \cong E_{m}^{\prime} \cong H^{0}\left(Z_{m}, N_{m}\right)_{R} \quad\left(:=H^{0}\left(Z_{m}, N_{m}\right)^{\tau_{N}}\right)
$$

and the natural action of $\lambda \in \boldsymbol{H}^{\times}$on $H^{0}\left(Z_{m}, N_{m}\right)$ with $\lambda^{2}=-1$.
j) By the definition of E we have a natural homomorphism $\pi^{*} E \rightarrow N$ of C^{∞} complex vector bundles on Z. On the fiber over (m, λ) this reduces to the λ-linear surjection

$$
\nu: H^{0}\left(Z_{m}, N_{m}\right) \rightarrow N_{m, \lambda} .
$$

(Since $\lambda \in C$ is fixed by $\lambda \in \boldsymbol{H}^{\times}, \lambda$ acts on $N_{m, \lambda}$.) In view of the description of J_{λ} and \mathscr{J}_{2} in i), it suffices for (5.6) to show that ν induces by restriction an isomorphism

$$
\begin{equation*}
\left(H^{0}\left(Z_{m}, N_{m}\right)_{R}, \lambda\right) \leftrightarrows N_{m, \lambda} \tag{5.7}
\end{equation*}
$$

of complex vector spaces. Let $V_{2}^{ \pm}$be the eigenspace with eigenvalue $\pm \sqrt{-1}$ for the action of λ on $H^{0}\left(Z_{m}, N_{m}\right)$. Then we claim that the kernel of ν coincides with $V_{\overline{2}}^{-}$. In fact, taking a suitable isomorphism in (5.1) we see that ν is λ-isomorphic to the direct sum of $2 n$-copies of the surjection $r_{2}: H^{0}\left(\boldsymbol{P}^{1}, H\right) \rightarrow H_{2}$; and then our claim follows from Lemma 5.2. Then ν induces a C-linear isomorphism $V_{2}^{+} \simeq N_{m, 2}$ and (5.7) then follows from the natural isomorphism $\left(H^{0}\left(Z_{m}, N_{m}\right)_{R}, \lambda\right) \leftrightarrows V_{\lambda}^{+}$.
k) (5.6) in particular shows that each J_{2} is integrable. Then it follows from Proposition 5.3 just below that our almost quaternionic structure is actually a quaternionic structure. Thus we have associated to any triple (f, π, τ) naturally a quaternionic structure on M. Finally in view of (5.6) and the construction at the beginning of the proof we see that the above correspondences "quaternionic structures" \leftrightarrow "triples" are inverses to each other, thus completing the proof of the theorem.

Proposition 5.3. Let M be an oriented C^{∞} manifold with an almost quaternionic structure. Let $\left\{J_{\lambda}\right\}$ be the associated family of almost complex structures on M. Then the almost quaternionic structure admits a torsionfree connection if and only if J_{λ} are all integrable.

For the proof we need some preliminaries, which will be given in a more general form than is needed for the proof of the proposition. Let $A_{q}^{k}(M), 0 \leqq q \leqq[k / 2]$, be the space of C^{∞} sections of the subbundle $W^{k ; k-2 q} \otimes_{R} C \subseteq \wedge^{k} T^{*}$ (cf. (3.10)). Then we have a direct sum decomposition $A^{k}(M)=\oplus_{q} A_{q}^{k}(M)$, where $A^{k}(M)$ is the space of $C^{\infty} k$-forms on M. Define a decreasing filtration $\left\{E^{*}\right\}$ of $A^{k}(M)$ by the complex vector subspaces

$$
E^{q}\left(A^{k}(M)\right)=A_{q}^{k}(M) \oplus A_{q+1}^{k}(M) \oplus \cdots \oplus A_{[k / 2]}^{k}(M), \quad 0 \leqq q \leqq[k / 2]
$$

We set $E^{q}\left(A^{k}(M)\right)=0$ for $q>k / 2$. Then clearly we have

$$
\begin{equation*}
\operatorname{Gr}_{E}^{q}\left(A^{k}(M)\right):=E^{q}\left(A^{k}(M)\right) / E^{q+1}\left(A^{k}(M)\right) \cong A_{q}^{k}(M) \tag{5.8}
\end{equation*}
$$

Then $\left\{E^{*}\right\}$ is clearly defined over \boldsymbol{R}, since each $A_{q}^{k}(M)$ is.
Lemma 5.4. A k-form $\alpha \in A^{k}(M)$ is in $E^{q}\left(A^{k}(M)\right)$ if and only if for any $\lambda \in C$ its Hodge $(k-t, t)$ component $\alpha^{k-t, t}(\lambda)$ with respect to λ vanishes whenever $t<q$.

Proof. The necessity is obvious from the definition of E^{q}. Restricting ourselves to fibers over each point of M, the sufficiency is easily seen to reduce to proving the following assertion: If x is an element of $V_{k, r}$ for any (k, r) with respect to $r \in \Delta(k)$ (cf. $(0,1)$) then its Hodge ($s, t)$ component $x^{s, t}(\lambda) \neq 0$ for some λ if $(k-r) / 2 \leqq s, t \leqq(k+r) / 2$. Indeed, the subspace $V(s, t):=\left\{x \in V_{k, R} ; x^{s, t}(\lambda)=0, \lambda \in C\right\}$ is an H^{\times}-submodule of the irreducible $V_{k, r}$ so that $V(s, t)=0$.

From the above lemma we deduce the following:
Lemma 5.5. Suppose that J_{λ} are integrable. For any integer $q \geqq 0$, $E^{q}\left(A^{k}(M)\right)$ is a subcomplex of the de Rham complex $A^{\bullet}(M)$.

Proof. Let α be an arbitrary element of $E^{q}\left(A^{k}(M)\right)$. Then for any $t<q$ and any $\lambda \in C$ we have

$$
(d \alpha)^{k+1-t, t}(\lambda)=\bar{\partial}_{\lambda}\left(\alpha^{k+1-t, t-1}(\lambda)\right)+\partial_{\lambda}\left(\alpha^{k-t, t}(\lambda)\right)=0
$$

by the above lemma and the integrability of J_{λ}, where ∂_{λ} and $\bar{\partial}_{\lambda}$ are the $(1,0)$ - and $(0,1)$-components of d for λ, respectively; hence $d \alpha \in E^{q} A^{k+1}(M)$ again by the above lemma.

Therefore $\left(A^{*}(M), E^{*}\right)$ becomes a filtered complex and the associated complex induced on each graded module $\operatorname{Gr}_{E}^{q}\left(A^{\bullet}(M)\right)$ is isomorphic to

$$
\begin{equation*}
\left(A_{q}^{\cdot}(M), d_{q}\right) \tag{5.9}
\end{equation*}
$$

where d_{q} is the restriction of d to $A_{q}^{\dot{q}}(M)$ followed by the projection $E^{q}\left(A^{\cdot}(M)\right) \rightarrow A_{q}^{\cdot}(M)$.

Proof of Proposition 5.3. By Salamon [23; Th. 2.2] the almost quaternionic structure in question admits a torsion-free connection if and only if $\left(A_{k}^{*}(M), d_{k}\right)$ is a complex. By the above argument the condition is certainly satisfied if J_{2} are all integrable. See e.g. [15; IX, § 3] for the converse.

Note in passing that the filtered complex $\left(A^{\cdot}(M), E^{*}\right)$ gives rise to a spectral sequence

$$
\begin{equation*}
E_{1}^{p, q}(M):=H^{q}\left(A_{p}^{\cdot}(M)\right) \Rightarrow H^{k}\left(A^{\cdot}(M)\right), \quad k=p+q \tag{5.10}
\end{equation*}
$$

with

$$
E_{\infty}^{p, q}(M) \cong \operatorname{Gr}_{E}^{p}\left(H^{k}\left(A^{\cdot}(M)\right)\right)
$$

where we denote by the same letter E the induced filtration on $H^{\cdot}(M, C)$ $\cong H^{\cdot}\left(A^{\cdot}(M)\right)$. Note also that the above objects are all defined over \boldsymbol{R} with respect to the standard complex conjugation, since each $A_{q}^{k}(M)$ is.

Now let (M, g) be a compact hyperkähler manifold of dimension $4 n$. Let $(f: Z \rightarrow C, \pi, \tau)$ be the triple associated to (M, g) via Theorem 5.1. Theorems 3.1 and 5.1 suggest that the decomposition

$$
\begin{equation*}
H^{k}(M, \boldsymbol{R})=\underset{r \in \Delta(k)}{ } H^{k ; r}(M, \boldsymbol{R}) \tag{3.11}
\end{equation*}
$$

of $H^{k}(M, R)$ should be described in terms of the associated triple (f, π, τ). Let $\Omega_{z / C}$ be the relative Poincaré complex for the smooth morphism $f: Z \rightarrow C$. We have the associated spectral sequence of hypercohomology

$$
\begin{equation*}
E_{1}^{p, q}:=H^{q}\left(Z, \Omega_{Z / C}^{p}\right) \Rightarrow H^{p+q}\left(Z, \Omega_{Z / C}^{*}\right) \tag{5.11}
\end{equation*}
$$

Let F^{*} be the associated decreasing filtration on the abutment $\boldsymbol{H}^{\bullet}\left(Z, \Omega_{Z / C}^{*}\right)$. Then concerning the above question the following holds.

Proposition 5.6. 1) There exists a natural C-linear isomorphism $u: H^{k}(M, C) \rightarrow \boldsymbol{H}^{k}\left(Z, \Omega_{z / C}^{\cdot}\right)$ for any $k \geqq 0$. 2) For any $r \in \Delta(\hat{k})$ we set $q=(k-r) / 2$. Then we have an inclusion $u\left(H^{k ; r}(M, C)\right) \subseteq F^{q}\left(H^{k}(M, C)\right)$ which induces an isomorphism $u^{k ; r}: H^{k ; r}(M, C) \rightarrow \operatorname{Gr}_{F}^{q}\left(\boldsymbol{H}^{k}\left(Z, \Omega_{z / C}^{*}\right)\right)$ by
passing to the associated graded module. 3) There exists a natural real structure on $\boldsymbol{H}^{k}\left(Z, \Omega_{Z / C}\right)$ such that the filtration F^{*}, and u and $u^{k ; r}$ are all defined over \boldsymbol{R}.

Proof of 1). Let $f^{\cdot} O_{C}$ be the sheaf-theoretic inverse image of the structure sheaf O_{C} of C. Then $\Omega_{z / C}$ is a resolution of $f^{\cdot} O_{C}$. Hence we have a natural isomorphism

$$
\begin{equation*}
H^{k}\left(Z, \Omega_{z / C}^{*}\right) \cong H^{k}\left(Z, f^{\cdot} O_{C}\right) \tag{5.12}
\end{equation*}
$$

On the other hand, since $R^{q} f_{*}\left(f^{\cdot} O_{C}\right) \cong R^{q} f_{*} C \otimes_{C} O_{C}$ for any q and since $R^{q} f_{*} C$ is naturally isomorphic to the constant sheaf associated to the trivial local system $H^{q}(M, C) \times C \rightarrow C$, we see that the Leray spectral sequence $E_{2}^{p, q}:=H^{p}\left(C, R^{q} f_{*}\left(f^{*} O_{C}\right)\right) \Rightarrow H^{p+q}\left(Z, f^{\cdot} O_{C}\right)$ degenerates and gives natural isomorphisms

$$
H^{k}\left(Z, f^{\cdot} O_{C}\right) \cong H^{0}\left(C, R^{k} f_{*} C \otimes_{C} O_{C}\right) \cong H^{0}\left(S, O_{C}\right) \otimes_{C} H^{k}(M, C) \cong H^{k}(M, C)
$$

Then 1) follows from this and (5.12).
Before proving 2) and 3) we make some preliminary considerations. We first recall how the spectral sequence (5.8) is realized. Let \mathscr{A}^{q} (resp. $\overline{\mathscr{A}}^{q}$) be the sheaf of germs of $C^{\infty}(0, q)$ - (resp. ($q, 0$)-) forms on Z. We consider the double complex $\mathscr{K}^{\bullet \cdot}:=\Omega_{Z / c} \otimes_{o_{Z}} \mathscr{A}^{\bullet}$ which gives the Dolbeault resolution of the relative Poincaré complex $\Omega_{Z / C}^{*}$. Let $K^{*}=\Gamma\left(Z, \mathscr{K}^{* *}\right)$ and let K^{\bullet} be the associated simple complex. Define as usual the Hodge filtration $\left\{F^{p}\right\}$ of K^{\bullet} by $F^{p}\left(K^{\bullet}\right)=\oplus_{p^{\prime} \geqq p, q^{\prime} \geqq 0} K^{p^{\prime}, q^{\prime}}$. Then (5.11) is nothing but the spectral sequence associated to the filtered complex (K^{\bullet}, F^{*}).

Let $\bar{\Omega}_{Z_{/ C}}$ be the antiholomorphic relative Poincaré complex. Then using the antiholomorphic involution τ of Z we define an antilinear involution $\sigma_{p, q}$ of $K^{p, q}$ by

$$
\sigma_{p, q}(\alpha)=\overline{\tau^{*}(\alpha)}, \quad \alpha \in K^{p, q}
$$

where $\tau^{*}(\alpha)$ is the pull-back of α by τ considered as an element of $\bar{K}^{p, q}:=\Gamma\left(Z, \bar{\Omega}_{Z / C}^{p} \otimes_{o_{Z}} \overline{\mathscr{A}}^{q}\right)$ and then $\overline{\tau^{*}(\alpha)}$ is its image under the complex conjugation considered as an antilinear isomorphism $\bar{K}^{p, q} \rightarrow K^{p, q}$. Then $\sigma_{p, q}$ altogether induce a natural antilinear involution σ of the filtered complex (K^{*}, F^{*}), which then defines the natural real structures on various spaces naturally involved in the spectral sequence (5.11) such as $H^{q}\left(Z, \Omega_{Z / C}^{p}\right), H^{\cdot}\left(Z, \Omega_{Z / C}^{*}\right), \operatorname{Gr}^{p} \boldsymbol{H}^{\cdot}\left(Z, \Omega_{Z / C}^{*}\right)$.

Now the pull-back by π induces a homomorphism of the filtered complexes

$$
\pi^{*}:\left(A^{*}(M), E^{*}\right) \rightarrow\left(K^{*}, F^{*}\right)
$$

In fact for any element α of $E^{q}\left(A^{\cdot}(M)\right), \pi^{*} \alpha$, restricted to the fiber Z_{λ}, has the vanishing Hodge (p^{\prime}, q^{\prime})-component for any $q^{\prime}<q$ by Lemma 5.4. Further, since the elements of $\pi^{*} A(M)$ are τ-invariant and $\pi^{*} A(M)$ is preserved by the complex conjugation, π^{*} is compatible with the natural real structures. It follows that π^{*} induces a homomorphism of the spectral sequences compatible with the real structures

The map π^{*} on the bottom line is factored as

$$
H^{k}(M, C) \rightarrow H^{k}(Z, C) \rightarrow H^{k}\left(Z, f^{\cdot} O_{C}\right) \leftrightarrows H^{k}\left(Z, \Omega_{Z / C}^{*}\right)
$$

and from this one sees easily that this isomorphism π^{*} coincides with the one obtained in the proof of 1). Now we use the hyperkähler structure.

Lemma 5.7. For any (k, r) with $r \in \Delta(\hat{k})$ set $q=(k-r) / 2$. Then there exists a natural inclusion $j_{M}: H^{k ; r}(M) \rightarrow E_{\infty}^{q, k-q}(M)$, where $H^{k ; r}(M)$ is the space of harmonic $W^{k ; r}-$ forms. Moreover, if we set $j_{Z}=\pi_{\infty}^{*} j_{M}$, where $\pi_{\infty}^{*}: E_{\infty}^{q, k-q}(M) \rightarrow E_{\infty}^{q, k-q}(Z)$, then j_{Z} also is injective.

Proof. Recall that

$$
\begin{align*}
E_{\infty}^{q, k-q}= & \left\{\alpha \in E^{q}\left(A^{k}(M)\right) ; d \alpha=0\right\} /\left\{\beta+d \gamma ; \beta \in E^{q+1}\left(A^{k}(M)\right)\right. \\
& \text { with } \left.d \beta=0, \gamma \in A^{k-1}(M) \text { with } d \gamma \in E^{q}\right\} . \tag{5.14}
\end{align*}
$$

It is then clear that we have a natural map $j_{M}: H^{k ; r}(M) \rightarrow E_{\infty}^{q, k-q}(M)$. It now suffices to show that j_{Z} defined as above is injective. Let α be a nonzero element of $H^{k ; r}(M)$ such that $j_{Z}(\alpha)=0$. By the formula for $E_{\infty}^{p, q}(Z)$ similar to (5.14) we see that

$$
\begin{equation*}
\alpha=\beta+d \gamma \tag{5.15}
\end{equation*}
$$

for some $\beta \in F^{q+1}\left(K^{k}(Z)\right)$ and $\gamma \in K^{k-1}(Z)$ such that $d \gamma \in F^{q}$. Then by Lemma 5.4 there exists a $\lambda \in C$ such that the Hodge ($q, k-q$)-component $\alpha^{q, k-q}(\lambda)$ of α with respect to λ is nonvanishing;

$$
\begin{equation*}
\alpha^{q, k-q}(\lambda) \neq 0 . \tag{5.16}
\end{equation*}
$$

Let α_{λ} and β_{λ} be the restrictions of $\pi^{*} \alpha$ and $\pi^{*} \beta$ to Z_{λ}, respectively. Then from (5.15) α_{λ} and β_{λ} are cohomologous. Then since α_{λ} is harmonic, $H_{\lambda} \beta_{\lambda}=\alpha_{\lambda}$ and hence

$$
\left(H_{\lambda} \beta_{\lambda}\right)^{q, k-q}=\alpha_{\lambda}^{q, k-q}=\alpha^{q, k-q}(\lambda),
$$

where $H_{\lambda} \beta_{\lambda}$ is the harmonic part of β_{λ}. Since the harmonic projection H_{λ} preserves the Hodge components and $\beta_{\lambda}^{q, k-q}=0$ as $\beta \in F^{q+1}\left(K^{k}(Z)\right)$, we have $\left(H_{\lambda} \beta_{\lambda}\right)^{q, k-q}=0$. This contradicts (5.16).

Now we can complete the proof of Proposition 5.6.
Proof of 2), 3). By Lemma 5.7 above we have an inequality

$$
\begin{equation*}
\operatorname{dim} H^{k ; r}(M) \leqq \operatorname{dim} E_{\infty}^{q, k-q}(X) \text { for } X=M, Z \tag{5.17}
\end{equation*}
$$

On the other hand, from (3.11) we have

$$
\begin{equation*}
b_{k}(M)=\sum_{r} \operatorname{dim} H^{k ; r}(M) \tag{5.18}
\end{equation*}
$$

while from 1) we have

$$
\begin{equation*}
b_{k}(M)=\sum_{q} \operatorname{dim} E_{\infty}^{q, k-q}(X) \quad \text { for } X=M, Z \tag{5.19}
\end{equation*}
$$

From (5.17), (5.18) and (5.19) we get that the inclusion j_{M}, j_{Z} of Lemma 5.7 are actually isomorphic. Since j_{M} factors through $E^{q}\left(A^{\cdot}(M)\right)$, and hence j_{Z} through $F^{q}\left(K^{\cdot}(Z)\right.$), by identifying $H^{k ; r}(M)$ with $H^{k ; r}(M, C)$ we obtain 2). 3) is then clear since (5.13) and j_{M} are defined over \boldsymbol{R}.

Remark 5.8. The above proof shows that

$$
E_{\infty}^{q, k-q}(X)=0 \quad \text { for any } q>[\hat{k} / 2] \text { for } X=M, Z .
$$

It is not clear whether the map π^{*} for the $E_{1}^{p, q}$-terms $\pi^{*}: H^{k}\left(A_{q}^{*}(M)\right) \rightarrow$ $H^{q}\left(Z, \Omega_{Z / C}^{k}\right)$ are isomorphic or not. We only note that we have again inclusions $j: H^{k ; r}(M) \rightarrow H^{k}\left(A_{q}^{0}(M)\right)$ and $j^{\prime}: H^{k ; r}(M) \rightarrow H^{q}\left(Z, \Omega_{Z / C}^{k-q}\right)$ with $j^{\prime}=\pi^{*} j$. When $q=k$, above is isomorphic by Salamon [23] and by using this and the result of the next proposition we can conclude that both j and j^{\prime} are isomorphic in this case. In particular, the elements of $H^{k}\left(A_{k}^{*}(M)\right)$ are represented by harmonic forms; this is reminiscent of the Kähler case, where the Dolbeault cohomology classes are representable by harmonic forms.

Next we shall calculate the $E_{1}^{p, q_{-}}$term of the spectral sequence (5.11).

Proposition 5.9. Let $f: Z \rightarrow C$ be the Calabi family associated to a hyperkähler manifold (M, g). Let $h^{p, q}:=h^{p, q}\left(M_{\lambda}\right)$ for any $\lambda \in C$ (which is independent of λ). Then $R^{q} f_{*} \Omega_{Z / C}^{p}$ is isomorphic to the direct sum of $h^{p, q}$ copies of $O_{c}\left(H^{q-p}\right) ; R^{q} f_{*} \Omega_{Z / C}^{p} \cong O_{C}\left(H^{q-p}\right)^{\oplus h^{p, q}}$. Further, $h^{p, q}(Z / C):=$ $\operatorname{dim} H^{q}\left(Z, \Omega_{Z / c}^{p}\right)$ is given by $h^{p, q}(Z / C)=(q-p+1) h^{p, q}$ if $q \geqq p$ and $=(p-q) h^{p, q}$ if $q<p$.

The fact $H^{0}\left(C, f_{*} \Omega_{Z / C}^{p}\right)=0$ has been shown in [25] and [13]. The above result is a generalization of this. However, the Hodge numbers $h^{p, q}(Z)$ of Z are yet to be determined. The proof of the proposition will be given after a lemma.

For any $\lambda \in C$ consider V_{k} as a complex S^{1}-module via the embedding $\lambda_{*}: S^{1} \rightarrow \mathrm{Sp}(1)$ of (1.9). Let $V_{k}=\oplus_{r \equiv k(2),|r| \leqq k} V_{k ; r}(\lambda)$ with $\operatorname{dim} V_{k ; r}(\lambda)=1$ be the canonical decomposition as an S^{1}-module, where $V_{k ; r}(\lambda)$ is the eigenspace with eigenvalue $\varepsilon^{r}, \varepsilon \in S^{1}$. Define a decreasing filtration $\left\{F_{\lambda}^{*}\right\}$ on V_{k} by

$$
F_{\lambda}^{p}\left(V_{k}\right)=\underset{r \geqq 2 p-k}{\bigoplus} V_{k ; r}(\lambda)
$$

Denote by $\operatorname{Gr}_{\lambda}^{p}\left(V_{k}\right)$ the associated graded modules. Now we fix an $\mathrm{Sp}(1)$-invariant nondegenerate symmetric bilinear form f on V_{k}. Then for any $\lambda \in C$ and nonzero $u \in V_{k ; r}(\lambda)$ and $v \in V_{k ; s}(\lambda)$ we have

$$
\begin{equation*}
f(u, v)=0 \text { if } r+s \neq 0, \text { and } \neq 0 \text { if } r+s=0 \tag{5.20}
\end{equation*}
$$

Lemma 5.10. $\operatorname{Gr}_{\lambda}^{p}\left(V_{k}\right)$ depends holomorphically on λ so that it defines a holomorphic line bundle on C, denoted also by the same letter $\operatorname{Gr}_{\lambda}^{p}\left(V_{k}\right)$. As a line bundle $\operatorname{Gr}_{\lambda}^{p}\left(V_{k}\right)$ is isomorphic to $H^{k-2 p}$.

Proof. Under the identification $C=\boldsymbol{P}^{1}=\boldsymbol{H}^{\times} / \boldsymbol{C}^{*}$ of (1.3) if $\pi(h)=\lambda$, then $V_{1 ; 1}(\lambda)=h C$ by the proof of Lemma 1.3. This implies that $\left\{V_{1 ; 1}(\lambda)\right\}_{\lambda \in C}$ defines a holomorphic line bundle isomorphic to H^{-1}. Then for any $p>0$, $\mathrm{S}^{p}\left(V_{1 ; 1}(\lambda)\right)$, and hence $\mathrm{S}^{p}\left(V_{1 ; 1}(\lambda)\right) \otimes_{C} V_{k-p}$ also, depends holomorphically on λ and $\mathbf{S}^{p}\left(V_{1 ; 1}(\lambda)\right) \cong H^{-p}$ as a holomorphic line bundle, where $\mathrm{S}^{p}()$ denotes the symmetric product. On the other hand, one sees readily that $F^{p}\left(V_{k}\right)$ coincides with the natural injective image of

$$
\mathrm{S}^{p}\left(V_{1 ; 1}(\lambda)\right) \otimes_{C} V_{k-p}=\mathrm{S}^{p}\left(V_{1 ;:}(\lambda)\right) \otimes_{C} \mathrm{~S}^{k-p}\left(V_{1}\right) \quad \text { in } \mathrm{S}^{k}\left(V_{1}\right)=V_{k}
$$

and therefore that

$$
\operatorname{Gr}_{\lambda}^{p}\left(V_{k}\right) \cong \mathrm{S}^{p}\left(V_{1 ; 1}(\lambda)\right) \otimes \operatorname{Gr}_{\lambda}^{0}\left(V_{k-p}\right) \cong H^{-p} \otimes \operatorname{Gr}_{\lambda}^{0}\left(V_{k-p}\right)
$$

Finally by (5.20), the quadratic form f induces in general a duality between the line bundles $\operatorname{Gr}_{\lambda}^{p}\left(V_{k}\right)$ and $\operatorname{Gr}_{\lambda}^{k-p}\left(V_{k}\right)$. In particular, $\operatorname{Gr}_{\lambda}^{0}\left(V_{k-p}\right) \cong$ $\operatorname{Gr}_{\lambda}^{k-p}\left(V_{k-p}\right)^{-1} \cong H^{k-p}$. The lemma follows.

Proof of Proposition 5.9. Let $E^{p, q}$ be the vector bundle on C corresponding to the locally free sheaf $R^{q} f_{*} \Omega_{Z / C}^{p}$. Set $W_{k}=H^{k}(M, C)$, considered as a regular \boldsymbol{H}^{\times}-module of weight k. Then $\left\{F_{\lambda}^{*}\right\}$ with $F_{\lambda}^{p}(W)=$ $\oplus_{p \leqq p^{\prime}} H^{p^{\prime}, q^{\prime}}\left(M_{2}\right)$ defines a decreasing filtration on W_{k} and in view of Lemma 5.10 the associated graded module $\operatorname{Gr}_{\lambda}^{p}(W)$ vary holomorphically with λ and isomorphic to $E^{p, q}$; indeed if $W_{k}=\bigoplus_{r \in \Delta(k)} W_{k ; r}$ is the canonical \boldsymbol{H}^{\times}-decomposition of W_{k}, then $\operatorname{Gr}_{\lambda}^{p}(W) \cong \oplus_{r} \operatorname{Gr}_{\lambda}^{p}\left(W_{k ; r}\right)$, while, because of shifts in weights, $\operatorname{Gr}_{\lambda}^{p}\left(W_{k ; r}\right)$ is isomorphic to a direct sum of copies of $\operatorname{Gr}_{\lambda}^{p-(k+r) / 2}\left(V_{r}\right)$ which is isomorphic to $H^{k-2 p}$ by Lemma 5.10. The first part of the lemma thus follows. The second part then follows from the exact sequence

$$
0 \rightarrow H^{1}\left(C, R^{q-1} f_{*} \Omega_{Z / C}^{p}\right) \rightarrow H^{q}\left(Z, \Omega_{Z / C}^{p}\right) \rightarrow \Gamma\left(C, R^{q} f_{*} \Omega_{Z / C}^{p}\right) \rightarrow 0
$$

coming from the Leray spectral sequence for f.
Finally we shall study the structure of the general members of the Calabi family. In general for a complex manifold X and for an analytic subset A of pure codimension k of X we denote by $c(A)$ the associated cohomology class in $H^{2 k}(X, \boldsymbol{Q})$. A class $\beta \in H^{2 k}(X, \boldsymbol{Q})$ is said to be analytic if $\beta=c(A)$ for some A as above. Our purpose is to show the following:

Proposition 5.11. Let (M, g) be a compact hyperkähler manifold with the associated Calabi family $\left\{M_{\lambda}\right\}_{\lambda \in C}$. Let β be any element of $H^{2 k}(M, Q)$. Let $C(\beta)=\left\{\lambda \in C ; \beta\right.$ is analytic on $\left.M_{\lambda}\right\}$. Then 1) if k is even, $C(\beta)=C$, $\{ \pm \lambda\}$, or $=\varnothing$ and 2) if k is odd, then $C(\beta)=\{\lambda\}$ or $=\varnothing$, where $\lambda=\lambda(\beta)$ is some point of C.

Corollary 5.12. Except for countable numbers of λ, M_{λ} contains no analytic subvariety of odd dimension; in particular, it contains no curves and hypersurfaces, and hence the algebraic dimension $a\left(M_{2}\right)=0$ and $f: Z \rightarrow C$ is the algebraic reduction of Z. If, further, $h^{2,0}\left(M_{2}\right)=1$, then M_{λ} is even simple (cf. below for the definition).

Remark 5.13. 1) The proposition is inspired by Calabi [6; Th. 4.1], where the case of $K 3$ surfaces is treated. 2) For an even k the case $C(\beta)=C$ can actually occur even if $h^{2,0}\left(M_{\lambda}\right)=1$. Roughly speaking any hyperkähler submanifold $\left(M^{\prime}, g^{\prime}\right)$ defines a family $\left\{M_{\lambda}^{\prime}\right\}$ of complex submanifolds M_{λ}^{\prime} of M_{λ}. 3) By $[10 ; \S 4]$ there exists a countably many λ such that M_{λ} is projective. However, a simple example shows that for some intermediate value $0<k<\operatorname{dim}_{C} M_{\lambda}$ it can happen that $a\left(M_{\lambda}\right) \neq k$ for any λ.

First we prove an algebraic lemma. Let x be any element of $V_{2 s}^{R}$. For any $\lambda \in C$ we set $l_{\lambda}(x)=\min \left\{d ; x \in \oplus_{p, q \leqq d} V^{p, q}(\lambda)\right\}$, where $V^{p, q}(\lambda)$ is the Hodge (p, q)-component with respect to λ of $V_{2 s}=\left(V_{2 s}^{R}\right)_{c}$. By definition, $s \leqq l_{\lambda}(x) \leqq 2 s$. For any d let $C_{d}(x)=\left\{\lambda \in C ; l_{\lambda}(x)=d\right\}$, and $n_{d}(x)=$ $\# C_{d}(x)$. Since $V^{p, q}(-\lambda)=\bar{V}^{p, q}(\lambda)$, " $\lambda \in C_{d}(x)$ " implies " $-\lambda \in C_{d}(x)$ ". Hence $n_{d}(x)$ is always even.

Lemma 5.14. With the above notation we have $n_{2 s-1}(x)+2 n_{2 s-2}(x)+$ $\cdots+s n_{s}(x)=2 s . \quad$ In particular $n_{s}(x)=0$ or 2 .

Proof. We argue in the framework of Lemma 1.3 and its proof, so we freely use the notation there. Let $Q(x)=\bigcup_{s \leqq d \leqq 2 s-1} C_{d}(x)$. Then by (5.20) we have $Q(x)=\left\{\lambda ; f\left(x, \tilde{\lambda}_{s}\right)=0\right\}$, where $\lambda_{s}=p_{s}(\lambda) \in \boldsymbol{P}_{s}$ and $\tilde{\lambda}_{s}$ is any point of $\pi_{s}^{-1}\left(\lambda_{s}\right)$. Let \boldsymbol{P}_{x} be the hyperplane of \boldsymbol{P}_{s} defined by $f_{x}(\lambda):=$ $f(x, \lambda)=0$. For any $\lambda \in C$ let m_{λ} be the intersection multiplicity of C_{s} and \boldsymbol{P}_{x} at $\lambda_{s} ; m_{\lambda}=\left(C_{s} \cdot \boldsymbol{P}_{x}\right)_{\lambda_{s}} . \quad$ We claim that $m_{\lambda}=2 s-d$ whenever $\lambda \in C_{d}(x)$. Since $\operatorname{deg} C=2 s$, this would prove the lemma.

Note first that m_{λ} is just the order of zeroes of f_{x} restricted to C_{s}. Since Y_{λ} is tangent to \tilde{C}_{s} at $\tilde{\lambda}_{s}$ and $d \pi_{s^{*}}\left(Y_{\lambda}\right) \neq 0$ at λ_{s}, we have $m_{\lambda}=$ $\min \left\{b ;\left(Y_{2}^{b} f_{x \mid \tilde{c}_{s}}\right)\left(\tilde{\lambda}_{s}\right)=0\right\}$. Now by (1.11) $Y_{\lambda}^{b} f_{x}\left(\tilde{\lambda}_{s}\right)=f_{x}\left(Y_{\lambda}^{b} \tilde{\lambda}_{s}\right)=f\left(Y_{\lambda}^{b} \tilde{\lambda}_{s}, x\right)$, $\tilde{\lambda}_{s} \in H^{2 s, 0}(\lambda)$; further by Lemma 5.4, the ($2 s-d, d$)-component (with respect to λ) of x is nonzero because x is real. Therefore by (5.20) we see that $Y^{b} f_{x}(\lambda)=0$ if $b<2 s-d$ and $\neq 0$ if $b=2 s-d$. Hence $m_{\lambda}=2 s-d$ as desired.

Lemma 5.15. Let β be any element of $H^{2 k}(M, R)$. Let $C_{0}(\beta)=$ $\left\{\lambda \in C ; \beta\right.$ is of type (k, k) on $\left.M_{\lambda}\right\}$. Then one of the following three cases can occur: $C_{0}(\beta)=C,=\{ \pm \lambda\}$ for some $\lambda \in C$, or $=\varnothing$.

Proof. Let $\oplus_{r} E_{7}$ be a decomposition of $H^{2 k}(M, C)$ into $\mathrm{Sp}(1)$ irreducible components. In particular, $E_{r} \cong V_{2 l}$ as a complex $\mathrm{Sp}(1)$-module for some $0 \leqq l \leqq k$. Let $\beta=\sum_{7} \beta_{r}$ be the corresponding decomposition of β. Then we have $C_{0}(\beta)=\cap_{r} C_{0}\left(\beta_{r}\right)$; therefore it suffices to prove the lemma for each β_{r}, while since $E_{r} \cong V_{2 l}$, the lemma for $C_{0}\left(\beta_{r}\right)$ follows immediately from Lemma 5.14.

Proof of Proposition 5.11. By the above lemma we have only to show that if k is even (resp. odd) and β is analytic on M_{λ}, then it is also (resp. never) analytic on $M_{-\lambda}$. Let A_{λ} be an analytic subset on M_{λ} with $c\left(A_{2}\right)=\beta$. Then $A_{-\lambda}:=\pi_{\lambda}^{-1} \pi\left(A_{\lambda}\right)$ is an analytic subset of M_{λ}, with original (resp. reversed) orientation. Hence $c\left(A_{-\lambda}\right)=\beta$ (resp. $-\beta$). This already takes care of the even case. In the odd case, $\beta=-(-\beta)$ cannot be analytic on M_{-2}, since M_{-2} is a Kähler manifold.

As for the corollary, only the last assertion needs a proof. First we
recall the following definition (cf. [9]). A compact complex manifold X is said to be simple if there is no analytic family $\left\{A_{t}\right\}_{t \in T}$ of compact complex subspaces of X with $0<\operatorname{dim} A_{t}<\operatorname{dim} X$ which covers the whole X in the sense that $X=\bigcup_{t \in T} A_{t}$. It clearly suffices to prove the following:

Proposition 5.16. Let X be a symplectic compact Kähler manifold with $h^{2,0}(X)=1$ and containing no divisor. Then X is simple.

Proof. Let $\operatorname{dim} X=2 n$. If $n=1$, the lemma is well-known. So we assume that $n>1$. Then as follows easily from the Bogomolov splitting theorem (cf. § 4), X has the finite fundamental group, i.e., in that theorem the torus factor does not appear in the decomposition of \tilde{X}. Therefore by replacing X by its universal covering we may assume from the beginning that X is simply connected. By our assumption, $a(X)=0$. Suppose that X is not simple. Then by [9; Lemma 9] we can find surjective morphisms $\pi: Z \rightarrow X$ and $\rho: Z \rightarrow T$ of compact complex manifolds such that $\operatorname{dim} Z=\operatorname{dim} X$ and $\operatorname{dim} X>\operatorname{dim} T>0$. Then since X is simply connected and contains no divisors, by the purity of branch loci π^{*} must actually be bimeromorphic. Then, since $h^{2,0}(T) \leqq h^{2,0}(X)=1$ and X is symplectic, $h^{2,0}(T)$ must vanish. Then by a theorem of Kodaira T must be a Moishezon manifold since by [26] T is bimeromorphic to a compact Kähler manifold. Then we have a contradiction: $0=a(X) \geqq a(T)=\operatorname{dim} T$ >0. Hence X is simple.

References

[1] Beauville, A., Variétés kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., 18 (1983), 755-782.
[2] Berger, M., Sur les groupes d'holonomie homogène des variétés a connexion affines et des variétés riemanniennes, Bull. Soc. Math. France, 83 (1955), 279-330.
[3] Bogomolov, F. A., Hamiltonian Kähler manifolds, Soviet Math. Dokl., 19 (1978), 1462-1465.
[4] - On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR-Sb., 22 (1974), 580-583.
[5] Bröcker, T. and tom Dieck, T., Representations of compact Lie groups, GTM, 98, Springer, 1985.
[6] Calabi, E., Isometric families of Kähler structures, In: The Chern Symposium, 1979, Springer, 1980, 23-79
[7] Chen, B. Y. and Ogiue, K., Some characterizations of complex space forms in terms of Chern classes, Quat. J. Math., Oxford, 26 (1975), 459-464.
[8] Chern, S.-S., On a generalization of Kähler geometry, In: Algebraic geometry and topology in honor of Lefschetz, 103-121, Princeton Univ. Press, Princeton. 1957.
[9] Fujiki, A., Semisimple reduction of compact complex varieties, In: Journée complexes, Nancy 82, 79-133, Revue de L'inst. E. Cartan, 8, 1983.
[10] -, On primitively symplectic compact Kähler V-manifolds of dimension four, In: Classification theory of algebraic and analytic manifolds, 1982, 71-250, Progress in Math. 39, Birkhäuser, 1983.
[11] Goldberg, S. I., Curvature and homology, Academic Press, New York, 1962.
[12] Hirzebruch, F., Topological methods in algebraic geometry, Springer, Ber-lin-Heidelberg-New York, 1966.
[13] Hitchin, N. J., Kählerian twistor spaces, Proc. London Math. Soc., 43 (1981), 133-150.
[14] Kobayashi, S., Differential geometry of holomorphic vector bundles, Sem. Notes of Tokyo Univ., 41, 1982. (In Japanese)
[15] Kobayashi, S. and Nomizu, K., Foundations of differential geometry I, II, Interscience, New York, 1963, 1969.
[16] Kodaira, K., A theorem of completeness of charactrestic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math., 75 (1962), 46-62.
[17] Kodaira, K. and Spencer, D. C., On deformations of complex analytic structures, I., Ann. of Math., 67 (1958), 328-402.
[18] - A theorem of completeness for complex analytic fiber spaces, Acta Math., 100 (1958), 281-294.
[19] Kraines, V., Topology of quaternionic manifolds, Trans. Amer. Math. Soc., 122 (1966), 357-367.
[20] Lichnerowicz, A., Laplacien sur une variété riemannienne et spineur, Atti Accad. Naz. Lincei Rend., 33 (1962), 187-191.
[21] , Global theory of connections and holonomy groups, Noordhoff, Leiden, 1976.
[22] Salamon, S., Quaternionic Kähler manifolds, Invent. Math., 67 (1982), 143171.
[23] -, Quaternionic manifolds, Symposia Math., 26 (1982), 139-151.
[24] - Topics in four-dimensional Riemannian geometry, In: Geometry Seminar "Luigi Bianchi", Lecture Notes in Math., Springer, 1022, 34-124.
[25] Sommese, A. J., Quaternionic manifolds, Math. Ann., 212 (1975), 191-214.
[26] Varouchas, J., Stabilité de la classe des variétés Kähleriennes pour les certains morphisms propres, Invent. Math., 77 (1984), 117-128.
[27] Weil, A., Variétés kähleriennes, Hermann, Paris, 1971.
[28] Wells, R. O. Jr., Differential analysis on complex manifolds, GTM 65, Springer, 1980.
[29] Weyl, H., Classical groups, Princeton, Princeton Univ. Press, 1946.
[30] Yau, S.-T., On the Ricci curvature of compact Kähler manifolds and the complex Monge-Ampère equation I, Comm. Pure Appl. Math., 31 (1978), 339-411.

Institute of Mathematics
Yoshida College
Kyoto University

[^0]: *) In [22] this is rather called the almost quaternionic structure (when $n>1$). The present usage of "almost quaternionic structure" is in accordance with [25].

[^1]: *) Professor Kazuya Kato kindly informed me a purely algebraic proof of (B) (based on (A)). The proof here nevertheless seems to be of some geometric interest (cf. Remark 4.12 below).

