Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 273–286

# On the Spectra L(n) and a Theorem of Kuhn

## Goro Nishida

#### Dedicated to Professor Nobuo Shimada on his 60th birthday

## §'0. Introduction

Let  $Z_2^n$  be the elementary abelian 2-group. In [7] Mitchell and Priddy have shown that stably  $BZ_2^n$  contains some copies of spectra  $M(n) = e_n BZ_2^n$  as a direct summand, where  $e_n \in \hat{Z}_2 GL_n(F_2)$  is the Steinberg idempotent. It is also shown that there is an equivalence of spectra  $M(n) \simeq L(n) \vee L(n-1)$ , where  $L(n) = \Sigma^{-n} Sp^{2n} S^0 / Sp^{2n-1} S^0$ . In [5], Kuhn has shown that there is a split exact sequence

$$\longrightarrow L(n) \longrightarrow L(n-1) \longrightarrow \cdots \longrightarrow L(0) = S^{\circ}$$

extending the Kahn-Priddy theorem [4] and solved the Whitehead conjecture.

In [9], the author determined the structure of the stable homotopy group  $\{BZ_2^n, BZ_2^m\}$  and the composition formula. Let  $M_{n,m}(F_2)$  be the set of (n, m)-matrices. Then there are inclusions of rings

$$\hat{Z}_2GL_n(F_2) \longrightarrow \hat{Z}_2M_{n,n}(F_2) \longrightarrow \{BZ_2^n, BZ_2^n\} \longrightarrow [QBZ_2^n, QBZ_2^n]$$

where  $QBZ_2^n = \Omega^{\infty} \Sigma^{\infty} BZ_2^n$  is the infinite loop space.

In this paper, studying the structure of those rings we shall show the following. The Steinberg idempotent  $e_n \in \hat{Z}_2GL_n(F_2)$  is decomposed as  $e_n = a_n + b_n$  in the bigger rings and  $a_n$ ,  $b_n$  are primitive in  $\{BZ_2^n, BZ_2^n\}$ . We determine the structure of  $\{M(n), M(m)\}$  and  $\{L(n), L(m)\}$ . Finally we give a simple proof of the theorem of Kuhn.

## § 1. Steinberg idempotents and matrix algebra

Let R be the ring of 2-adic integers  $\hat{Z}_2$  or the prime field  $F_2$ . Let  $M_{n,m}(F_2)$  be the set of all (n, m)-matrices over  $F_2$ . We denote by  $R\tilde{M}_{n,m}(F_2)$  the free R-module generated by elements of  $M_{n,m}(F_2)$  with the relation 0-matrix=0. There is an obvious pairing

Received February 1, 1985.

$$R\tilde{M}_{n,m}(F_2) \otimes R\tilde{M}_{m,l}(F_2) \longrightarrow R\tilde{M}_{n,l}(F_2).$$

In particular,  $R\tilde{M}_{n,n}(F_2)$  is a ring and  $R\tilde{M}_{n,m}(F_2)$  is a left  $R\tilde{M}_{n,n}(F_2)$  and right  $R\tilde{M}_{m,m}(F_2)$ -module.

Given a subset S of  $M_{n,m}(F_2)$ , we denote  $\sum_{A \in S} A$  by  $\overline{S}$ . If S is a subset of  $\sum_n \subset GL_n(F_2)$ , then  $\sum_{A \in S} (-1)^{\operatorname{sgn}(A)}A$  is denoted by  $\widetilde{S}$ . Let  $B_n$  and  $U_n$  be the Borel subgroup and the unipotent subgroup of  $GL_n(F_2)$ , respectively. Then the Steinberg idempotents are defined [7] by

$$e_n = \overline{B}_n \tilde{\Sigma}_n / [GL_n(F_2): U_n] \in \hat{Z}_2 GL_n(F_2)$$
  
$$e'_n = \tilde{\Sigma}_n \overline{B}_n / [GL_n(F_2): U_n] \in \hat{Z}_2 GL_n(F_2).$$

Now we fix some notations. Let  $C_i = (i, \dots, n)$  and  $C'_i = (1, \dots, i)$  $\in \Sigma_n$  be the cyclic permutations, and let  $T_n = \{C_1, \dots, C_n\}$  and  $T'_n = \{C'_1, \dots, C'_n\}$ . Given a vector  $b = (b_1, \dots, b_{n-1}) \in F_2^{n-1}$ , let

$$R_{n-1}(b) = \begin{pmatrix} 1 & b_{1} \\ 0 & 0 & \vdots \\ & 1 & b_{n-1} \end{pmatrix} = (E_{n-1}, b^{t}) \in M_{n-1,n}(F_{2}), \text{ and}$$
$$L_{n}(b) = \begin{pmatrix} b_{1} \cdots b_{n-1} \\ 1 & 0 \\ 0 & 0 \\ & 1 \end{pmatrix} = \begin{pmatrix} b_{1} \\ E_{n-1} \end{pmatrix} \in M_{n,n-1}(F_{2}).$$

Let  $R_{n-1} = \{R_{n-1}(b)\}_{b \in F_2^{n-1}}$  and  $L_n = \{L_n(b)\}_{b \in F_2^{n-1}}$ .  $R_{n-1}(0)$  and  $L_n(0)$  are denoted by  $J_{n-1}$  and  $I_n$ , respectively.

In the following, the congruence mod 2,  $a \equiv b \mod 2$ , is denoted simply by  $a \equiv b$ . The following observation is useful. Let  $\phi: F_2^r \to M_{n,m}(F_2)$ be an affine map. Then  $\overline{\operatorname{Im}(\phi)} \equiv 0$  if and only if the associated linear map of  $\phi$  is not a monomorphism.

**Lemma 1.1.** (i)  $J_{n-1}e_n \equiv J_{n-1}\tilde{T}_n e_n \equiv e_{n-1}J_{n-1}\tilde{T}_n, n \ge 1.$ 

(ii)  $(\overline{L}_n J_{n-1} \widetilde{T}_n + J_n \widetilde{T}_{n+1} \overline{L}_{n+1}) e_n \equiv e_n, n \ge 1$ . Here  $R\widetilde{M}_{n,m}(F_2)$  stands for the zero ring if n=0 or m=0.

*Proof.* (i) is an easy calculation, and we prove (ii). Note that  $\overline{L}_{n+1}\overline{B}_n = \overline{B}_{n+1}I_{n+1}$ . Let  $C \in T_{n+1}$  be a non trivial element, then as observed above,  $J_n C\overline{B}_{n+1}I_{n+1} \equiv 0$  and hence

$$J_n \widetilde{T}_{n+1} \overline{L}_{n+1} B_n = J_n \widetilde{T}_{n+1} \overline{B}_{n+1} I_{n+1} \equiv J_n \overline{B}_{n+1} I_{n+1}.$$

Let  $B_{n+1} \ni B = (b_{i,j})$ . In the summation  $J_n \overline{B}_{n+1} I_{n+1} \widetilde{\Sigma}_n$ , we may assume that  $b_{i,n+1} = 0$  for  $1 \le i \le n+1$ . Then dividing the summation according

to  $b_{1,n+1} = 0$  or 1, we have

$$J_n \tilde{T}_{n+1} \bar{L}_{n+1} e_n \equiv e_n + \sum J_n B I_{n+1} \tilde{\Sigma}_n,$$

where the summation is taken over all B such that  $b_{1,n+1}=0$ . Similarly we see that  $J_{n-1}\tilde{T}_n\bar{B}_n\tilde{\Sigma}_n\equiv J_{n-1}\bar{B}_n\tilde{\Sigma}_n$  by (i), and easily we have  $J_{n-1}\bar{B}_n\tilde{\Sigma}_n\equiv$  $\bar{B}_{n-1}J_{n-1}\tilde{\Sigma}_n$ . Then  $\bar{L}_n\bar{B}_{n-1}J_{n-1}\tilde{\Sigma}_n=\bar{B}_nI_nJ_{n-1}\tilde{\Sigma}_n$ . But this is just the latter term of the above equation. This completes the proof.

Lemma 1.2. Let  $m \leq n-2$ . Then  $e_n F_2 \tilde{M}_{n,m}(F_2) = F_2 \tilde{M}_{m,n}(F_2) e_n = 0$ . Proof. For a matrix  $B \in B_n$  we write  $B = \begin{pmatrix} 1 & b \\ 0 & B' \end{pmatrix}$ , where  $B' \in B_{n-1}$ and  $b \in F_2^{n-1}$ . Let  $A = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in M_{n,m}(F_2)$ ,  $a_i \in F_2^m$ . Let  $A' = \begin{pmatrix} a_2 \\ \vdots \\ a_n \end{pmatrix}$ , then we have  $BA = \begin{pmatrix} a_1 + bA' \\ B'A' \end{pmatrix}$ . If  $m \leq n-2$ , then the affine map  $f(b) = a_1 + bA'$  has a non trivial kernel. Hence  $e_n A \equiv \overline{B}_n \tilde{\Sigma}_n A \equiv 0$  and  $e_n F_2 \tilde{M}_{n,m}(F_2) = 0$ . The rest is similar.

**Lemma 1.3.** (i) 
$$e_n F_2 \widetilde{M}_{n,n-1}(F_2) = \overline{L}_n e_{n-1} F_2 G L_{n-1}(F_2)$$
.  
(ii)  $F_2 \widetilde{M}_{n-1,n}(F_2) e_n = F_2 G L_{n-1}(F_2) e_{n-1} \overline{J}_{n-1} \widetilde{T}_n$ .

*Proof.* (i) Let  $B \in B_n$  and  $A \in M_{n,n-1}(F_2)$ . Then  $BA = \begin{pmatrix} a_1 + bA' \\ B'A' \end{pmatrix}$  and if A' is singular, then as in the proof of the above lemma, we have  $\overline{B}_n A \equiv 0$ . Let  $\Sigma_n = \bigcup \begin{pmatrix} 1 \\ \Sigma_{n-1} \end{pmatrix} C_i$  be the coset decomposition. Then

$$e_n A = \sum \bar{B}_n \begin{pmatrix} 1 \\ \tilde{\Sigma}_{n-1} \end{pmatrix} C_i A \equiv \sum \begin{pmatrix} x(b) \\ B' T(C_i A)' \end{pmatrix}$$

where  $B' \in B_{n-1}$ ,  $T \in \Sigma_{n-1}$  and  $x(b) = bT(C_iA)' + \text{constant vector}$ . Then we see that  $e_nA \equiv \sum \overline{L}_n e_{n-1}(C_iA)'$ , where  $(C_iA)'$  is non singular. Hence  $e_nA \in \overline{L}_n e_{n-1}F_2GL_{n-1}(F_2)$ . On the other hand, for any  $H \in GL_{n-1}(F_2)$ , it is easy to see that  $I_n e_{n-1}H \in e_nF_2\tilde{M}_{n,n-1}(F_2)$ . This completes the proof of (i). The proof of (ii) is similar using Lemma 1.1, (i).

In particular we have

**Lemma 1.4.**  $e_n I_n \equiv \overline{L}_n e_{n-1}$ .

**Corollary 1.5.**  $e_n I_n e_{n-1} \equiv e_n \overline{L}_n e_{n-1}$  and  $e_{n-1} J_{n-1} e_n \equiv e_{n-1} J_{n-1} \widetilde{T}_n e_n$ .

For the Steinberg idempotent  $e'_n$ , we have similar results. Replace  $e_n$ ,  $\overline{L}_n$ ,  $I_n$ ,  $J_n$  and  $T_n$  with  $e'_n$ ,  $\overline{R}_{n-1}$ ,  $J_{n-1}$ ,  $I_{n+1}$  and  $T'_n$  respectively in the

above formulae, and convert the direction of the composition, then all lemmas in this section hold for  $e'_n$ . For example

**Lemma 1.6.** (i) 
$$e'_n I_n \equiv e'_n \tilde{T}'_n I_n \equiv \tilde{T}'_n I_n e'_{n-1}$$
.  
(ii)  $e'_n (\tilde{T}'_n I_n \bar{R}_{n-1} + \bar{R}_n \tilde{T}'_{n+1} I_{n+1}) \equiv e'_n$ .

## § 2. Splitting of the Steinberg idempotent

We denote  $e_n I_n e_{n-1} \in \hat{Z}_2 \tilde{M}_{n,n-1}(F_2)$  and  $e_n J_n e_{n+1} \in \hat{Z}_2 \tilde{M}_{n,n+1}(F_2)$  by  $\partial_n$ and  $\sigma_n$ , respectively. Similarly  $\partial'_n$  and  $\sigma'_n$  for  $e'_n I_n e'_{n-1}$  and  $e'_n J_n e'_{n+1}$ .

**Theorem 2.1.** Let  $n \ge 2$ .  $\sigma_n \partial_{n+1}$  and  $\partial_n \sigma_{n-1}$  are orthogonal idempotents in  $F_2 \tilde{M}_{n,n}(F_2)$  and  $e_n \equiv \sigma_n \partial_{n+1} + \partial_n \sigma_{n-1}$ . Similarly  $\sigma'_n \partial'_{n+1}$  and  $\partial'_n \sigma'_{n-1}$  are orthogonal idempotents in  $F_2 \tilde{M}_{n,n}(F_2)$  and  $e'_n \equiv \sigma'_n \partial'_{n+1} + \partial'_n \sigma'_{n-1}$ .

*Proof.* Let  $\bar{\partial}_n = e_n \bar{L}_n e_{n-1}$  and  $\bar{\sigma}_n = e_n J_n \tilde{T}_{n+1} e_{n+1}$ . Then by Corollary 1.5,  $\partial_n \equiv \bar{\partial}_n$  and  $\sigma_n \equiv \bar{\sigma}_n$ . Now

$$\sigma_n\partial_{n+1} + \partial_n\sigma_{n-1} \equiv \overline{\sigma}_n\partial_{n+1} + \partial_n\overline{\sigma}_{n-1}$$
  
=  $e_nJ_n\widetilde{T}_{n+1}e_{n+1}\overline{L}_{n+1}e_n + e_n\overline{L}_ne_{n-1}J_{n-1}\widetilde{T}_ne_n$   
 $\equiv e_n(J_n\widetilde{T}_{n+1}\overline{L}_{n+1} + \overline{L}_nJ_{n-1}\widetilde{T}_n)e_n \equiv e_n$ 

by Lemma 1.1. Note that  $\partial_{n+1}\partial_n \equiv 0$  and  $\sigma_{n-1}\sigma_n \equiv 0$  by Lemma 1.2. Hence  $\sigma_n \partial_{n+1}$  and  $\partial_n \sigma_{n-1}$  are orthogonal idempotents. Similarly for  $e'_n$  and this completes the proof.

**Theorem 2.2.** There are isomorphisms as vector spaces

$$e_{n}F_{2}\tilde{M}_{n,m}(F_{2})e_{m} \cong \begin{cases} 0, & |n-m| \ge 2 \\ F_{2}\{\sigma_{n}\}, & m=n+1 \\ F_{2}\{\sigma_{n}\partial_{n+1}\} \oplus F_{2}\{\partial_{n}\sigma_{n-1}\}, & m=n \ge 2 \\ F_{2}\{\partial_{n}\}, & m=n-1 \end{cases}$$

and  $e_1F_2\widetilde{M}_{1,1}(F_2)e_1\cong F_2\{\sigma_1\partial_2\}.$ 

*Proof.* The case of  $|n-m| \ge 2$  is clear from Lemma 1.2. It is known [7] that the Steinberg module  $F_2GL_n(F_2)e_n$  is projective and absolutely irreducible as  $GL_n(F_2)$ -module. Therefore  $e_nF_2GL_n(F_2)e_n \cong F_2\{e_n\}$ . Then we have dim  $e_nF_2\tilde{M}_{n,n-1}(F_2)e_{n-1} = \dim e_nF_2\tilde{M}_{n,n+1}(F_2)e_{n+1} = 1$  by Lemma 1.3. By Lemma 1.4,  $\partial_n \equiv \overline{L}_n e_{n-1} \neq 0$  and  $\sigma_n \equiv e_n J_n \tilde{T}_{n+1} \neq 0$  by Lemma 1.1. This shows the cases  $m=n\pm 1$ . Finally let  $S_n$  be the submodule of  $F_2\tilde{M}_{n,n}(F_2)$ spanned by all singular matrices. Then  $F_2\tilde{M}_{n,n}(F_2) \cong F_2GL_n(F_2) \oplus S_n$  as the both side  $GL_n(F_2)$ -module. From the above argument we easily see that

dim  $e_n S_n e_n = 1$  and hence dim  $e_n F_2 \tilde{M}_{n,n}(F_2) e_n = 2$ . Now  $\partial_{n+1} \sigma_n \not\equiv 0$  and  $\sigma_n \partial_{n+1} \not\equiv 0$ , for  $\partial_{n+1} \sigma_n \partial_{n+1} \equiv (e_{n+1} - \sigma_{n+1} \partial_{n+2}) \partial_{n+1} \equiv \partial_{n+1} \not\equiv 0$ . Then the case n = m is clear from Theorem 2.1.

**Corollary 2.3.** The idempotents  $\sigma_n \partial_{n+1}$  and  $\partial_n \sigma_{n-1} \in F_2 \tilde{M}_{n,n}(F_2)$  are primitive.

Now consider the reduction  $\rho: \hat{Z}_2 M_{n,n}(F_2) \rightarrow F_2 \tilde{M}_{n,n}(F_2)$ . Then as is well known [1], there are lifting idempotents. Therefore from Theorem 2.1 and Corollary 2.3, we have

**Corollary 2.4.** There are orthogonal primitive idempotents  $a_n$ ,  $b_n \in \hat{Z}_2 \tilde{M}_{n,n}(F_2)$  such that  $e_n = a_n + b_n$ ,  $a_n \equiv \sigma_n \partial_{n+1} \mod 2$ , and  $b_n \equiv \partial_n \sigma_{n-1} \mod 2$ .

**Remark 1.** Above results hold clearly for  $e'_n F_2 \widetilde{M}_{n,m}(F_2) e'_m$  replacing  $\partial_n$ ,  $\sigma_n$  with  $\partial'_n$ ,  $\sigma'_n$ .

**Remark 2.** Lemma 1.2 holds for  $\hat{Z}_2$  coefficient. For  $e_n \hat{Z}_2 \tilde{M}_{n,m}(F_2)$  is a direct summand of  $\hat{Z}_2 \tilde{M}_{n,m}(F_2)$ . Therefore  $\partial_{n+1}\partial_n = 0$  and  $\sigma_n \sigma_{n+1} = 0$  in  $\hat{Z}_2$  coefficient. Moreover using the lifting of idempotents [1], we see that Theorem 2.2 holds for  $\hat{Z}_2$  coefficient.

**Remark 3.** In the (non reduced) semigroup ring  $RM_{n,n}(F_2)$ , the 0matrix 0 is a central idempotent. Hence in  $RM_{n,n}(F_2)$ ,  $e_n$  splits as a sum of three primitive idempotents for  $n \ge 2$ . For n=1, we have  $e_1=E_1=$  $(E_1-0)+0$  is an orthogonal decomposition. We define  $RM_{1,0}(F_2) =$  $R \operatorname{Hom}(F_2, 0)=R$  with basis  $\sigma_0$ , and  $RM_{0,1}(F_2)=R \operatorname{Hom}(0, F_2)=R$  with basis  $\partial_1$ . Then  $\partial_1 \sigma_0 = 0$  and we have a decomposition  $e_1 \equiv \sigma_1 \partial_2 + \partial_1 \sigma_0$  in  $\hat{Z}_2 M_{1,1}(F_2)$ . Thus Theorem 2.1 holds for n=1 and

$$\hat{Z}_2 M_{1,1}(F) \cong \hat{Z}_2 \{\sigma_1 \partial_2\} \oplus \hat{Z}_2 \{\partial_1 \sigma_0\}.$$

#### § 3. Splitting spectra and infinite loop spaces

Let Y be a 2-local spectrum of finite type, and let  $\Omega^{\infty}Y$  be the associated infinite loop space. Let  $\{Y, Y\}$  be the stable homotopy ring. The unstable homotopy set  $[\Omega^{\infty}Y, \Omega^{\infty}Y]$  is an abelian group with the composition product which satisfies the condition of a ring structure except the left distribution law. There is a natural "ring" homomorphism  $j: \{Y, Y\} \rightarrow$  $[\Omega^{\infty}Y, \Omega^{\infty}Y]$ . Let Y be a suspension spectrum of a 2-local space X. Then  $\Omega^{\infty}Y = QX$  by definition and denoting  $\{Y, Y\}$  by  $\{X, X\}$ , we see that

$$j: \{X, X\} \longrightarrow [QX, QX]$$

is a monomorphism.

We call an element  $e \in \{Y, Y\}$  an idempotent mod 2 if  $e^2 \equiv e \mod 2$ . For an element  $f \in [\mathcal{Q}^{\infty}Y, \mathcal{Q}^{\infty}Y]$ , let  $f_* \in \operatorname{End}(\pi_*(\mathcal{Q}^{\infty}Y)) \cong \operatorname{End}(\pi_*^{\mathcal{S}}(Y))$ . An element  $f \in [\mathcal{Q}^{\infty}Y, \mathcal{Q}^{\infty}Y]$  is called a  $\pi_*$ -idempotent mod 2 if  $f_*^2 \equiv f_*$  in End  $(\pi_*(\mathcal{Q}^{\infty}Y))$ .

Given  $e \in \{Y, Y\}$ , the telescope of the sequence  $Y \xrightarrow{e} Y \xrightarrow{e} \cdots$  is denoted by eY. Similarly for  $f \in [\Omega^{\infty}Y, \Omega^{\infty}Y]$ , the telescope of the sequence  $\Omega^{\infty}Y$  $\xrightarrow{f} \Omega^{\infty}Y \xrightarrow{f} \cdots$  is denoted by  $f\Omega^{\infty}Y$ . There are natural maps  $\phi_e \colon Y \rightarrow eY$ and  $\psi_f \colon \Omega^{\infty}Y \rightarrow f\Omega^{\infty}Y$ . Let

$$\xi_e = \phi_e \vee \phi_{1-e} \colon Y \longrightarrow eY \vee (1-e)Y$$

and

$$\eta_f = \psi_f \times \psi_{1-f} \colon \Omega^{\infty} Y \longrightarrow f \Omega^{\infty} Y \times (1-f) \Omega^{\infty} Y.$$

**Proposition 3.1.** Let  $e \in \{Y, Y\}$  be an idempotent mod 2. Then

(i)  $\xi_e: Y \rightarrow eY \lor (1-e)Y$  is a homotopy equivalence.

(ii) Let  $e' \in \{Y, Y\}$  such that  $e' \equiv e \mod 2$ . Then there is a homotopy equivalence  $\lambda: eY \rightarrow e'Y$ .

**Proposition 3.2.** Let  $f \in [\Omega^{\infty}Y, \Omega^{\infty}Y]$  be a  $\pi_*$ -idempotent mod 2. Then

(i)  $\eta_f: \Omega^{\infty}Y \to f\Omega^{\infty}Y \times (1-f)\Omega^{\infty}Y$  is a homotopy equivalence.

(ii) Let  $f' \in [\Omega^{\infty}Y, \Omega^{\infty}Y]$  such that  $f_* \equiv f'_* \mod 2$ .

Then there is a homotopy equivalence  $\lambda: f \Omega^{\infty} Y \rightarrow f' \Omega^{\infty} Y$ .

*Proof of Propositions.* Since  $e^2 \equiv e \mod 2$ ,  $e_*$  is an idempotent in End  $(\pi^s_*(Y) \otimes Z_2)$  and also in End  $(\pi^s_*(Y) * Z_2)$ . Then

$$\pi_*^s(eY) \otimes Z_2 \cong e(\pi_*^s(Y) \otimes Z_2)$$
 and  $\pi_*^s(eY) * Z_2 \cong e(\pi_*^s(Y) * Z_2)$ 

and similarly for 1-e. Therefore  $\xi_{e^*} \otimes 1_{Z_2}$  and  $\xi_{e^{**}} 1_{Z_2}$  are isomorphisms. Hence  $\xi_{e^*}$  is an isomorphism and (i) is proved. Now if  $e' \equiv e \mod 2$ , then we have a homotopy equivalence  $\xi_{e'}$ :  $Y \rightarrow e' Y \lor (1-e') Y$  and using  $\xi_e$  and  $\xi_{e'}$  we can define a natural map  $\lambda: eY \rightarrow e'Y$  in an obvious way, and as above we easily see that  $\lambda_*: \pi_*^S(eY) \rightarrow \pi_*^S(e'Y)$  is an isomorphism. This shows (ii). Proof of the latter Proposition is similar.

Now we recall the structure of the stable homotopy group  $\{BZ_2^n, BZ_2^m\}$ . Let V be a subgroup of  $Z_2^n$  and let  $f: V \rightarrow Z_2^m$  be a homomorphism. Define an element  $u_{V,f} \in \{BZ_2^n, BZ_2^m\}$  by the composition

$$BZ_{2}^{n} \xrightarrow{\tau} BV \xrightarrow{\sigma(Bf)} BZ_{2}^{m}$$

where  $\tau$  is the transfer of the covering  $BV \rightarrow BZ_2^n$  and  $\sigma$  denotes the sus-

pension functor. In the sequel,  $\sigma(Bf)$  is denoted simply by f. Then in [9] followings are shown.

**Theorem 3.3.** There is an isomorphism

$$\{BZ_2^n, BZ_2^m\}\cong \oplus \hat{Z}_2\{u_{V,f}\}$$

where the sum is taken over all  $(V, f), f \neq 0$ .

**Theorem 3.4.** Let  $V \subset \mathbb{Z}_2^n$  and  $W \subset \mathbb{Z}_2^m$  be subgroups and let  $f: V \to \mathbb{Z}_2^m$  and  $g: W \to \mathbb{Z}_2^l$  be homomorphisms. Let

$$U = f^{-1}(W) \subset V$$
 and  $[Z_2^m: f(V)W] = 2^a$ .

Then

$$u_{W,g}u_{V,f}=2^a u_{U,gf}$$

Now we have an inclusion of rings

$$i: \hat{Z}_2 \tilde{M}_{m,n}(F_2) \longrightarrow \{BZ_2^n, BZ_2^m\}$$

defined by  $i(f) = u_{Z_2^n, f}$ . It is clear that *i* is compatible with compositions. In [9] we have also shown the following

**Lemma 3.5.** A primitive idempotent in  $\hat{Z}_2 \tilde{M}_{n,n}(F_2)$  is primitive in  $\{BZ_2^n, BZ_2^n\}$ .

Now we recall the Mitchell-Priddy splitting. For  $n \ge 2$ , the spectrum  $e_n BZ_2^n$  is denoted by M(n). We put  $M(1) = BZ_2 \lor S^0 = e_1((BZ_2)_+)$ . For  $n \ge 2$ , let  $a_n, b_n \in \hat{Z}_2 \tilde{M}_{n,n}(F_2)$  be idempotents in Corollary 2.4. By the remark of Section 2, we may define  $a_1, b_1 \in \hat{Z}_2 M_{1,1}(F_2) \subset \{(BZ_2)_+, (BZ_2)_+\}$ . Define spectra  $M_a(n) = a_n BZ_2^n$  and  $M_b(n) = b_n BZ_2^n$  for  $n \ge 2$ , and  $M_a(1) = a_1(BZ_{2+})$  and  $M_b(1) = b_1(BZ_{2+})$ . Then we have

**Theorem 3.6.** The spectra  $M_a(n)$  and  $M_b(n)$  are indecomposable and there is a stable splitting

$$M(n) \simeq M_a(n) \lor M_b(n), n \ge 1.$$

*Proof.* Since  $e_n = a_n + b_n$  (orthogonal decomposition),  $M(n) \simeq M_a(n) \lor M_b(n)$  is clear. The indecomposability of  $M_a(n)$  and  $M_b(n)$  follows from Corollary 2.3 and Lemma 3.5.

In [7], it is shown that there are spectra L(n),  $n \ge 0$ ,  $L(0) = S^0$ ,  $L(1) = BZ_2$ , and a splitting  $M(n) \simeq L(n) \lor L(n-1)$ ,  $n \ge 1$ . In [9] we have shown that the splitting of  $BZ_2^n$  by indecomposable spectra is essentially unique. Thus we have

**Corollary 3.7.**  $L(n), n \ge 0$ , is indecomposable and  $M_a(n) \simeq L(n)$  and  $M_b(n) \simeq L(n-1)$ .

#### § 4. Equivariant stable cohomotopy

Let G be a finite group. For G-space X and Y,  $\{X_+, Y_+\}_G$  denotes the stable G-homotopy group, where  $X_+$  is the based G-space with the disjoint base point. Let H be a subgroup of G, and let N(H) be the normalizer of H. N(H)/H is denoted by W(H). Then the Segal-tom Dieck and Hauschild theorems are stated as follows.

**Theorem 4.1** ([2], [3]). Lex X be a finite CW-complex with the trivial *G*-action. Then there are isomorphisms

$$\xi : \bigoplus_{(H)} \{X_+, EW(H)_+\}_{W(H)} \longrightarrow \{X_+, S^0\}_G$$

and

$$\lambda_{H}: \{X_{+}, EW(H)_{+}\}_{W(H)} \longrightarrow \{X_{+}, BW(H)_{+}\}$$

where the sum is taken over the conjugacy classes of subgroups of G and EW(H) is a free contractible W(H)-space.

Using the above theorem, we show an equivariant version of the Barratt-Quillen theorem. Let E be a G-space. By a (G, E)-covering over X, we mean a pair of G-maps  $(p, f) = (X \xleftarrow{p} \widetilde{X} \xrightarrow{f} E)$ , where  $p: \widetilde{X} \rightarrow X$  is a finite covering. Let  $(X \xleftarrow{p'} \widetilde{X}' \xrightarrow{f'} E)$  be another pair. We call (p, f) and (p', f') equivalent if there is an equivalence of coverings  $\phi: \widetilde{X} \rightarrow \widetilde{X}'$  such that  $f'\phi \sim_{g} f$ . The set of equivalence classes of (G, E)-coverings over X is denoted by  $C_{G}(X, E)$ . By the disjoint sum,  $C_{G}(X, E)$  is an abelian monoid. If E = \* or  $G = \{e\}$ ,  $C_{G}(X, E)$  is denoted by  $C_{G}(X)$  or C(X, E) respectively. Given a pair (p, f) we define a stable G-map  $\omega(p, f)$  by the composition

$$X_{+} \xrightarrow{\tau} \widetilde{X}_{+} \xrightarrow{\sigma(f_{+})} E_{+}$$

where  $\tau$  is the equivariant transfer [8]. Then we have a homomorphism

$$\omega: C_G(X, E) \longrightarrow \{X_+, E_+\}_G.$$

Then the following is shown in [9].

Lemma 4.2. There are isomorphisms of monoids

$$\tilde{\xi}: \prod_{(H)} C_{W(H)}(X, EW(H)) \longrightarrow C_G(X)$$

Spectra L(n) and a Theorem of Kuhn

$$\tilde{\lambda}_{H}: C_{W(H)}(X, EW(H)) \longrightarrow C(X, BW(H))$$

and the following diagram is commutative;

Let h and h' be monoid valued contravariant homotopy functor on the category of *CW*-complexes. We suppose that h' is represented by a grouplike H-space. A natural homomorphism  $\psi: h \rightarrow h'$  is called a group completion (in the sense of Segal) if the following universal property holds. For any grouplike H-space B and a natural homomorphism  $\gamma: h \rightarrow [, B]_*$ , there is a unique natural homomorphism  $\gamma': h' \rightarrow [, B]_*$ such that  $\gamma' \psi = \gamma$ . Then by a result of [3], we immediately obtain the following

**Theorem 4.3.** In the diagram of Lemma 4.2, every vertical maps are group completions as functors on X.

Now by the Segal-tom Dieck isomorphism, we identify  $\{X_+, S^0\}_G$  with  $\bigoplus\{X_+, BW(H)_+\}$ , when X is finite. We call the summand  $\{X_+, BG_+\}$  corresponding to  $H=\{e\}$  the free part of  $\{X_+, S^0\}_G$ . Let G' be another finite group and let

$$\gamma \colon \{X_+, S^0\}_G \longrightarrow \{X_+, S^0\}_{G'}$$

be a natural transformation of functors on X. We call  $\gamma$  admissible if  $\gamma$  preserves the free part, i.e.,  $\gamma(\{X_+, BG_+\}) \subset \{X_+, BG'_+\}$ . Then we may consider  $\gamma \in [Q(BG_+), Q(BG'_+)]$ . Moreover if there is a relation among admissible natural transformations, then it gives the same relation in  $[Q(BG_+), Q(BG'_+)]$ .

We give some examples. First let  $f: G' \rightarrow G$  be a homomorphism. Any stable G-map is regarded as a stable G'-map via f. This gives a stable (hence additive) natural transformation

$$f^*: \{X_+, S^0\}_G \longrightarrow \{X_+, S^0\}_{G'}.$$

**Proposition 4.4.** (i)  $f^*$  is admissible if and only if f is a monomorphism.

(ii) If f is an inclusion  $G' \subset G$ , then the stable map  $f^* \in \{BG_+, BG'_+\}$  is the transfer.

(iii) If f is an isomorphism, then  $f^* = \sigma B f^{-1}$ .

Proof is easy from Theorem 4.3.

Next we consider the power operation. Let  $f: X_+ \to S^0$  be a stable *G*-map. The smash product  $f \wedge f: (X \times X)_+ \to S^0$  can be regarded as a stable  $\Sigma_2 \int G$ -map, where  $\Sigma_2 \int G$  is the wreath product. Let  $\Delta(G) \subset G \times G$  be the diagonal. Then  $Z_2 \times G \cong Z_2 \times \Delta(G) \subset \Sigma_2 \int G$ . Let  $d: X \to X \times X$  be the diagonal map. Then we have a stable  $Z_2 \times G$ -map  $(f \wedge f)d: X_+ \to S^0$ , and this defines a natural transformation

$$P: \{X_+, S^0\}_G \longrightarrow \{X_+, S^0\}_{Z_2 \times G}.$$

For a finite G-covering  $p: \tilde{X} \to X, p \times p: \tilde{X} \times \tilde{X} \to X \times X$  is regarded as a  $\Sigma_2 \int G$ -covering. Restricting to  $d(X) \subset X \times X$ , we have a  $Z_2 \times G$ -covering over X and thus we have a natural transformation

$$P': C_G(X) \longrightarrow C_{Z_2 \times G}(X),$$

then the following lemma is easily verified from the property of transfers.

**Lemma 4.5.** The following diagram is commutative:

Now let  $G = \mathbb{Z}_2^{n-1}$ . Let  $b \in \mathbb{F}_2^{n-1}$  and let  $\mathbb{R}_{n-1}(b) \in M_{n-1,n}(\mathbb{F}_2)$ . Then we have a natural transformation

$$R_{n-1}(b)^*: \{X_+, S^0\}_{Z_2^{n-1}} \longrightarrow \{X_+, S^0\}_{Z_2^n}.$$

Both P and  $R_{n-1}(b)^*$  are not admissible, but we have

**Lemma 4.6.**  $\sum_{b} R_{n-1}(b)^* - P$  is admissible.

Proof. Define a natural transformation

$$\theta \colon \{X_{+}, S^{0}\}_{\mathbb{Z}_{2}^{n-1}} \times \{X_{+}, S^{0}\}_{\mathbb{Z}_{2}^{n-1}} \longrightarrow \{X_{+}, S^{0}\}_{\mathbb{Z}_{2}^{n}}$$

by  $\theta(x, y) = P(x+y) - P(x) - P(y)$ . For a finite coverings, this is given by  $\theta(\tilde{X}, \tilde{X}') = \tilde{X} \cdot \tilde{X}' \bigsqcup \tilde{X}' \cdot \tilde{X}$ , where  $\tilde{X} \cdot \tilde{X}' = \tilde{X} \times \tilde{X}' | d(X)$ . Then we easily see that  $\theta$  is admissible. Consider the composition

$$q_{H}: \{X_{+}, BZ_{2+}^{n-1}\} \subset \{X_{+}, S^{0}\}_{\mathbb{Z}_{2}^{n-1}} \xrightarrow{\sum R_{n-1}(b)^{*} - P} \{X_{+}, S^{0}\}_{\mathbb{Z}_{2}^{n}} \xrightarrow{p_{H}} \{X_{+}, BW(H)_{+}\}$$

where  $p_H$  is the projection. To prove the lemma, it suffices to show that  $q_H=0$  for all  $H \neq \{e\}$ . But by the above observation we see that  $q_H$  is additive, for

$$q_{H}(x+y) = p_{H}(\sum R_{n-1}(b)^{*}(x+y) - P(x+y))$$
  
=  $p_{H}(\sum R_{n-1}(b)^{*}(x) + \sum R_{n-1}(b)^{*}(y) - P(x) - P(y) + \theta(x, y))$   
=  $q_{H}(x) + q_{H}(y).$ 

For a free  $Z_2^{n-1}$ -set S, we easily see that

$$S \times S =$$
free +  $\coprod_{b} R_{n-1}(b)^{*}(S)$ 

as  $Z_2^n = Z_2^{n-1} \times Z_2$  set. Hence this holds for finite coverings. Then  $q_H = 0$  by Theorem 4.3.

## § 5. Structure of $\{L(n), L(m)\}\$ and the theorem of Kuhn

First we consider  $\{M(n), M(m)\} = e_m \{BZ_n^2, BZ_n^m\}e_n$ . Let Mon $(n, m) \subset M_{n,m}(F_2)$  be the set of all monomorphisms. For an  $A \in Mon(n, m)$  we have defined a stable map  $A^* \in \{BZ_n^n, BZ_n^m\}$ . Therefore for any  $a \in \hat{Z}_2 Mon(n, m)$  we can define  $a^*$ , for example  $e_n^*, e_n'^*, \partial_n^*$  and  $\partial_n'^*$ . By Proposition 4.4,  $e_n^* = e_n'$  and  $e_n'^* = e_n$ .

**Lemma 5.1.** Suppose that  $m \le n-2$ . Then

 $(\hat{Z}_2 \operatorname{Mon}(n, m))^* e_n \equiv 0 \mod 2$ 

and if m = n - 1, then

$$(\hat{Z}_2 \operatorname{Mon}(n, n-1))^* e_n \equiv \hat{Z}_2 GL_{n-1}(F_2) e_{n-1}(\tilde{T}'_n I_n)^*.$$

Proof is clear from the fact  $(AB)^* = B^*A^*$  and Lemmas 1.2 and 1.6.

Lemma 5.2. Let

$$\theta: e_m \hat{Z}_2 \tilde{M}_{m,n-1}(F_2) e_{n-1} \longrightarrow \{M(n), M(m)\}$$

be a homomorphism defined by  $\theta(a) = a\partial'_n^*$ . Then  $\theta$  is a monomorphism.

*Proof.* Note that  $e_m x e_{n-1} \partial'^*_n = e_m x e_{n-1} I^*_n e_n = e_m x e_{n-1} (\tilde{T}_n I_n)^*$ . Let  $C, C' \in T_n$ . If  $C \neq C'$  then  $\text{Im}(CI_n)$  and  $\text{Im}(C'I_n)$  are different. Then the lemma follows from Theorem 3.3.

**Theorem 5.3.**  $\{M(n), M(m)\}$  is a free  $\hat{Z}_2$ -module with the following basis. (i) 0 if  $m \leq n-3$  or  $m \geq n+2$ ; (ii)  $\hat{Z}_2\{\sigma_{n-2}\partial_n^*\}$  if m=n-2; (iii)

 $\hat{\mathcal{Z}}_{2}\{\sigma_{n-1}, \partial_{n-1}\sigma_{n-2}\partial_{n}^{\prime*}, \sigma_{n-1}\partial_{n}\partial_{n}^{\prime*}\} \text{ if } m=n-1; \text{ (iv) } \hat{\mathcal{Z}}_{2}\{\partial_{n}\sigma_{n-1}, \sigma_{n}\partial_{n+1}, \partial_{n}\partial_{n}^{\prime*}\} \text{ if } m=n; \text{ (v) } \hat{\mathcal{Z}}_{2}\{\partial_{n+1}\} \text{ if } m=n+1.$ 

*Proof.* By Theorem 3.3 and Lemma 5.1, we have  $\{M(n), M(m)\}$  $e_m \hat{Z}_2 \tilde{M}_{m,n}(F_2) e_n \oplus \text{Im}(\theta)$ . Then the result follows from Lemma 5.2.

Recall that  $M(n) \simeq L(n) \lor L(n-1)$ . Then by the dimensional reason we immediately obtain

**Corollary 5.4.** There are isomorphisms

$$\{L(n), L(m)\} \cong \hat{Z}_2, \quad \text{if } m = n \text{ or } m = n-1$$
$$\cong 0, \quad \text{otherwise.}$$

A generator of  $\{L(n), L(n-1)\}\cong \hat{Z}_2$  is denoted by  $h_n$ . Note that  $h_n \vee h_{n-1}: L(n) \vee L(n-1) \to L(n-1) \vee L(n-2)$  is equivalent mod 2 to  $\partial_n^{**}: M(n) \to M(n-1)$ .

Finally we give a proof of the Kuhn's theorem [5]. A sequence  $\rightarrow X_{n+1} \xrightarrow{d} X_n \xrightarrow{d} \cdots$  of stable maps of 2-local spectra is called (half stable) split exact if  $d \circ d = 0$  and there are maps  $s: \Omega^{\infty} X_n \rightarrow \Omega^{\infty} X_{n+1}$  for all *n* such that  $d_* s_* + s_* d_* \equiv 1 \mod 2$  in End  $(\pi_*(\Omega^{\infty} X_n)) = \operatorname{End}(\pi_*^s(X_n))$  for all *n*. Then the sequence

$$\longrightarrow \pi^{s}_{*}(X_{n+1}) \xrightarrow{d_{*}} \pi^{s}_{*}(X_{n}) \xrightarrow{d_{*}} \cdots$$

is clearly split exact. Let  $u_n = \Omega^{\infty}(d) \circ s \colon \Omega^{\infty} X_n \to \Omega^{\infty} X_n$  and  $v_n = s \circ \Omega^{\infty}(d) \colon \Omega^{\infty} X_n \to \Omega^{\infty} X_n$ , then clearly  $u_n$  and  $v_n$  are  $\pi_*$ -idempotent mod 2 and  $u_{n*} + v_{n*} \equiv 1 \mod 2$ . Then by Proposition 3.2 we have  $\Omega^{\infty} X_n \simeq u_n \Omega^{\infty} X_n \times v_n \Omega^{\infty} X_n$ , and easily we see that  $v_n \Omega^{\infty} X_n \simeq u_{n-1} \Omega^{\infty} X_{n-1}$ . In Section 3, we have shown that the sequence

$$\longrightarrow M(n+1) \xrightarrow{\sigma_n} M(n) \xrightarrow{\sigma_{n-1}} M(n-1) \longrightarrow \cdots$$

is (stable) split exact. Now the Kuhn's theorem asserts the following.

**Theorem 5.5.** The sequence

$$\longrightarrow M(n+1) \xrightarrow{\partial'_{n+1}^*} M(n) \xrightarrow{\partial'_n^*} M(n-1) \longrightarrow \cdots \longrightarrow M(1)$$

is split exact.

*Proof.* For any  $a \in \hat{Z}_2 \tilde{M}_{n,m}(F_2)$ , we can define a natural transformation

$$a^*: \{X_+, S^0\}_{\mathbb{Z}_2^n} \longrightarrow \{X_+, S^0\}_{\mathbb{Z}_2^m}.$$

The relations in Section 1 and Section 2 hold for  $a^*$  as such natural transformations. Define

$$s_{n-1} = e_n'^* (\bar{R}_{n-1}^* - P) e_{n-1}'^* = e_n (\bar{R}_{n-1}^* - P) e_{n-1} \colon \{X_+, S^0\}_{\mathbb{Z}_2^{n-1}} \longrightarrow \{X_+, S^0\}_{\mathbb{Z}_2^n},$$

where *P* is the power operation. Put  $\alpha_n = \partial'_{n+1}s_n$  and  $\beta_n = s_{n-1}\partial'_n^*$ . By Lemma 4.6,  $s_n$  is admissible and hence so are  $\alpha_n$  and  $\beta_n$ , and  $s_n \in [Q(BZ_{2+}^n), Q(BZ_{2+}^{n+1})]$ . To prove the theorem it suffices to show that  $\alpha_{n*} + \beta_{n*} \equiv e_{n*} \mod 2$  regarding  $\alpha_n$  and  $\beta_n$  as maps in  $[Q(BZ_{2+}^n), Q(BZ_{2+}^n)]$ . Now we show that for any reduced element  $x \in \{S^q, S^0\}_{Z_n^n} \subset \{S_+^q, S^0\}_{Z_n^n}$ ,

 $\alpha_n(x) + \beta_n(x) \equiv e_n(x) \mod 2.$ 

Note that  $\partial'_n \equiv e'_n T'_n I_n e'_{n-1}$ . Then by Lemma 1.6, we have

$$\alpha_{n} + \beta_{n} \equiv e_{n}((\tilde{T}'_{n+1}I_{n+1})^{*}\bar{R}^{*}_{n} + \bar{R}^{*}_{n-1}(\tilde{T}'_{n}I_{n})^{*})e_{n} \\ + e_{n}((\tilde{T}'_{n+1}I_{n+1})^{*}P + P(\tilde{T}'_{n}I_{n})^{*})e_{n} \\ \equiv e_{n} + e_{n}((\tilde{T}'_{n+1}I_{n+1})^{*}P + P(\tilde{T}'_{n}I_{n})^{*})e_{n}.$$

Now let  $C'_i = (1, \dots, i) \in T'_n$ , then  $C'_i I_n$  is regarded as a standard inclusion  $Z_2^{i-1} \times 0 \times Z_2^{n-i} \to Z_2^n$ . Then  $(C'_i I_n)^* \colon \{X_+, S^0\}_{Z_2^n} \to \{X_+, S^0\}_{Z_2^{n-1}}$  is given by forgetting *i*-th  $Z_2$ -action in  $Z_2^n$ . Then by definition  $I_{n+1}^* P(x) = x^2$ , the cup product. Also we easily see that  $(C'_{i+1}I_{n+1})^* P = P(C'_i I_n)^*$  for i > 0. Thus we easily see

$$((\tilde{T}'_{n+1}I_{n+1})*P+P(\tilde{T}'_{n}I_{n})*)(x)=x^{2}$$

and if  $x \in \{S^q, S^0\}_{Z_2^n}$ , q > 0, then  $x^2 = 0$  and hence  $(\alpha_n + \beta_n)(x) \equiv e_n(x)$ . This completes the proof.

**Corollary 5.6.** The sequence

$$\longrightarrow L(n) \xrightarrow{h_n} L(n-1) \longrightarrow \cdots \longrightarrow L(1) \xrightarrow{h_1} L(0) = (S^{\circ})_{(2)}$$

is split exact.

**Remark.** As is well known (Kahn-Priddy [4]), there is a split exact sequence  $L(1) \xrightarrow{h_1} L(0) \xrightarrow{h_0} HQ_{(2)}$ .

#### References

- [1] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience.
- [2] T. tom Dieck, Orbittypen und äquivariante Homologie II, Arch. Math., 26 (1975), 650–662.

- H. Hauschild, Zerspaltung äquivarianter Homotopiemengen, Math. Ann., [3] 230 (1977), 279-292.
- D. S. Kahn and S. B. Priddy, The transfer and stable homotopy theory, Math. Proc. Camb. Phil. Soc., 83 (1978), 103-111. [4]
- N. J. Kuhn, A Kahn-Priddy sequence and a conjecture of G.W. Whitehead, [5]
- Math. Proc. Camb. Phil. Soc., 83 (1982), 467–483. N. J. Kuhn, S. A. Mitchell and S. B. Priddy, The Whitehead conjecture and splitting  $B(Z/2)^k$ , Bull. Amer. Math. Soc., 7 (1982), 225–258. [6]
- S. A. Mitchell and S. B. Priddy, Stable splitting derived from the Steinberg module, Topology, **22** (1983), 285–298. [7]
- G. Nishida, The transfer homomorphism in equivariant generalized cohomo-[8] logy theories, J. Math. Kyoto Univ., 18 (1978), 435-451.
- [9] -, Stable homotopy type of classifying spaces of finite groups, to appear.
- G. B. Segal, Equivariant stable homotopy theory, Actes Congrès intern. Math., Tome 2 (1970), 59-63. [10]
- -, Operation in stable homotopy theory, New developments in topology, **[**11] ----London Math. Soc. L.N.S., 11 (1972).

Department of Mathematics Kvoto University Kyoto 606, Japan