On the Spectra $L(n)$ and a Theorem of Kuhn

Goro Nishida

Dedicated to Professor Nobuo Shimada on his 60 th birthday

§_ $_{2}^{2}$. Introduction

Let Z_{2}^{n} be the elementary abelian 2-group. In [7] Mitchell and Priddy have shown that stably $B Z_{2}^{n}$ contains some copies of spectra $M(n)=$ $e_{n} B Z_{2}^{n}$ as a direct summand, where $e_{n} \in \hat{Z}_{2} G L_{n}\left(F_{2}\right)$ is the Steinberg idempotent. It is also shown that there is an equivalence of spectra $M(n) \simeq$ $L(n) \vee L(n-1)$, where $L(n)=\Sigma^{-n} S p^{2 n} S^{0} / S p^{2 n-1} S^{0}$. In [5], Kuhn has shown that there is a split exact sequence

$$
\longrightarrow L(n) \longrightarrow L(n-1) \longrightarrow \cdots \longrightarrow L(0)=S^{0}
$$

extending the Kahn-Priddy theorem [4] and solved the Whitehead conjecture.

In [9], the author determined the structure of the stable homotopy group $\left\{B Z_{2}^{n}, B Z_{2}^{m}\right\}$ and the composition formula. Let $M_{n, m}\left(F_{2}\right)$ be the set of (n, m)-matrices. Then there are inclusions of rings

$$
\hat{Z}_{2} G L_{n}\left(F_{2}\right) \longrightarrow \hat{Z}_{2} M_{n, n}\left(F_{2}\right) \longrightarrow\left\{B Z_{2}^{n}, B Z_{2}^{n}\right\} \longrightarrow\left[Q B Z_{2}^{n}, Q B Z_{2}^{n}\right]
$$

where $Q B Z_{2}^{n}=\Omega^{\infty} \Sigma^{\infty} B Z_{2}^{n}$ is the infinite loop space.
In this paper, studying the structure of those rings we shall show the following. The Steinberg idempotent $e_{n} \in \hat{Z}_{2} G L_{n}\left(F_{2}\right)$ is decomposed as $e_{n}=a_{n}+b_{n}$ in the bigger rings and a_{n}, b_{n} are primitive in $\left\{B Z_{2}^{n}, B Z_{2}^{n}\right\}$. We determine the structure of $\{M(n), M(m)\}$ and $\{L(n), L(m)\}$. Finally we give a simple proof of the theorem of Kuhn.

§ 1. Steinberg idempotents and matrix algebra

Let R be the ring of 2 -adic integers \hat{Z}_{2} or the prime field F_{2}. Let $M_{n, m}\left(F_{2}\right)$ be the set of all (n, m)-matrices over F_{2}. We denote by $R \tilde{M}_{n, m}\left(F_{2}\right)$ the free R-module generated by elements of $M_{n, m}\left(F_{2}\right)$ with the relation 0 -matrix $=0$. There is an obvious pairing

$$
R \tilde{M}_{n, m}\left(F_{2}\right) \otimes R \tilde{M}_{m, l}\left(F_{2}\right) \longrightarrow R \tilde{M}_{n, l}\left(F_{2}\right) .
$$

In particular, $R \tilde{M}_{n, n}\left(F_{2}\right)$ is a ring and $R \tilde{M}_{n, m}\left(F_{2}\right)$ is a left $R \tilde{M}_{n, n}\left(F_{2}\right)$ and right $R \tilde{M}_{m, m}\left(F_{2}\right)$-module.

Given a subset S of $M_{n, m}\left(F_{2}\right)$, we denote $\sum_{A \in S} A$ by \bar{S}. If S is a subset of $\Sigma_{n} \subset G L_{n}\left(F_{2}\right)$, then $\sum_{A \in S}(-1)^{\operatorname{sgn}(A)} A$ is denoted by \tilde{S}. Let B_{n} and U_{n} be the Borel subgroup and the unipotent subgroup of $G L_{n}\left(F_{2}\right)$, respectively. Then the Steinberg idempotents are defined [7] by

$$
\begin{aligned}
& e_{n}=\bar{B}_{n} \tilde{\Sigma}_{n} /\left[G L_{n}\left(F_{2}\right): U_{n}\right] \in \hat{Z}_{2} G L_{n}\left(F_{2}\right) \\
& e_{n}^{\prime}=\tilde{\Sigma}_{n} \bar{B}_{n} /\left[G L_{n}\left(F_{2}\right): U_{n}\right] \in \hat{Z}_{2} G L_{n}\left(F_{2}\right) .
\end{aligned}
$$

Now we fix some notations. Let $C_{i}=(i, \cdots, n)$ and $C_{i}^{\prime}=(1, \cdots, i)$ $\in \Sigma_{n}$ be the cyclic permutations, and let $T_{n}=\left\{C_{1}, \cdots, C_{n}\right\}$ and $T_{n}^{\prime}=$ $\left\{C_{1}^{\prime}, \cdots, C_{n}^{\prime}\right\}$. Given a vector $b=\left(b_{1}, \cdots, b_{n-1}\right) \in F_{2}^{n-1}$, let

$$
\begin{aligned}
& R_{n-1}(b)=\left(\begin{array}{ccc}
1 & & \\
b_{1} \\
0 & \cdot & 0 \\
\vdots \\
& & 1 \\
b_{n-1}
\end{array}\right)=\left(E_{n-1}, b^{t}\right) \in M_{n-1, n}\left(F_{2}\right), \quad \text { and } \\
& L_{n}(b)=\left(\begin{array}{ccc}
b_{1} \cdots & \cdots b_{n-1} \\
1 & 0 \\
0 & \ddots & \\
& 1
\end{array}\right)=\binom{b}{E_{n-1}} \in M_{n, n-1}\left(F_{2}\right) .
\end{aligned}
$$

Let $R_{n-1}=\left\{R_{n-1}(b)\right\}_{b \in F_{2}^{n-1}}$ and $L_{n}=\left\{L_{n}(b)\right\}_{b \in F_{2}^{n-1}} . \quad R_{n-1}(0)$ and $L_{n}(0)$ are denoted by J_{n-1} and I_{n}, respectively.

In the following, the congruence $\bmod 2, a \equiv b \bmod 2$, is denoted simply by $a \equiv b$. The following observation is useful. Let $\phi: F_{2}^{r} \rightarrow M_{n, m}\left(F_{2}\right)$ be an affine map. Then $\overline{\operatorname{Im}(\phi)} \equiv 0$ if and only if the associated linear map of ϕ is not a monomorphism.

Lemma 1.1. (i) $J_{n-1} e_{n} \equiv J_{n-1} \widetilde{T}_{n} e_{n} \equiv e_{n-1} J_{n-1} \widetilde{T}_{n}, n \geqq 1$.
(ii) $\left(\bar{L}_{n} J_{n-1} \widetilde{T}_{n}+J_{n} \widetilde{T}_{n+1} \bar{L}_{n+1}\right) e_{n} \equiv e_{n}, n \geqq 1$. Here $R \tilde{M}_{n, m}\left(F_{2}\right)$ stands for the zero ring if $n=0$ or $m=0$.

Proof. (i) is an easy calculation, and we prove (ii). Note that $\bar{L}_{n+1} \bar{B}_{n}=\bar{B}_{n+1} I_{n+1}$. Let $C \in T_{n+1}$ be a non trivial element, then as observed above, $J_{n} C \bar{B}_{n+1} I_{n+1} \equiv 0$ and hence

$$
J_{n} \widetilde{T}_{n+1} \bar{L}_{n+1} B_{n}=J_{n} \widetilde{T}_{n+1} \bar{B}_{n+1} I_{n+1} \equiv J_{n} \bar{B}_{n+1} I_{n+1} .
$$

Let $B_{n+1} \ni B=\left(b_{i, j}\right)$. In the summation $J_{n} \bar{B}_{n+1} I_{n+1} \tilde{\Sigma}_{n}$, we may assume that $b_{i, n+1}=0$ for $1<i<n+1$. Then dividing the summation according
to $b_{1, n+1}=0$ or 1 , we have

$$
J_{n} \tilde{T}_{n+1} \bar{L}_{n+1} e_{n} \equiv e_{n}+\sum J_{n} B I_{n+1} \tilde{\Sigma}_{n},
$$

where the summation is taken over all B such that $b_{1, n+1}=0$. Similarly we see that $J_{n-1} \widetilde{T}_{n} \bar{B}_{n} \tilde{\Sigma}_{n} \equiv J_{n-1} \bar{B}_{n} \tilde{\Sigma}_{n}$ by (i), and easily we have $J_{n-1} \bar{B}_{n} \tilde{\Sigma}_{n} \equiv$ $\bar{B}_{n-1} J_{n-1} \tilde{\Sigma}_{n}$. Then $\bar{L}_{n} \bar{B}_{n-1} J_{n-1} \tilde{\Sigma}_{n}=\bar{B}_{n} I_{n} J_{n-1} \tilde{\Sigma}_{n}$. But this is just the latter term of the above equation. This completes the proof.

Lemma 1.2. Let $m \leqq n-2$. Then $e_{n} F_{2} \tilde{M}_{n, m}\left(F_{2}\right)=F_{2} \tilde{M}_{m, n}\left(F_{2}\right) e_{n}=0$.
Proof. For a matrix $B \in B_{n}$ we write $B=\left(\begin{array}{ll}1 & b \\ 0 & B^{\prime}\end{array}\right)$, where $B^{\prime} \in B_{n-1}$ and $b \in F_{2}^{n-1}$. Let $A=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right) \in M_{n, m}\left(F_{2}\right), a_{i} \in F_{2}^{m}$. Let $A^{\prime}=\left(\begin{array}{c}a_{2} \\ \vdots \\ a_{n}\end{array}\right)$, then we have $B A=\binom{a_{1}+b A^{\prime}}{B^{\prime} A^{\prime}}$. If $m \leqq n-2$, then the affine map $f(b)=a_{1}+b A^{\prime}$ has a non trivial kernel. Hence $e_{n} A \equiv \bar{B}_{n} \tilde{\Sigma}_{n} A \equiv 0$ and $e_{n} F_{2} \tilde{M}_{n, m}\left(F_{2}\right)=0$. The rest is similar.

Lemma 1.3. (i) $e_{n} F_{2} \tilde{M}_{n, n-1}\left(F_{2}\right)=\bar{L}_{n} e_{n-1} F_{2} G L_{n-1}\left(F_{2}\right)$.
(ii) $\quad F_{2} \tilde{M}_{n-1, n}\left(F_{2}\right) e_{n}=F_{2} G L_{n-1}\left(F_{2}\right) e_{n-1} J_{n-1} \widetilde{T}_{n}$.

Proof. (i) Let $B \in B_{n}$ and $A \in M_{n, n-1}\left(F_{2}\right)$. Then $B A=\binom{a_{1}+b A^{\prime}}{B^{\prime} A^{\prime}}$ and if A^{\prime} is singular, then as in the proof of the above lemma, we have $\bar{B}_{n} A \equiv 0$. Let $\Sigma_{n}=\cup\left(\begin{array}{cc}1 & \\ & \Sigma_{n-1}\end{array}\right) C_{i}$ be the coset decomposition. Then

$$
e_{n} A=\sum \bar{B}_{n}\left(\begin{array}{cc}
1 & \\
& \tilde{\Sigma}_{n-1}
\end{array}\right) C_{i} A \equiv \sum\binom{x(b)}{B^{\prime} T\left(C_{i} A\right)^{\prime}}
$$

where $B^{\prime} \in B_{n-1}, T \in \Sigma_{n-1}$ and $x(b)=b T\left(C_{i} A\right)^{\prime}+$ constant vector. Then we see that $e_{n} A \equiv \sum \bar{L}_{n} e_{n-1}\left(C_{i} A\right)^{\prime}$, where $\left(C_{i} A\right)^{\prime}$ is non singular. Hence $e_{n} A \in \bar{L}_{n} e_{n-1} F_{2} G L_{n-1}\left(F_{2}\right)$. On the other hand, for any $H \in G L_{n-1}\left(F_{2}\right)$, it is easy to see that $I_{n} e_{n-1} H \in e_{n} F_{2} \tilde{M}_{n, n-1}\left(F_{2}\right)$. This completes the proof of (i). The proof of (ii) is similar using Lemma 1.1, (i).

In particular we have
Lemma 1.4. $e_{n} I_{n} \equiv \bar{L}_{n} e_{n-1}$.
Corollary 1.5. $\quad e_{n} I_{n} e_{n-1} \equiv e_{n} \bar{L}_{n} e_{n-1}$ and $e_{n-1} J_{n-1} e_{n} \equiv e_{n-1} J_{n-1} \widetilde{T}_{n} e_{n}$.
For the Steinberg idempotent e_{n}^{\prime}, we have similar results. Replace $e_{n}, \bar{L}_{n}, I_{n}, J_{n}$ and T_{n} with $e_{n}^{\prime}, \bar{R}_{n-1}, J_{n-1}, I_{n+1}$ and T_{n}^{\prime} respectively in the
above formulae, and convert the direction of the composition, then all lemmas in this section hold for e_{n}^{\prime}. For example

Lemma 1.6. (i) $e_{n}^{\prime} I_{n} \equiv e_{n}^{\prime} \tilde{T}_{n}^{\prime} I_{n} \equiv \tilde{T}_{n}^{\prime} I_{n} e_{n-1}^{\prime}$.

$$
\begin{equation*}
e_{n}^{\prime}\left(\widetilde{T}_{n}^{\prime} I_{n} \bar{R}_{n-1}+\bar{R}_{n} \tilde{T}_{n+1}^{\prime} I_{n+1}\right) \equiv e_{n}^{\prime} . \tag{ii}
\end{equation*}
$$

\S 2. Splitting of the Steinberg idempotent

We denote $e_{n} I_{n} e_{n-1} \in \hat{Z}_{2} \tilde{M}_{n, n-1}\left(F_{2}\right)$ and $e_{n} J_{n} e_{n+1} \in \hat{Z}_{2} \tilde{M}_{n, n+1}\left(F_{2}\right)$ by ∂_{n} and σ_{n}, respectively. Similarly ∂_{n}^{\prime} and σ_{n}^{\prime} for $e_{n}^{\prime} I_{n} e_{n-1}^{\prime}$ and $e_{n}^{\prime} J_{n} e_{n+1}^{\prime}$.

Theorem 2.1. Let $n \geqq 2 . \sigma_{n} \partial_{n+1}$ and $\partial_{n} \sigma_{n-1}$ are orthogonal idempotents in $F_{2} \tilde{M}_{n, n}\left(F_{2}\right)$ and $e_{n} \equiv \sigma_{n} \partial_{n+1}+\partial_{n} \sigma_{n-1}$. Similarly $\sigma_{n}^{\prime} \partial_{n+1}^{\prime}$ and $\partial_{n}^{\prime} \sigma_{n-1}^{\prime}$ are orthogonal idempotents in $F_{2} \tilde{M}_{n, n}\left(F_{2}\right)$ and $e_{n}^{\prime} \equiv \sigma_{n}^{\prime} \partial_{n+1}^{\prime}+\partial_{n}^{\prime} \sigma_{n-1}^{\prime}$.

Proof. Let $\bar{\partial}_{n}=e_{n} \bar{L}_{n} e_{n-1}$ and $\bar{\sigma}_{n}=e_{n} J_{n} \widetilde{T}_{n+1} e_{n+1}$. Then by Corollary $1.5, \partial_{n} \equiv \bar{\partial}_{n}$ and $\sigma_{n} \equiv \bar{\sigma}_{n}$. Now

$$
\begin{aligned}
\sigma_{n} \partial_{n+1}+\partial_{n} \sigma_{n-1} & \equiv \bar{\sigma}_{n} \bar{\partial}_{n+1}+\bar{\partial}_{n} \bar{\sigma}_{n-1} \\
& =e_{n} J_{n} \widetilde{T}_{n+1} e_{n+1} \bar{L}_{n+1} e_{n}+e_{n} \bar{L}_{n} e_{n-1} J_{n-1} \widetilde{T}_{n} e_{n} \\
& \equiv e_{n}\left(J_{n} \widetilde{T}_{n+1} \bar{L}_{n+1}+\bar{L}_{n} J_{n-1} \widetilde{T}_{n}\right) e_{n} \equiv e_{n}
\end{aligned}
$$

by Lemma 1.1. Note that $\partial_{n+1} \partial_{n} \equiv 0$ and $\sigma_{n-1} \sigma_{n} \equiv 0$ by Lemma 1.2. Hence $\sigma_{n} \partial_{n+1}$ and $\partial_{n} \sigma_{n-1}$ are orthogonal idempotents. Similarly for e_{n}^{\prime} and this completes the proof.

Theorem 2.2. There are isomorphisms as vector spaces

$$
e_{n} F_{2} \tilde{M}_{n, m}\left(F_{2}\right) e_{m} \cong \begin{cases}0, & |n-m| \geqq 2 \\ F_{2}\left\{\sigma_{n}\right\}, & m=n+1 \\ F_{2}\left\{\sigma_{n} \partial_{n+1}\right\} \oplus F_{2}\left\{\partial_{n} \sigma_{n-1}\right\}, \quad m=n \geqq 2 \\ F_{2}\left\{\partial_{n}\right\}, & m=n-1\end{cases}
$$

and $e_{1} F_{2} \tilde{M}_{1,1}\left(F_{2}\right) e_{1} \cong F_{2}\left\{\sigma_{1} \partial_{2}\right\}$.
Proof. The case of $|n-m| \geqq 2$ is clear from Lemma 1.2. It is known [7] that the Steinberg module $F_{2} G L_{n}\left(F_{2}\right) e_{n}$ is projective and absolutely irreducible as $G L_{n}\left(F_{2}\right)$-module. Therefore $e_{n} F_{2} G L_{n}\left(F_{2}\right) e_{n} \cong F_{2}\left\{e_{n}\right\}$. Then we have $\operatorname{dim} e_{n} F_{2} \tilde{M}_{n, n-1}\left(F_{2}\right) e_{n-1}=\operatorname{dim} e_{n} F_{2} \tilde{M}_{n, n+1}\left(F_{2}\right) e_{n+1}=1$ by Lemma 1.3. By Lemma 1.4, $\partial_{n} \equiv \bar{L}_{n} e_{n-1} \not \equiv 0$ and $\sigma_{n} \equiv e_{n} J_{n} \widetilde{T}_{n+1} \not \equiv 0$ by Lemma 1.1. This shows the cases $m=n \pm 1$. Finally let S_{n} be the submodule of $F_{2} \tilde{M}_{n, n}\left(F_{2}\right)$ spanned by all singular matrices. Then $F_{2} \tilde{M}_{n, n}\left(F_{2}\right) \cong F_{2} G L_{n}\left(F_{2}\right) \oplus S_{n}$ as the both side $G L_{n}\left(F_{2}\right)$-module. From the above argument we easily see that
$\operatorname{dim} e_{n} S_{n} e_{n}=1$ and hence $\operatorname{dim} e_{n} F_{2} \tilde{M}_{n, n}\left(F_{2}\right) e_{n}=2$. Now $\partial_{n+1} \sigma_{n} \not \equiv 0$ and $\sigma_{n} \partial_{n+1} \not \equiv 0$, for $\partial_{n+1} \sigma_{n} \partial_{n+1} \equiv\left(e_{n+1}-\sigma_{n+1} \partial_{n+2}\right) \partial_{n+1} \equiv \partial_{n+1} \not \equiv 0$. Then the case $n=m$ is clear from Theorem 2.1.

Corollary 2.3. The idempotents $\sigma_{n} \partial_{n+1}$ and $\partial_{n} \sigma_{n-1} \in F_{2} \tilde{M}_{n, n}\left(F_{2}\right)$ are primitive.

Now consider the reduction $\rho: \hat{Z}_{2} M_{n, n}\left(F_{2}\right) \rightarrow F_{2} \tilde{M}_{n, n}\left(F_{2}\right)$. Then as is well known [1], there are lifting idempotents. Therefore from Theorem 2.1 and Corollary 2.3, we have

Corollary 2.4. There are orthogonal primitive idempotents $a_{n}, b_{n} \in$ $\hat{Z}_{2} \tilde{M}_{n, n}\left(F_{2}\right)$ such that $e_{n}=a_{n}+b_{n}, a_{n} \equiv \sigma_{n} \partial_{n+1} \bmod 2$, and $b_{n} \equiv \partial_{n} \sigma_{n-1} \bmod 2$.

Remark 1. Above results hold clearly for $e_{n}^{\prime} F_{2} \tilde{M}_{n, m}\left(F_{2}\right) e_{m}^{\prime}$ replacing ∂_{n}, σ_{n} with $\partial_{n}^{\prime}, \sigma_{n}^{\prime}$.

Remark 2. Lemma 1.2 holds for \hat{Z}_{2} coefficient. For $e_{n} \hat{Z}_{2} \tilde{M}_{n, m}\left(F_{2}\right)$ is a direct summand of $\hat{Z}_{2} \tilde{M}_{n, m}\left(F_{2}\right)$. Therefore $\partial_{n+1} \partial_{n}=0$ and $\sigma_{n} \sigma_{n+1}=0$ in \hat{Z}_{2} coefficient. Moreover using the lifting of idempotents [1], we see that Theorem 2.2 holds for \hat{Z}_{2} coefficient.

Remark 3. In the (non reduced) semigroup ring $R M_{n, n}\left(F_{2}\right)$, the 0 matrix 0 is a central idempotent. Hence in $R M_{n, n}\left(F_{2}\right), e_{n}$ splits as a sum of three primitive idempotents for $n \geqq 2$. For $n=1$, we have $e_{1}=E_{1}=$ $\left(E_{1}-0\right)+0$ is an orthogonal decomposition. We define $R M_{1,0}\left(F_{2}\right)=$ $R \operatorname{Hom}\left(F_{2}, 0\right)=R$ with basis σ_{0}, and $R M_{0,1}\left(F_{2}\right)=R \operatorname{Hom}\left(0, F_{2}\right)=R$ with basis ∂_{1}. Then $\partial_{1} \sigma_{0}=0$ and we have a decomposition $e_{1} \equiv \sigma_{1} \partial_{2}+\partial_{1} \sigma_{0}$ in $\hat{Z}_{2} M_{1,1}\left(F_{2}\right)$. Thus Theorem 2.1 holds for $n=1$ and

$$
\hat{Z}_{2} M_{1,1}(F) \cong \hat{Z}_{2}\left\{\sigma_{1} \partial_{2}\right\} \oplus \hat{Z}_{2}\left\{\partial_{1} \sigma_{0}\right\}
$$

§ 3. Splitting spectra and infinite loop spaces

Let Y be a 2-local spectrum of finite type, and let $\Omega^{\infty} Y$ be the associated infinite loop space. Let $\{Y, Y\}$ be the stable homotopy ring. The unstable homotopy set [$\Omega^{\infty} Y, \Omega^{\infty} Y$] is an abelian group with the composition product which satisfies the condition of a ring structure except the left distribution law. There is a natural "ring" homomorphism $j:\{Y, Y\} \rightarrow$ [$\Omega^{\infty} Y, \Omega^{\infty} Y$]. Let Y be a suspension spectrum of a 2-local space X. Then $\Omega^{\infty} Y=Q X$ by definition and denoting $\{Y, Y\}$ by $\{X, X\}$, we see that

$$
j:\{X, X\} \longrightarrow[Q X, Q X]
$$

is a monomorphism.

We call an element $e \in\{Y, Y\}$ an idempotent $\bmod 2$ if $e^{2} \equiv e \bmod 2$. For an element $f \in\left[\Omega^{\infty} Y, \Omega^{\infty} Y\right]$, let $f_{*} \in \operatorname{End}\left(\pi_{*}\left(\Omega^{\infty} Y\right)\right) \cong \operatorname{End}\left(\pi_{*}^{S}(Y)\right)$. An element $f \in\left[\Omega^{\infty} Y, \Omega^{\infty} Y\right]$ is called a π_{*}-idempotent $\bmod 2$ if $f_{*}^{2} \equiv f_{*}$ in End $\left(\pi_{*}\left(\Omega^{\infty} Y\right)\right)$.

Given $e \in\{Y, Y\}$, the telescope of the sequence $Y \xrightarrow{e} Y \xrightarrow{e} \cdots$ is denoted by $e Y$. Similarly for $f \in\left[\Omega^{\infty} Y, \Omega^{\infty} Y\right]$, the telescope of the sequence $\Omega^{\infty} Y$ $\xrightarrow{f} \Omega^{\infty} Y \xrightarrow{f} \cdots$ is denoted by $f \Omega^{\infty} Y$. There are natural maps $\phi_{e}: Y \rightarrow e Y$ and $\psi_{f}: \Omega^{\infty} Y \rightarrow f \Omega^{\infty} Y$. Let

$$
\xi_{e}=\phi_{e} \vee \phi_{1-e}: Y \longrightarrow e Y \vee(1-e) Y
$$

and

$$
\eta_{f}=\psi_{f} \times \psi_{1-f}: \Omega^{\infty} Y \longrightarrow f \Omega^{\infty} Y \times(1-f) \Omega^{\infty} Y
$$

Proposition 3.1. Let $e \in\{Y, Y\}$ be an idempotent $\bmod 2$. Then
(i) $\xi_{e}: Y \rightarrow e Y \bigvee(1-e) Y$ is a homotopy equivalence.
(ii) Let $e^{\prime} \in\{Y, Y\}$ such that $e^{\prime} \equiv e \bmod 2$. Then there is a homotopy equivalence $\lambda: e Y \rightarrow e^{\prime} Y$.

Proposition 3.2. Let $f \in\left[\Omega^{\infty} Y, \Omega^{\infty} Y\right]$ be a π_{*}-idempotent $\bmod 2$. Then
(i) $\eta_{f}: \Omega^{\infty} Y \rightarrow f \Omega^{\infty} Y \times(1-f) \Omega^{\infty} Y$ is a homotopy equivalence.
(ii) Let $f^{\prime} \in\left[\Omega^{\infty} Y, \Omega^{\infty} Y\right]$ such that $f_{*} \equiv f^{\prime} \bmod 2$.

Then there is a homotopy equivalence $\lambda: f \Omega^{\infty} Y \rightarrow f^{\prime} \Omega^{\infty} Y$.
Proof of Propositions. Since $e^{2} \equiv e \bmod 2, e_{*}$ is an idempotent in End $\left(\pi_{*}^{S}(Y) \otimes Z_{2}\right)$ and also in End $\left(\pi_{*}^{S}(Y) * Z_{2}\right)$. Then

$$
\pi_{*}^{S}(e Y) \otimes Z_{2} \cong e\left(\pi_{*}^{S}(Y) \otimes Z_{2}\right) \quad \text { and } \quad \pi_{*}^{S}(e Y) * Z_{2} \cong e\left(\pi_{*}^{S}(Y) * Z_{2}\right)
$$

and similarly for $1-e$. Therefore $\xi_{e^{*}} \otimes 1_{Z_{2}}$ and $\xi_{e^{*} *} 1_{Z_{2}}$ are isomorphisms. Hence $\xi_{e^{*}}$ is an isomorphism and (i) is proved. Now if $e^{\prime} \equiv e \bmod 2$, then we have a homotopy equivalence $\xi_{e^{\prime}}: Y \rightarrow e^{\prime} Y \vee\left(1-e^{\prime}\right) Y$ and using ξ_{e} and $\xi_{e^{\prime}}$ we can define a natural map $\lambda: e Y \rightarrow e^{\prime} Y$ in an obvious way, and as above we easily see that $\lambda_{*}: \pi_{*}^{S}(e Y) \rightarrow \pi_{*}^{S}\left(e^{\prime} Y\right)$ is an isomorphism. This shows (ii). Proof of the latter Proposition is similar.

Now we recall the structure of the stable homotopy group $\left\{B Z_{2}^{n}, B Z_{2}^{m}\right\}$. Let V be a subgroup of Z_{2}^{n} and let $f: V \rightarrow Z_{2}^{m}$ be a homomorphism. Define an element $u_{V, f} \in\left\{B Z_{2}^{n}, B Z_{2}^{m}\right\}$ by the composition

$$
B Z_{2}^{n} \xrightarrow{\tau} B V \xrightarrow{\sigma(B f)} B Z_{2}^{m}
$$

where τ is the transfer of the covering $B V \rightarrow B Z_{2}^{n}$ and σ denotes the sus-
pension functor. In the sequel, $\sigma(B f)$ is denoted simply by f. Then in [9] followings are shown.

Theorem 3.3. There is an isomorphism

$$
\left\{B Z_{2}^{n}, B Z_{2}^{m}\right\} \cong \oplus \hat{Z}_{2}\left\{u_{V, f}\right\}
$$

where the sum is taken over all $(V, f), f \neq 0$.
Theorem 3.4. Let $V \subset Z_{2}^{n}$ and $W \subset Z_{2}^{m}$ be subgroups and let $f: V \rightarrow$ Z_{2}^{m} and $g: W \rightarrow Z_{2}^{l}$ be homomorphisms. Let

$$
U=f^{-1}(W) \subset V \quad \text { and } \quad\left[Z_{2}^{m}: f(V) W\right]=2^{a}
$$

Then

$$
u_{W, g} u_{V, f}=2^{a} u_{U, g f} .
$$

Now we have an inclusion of rings

$$
i: \hat{Z}_{2} \tilde{M}_{m, n}\left(F_{2}\right) \longrightarrow\left\{B Z_{2}^{n}, B Z_{2}^{m}\right\}
$$

defined by $i(f)=u_{Z_{2}^{n}, f}$. It is clear that i is compatible with compositions. In [9] we have also shown the following

Lemma 3.5. A primitive idempotent in $\hat{Z}_{2} \tilde{M}_{n, n}\left(F_{2}\right)$ is primitive in $\left\{B Z_{2}^{n}, B Z_{2}^{n}\right\}$.

Now we recall the Mitchell-Priddy splitting. For $n \geqq 2$, the spectrum $e_{n} B Z_{2}^{n}$ is denoted by $M(n)$. We put $M(1)=B Z_{2} \vee S^{0}=e_{1}\left(\left(B Z_{2}\right)_{+}\right)$. For $n \geqq 2$, let $a_{n}, b_{n} \in \hat{Z}_{2} \tilde{M}_{n, n}\left(F_{2}\right)$ be idempotents in Corollary 2.4. By the remark of Section 2, we may define $a_{1}, b_{1} \in \hat{Z}_{2} M_{1,1}\left(F_{2}\right) \subset\left\{\left(B Z_{2}\right)_{+},\left(B Z_{2}\right)_{+}\right\}$. Define spectra $M_{a}(n)=a_{n} B Z_{2}^{n}$ and $M_{b}(n)=b_{n} B Z_{2}^{n}$ for $n \geqq 2$, and $M_{a}(1)=$ $a_{1}\left(B Z_{2+}\right)$ and $M_{b}(1)=b_{1}\left(B Z_{2+}\right)$. Then we have

Theorem 3.6. The spectra $M_{a}(n)$ and $M_{b}(n)$ are indecomposable and there is a stable splitting

$$
M(n) \simeq M_{a}(n) \vee M_{b}(n), \quad n \geqq 1
$$

Proof. Since $e_{n}=a_{n}+b_{n}$ (orthogonal decomposition), $M(n) \simeq M_{a}(n)$ $\vee M_{b}(n)$ is clear. The indecomposability of $M_{a}(n)$ and $M_{b}(n)$ follows from Corollary 2.3 and Lemma 3.5.

In [7], it is shown that there are spectra $L(n), n \geqq 0, L(0)=S^{0}, L(1)=$ $B Z_{2}$, and a splitting $M(n) \simeq L(n) \vee L(n-1), n \geqq 1$. In [9] we have shown that the splitting of $B Z_{2}^{n}$ by indecomposable spectra is essentially unique. Thus we have

Corollary 3.7. $L(n), n \geqq 0$, is indecomposable and $M_{a}(n) \simeq L(n)$ and $M_{b}(n) \simeq L(n-1)$.

§ 4. Equivariant stable cohomotopy

Let G be a finite group. For G-space X and $Y,\left\{X_{+}, Y_{+}\right\}_{G}$ denotes the stable G-homotopy group, where X_{+}is the based G-space with the disjoint base point. Let H be a subgroup of G, and let $N(H)$ be the normalizer of $H . \quad N(H) / H$ is denoted by $W(H)$. Then the Segal-tom Dieck and Hauschild theorems are stated as follows.

Theorem 4.1 ([2], [3]). Lex X be a finite CW-complex with the trivial G-action. Then there are isomorphisms

$$
\xi: \underset{(H)}{\oplus_{H}}\left\{X_{+}, E W(H)_{+}\right\}_{W(H)} \longrightarrow\left\{X_{+}, S^{0}\right\}_{G}
$$

and

$$
\lambda_{H}:\left\{X_{+}, E W(H)_{+}\right\}_{W(H)} \longrightarrow\left\{X_{+}, B W(H)_{+}\right\}
$$

where the sum is taken over the conjugacy classes of subgroups of G and $E W(H)$ is a free contractible $W(H)$-space.

Using the above theorem, we show an equivariant version of the Barratt-Quillen theorem. Let E be a G-space. By a (G, E)-covering over X, we mean a pair of G-maps $(p, f)=(X \stackrel{p}{\leftarrow} \tilde{X} \xrightarrow{f} E)$, where $p: \tilde{X} \rightarrow X$ is a finite covering. Let $\left(X{ }^{p^{\prime}} \leftarrow \tilde{X}^{\prime} \xrightarrow{f^{\prime}} E\right)$ be another pair. We call (p, f) and (p^{\prime}, f^{\prime}) equivalent if there is an equivalence of coverings $\phi: \tilde{X} \rightarrow \tilde{X}^{\prime}$ such that $f^{\prime} \phi \sim_{G} f$. The set of equivalence classes of (G, E)-coverings over X is denoted by $C_{G}(X, E)$. By the disjoint sum, $C_{G}(X, E)$ is an abelian monoid. If $E=*$ or $G=\{e\}, C_{G}(X, E)$ is denoted by $C_{G}(X)$ or $C(X, E)$ respectively. Given a pair (p, f) we define a stable G-map $\omega(p, f)$ by the composition

$$
X_{+} \xrightarrow{\tau} \tilde{X}_{+} \xrightarrow{\sigma\left(f_{+}\right)} E_{+}
$$

where τ is the equivariant transfer [8]. Then we have a homomorphism

$$
\omega: C_{G}(X, E) \longrightarrow\left\{X_{+}, E_{+}\right\}_{G} .
$$

Then the following is shown in [9].
Lemma 4.2. \quad There are isomorphisms of monoids

$$
\tilde{\xi}: \prod_{(H)} C_{W(H)}(X, E W(H)) \longrightarrow C_{G}(X)
$$

$$
\tilde{\lambda}_{H}: C_{W(H)}(X, E W(H)) \longrightarrow C(X, B W(H))
$$

and the following diagram is commutative;

Let h and h^{\prime} be monoid valued contravariant homotopy functor on the category of $C W$-complexes. We suppose that h^{\prime} is represented by a grouplike H-space. A natural homomorphism $\psi: h \rightarrow h^{\prime}$ is called a group completion (in the sense of Segal) if the following universal property holds. For any grouplike H-space B and a natural homomorphism $\gamma: h \rightarrow[, B]_{*}$, there is a unique natural homomorphism $\gamma^{\prime}: h^{\prime} \rightarrow[, B]_{*}$ such that $\gamma^{\prime} \psi=\gamma$. Then by a result of [3], we immediately obtain the following

Theorem 4.3. In the diagram of Lemma 4.2, every vertical maps are group completions as functors on X.

Now by the Segal-tom Dieck isomorphism, we identify $\left\{X_{+}, S^{0}\right\}_{G}$ with $\oplus\left\{X_{+}, B W(H)_{+}\right\}$, when X is finite. We call the summand $\left\{X_{+}, B G_{+}\right\}$ corresponding to $H=\{e\}$ the free part of $\left\{X_{+}, S^{0}\right\}_{G}$. Let G^{\prime} be another finite group and let

$$
\gamma:\left\{X_{+}, S^{0}\right\}_{G} \longrightarrow\left\{X_{+}, S^{0}\right\}_{G^{\prime}}
$$

be a natural transformation of functors on X. We call γ admissible if γ preserves the free part, i.e., $\gamma\left(\left\{X_{+}, B G_{+}\right\}\right) \subset\left\{X_{+}, B G_{+}^{\prime}\right\}$. Then we may consider $\gamma \in\left[Q\left(B G_{+}\right), Q\left(B G_{+}^{\prime}\right)\right]$. Moreover if there is a relation among admissible natural transformations, then it gives the same relation in $\left[Q\left(B G_{+}\right), Q\left(B G_{+}^{\prime}\right)\right]$.

We give some examples. First let $f: G^{\prime} \rightarrow G$ be a homomorphism. Any stable G-map is regarded as a stable G^{\prime}-map via f. This gives a stable (hence additive) natural transformation

$$
f^{*}:\left\{X_{+}, S^{0}\right\}_{G} \longrightarrow\left\{X_{+}, S^{0}\right\}_{G^{\prime}}
$$

Proposition 4.4. (i) f^{*} is admissible if and only if f is a monomorphism.
(ii) Iff is an inclusion $G^{\prime} \subset G$, then the stable map $f^{*} \in\left\{B G_{+}, B G_{+}^{\prime}\right\}$ is the transfer.
(iii) If f is an isomorphism, then $f^{*}=\sigma B f^{-1}$.

Proof is easy from Theorem 4.3.
Next we consider the power operation. Let $f: X_{+} \rightarrow S^{0}$ be a stable G-map. The smash product $f \wedge f:(X \times X)_{+} \rightarrow S^{0}$ can be regarded as a stable $\Sigma_{2} \int G$-map, where $\Sigma_{2} \int G$ is the wreath product. Let $\Delta(G) \subset G \times G$ be the diagonal. Then $Z_{2} \times G \cong Z_{2} \times \Delta(G) \subset \Sigma_{2} \int G$. Let $d: X \rightarrow X \times X$ be the diagonal map. Then we have a stable $Z_{2} \times G$-map $(f \wedge f) d: X_{+} \rightarrow S^{0}$, and this defines a natural transformation

$$
P:\left\{X_{+}, S^{0}\right\}_{G} \longrightarrow\left\{X_{+}, S^{0}\right\}_{Z_{2} \times G}
$$

For a finite G-covering $p: \tilde{X} \rightarrow X, p \times p: \tilde{X} \times \tilde{X} \rightarrow X \times X$ is regarded as a $\Sigma_{2} \int G$-covering. Restricting to $d(X) \subset X \times X$, we have a $Z_{2} \times G$-covering over X and thus we have a natural transformation

$$
P^{\prime}: C_{G}(X) \longrightarrow C_{Z_{2} \times G}(X)
$$

then the following lemma is easily verified from the property of transfers.
Lemma 4.5. The following diagram is commutative:

Now let $G=Z_{2}^{n-1}$. Let $b \in F_{2}^{n-1}$ and let $R_{n-1}(b) \in M_{n-1, n}\left(F_{2}\right)$. Then we have a natural transformation

$$
R_{n-1}(b)^{*}:\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n-1}} \longrightarrow\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n}} .
$$

Both P and $R_{n-1}(b)^{*}$ are not admissible, but we have
Lemma 4.6. $\quad \sum_{b} R_{n-1}(b)^{*}-P$ is admissible.
Proof. Define a natural transformation

$$
\theta:\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n-1}} \times\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n-1}} \longrightarrow\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n}}
$$

by $\theta(x, y)=P(x+y)-P(x)-P(y)$. For a finite coverings, this is given by $\theta\left(\tilde{X}, \tilde{X}^{\prime}\right)=\tilde{X} \cdot \tilde{X}^{\prime} \amalg \tilde{X}^{\prime} \cdot \tilde{X}$, where $\tilde{X} \cdot \tilde{X}^{\prime}=\tilde{X} \times \tilde{X}^{\prime} \mid d(X)$. Then we easily see that θ is admissible. Consider the composition

$$
q_{H}:\left\{X_{+}, B Z_{2+}^{n-1}\right\} \subset\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n-1}} \xrightarrow{\sum R_{n-1}(b)^{*}-P}\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n}} \xrightarrow{p_{H}}\left\{X_{+}, B W(H)_{+}\right\}
$$

where p_{H} is the projection. To prove the lemma, it suffices to show that $q_{H}=0$ for all $H \neq\{e\}$. But by the above observation we see that q_{H} is additive, for

$$
\begin{aligned}
q_{H}(x+y) & =p_{H}\left(\sum R_{n-1}(b)^{*}(x+y)-P(x+y)\right) \\
& =p_{H}\left(\sum R_{n-1}(b)^{*}(x)+\sum R_{n-1}(b)^{*}(y)-P(x)-P(y)+\theta(x, y)\right) \\
& =q_{H}(x)+q_{H}(y)
\end{aligned}
$$

For a free Z_{2}^{n-1}-set S, we easily see that

$$
S \times S=\text { free }+\coprod_{b} R_{n-1}(b)^{*}(S)
$$

as $Z_{2}^{n}=Z_{2}^{n-1} \times Z_{2}$ set. Hence this holds for finite coverings. Then $q_{H}=0$ by Theorem 4.3.
§ 5. Structure of $\{L(n), L(m)\}$ and the theorem of Kuhn
First we consider $\{M(n), M(m)\}=e_{m}\left\{B Z_{2}^{n}, B Z_{2}^{m}\right\} e_{n}$. Let $\operatorname{Mon}(n, m)$ $\subset M_{n, m}\left(F_{2}\right)$ be the set of all monomorphisms. For an $A \in \operatorname{Mon}(n, m)$ we have defined a stable map $A^{*} \in\left\{B Z_{2}^{n}, B Z_{2}^{m}\right\}$. Therefore for any $a \in$ $\hat{Z}_{2} \operatorname{Mon}(n, m)$ we can define a^{*}, for example $e_{n}^{*}, e_{n}^{\prime *}, \partial_{n}^{*}$ and $\partial_{n}^{\prime *}$. By Proposition 4.4, $e_{n}^{*}=e_{n}^{\prime}$ and $e_{n}^{\prime *}=e_{n}$.

Lemma 5.1. Suppose that $m \leqq n-2$. Then

$$
\left(\hat{Z}_{2} \operatorname{Mon}(n, m)\right)^{*} e_{n} \equiv 0 \bmod 2
$$

and if $m=n-1$, then

$$
\left(\hat{Z}_{2} \operatorname{Mon}(n, n-1)\right)^{*} e_{n} \equiv \hat{Z}_{2} G L_{n-1}\left(F_{2}\right) e_{n-1}\left(\tilde{T}_{n}^{\prime} I_{n}\right)^{*}
$$

Proof is clear from the fact $(A B)^{*}=B^{*} A^{*}$ and Lemmas 1.2 and 1.6.
Lemma 5.2. Let

$$
\theta: e_{m} \hat{Z}_{2} \tilde{M}_{m, n-1}\left(F_{2}\right) e_{n-1} \longrightarrow\{M(n), M(m)\}
$$

be a homomorphism defined by $\theta(a)=a \partial_{n}^{\prime *} . \quad$ Then θ is a monomorphism.
Proof. Note that $e_{m} x e_{n-1} \partial_{n}^{\prime *}=e_{m} x e_{n-1} I_{n}^{*} e_{n}=e_{m} x e_{n-1}\left(\tilde{T}_{n} I_{n}\right)^{*}$. Let $C, C^{\prime} \in T_{n}$. If $C \neq C^{\prime}$ then $\operatorname{Im}\left(C I_{n}\right)$ and $\operatorname{Im}\left(C^{\prime} I_{n}\right)$ are different. Then the lemma follows from Theorem 3.3.

Theorem 5.3. $\{M(n), M(m)\}$ is a free \hat{Z}_{2}-module with the following basis. (i) 0 if $m \leqq n-3$ or $m \geqq n+2$; (ii) $\hat{Z}_{2}\left\{\sigma_{n-2} \partial_{n}^{*}\right\}$ if $m=n-2$; (iii)
$\hat{Z}_{2}\left\{\sigma_{n-1}, \partial_{n-1} \sigma_{n-2} \partial_{n}^{\prime *}, \sigma_{n-1} \partial_{n} \partial_{n}^{*}\right\}$ if $m=n-1$; (iv) $\hat{Z}_{2}\left\{\partial_{n} \sigma_{n-1}, \sigma_{n} \partial_{n+1}, \partial_{n} \partial_{n}^{\prime *}\right\}$ if $m=n$; (v) $\hat{Z}_{2}\left\{\partial_{n+1}\right\}$ if $m=n+1$.

Proof. By Theorem 3.3 and Lemma 5.1, we have $\{M(n), M(m)\}$ $e_{m} \hat{Z}_{2} \tilde{M}_{m, n}\left(F_{2}\right) e_{n} \oplus \operatorname{Im}(\theta)$. Then the result follows from Lemma 5.2.

Recall that $M(n) \simeq L(n) \vee L(n-1)$. Then by the dimensional reason we immediately obtain

Corollary 5.4. There are isomorphisms

$$
\begin{aligned}
\{L(n), L(m)\} & \cong \hat{Z}_{2}, & & \text { if } m=n \text { or } m=n-1 \\
& \cong 0, & & \text { otherwise } .
\end{aligned}
$$

A generator of $\{L(n), L(n-1)\} \cong \hat{Z}_{2}$ is denoted by h_{n}. Note that $h_{n} \vee h_{n-1}: L(n) \vee L(n-1) \rightarrow L(n-1) \vee L(n-2)$ is equivalent $\bmod 2$ to $\partial_{n}^{*}: M(n) \rightarrow M(n-1)$.

Finally we give a proof of the Kuhn's theorem [5]. A sequence $\rightarrow X_{n+1} \xrightarrow{d} X_{n} \xrightarrow{d} \cdots$ of stable maps of 2-local spectra is called (half stable) split exact if $d \circ d=0$ and there are maps $s: \Omega^{\infty} X_{n} \rightarrow \Omega^{\infty} X_{n+1}$ for all n such that $d_{*} s_{*}+s_{*} d_{*} \equiv 1 \bmod 2$ in $\operatorname{End}\left(\pi_{*}\left(\Omega^{\infty} X_{n}\right)\right)=\operatorname{End}\left(\pi_{*}^{S}\left(X_{n}\right)\right)$ for all n. Then the sequence

$$
\longrightarrow \pi_{*}^{S}\left(X_{n+1}\right) \xrightarrow{d_{*}} \pi_{*}^{S}\left(X_{n}\right) \xrightarrow{d_{*}} \cdots
$$

is clearly split exact. Let $u_{n}=\Omega^{\infty}(d) \circ s: \Omega^{\infty} X_{n} \rightarrow \Omega^{\infty} X_{n}$ and $v_{n}=s \circ \Omega^{\infty}(d)$: $\Omega^{\infty} X_{n} \rightarrow \Omega^{\infty} X_{n}$, then clearly u_{n} and v_{n} are π_{*}-idempotent $\bmod 2$ and $u_{n^{*}}+$ $v_{n^{*}} \equiv 1 \mathrm{mod} 2$. Then by Proposition 3.2 we have $\Omega^{\infty} X_{n} \simeq u_{n} \Omega^{\infty} X_{n} \times v_{n} \Omega^{\infty} X_{n}$, and easily we see that $v_{n} \Omega^{\infty} X_{n} \simeq u_{n-1} \Omega^{\infty} X_{n-1}$. In Section 3, we have shown that the sequence

$$
\longrightarrow M(n+1) \xrightarrow{\sigma_{n}} M(n) \xrightarrow{\sigma_{n-1}} M(n-1) \longrightarrow \cdots
$$

is (stable) split exact. Now the Kuhn's theorem asserts the following.
Theorem 5.5. The sequence

$$
\longrightarrow M(n+1) \xrightarrow{\partial_{n+1}^{\prime *}} M(n) \xrightarrow{\partial_{n}^{\prime *}} M(n-1) \longrightarrow \cdots \longrightarrow M(1)
$$

is split exact.
Proof. For any $a \in \hat{Z}_{2} \tilde{M}_{n, m}\left(F_{2}\right)$, we can define a natural transformation

$$
a^{*}:\left\{X_{+}, S^{0}\right\}_{z_{2}^{n}} \longrightarrow\left\{X_{+}, S^{0}\right\}_{z_{2}^{m}}
$$

The relations in Section 1 and Section 2 hold for a^{*} as such natural transformations. Define

$$
s_{n-1}=e_{n}^{\prime *}\left(\bar{R}_{n-1}^{*}-P\right) e_{n-1}^{\prime *}=e_{n}\left(\bar{R}_{n-1}^{*}-P\right) e_{n-1}:\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n-1}} \longrightarrow\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n}}
$$

where P is the power operation. Put $\alpha_{n}=\partial_{n+1}^{\prime *} s_{n}$ and $\beta_{n}=s_{n-1} \partial_{n}^{*}$. By Lemma 4.6, s_{n} is admissible and hence so are α_{n} and β_{n}, and $s_{n} \in$ $\left[Q\left(B Z_{2+}^{n}\right), Q\left(B Z_{2+}^{n+1}\right)\right]$. To prove the theorem it suffices to show that $\alpha_{n^{*}}+\beta_{n^{*}} \equiv e_{n^{*}} \bmod 2$ regarding α_{n} and β_{n} as maps in [$\left.Q\left(B Z_{2_{+}}^{n}\right), Q\left(B Z_{2+}^{n}\right)\right]$. Now we show that for any reduced element $x \in\left\{S^{q}, S^{0}\right\}_{Z_{2}^{n}} \subset\left\{S_{+}^{q}, S^{0}\right\}_{Z_{2}^{n}}$,

$$
\alpha_{n}(x)+\beta_{n}(x) \equiv e_{n}(x) \bmod 2
$$

Note that $\partial_{n}^{\prime} \equiv e_{n}^{\prime} T_{n}^{\prime} I_{n} e_{n-1}^{\prime}$. Then by Lemma 1.6, we have

$$
\begin{aligned}
\alpha_{n}+\beta_{n} \equiv & e_{n}\left(\left(\widetilde{T}_{n+1}^{\prime} I_{n+1}\right) * \bar{R}_{n}^{*}+\bar{R}_{n-1}^{*}\left(\widetilde{T}_{n}^{\prime} I_{n}\right)^{*}\right) e_{n} \\
& +e_{n}\left(\left(\widetilde{T}_{n+1}^{\prime} I_{n+1}\right)^{*} P+P\left(\widetilde{T}_{n}^{\prime} I_{n}\right)^{*}\right) e_{n} \\
\equiv & e_{n}+e_{n}\left(\left(\widetilde{T}_{n+1}^{\prime} I_{n+1}\right)^{*} P+P\left(\widetilde{T}_{n}^{\prime} I_{n}\right)^{*}\right) e_{n} .
\end{aligned}
$$

Now let $C_{i}^{\prime}=(1, \cdots, i) \in T_{n}^{\prime}$, then $C_{i}^{\prime} I_{n}$ is regarded as a standard inclusion $Z_{2}^{i-1} \times 0 \times Z_{2}^{n-i} \rightarrow Z_{2}^{n}$. Then $\left(C_{i}^{\prime} I_{n}\right)^{*}:\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n}} \rightarrow\left\{X_{+}, S^{0}\right\}_{Z_{2}^{n-1}}$ is given by forgetting i-th Z_{2}-action in Z_{2}^{n}. Then by definition $I_{n+1}^{*} P(x)=x^{2}$, the cup product. Also we easily see that $\left(C_{i+1}^{\prime} I_{n+1}\right)^{*} P=P\left(C_{i}^{\prime} I_{n}\right)^{*}$ for $i>0$. Thus we easily see

$$
\left(\left(\tilde{T}_{n+1}^{\prime} I_{n+1}\right)^{*} P+P\left(\tilde{T}_{n}^{\prime} I_{n}\right)^{*}\right)(x)=x^{2}
$$

and if $x \in\left\{S^{q}, S^{0}\right\}_{Z_{2}^{n}}, q>0$, then $x^{2}=0$ and hence $\left(\alpha_{n}+\beta_{n}\right)(x) \equiv e_{n}(x)$. This completes the proof.

Corollary 5.6. The sequence

$$
\longrightarrow L(n) \xrightarrow{h_{n}} L(n-1) \longrightarrow \cdots \longrightarrow L(1) \xrightarrow{h_{1}} L(0)=\left(S^{0}\right)_{(2)}
$$

is split exact.
Remark. As is well known (Kahn-Priddy [4]), there is a split exact sequence $L(1) \xrightarrow{h_{1}} L(0) \xrightarrow{h_{0}} H Q_{(2)}$.

References

[1] C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience.
[2] T. tom Dieck, Orbittypen und äquivariante Homologie II, Arch. Math., 26 (1975), 650-662.
[3] H. Hauschild, Zerspaltung äquivarianter Homotopiemengen, Math. Ann., 230 (1977), 279-292.
[4] D. S. Kahn and S. B. Priddy, The transfer and stable homotopy theory, Math. Proc. Camb. Phil. Soc., 83 (1978), 103-111.
[5] N. J. Kuhn, A Kahn-Priddy sequence and a conjecture of G.W. Whitehead, Math. Proc. Camb. Phil. Soc., 83 (1982), 467-483.
[6] N. J. Kuhn, S. A. Mitchell and S. B. Priddy, The Whitehead conjecture and splitting $B(Z / 2)^{k}$, Bull. Amer. Math. Soc., 7 (1982), 225-258.
[7] S. A. Mitchell and S. B. Priddy, Stable splitting derived from the Steinberg module, Topology, 22 (1983), 285-298.
[8] G. Nishida, The transfer homomorphism in equivariant generalized cohomology theories, J. Math. Kyoto Univ., 18 (1978), 435-451.
[9] - Stable homotopy type of classifying spaces of finite groups, to appear.
[10] G. B. Segal, Equivariant stable homotopy theory, Actes Congrès intern. Math., Tome 2 (1970), 59-63.
[11] - Operation in stable homotopy theory, New developments in topology, London Math. Soc. L.N.S., 11 (1972).

Department of Mathematics
Kyoto University
Kyoto 606, Japan

