
Advanced Studies in Pure Mathematics 9, 1986 
Homotopy Theory and Related Topics 
pp. 177-188 

On the Signature Invariants of Infinite Cyclic Coverings 
of Even Dimensional Manifolds 
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§ O. Introduction 

We consider a compact oriented topological 2m-manifold W with 
boundary M (which may be ifJ). Let 7 E Hl(W; Z) and t=7 I M E Hl(M; 
Z). Let TV be the infinite cyclic covering space of W associated with 7, 
whose covering transformation group is infinite cyclic and denoted by < t > 
with a specified generator t (cf. [K3, § 0]). The boundary M of TV is the 
infinite cyclic covering space of M associated with t (if it is not ifJ), and 
we have the signature invariants a~(M), a E [-1, 1], of (M, t) (cf. [K2], 
[K3]). These signature invariants were defined as a result of a duality on 
the cohomology ring H*(M). This duality was first observed by Milnor 
[M], under the restriction that H*(M) is finitely generated over a field. 
This restriction was removed in [KI]. Neumann [N2] has independently 
shown it by modifying the Blanchfield linking form. [Remark: In [M], 
[KI] and [N2], it was assumed that M is triangulated, but one can find a 
proof of its topological version in [K3, Appendix B].] In [K3], the author 
could compute these signature invariants by using a certain linking matrix 
on (M, t). By convention, a~(M) = 0 if M = ifJ. The purpose of this 
paper is to introduce and compute signature invariants, T~±oCW) of (W, 7), 
defined for all a±O*) E [-1, 1] (cf. § 1). It turns out that the set {T~±o(W) 
-sign WI a±O E [-1, In and {a~(M) I a E [-1, 1], a=l= -c(m)} determine 
each other, where c(m)=( _I)m and sign W denotes the usual signature of 
W (By convention, sign W =0 if c(m) = -1). Moreover, we shall show 
that a~.(m)(M) can be written in terms of T~o(n')H(m)o(W), sign Wand a 
certain signature invariant, signr W of (W, 7). Thus, we can see that the 
signature invariants a~(M), a E [-1, 1], are all peripheral invariants (the 
terms due to Neumann [NI]), such as an invariant of Atiyah/Singer [A/S], 
called a-invariant by Hirzebruch/Zagier [H/Z] and an invariant of Atiyah/ 
Patodi/Singer [A/P/S], called 7-invariant by Neumann [NI], [N2]. The 
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differences 'Z"~±o(W)-sign Wappear to be closely related to some kind of 
r-invariants (cf. [NI], [N2]), but we do not discuss any relationship be
tween them in this paper. 

In Section 1 we state our main results together with the definitions of 
'Z"~±oCW),a~(M) and sign r W. In Section 2 several properties on 'Z"~±o(W) 
are given. In Section 3 we compute 'Z"~±o( W) and signr W for a special 
pair (W, r) constructed from a given pair (M, t). In the final section (§ 4), 
we prove Theorems I, II and the Proposition, stated in Section 1. 

Throughout the paper, coefficients of homology and cohomology will 
be taken in the real number field R, unless otherwise specified. Since we 
intend to depend heavily on the preceding paper [K3], it will be better to 
note that "m" in [K3] means "m - I" of this paper. 

§ 1. Definitions and main results 

We note first that the cohomology with compact support H:CW, £1) 
forms a finitely generated R< t )-module. In fact, the Poincare duality 
n [W]: H;(W, £1)~H2m_iW) stated in [K3, Appendix A] gives at-anti 
isomorphism [In fact, (tu) n [W]=rl(un t[W])=t- 1(un [W])] and H*(W) 
is finitely generated over R<t) by [KjS] (cf. [K3]), where [W] e Hgm(W, £1) 
denotes the fundamental class of W in the sense of [K3, Appendix A]. 
By using the cup product pairing U: H;;'(W, £1)XH;;'(W, £1)-+H~m(w, 
£1), we define a form 

by the identity 

+= 
leu, v)= L; ew[(UUtiv)n[w]]t i, 

i==-= 

where ew: Ho(W)-+R denotes the augmentation map. For x=u n [W] 
and y= v n [W], we have the identity 

ew[(U U tiV) n [W]] = Intw (x, t-iy) 

by [K3, A.4J, and the latter is 0 except a finite number of i by the defini
tion of the intersection pairing Intw. Hence 1 is well defined. The fol
lowing two properties are easily established: 

1.1. l(fu, v)=fl(u, v)=l(u,Jv) for fe R<t). 

1.2. lev, U)=e(m)J(u, v). 

Here - denotes the involution on R<t) sending t to t- 1• We define a 
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t-Hermitian R<t)-form 

s: H';'CW, M)XH';'(W, M)---+R<t) 

by the identity S(u, v)=l(u, v) (if e(m)=I) or S(u, v)=l(u, (t -t-1)v) 
(if e(m)=-I). Let T';'(W,M)=TorR<t)H';'(W,M) and B';'(W,M)= 
H';'(W, M)/T';'(W, M). Since R<t) is a principal ideal domain, B';'(W, M) 
is R<t)-free of finite rank. By (1.1),1 and S induce forms 

B';'(W, M)XB';'(W, M)---+R<t), 

also denoted by 1 and S, respectively. Let A(t) be an R<t)-matrix, which 
is t-Hermitian, representing the t-Hermitian form S on B';'(W, M). For 
x E [-1,1], let w'" be the complex number x+(I_X2)1/2i of norm 1. As 
in [K3, § 5], we define 

!'a+o(A(t»= lim sign A(w",) 
x-a+O 

for a+O E [-1, 1] and 

!'a_o(A(t»= lim signA(wx ) 
x ......... a-O 

for a-O E [-1, 1]. It is easy to see that!' a±o(A(t» are idenpendent of a 
choice of A(t) representing S. 

Definition 1.3. !'~±oCW)=!'a±o(A(t» for all a±O E [-1,1]. 

We also define forms 

and 

S: HmCW) X Hm(W)---+R<t) 

by the identities I(x, y)=l(u, v) and sex, y)=S(u, v) for x=u n [W), y= 
v n [W). Then we have 

+00 +00 

I(x, y)= L; Intw(X, t-iy)t i = L; Intw(x, tiy)t-t, 
i=-oo 

which is intw(x, y) in [K3, Appendix C] and Sex, y)=/(x, y) (if e(m) = 1) 
or S(x,y)=/(x, (t-l_t)y) (ife(m)=-I). Noting that l(Jx,y)=fl(x,y) 
=/(x,fy) for fE R<t), we see that I and S also induce forms 

Bm(W) X Bm(W)---+R<t), 
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also denoted by I and S, repectively. Since n [W] induces a t-anti iso
morphism B~(W, M)2::Bm(W), it follows that T~±o(W)=Ta±o(A(t)) for 
any t-Hermitian R<t)-matrix A(t) representing the form S on Bm(W). 
The invariants a~(M) are briefly defined as follows (see [K3] for details): 
Given (M, i), we have an ~(m-l)-symmetric pairing Tm-l(M) X Tm-l(M) 
~ Tzm-z(M) induced from the cup product pairing Hm-l(M) X Hm-l(M) 
~Hzm-z(M) and a t-invariant unique homomorphism (1: Tzm-z(M)--+R, 

where T*(M) =HomR [T*(M), R], T*(M) = TorR(t>H*(M). The quad
ratic form b: Tm-\M) X Tm-l(M)--+R is defined by the identity b(u, v) 
=(1(uUv) (if e(m)=-I) or b(u, v)=(1(uU(t-t- 1)v) (if ~(m)=I). Let 
Tm-l(M)a be the Pa(t)-component of Tm-l(M) withPa(t) being t Z -2at+ 1 
(if a e (-1, 1)) or t =+= 1 (if a= ± 1). Then a~(M) is defined to be the 
signature of b I Tm-l(M)a. Let at(M) be the signature of b. Then we have 
at(M) = L;aE[-I,l] a~(M). We shall prove the following: 

Theorem I. For all a e (-1, 1), a~(M)= T~_o(W)-T~+o(W), and 
a~(m)(M)=~(m)(T~(m)_e(m)oCW)-sign W). 

Note that the invariant a~e(m><M) does not appear in Theorem 1. 
Since T~±o(W) are locally constant on a except a finite number of a (cf. 
[K3, § 5]), we see that Theorem I is equivalent to the following: 

Theorem I'. Foralla±Oe[-I, 1], T~_o(W)-sign W=L;XE[a.l]at(M) 
(if ~(m)= 1) or - L;XE[-I,a) at(M) (if ~(m)= -1), and T~+oCW)-sign W = 
L;XE(a,l] at(M) (if ~(m)= 1) or - L;XE[-l,apt(M) (if ~(m)= -1). 

Here are two remarks on the invariant a~e(m><M). 

Remark 1.4. When ~(m)= -1, we have at(M) =0, so that by Theo
rem I 

ai(M) = - L; at(M)=Ti_o(W)=Ti_o(W)-sign W. 
xE [-1,1) 

To see that at(M)=O, we first assume that r has a leaf U in W (see [K3] 
for this terminology) so that v=au is a leaf of i in M. Then at(M)= 
sign V (cf. [K3]), which is clearly 0. If r has no leaf in W, we consider 
the product (W, M) X Cpz=(Wp, Mp) and r p e H1(Wp ; Z) corresponding 
to r. Then by transversality on a map fp: W p--+S 1 respresenting r p (cf. 
Kirby/Siebenmann [K/S]), r p has a leaf in Wp whose boundary is a leaf of 
i p in Mp. Hence atp(Mp) =0. By [K3, Lemma 1.2], atp(Mp)=at(M), 
so that at(M) =0. 

This construction (Wp, M p, r p) from (W, M, r) will be used later. 
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Remark 1.5. When e(m) = 1, t'~±o(W) and sign W do not restrict 
a~l(M). In fact, we have the following: 

Proposition. For each integer s=1'=O and each m>O with e(m) = 1, 
there is a compact connected oriented 2m-manifold W with an element 
r E Hl(W; Z) such that sign W=t'~±o(W)=O for all a±O E [-1,1], but 
a~l(M)=s. 

To capture the invariant a~l(M) in the case e(m) = 1, we define 
signr W to be the signature of the double covering space of W associated 
with the (mod 2) reduction r(2) E Hl(W; Z2) of r. By convention, 
signrW=O if e(m) = -1. We shall obtain thefollowing: 

Theorem II. When e(m) = 1, a~tCM)=signrW-sign W-t'~1+o(W). 

Before concluding this section, we give a note from the bordism 
theory. 

Remark 1.6. We consider a pair (M 2m-l, t) which may not be a 
boundary. If some multiple N(M, t) (N)O) is the boundary of a pair 
(W, r), then we can see that a~(M), a E [-1, 1], are still peripheral invari
ants. In fact, the resulting identities can be obtained as the identities in 
Theorems I, II with the right hand sides divided by N. When e(m) = 1, 
some multiple of (M, t) is a boundary. In fact, we have a natural iso
morphism .Q~lff(Sl)Q9Q~.Q10P(Sl)Q9Q by Wall [W, p. 190] and .Q~Iff(Sl)~ 
[.Q~I':;Q9Hl(Sl; Z)]EB[.Q~lffQ9HO<Sl; Z)] by ConnerjFloyd[C/F]. .Q~IffQ9Q 

is well-known by Thorn to be the algebra on generators represented by 
Cp2i, i=O, 1,2, .. '. In case e(m) = 1, we have .Qi;;'~l(Sl)Q9Q=O, imply
ing the above assertion. When e(m) = -1, the same assertion does not 
hold in general. In this case, note that at(M) is a bordism invariant (cf. 
Remark 1.4) and if m> 3, then by [KjS] t has a leaf V in M. Then we 
can see that some multiple of (M, t) is a boundary if and only if at(M) = 0 
(when m= 1,3) or V represents 0 in Qi;;'P-2Q9Q (when m>3 and e(m) = -1). 

§ 2. Several properties on the signature invariants 

Lemma 2.1. Assume that W is closed and (W, r) is the boundary of a 
pair (X, r x) with X a compact oriented manifold and rx E Hl(X; Z). Then 
t'~±o(W)=Ofor all a±O E [-1,1]. 

Proof Consider the following exact part (obtained from the exact 
sequence of the infinite cyclic covering space pair (X, W)): 
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where R(t) is the quotient field of R<t) and H*( )R(t) =H*( )®R<t)R(t). 
By the Blanchfield duality (cf. [K3, Appendix C]), the form Ion BmCW) is 
non-singular. Hence the extension of Ito Hm(W)R(t) (also denoted by I) 
is non-singular. Similarly, we obtain the non-singular form 

Ig: Hm+I(X, W)R(t) XHm(X)R(t)~R(t) 

induced from Intg in [K3, Appendix C]. Note that I(ox, y)=Ig(x, iiy)) 
for x E Hm+1(X, Whet) and y E Hm(Wh(t). Then 1m o=(Im 0)1. with 
respect to I on Hm(W)R(t). Let A+(t) be at-Hermitian R(t)-matrix 
representing the extension of S to Hm(Wh(t). It is easy to see that 

Ta±o(A+(t))= lim signA+(w,,) 
z-a±O 

are well defined and independent of a choice of A+(t) and, in particular, 
equal to T~±o(W). Since 1m o=(Im 0)1., we have that Ta±o(A+(t))=O, so 
that T~±o(W)=O, for all a±O E [-1,1]. This completes the proof. 

Lemma 2.2. When r=o or Wis closed, T~±o(W)=sign Wfor all a± 
o E [-1,1]. 

Proof When r=o, the identities T~±o(W)=sign W follow from the 
definition of the form 1. When W is closed, we see from the bordism 
theory (cf. Remark 1.6) that some multiple N(W, r) is bordant to a pair 
(Wo, ro) with ro=o. By Lemma 2.1 and the above remark, NT~±o(W)= 
T~o±o(Wo)=sign Wo=Nsign W, so that T~±o(W)=sign W. This completes 
the proof. 

The following is an infinite cyclic covering version of the Novikov 
addition theorem (cf. [A/S, Proposition 7.1]): 

Lemma 2.3. Assume that W is splitted into two compact submanifolds 
WI' W2 by a closed orientable (2m-I)-submanifold Mo in Int W. Let 
ri=r I Wi' i= 1,2. Then we have 

for all a±O E [-1,1]. 

Proof. Let Bi = 1m [Hm(W;)R(t) -* Hm(Wh(t)], i = 1, 2. By the 
MayerJVietoris sequence for (W; WI' W 2 ; Mo) and the Blanchfield duality, 
we have an orthogonal splitting Hm(Wh(t) = B"t 1.Bt 1. (CEBD) with 
respect to the (extended) form Ion Hm(W)R(t) such that Bt is a maximal 
non-singular R(t)-subspace in B; and C=lm [Hm(Mo)R(t)EBHm(M)R(t)-* 
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H",(W)R(t)] (M =aW) and a I D: D~Im a for the MayerfVietoris boundary 
a: H",(W)R(t)---+H"'_l(Mo)R(t). Using the R(t)-extension 10 of the Blanch
field duality pairing intM'o: Bm_1(Mo) X Bm(Mo)---+R(t) in [K3, Appendix 
C], we see that for each x:;t:O in D, there is Yo in H",(Mo)R(t) such that 
Io(ax, yo):;t:O. But, Io(ax, yo)=I(x, y) for the image y of Yo under 
H",(Mo)R(t)---+H",(W)R(t). Hence we have an R(t)-subspace CoC C such 
that II (CoE8D) is non-singular. Since II C=O, we have an orthogonal 
splitting (CoE8D) -'-C1 of C E8 D for some C1 in C, so that the signature 
invariants 1:",,±o of II (CE8D) are 0. Clearly, the signature invariants 1:",,±o 
of II Bt are equal to 1:"~'±O(Wi). The result follows. 

Lemma 2.4. Let (Wi' ri ), i= 1, 2, have the same boundary (M, t). 
Then we have 

for all a±O E [-1,1]. 

Proof It is direct from Lemmas 2.2 and 2.3. 

Lemma 2.5. Let (Wp, Mp) = (W, M) X Cp2 and 'fp E Hl(Wp: Z) 
correspond to r E Hl(PV; Z). Then we have 1:"~o(Wp)=1:"~±o(W) for all 
a±OE [-1, 1]. 

Proof Note that 

B~+2(Wp, Mp)=[B~-2(W, M)C8lH4(CP2)]E8[B~(W, M)C8lH2(CPZ)] 

E8[B~+2(W, M)C8lHO(CPZ)] 

and the form lp on B~+2(Wp, Mp) vanishes on the first and third sum
mands, and the second summand is orthogonal to the first and third. 
The restriction lp I B~(W, M)C8lH2(CP2) is clearly isomorphic to the form 
I on B~(JV, M). Thus the result follows easily. 

§ 3. A special construction and the signature invariants 

We consider a pair (M, t) (which may not be boundary) such that M 
is a closed oriented (2m-I)-manifold and t E Hl(M; Z) has a leaf V. 
We orient the product MX [-1, 1] so that MX 1 with the induced orienta
tion is identified with M. Let Ny be a bicollar neighborhood of V in M. 
Let W.=c1(Mx[-I, I]-NyX[-Ij2, 0]) and U=VX[O, 1]. By using 
the product framing of Ny X [-1/2, 0], we identify (Ny X [-1/2, 0], 
a(NyX[-Ij2,0]), VX( -1/4» with (VXD2, VXS1, VXO). Note that 
MX[-I, I]=W.U VXD2 and aWe = MX(-I)+ VXS1+M. By the 
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Pontrjagin/Thom construction, we have an element r e e Hl(We; Z) such 
that U is a leaf of r e, re I M=t, re I MX( -1)=0 and re I VXS 1 is repre
sented by the projection Vx SI---+SI. Let A be a linking matrix on Km_1(V) 
=Ker [i*: Hm_1(V)---+Hm_1(M)] (cf. [K3]). Let A«m-l)(t) be the associated 
t-Hermitian matrix [(1- t -1)-e(m-l)(I-t)][(I-t)A-e(m-l)(I-t-1)A1 
=[(1 - t -1)+e(m)(I- t)][(I- t)A+e(m)(I- t -1)A']. 

Lemma 3.1. 'l:~c±o(We) =e(m)'l: Q,±o(A«m-l)(t)) for all a±O e [-1, 1]. 

Proof Let W~ be the manifold obtained from We by splitting along 
U. Let U+ and U- be copies of U in aw~ so that U± ~ ± U. The infinite 
cyclic covering space -We of We associated with r e is constructed from the 
topological sum of copies (W~)j, j e Z, of W~ by pasting Uj_l to Ui, so 
that t translates each (W~j_l to (W~)j" By the MayerfVietoris sequence, 
we have the following R<t>-exact sequence (cf. Levine [L]): 

J _ a 
~Hm(W~®R<t>~Hm(We)~Hm_l(U)®R<t> 

r-tI+ 
* *)Hm_l(W~®R<t>~, 

where j±: U ~ U+ c W~ and J is induced by the natural map from the 
topological sum of (W~)/s to -We. LettingaW~=M*+MX(-I), we 
have a homeomorphism 

h: (W~; M*, Mx(-l))~(MX[-I, 1], MX 1, Mx(-I)) 

such that hi MX (-1) is the identity. Note that the following square 

is commutative, where the left vertical map is induced from the inclusion 
V = V X 1 c U and the right vertical map is induced from the composite 
M=MX 1 ~ M*c W~. Then we see that the above exact sequence is ,,-1 
reduced to the following exact sequence with J', a' induced from J, a: 

Let el={cl}, ... , e. = {c.} be a basis for Km_1(V). Let ci+) and d-) be 
copies of the cycle Ct X (1/2) in U+ and U-, respectively. Let ci+) and 
ct) be m-chains in W~ such that aci±)=ci±). Let s(Ct) be the m-cycle 
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tci-)-ci+) in JVe, i=l, ... , s, where we identify W~ with (W~ocJVc. By 
the sequence (#), there is an R(t)-basis el, ... , e., ea+l' ... , en of Bm(JV.) 
such that ei={s(ci)} for i<s and eieImJ' for i>s+l. If i or j is 
>s+l, then clearly I(et, ej)=O, since 1mI' is represented by cycles in 
MX (-I). Assume that both i and j are <So Then 

I(e" ej) = Intw,(s(ci), t -lS(Cj»t+ Int w.(s(ci), s(cJ) + Intw.(s(ci), ts(cj»t- 1 

= -Intw~(ci+l, cj-l)t+lntw~(ci"(-l, cj-l)+Intw;(ci"(+l, cj+l) 

- Int (C(-l C(+l)t- l We i 'j , 

where ci"(±l are m-chains similar to Ci±l but beginning with the cycle 
ci X(I/4) in place of ci x(1/2). Let A=(atj) with atj=LinkM(ct, cj) (cf. 
[K3, § 0]). Noting that hU- is a translation (with opposite orientation) 
of h U + in M in the positive normal direction, we have 

Intw;(ci+ l, cj-l)=e(m) LinkM(c" cj) = LinkM(ci, ci)=aji , 

Intw;(ci"(-l, cj-l)=e(m) LinkM(ci , cj)=aji , 

Intw;(ci"(+l, cj+l) =e(m) LinkM(ct, cj) =e(m)aij , and 

Intw;(ci- l, cj+l)=e(m) LinkM(ct, cj)=e(m)aij" 

That is, we have I(e" ej)=(l-t)aji+e(m)(l-t-l)aiJ" Hence the form I 
on Bm(JV.) is represented by the block sum of (l-t)A'+e(m)(I-t- l)A 
and a zero matrix. When e(m) = 1, it is easy to see that 

'Z"~·±o(W.)='Z"a±o((1- t)A' +(1-t-l)A)='Z"a±o(A-l(t». 

When e(m) = -1, 

'Z"~·±o(W.)='Z" a±oC(t -1_ t)[(1- t)A' -(1- t -1)A]) = -'Z"a±o(Al(t». 

This completes the proof. 

Combining Lemma 3.1 with the Main Theorem of [K3], we obtain 
the following: 

Lemma 3.2. For all a e (-1, 1), a~(M) = 'Z"~·_o(Wc)-'Z"~·+o(W.) and 
a~(ml(M) =e(m}r~(ml -e (mlo(W,). 

Let W~2l be the double covering space over W. associated with r e(2) e 
Bl(W.; Z2). Let W(2l= W?l U VXD2 be the double branched covering 
space over Mx [ -1, 1] = We U V X D2 with branch set V X 0 C V X D2. 

Lemma 3.3. When e(m) = 1, sign W~2l = sign W(2l =at(M). 
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Proof The first identity is a result of the Novikov addition theorem, 
for sign VXD2 =0. We show the second identity. Let W' be the 
manifold obtained from MX [-1, 1] by splitting along V X (0, 1]. Let U+ 
and U+ be copies of VX[O, 1] in W' with U+ n U-= VXO. Let V= 
U+ U U-. Taking another copy (W~, VI = Ut U U1) of (W', V = U+ U 
U-), we can consider that W(2) is the union W' U W~ identifying V with 
VI so that U+=U1 and U-=Ut. Note that (W', V)=(MX[-I, 1], 
NvX 1). Let el={cl}, ... , es = {c.} be a basis for Km_I(V). By the 
Mayer/Vietoris sequence, we have a basis el, ... , e., e.+ I, ... , en of 
Hm(W(2» such that ei = {S(Ci)} for i <S and, for i >s+ 1 ei is represented 
by a cycle in aW(2), where s(ci)=ct-cl for m-chains ct in W~ and cl in 
W~ with act=acl=ctxO in VXOcV=VI. If i or j is >s+l, then 
clearly IntJ!tl2l(ei ,ej)=O. Let i andj be <So Since e(m)=I, we have 
Int-wC2,(ei, ej)=aij+aji with atj=LinkM (ct, cj) (cf. The proof of Lemma 
3.1). Hence for the linking matrix A=(atj) on Km_I(V), Int-wC2' is repre
sented by the block sum of A+A' and a zero matrix, so tliat sign W(2) = 
sign (A+A'). The identity sign(A+A')=at(M) was given in the Main 
Theorem of [K3]. This completes the proof. 

Remark 3.4. The method of construction and computation which 
we used in this section is familiar in knot theory (cf. for example Kauffman 
[K], Contreras-Caballero [C], Litherland [LiD. Neumann [N2, p. 166] 
has also used a similar construction in his computation of r-invariants. 

§ 4. Proof of Theorems I, II and the Proposition 

4.1. Proof of Theorem 1. First we assume that r E HI(W; Z) has a 
leaf U in W whose boundary V is a leaf of t E HI(M; Z). Let (WI> M I) 
be a copy of (W, M). Let (We, re) be the pair constructed in Section 3. 
By Lemma 2.4, we can assume that W is the union U X SI U We U WI 
identifying two copies of V X S\ contained in U X SI and We, and then 
identifying MX(-I) in We with MI and rl We=re and rl UXSI is a 
natural extension of rei VXS I and rl WI=O. Then by Lemmas 2.2 and 
2.3, !'~±o(W)=sign W +!'~'±o(We), for !,~lfoXSl(UXSI)=Oo By Lemma 3.2, 
a~(M)=!'~'_o(We)-!'~'+o(We)=!'~_o(W)-!'~+o(W) for all a E (-1, 1) and 
a~(m><M)=e(m)!'~(m)_«m)o(Wc)=e(m)(!'~(m)_«m)o(W)-sign W). If r has no 
leaf, then by [K/S] r p has a leaf in Wp whose boundary is a leaf of t p in 
Mpo By Lemma 2.5 and [K3, Lemma 1.2], we have the same conclusion. 
This completes the proof. 

If W(2) is a double covering space of a closed oriented 2m-manifold 
W, then it is known that sign W(2) =2 sign W. In fact, it follows, since 
Q'f~(K(Z2' 1»@Q=Q¥~f(K(Z2' 1»@Q=Q¥~f@Q by [W, p. 190] and [C/F]. 
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Hence we obtain from the Novikov addition theorem the following: 

Lemma 4.2. For compact oriented 2m-manifolds Wi' i= 1,2, with the 
same boundary M, assume that a double covering M(2)--*M is extended to 
coverings Wi2)--* Wi' i = 1,2. Then 

sign Wf2) - 2 sign W, = sign W~2) - 2 sign W2. 

The following lemma means that at(M) in the case sCm) = 1 is the a
invariant of the double covering space of M associated with t(2) E 

H'(M; Z2) (though their signs are different) (cf. [HjZ]). 

Lemma 4.3. When s(m) = 1, at(M)=signr W-2 sign W. 

Proof Assume that r has a leaf in W whose boundary is a leaf of t 
in M. By Lemma 4.2, we can assume that (W, r) is the pair constructed 
in 4.1. Then signr W = 2 sign W + sign W~2) = 2 sign W + at(M) by the 
Novikov addition theorem and Lemma 3.3. If r has no leaf, then we 
consider (Wp , M p , r p). By [KjS] and [K3, Lemma 1.2], we have the same 
conclusion. This completes the proof. 

4.4. Proof of Theorem II. It follows from Theorem I' and Lemma 
4.3, since at(M) = .I:aE[-','] a~(M). 

4.5. Proof of the Proposition. Let h: S' X D2 --* S' X D2 be an 
orientation-preserving homeomorphism such that (h I S' X aD2)*[S' X q] = 
-[Slxq]+e[PxaD2] and (hIS'xaD2)*[PXaD2]=-[PXaD2j in H1(SIX 
aD2; Z), where p E SI, q E aD2 and e is a non-zero integer. Let W be the 
mapping torus of hand r E Hl(W; Z) be an element represented by the 
associated bundle projection W --*S'. Since W is homotopy equivalent 
to the Klein bottle, we have that HlW)=BlW)=O. Hence sign W = 
!"~±o(W)=O for all a±O E [-1, 1]. But Tl(M)=H,(M)~R<t>j(t+1)2 
and the null space of the quadratic form b on Tl(M) is easily seen**) to 
be (t+ 1)T1(M). This means that b induces a non-singular form on 
Tl(M)j(t+I)Tl(M)~R<t>j(t+I), so that a~lM)=±1. Choose an 
orientation of W so that a~I(M)=sjlsl. Let (W., r.) be a pair such that 
W. is a boundary-disk sum of lsi copies of Wand r. E H'(W.; Z) is 
determined by lsi copies of r. Clearly, this pair gives a desired pair in 
dimension 4. A desired pair in dimension 2m is obtained from this pair 
by taking the product with (mj2)-1 copies of Cp2 (cf. [K3, Lemma 1.2] 
and Lemma 2.5). This completes the proof. 

**> Use the Duality Theorem of [K3, § 1]. 
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Notes added in proof: We used Lemma 1.1 of [K3] in this paper, 
but the proof of [K3] was incorrect. The true proof is found in [K2, pp. 
99-100]. 

[A/S] 

[A/P/S] 

[C/F] 

[C] 

[H/Z] 

[K] 

[Kl] 

[K2] 

[K3] 

[K/S] 

[L] 

[Li] 

[M] 

[Nl] 

[N2] 

[W] 

References 

M. F. Atiyah and I. M. Singer, The index of elliptic operators, III, 
Ann. of Math. (2) 87 (1968), 546-604. 

M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and 
riemannian geometry, II, Math. Proc. Cambridge Philos. Soc. 78 
(1975),405-432. 

P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Springer
Verlag, 1964. 

L. Contras-Caballero, Periodic transformations in homology 3-
spheres and the Rohlin invariant, Low-Dimensional Topology, Lon
don Math. Soc. Lecture Note Series 48, Cambridge Univ. Press, 
1982, 39-47. 

F. Hirzebruch and D. Zagier, The Atiyah-Singer Theorem and Ele
mentary Number Theory, Math. Lec. Series, 3, Publish or Perish, 
1974. 

L. H. Kauffman, Branched coverings, open books and knot periodi
city, Topology 13 (1974), 143-160. 

A. Kawauchi, On quadratic forms of 3-manifolds, Invent. Math., 43 
(1977), 177-198. 

--, On a 4-manifold homology equivalent to a bouquet of surfaces, 
Trans. Amer. Math. Soc., 262 (1980),95-112. 

--, The signature invariants of infinite cyclic coverings of closed 
odd dimensional manifolds, Algebraic and Topological Theories-to 
the memory of Dr. T. MIYATA, Kinokuniya Co. Ltd., 1985, 52-
85. 

R. C. Kirby and L. C. Siebenmann, Foundational Essays on Topo
logical Manifolds, Smoothings, and Triangulations, Ann. of Math. 
Studies, 88, Princeton University Press ,1977. 

J. Levine, Polynomial invariants of knots of codimension two, Ann. 
of Math., 84 (1966),537-554. 

R. A. Litherland, Cobordism of satellite knots, Four-Manifold Theory, 
Contemporary Mathematics, 35 (1984), 327-362. 

J. W. Milnor, Infinite cyclic coverings, Conference on the Topology 
of Manifolds, Prindle, Weber & Schmidt, 1968, 115-133. 

W. D. Neumann, Homotopy invariance of Atiyah invariants, Proc. 
Sympos. Pure Math. 32(2) (1978), 181-188. 

--, Signature related invariants of manifolds-I. Monodromy and y-
invariants, Topology 18 (1979), 147-172. . 

c. T. C. Wall, Surgery on Compact Manifolds, London Mathemati
cal Society Monographs, 1, Academic Press, 1970. 

Department of Mathematics 
Osaka City University 
Osaka 558, Japan 




