On 3-dimensional Bounded Cohomology of Surfaces

Tomoyoshi Yoshida

§ 1. Introduction

In [3], Gromov introduced the notion of the bounded cohomology $H_{b}^{*}(M, \boldsymbol{R})$ of a manifold M. This is the cohomology of the complex of singular cochains ϕ which have the property:

There exists a constant c such that $|\phi(\sigma)|<c$ for any singular simplex σ.

Let S be a closed oriented surface of genus $\geqq 2$. In [1] and [5], it is shown that $H_{b}^{2}(S, \boldsymbol{R})$ is infinitely generated.

In this paper, we shall show
Theorem 1. $\boldsymbol{H}_{b}^{3}(S, R)$ is infinitely generated.
Our method is an application of Thurston's theory of pleated (uncrumpled) surfaces in hyperbolic 3-manifolds ([7]).

§ 2. A construction of elements of $\boldsymbol{H}_{b}^{3}(\boldsymbol{S}, \boldsymbol{R})$

For a convenience, we choose and fix a complete hyperbolic structure on S.

Let f be a pseudo Anosov diffeomorphism of S. Let M_{f} be the mapping torus of f. It is the identification space obtained from $S \times[0,1]$ by equivalence relation $(x, 0) \sim(f(x), 1)(x \in S) . \quad M_{f}$ admits a complete hyperbolic structure which is unique up to isometry ([6]). The projection onto the second factor $S \times[0,1] \rightarrow[0,1]$ induces a fibering $p: M_{f} \rightarrow S^{1}$. Let \tilde{M}_{f} be the infinite cyclic regular covering space of M_{f} defined by the pull-back by p of $e: \boldsymbol{R} \rightarrow S^{1}$, where $e(t)=\exp 2 \pi \sqrt{-1} t, t \in \boldsymbol{R}$. The hyperbolic structure on M_{f} can be lifted to the hyperbolic structure on \tilde{M}_{f}. There is a natural inclusion $S \times[0,1) \subset \tilde{M}_{f}$ and let $j: S \rightarrow \tilde{M}_{f}$ be the embedding defined by $j(x)=(x, 0) \in S \times[0,1) \subset \tilde{M}_{f}$.

Let Δ be the standard 3-simplex in \boldsymbol{R}^{4}. Let $\sigma: \Delta \rightarrow S$ be a singular 3 -simplex of S. Then $j \sigma: \Delta \rightarrow \tilde{M}_{f}$ is a singular 3 -simplex of \tilde{M}_{f}. The universal covering space of \widetilde{M}_{f} is isometric to the hyperbolic 3 -space H^{3},
and there is a covering projection $q: H^{3} \rightarrow \tilde{M}_{f}$. There is a map $\widetilde{j \sigma}: \Delta \rightarrow H^{3}$ such that $q \widetilde{j \sigma}=j \sigma$. Let straight $(j \sigma)$ be the geodesic 3 -simplex in H^{3} with the same vertices as $\widetilde{j \sigma}$. The isometry class of straight $(j \sigma)$ depends only on $j \sigma$. We define a singular 3-cochain ϕ_{f} of S by

$$
\phi_{f}(\sigma)=\varepsilon \operatorname{vol}(\operatorname{straight}(j \sigma)),
$$

for each 3-simplex σ, where vol denotes the hyperbolic volume and $\varepsilon=+1$ if $\widetilde{j \sigma}$ maps Δ into H^{3} orientation preservingly and $\varepsilon=-1$ otherwise. Since the volume of geodesic 3 -simplices in H^{3} has a finite upper bound ([7]), ϕ_{f} defines a bounded 3-cocycle of S.

§ 3. Linear independence of ϕ_{f}

Let Λ be the space of all the geodesic laminations on S with geometric topology ([7] § 8). Λ is compact. Any homeomorphism of S induces a homeomorphism of Λ. For a pseudo Anosov diffeomorphism f of S, there are two mutually transverse geodesic laminations λ_{f}^{s} and λ_{f}^{u} such that they are invariant by f, and for each simple closed geodesic γ on S, $f^{k}(\gamma) \rightarrow \lambda_{f}^{s}$ and $f^{-k}(\gamma) \rightarrow \lambda_{f}^{u}$ as $k \rightarrow+\infty$ ([2] [7]). λ_{f}^{s} and λ_{f}^{u} are called as the stable and the unstable geodesic lamination of f respectively.

Let T be a (not simplicial) triangulation of S such that it contains a simple closed geodesic γ and it has only one vertex lying on γ. Let τ_{γ} be the Dehn twist along γ. Let $T_{n}=\tau_{r}^{n} T$ be the triangulation of S which is the image of T by τ_{r}^{n} for each non-negative integer $n\left(T_{0}=T\right)$. Let T_{∞} be the ideal traingulation of S which is the limit of T_{n} as $n \rightarrow \infty$.

Let $c, c_{n}=\tau_{r *}^{n} c$ and $c_{\infty}=\lim c_{n}$ be the singular 2-chains of S associated to T, T_{n} and T_{∞} respectively which represent the fundamental class of S.

Since $f_{*} c_{n}$ is homologous to c_{n}, there is a singular 3-chain d_{n} such that $\partial d_{n}=f_{*} c_{n}-c_{n}$. We define a sequence of singular 3-chains of S by

$$
D_{n}(f)_{k}=\sum_{i=-k}^{k} f_{*} d_{n}
$$

for $k=1,2, \cdots$ and $n=0,1, \cdots, \infty$. Then $\partial D_{n}(f)_{k}=f_{*}^{k+1} c_{n}-f_{*}^{-k} c_{n}$.
Proposition 1. Let f and g be two pseudo Anosov diffeomorphisms of S. Let $\lambda_{f}^{s}, \lambda_{f}^{u}, \lambda_{g}^{s}$ and λ_{g}^{u} be the stable and the unstable geodesic laminations of f and g respectively. If none of λ_{f}^{s} and λ_{f}^{u} coincides with any of λ_{g}^{s} and λ_{g}^{u}, then ϕ_{f} and ϕ_{g} are linearly independent in $H_{b}^{3}(S, R)$.

Proof. Let $j_{f}: S \rightarrow \tilde{M}_{f}$ and $j_{g}: S \rightarrow \tilde{M}_{g}$ be the embeddings given in Section 2. For each n and k, the image of the 3-chain $j_{f}\left(D_{n}(f)_{k}\right)$ under the projection $\tilde{M}_{f} \rightarrow M_{f}$ gives a singular 3-chain of M_{f} representing $(2 k+1)$-times the fundamental class of M_{f}. Hence we have $\phi_{f}\left(D_{n}(f)_{k}\right)$
$=(2 k+1) \operatorname{vol}\left(M_{f}\right)$ by definition of ϕ_{f}. In particular,

$$
\lim _{k \rightarrow \infty} \frac{1}{2 k+1} \phi_{f}\left(D_{\infty}(f)_{k}\right)=\operatorname{vol}\left(M_{f}\right)
$$

Next we consider $\phi_{f}\left(D_{\infty}(g)_{k}\right)$. Projecting the chain of the ideal geodesic simplices, straight $\left(j_{f}\left(D_{\infty}(g)_{k}\right)\right)$, from H^{3} to \tilde{M}_{f}, we may consider straight $\left(j_{f}\left(D_{\infty}(g)_{k}\right)\right)$ as an ideal singular 3-chain of \tilde{M}_{f}. The boundary, ∂ straight $\left(j_{f}\left(D_{\infty}(g)_{k}\right)\right)$, consists of two pleated surfaces S_{k} and S_{-k} which are the straightenings of the ideal triangulations $g^{k+1} T_{\infty}$ and $g^{-k} T_{\infty}$ of S in \tilde{M}_{f} respectively. The bending locus $b\left(S_{k}\right)$ (resp. $b\left(S_{-k}\right)$) of S_{k} (resp. S_{-k}) is the geodesic lamination which is the straightening of the ideal 1 -simplices of $g^{k+1} T_{\infty}$ (resp. $g^{-k} T_{\infty}$). Since T_{∞} contains a simple closed geodesic γ, $b\left(S_{k}\right)\left(\operatorname{resp} . b\left(S_{-k}\right)\right)$ converges in Λ to a geodesic lamination λ_{+}(resp. λ_{-}) which contains $\lambda_{g}^{s}\left(\right.$ resp. $\left.\lambda_{g}^{u}\right)$ as $k \rightarrow \infty$. By assumption, none of λ_{+}and λ_{-}contains any of λ_{f}^{s} and λ_{f}^{u}. By Thurston's realization theorem of geodesic laminations in \tilde{M}_{f} ([7] 9.3.10), there exist two pleated surfaces S_{+} and S_{-}in \tilde{M}_{f} whose bending laminations are λ_{+}and λ_{-}respectively. Since T_{∞} is an ideal triangulation of S, both of $S-\lambda_{+}$and $S-\lambda_{-}$consist of finite ideal triangles. Hence S_{+}and S_{-}are uniquely determined, and the pleated surfaces S_{k} and S_{-k} converge to S_{+}and S_{-}respectively as $k \rightarrow$ ∞ ([7] 9.5.6, 7). Therefore $\phi_{f}\left(D_{\infty}(g)_{k}\right)$ converges to the volume of the compact region bounded by S_{+}and S_{-}in \tilde{M}_{f} as $k \rightarrow \infty$, and it is bounded. Hence,

$$
\lim _{k \rightarrow \infty} \frac{1}{2 k+1} \phi_{f}\left(D_{\infty}(g)_{k}\right)=0
$$

Exchanging f and g, we have

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{1}{2 k+1} \phi_{g}\left(D_{\infty}(f)_{k}\right)=0 \quad \text { and } \\
& \lim _{k \rightarrow \infty} \frac{1}{2 k+1} \phi_{g}\left(D_{\infty}(g)_{k}\right)=\operatorname{vol}\left(M_{g}\right)
\end{aligned}
$$

Now suppose that $a \phi_{f}+b \phi_{g}=0$ in $H_{b}^{3}(S, R)$ for some $a, b \in \boldsymbol{R}$ and $a b \neq 0$. Then $a \phi_{f}+b \phi_{g}=\delta \omega$ for some bounded 2 -cochain ω of S. For each $0 \leqq$ $n<+\infty$,

$$
\left(a \phi_{f}+b \phi_{g}\right)\left(D_{n}(f)_{k}\right)=(\delta \omega)\left(D_{n}(f)_{k}\right)=\omega\left(f_{*}^{k+1} c_{n}\right)-\omega\left(f_{*}^{-k} c_{n}\right) .
$$

As ω is bounded and both of $f_{*}^{k+1} c_{n}$ and $f_{*}^{-k} c_{n}$ are sums of a constant number of simplices for each k, it follows

$$
\lim _{k \rightarrow \infty} \frac{1}{2 k+1}\left(a \phi_{f}+b \phi_{g}\right)\left(D_{n}(f)_{k}\right)=0
$$

Since ϕ_{f} and ϕ_{g} are continuous cochains, we have

$$
\lim _{k \rightarrow \infty} \frac{1}{2 k+1}\left(a \phi_{f}+b \phi_{g}\right)\left(D_{\infty}(f)_{k}\right)=0 .
$$

Replacing $D_{\infty}(f)_{k}$ by $D_{\infty}(g)_{k}$, the same equality holds. However this contradicts to the above facts.
q.e.d.

The above proposition can be generalized in straightforward way as follows,

Proposition 2. Let f_{1}, \cdots, f_{m} be pseudo Anosov diffeomorphisms of S. If the stable and the unstable geodesic laminations of f_{1}, \cdots, f_{m} are all distinct from each other, then $\phi_{f_{1}}, \cdots, \phi_{f_{m}}$ are linearly independent in $H_{b}^{3}(S, \boldsymbol{R})$.

Now let α and β be two simple closed curves on S such that S $(\alpha \cup \beta)$ is a disjoint union of open 2-discs. Then $f_{m}=\tau_{\alpha}^{m} \tau_{\beta}^{-m}$ is a pseudo Anosov diffeomorphism of S for each positive integer m ([8]). In [4], Masur calculates the stable and unstable geodesic laminations λ_{m}^{s} and λ_{m}^{u} of f_{m} (in terms of measured foliations and quadratic differentials), and it is shown that $\lambda_{m}^{s} \rightarrow \alpha$ and $\lambda_{m}^{u} \rightarrow \beta$ as $m \rightarrow \infty$. Hence we may choose an infinite family $\left\{f_{m}\right\}$ of pseudo Anosov diffeomorphisms such that each finite subset of $\left\{f_{m}\right\}$ satisfies the condition of Proposition 2. This proves Theorem 1.

References

[1] Brooks, R. and Series, C., Bounded cohomology for surface groups, Topology, 23, No. 1, (1984), 29-36.
[2] Casson, A. J., Automorphisms of surfaces after Nielsen and Thurston, Lecture Note, Univ. of Texas, (1983).
[3] Gromov, M., Volume and bounded cohomology, Publ. Math. I.H.E.S., 56 (1982), 5-99.
[4] Masur, H., Dense geodesics in moduli space, Riemann surfaces and related topics, Ann. of Math. Studies, 97 (1981), 417-438.
[5] Mitsumatsu, Y., Bounded cohomology and l^{1} homology of surfaces, Topology, 23, No. 4, (1984), 465-471.
[6] Sullivan, D., Travaux de Thurston sur les groupes quasifuchsiens et les variétés hyperboliques de dimension 3 fibrés sur S^{1}, Lecture Note in Math. 842, Springer-Verlag, (1981), 196-214.
[7] Thurston, W., The geometry and topology of 3 manifolds, Princeton Notes 1978.
[8] -, On the geometry and dynamics of diffeomorphisms of surfaces, preprint, Princeton, (1977).

Department of Mathematics
Faculty of Science
Okayama University
Okayama 700, Japan

