Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 173–176

On 3-dimensional Bounded Cohomology of Surfaces

Tomoyoshi Yoshida

§ 1. Introduction

In [3], Gromov introduced the notion of the bounded cohomology $H_b^*(M, \mathbf{R})$ of a manifold M. This is the cohomology of the complex of singular cochains ϕ which have the property:

There exists a constant c such that $|\phi(\sigma)| < c$ for any singular simplex σ .

Let S be a closed oriented surface of genus ≥ 2 . In [1] and [5], it is shown that $H_b^2(S, \mathbf{R})$ is infinitely generated.

In this paper, we shall show

Theorem 1. $H^3_b(S, \mathbf{R})$ is infinitely generated.

Our method is an application of Thurston's theory of pleated (uncrumpled) surfaces in hyperbolic 3-manifolds ([7]).

§ 2. A construction of elements of $H^3_b(S, R)$

For a convenience, we choose and fix a complete hyperbolic structure on *S*.

Let f be a pseudo Anosov diffeomorphism of S. Let M_f be the mapping torus of f. It is the identification space obtained from $S \times [0, 1]$ by equivalence relation $(x, 0) \sim (f(x), 1)$ $(x \in S)$. M_f admits a complete hyperbolic structure which is unique up to isometry ([6]). The projection onto the second factor $S \times [0, 1] \rightarrow [0, 1]$ induces a fibering $p: M_f \rightarrow S^1$. Let \tilde{M}_f be the infinite cyclic regular covering space of M_f defined by the pull-back by p of $e: \mathbb{R} \rightarrow S^1$, where $e(t) = \exp 2\pi \sqrt{-1} t$, $t \in \mathbb{R}$. The hyperbolic structure on M_f can be lifted to the hyperbolic structure on \tilde{M}_f . There is a natural inclusion $S \times [0, 1] \subset \tilde{M}_f$ and let $j: S \rightarrow \tilde{M}_f$ be the embedding defined by $j(x) = (x, 0) \in S \times [0, 1] \subset \tilde{M}_f$.

Let Δ be the standard 3-simplex in \mathbb{R}^4 . Let $\sigma: \Delta \to S$ be a singular 3-simplex of S. Then $j\sigma: \Delta \to \widetilde{M}_f$ is a singular 3-simplex of \widetilde{M}_f . The universal covering space of \widetilde{M}_f is isometric to the hyperbolic 3-space H^3 ,

Received January 25, 1985.

and there is a covering projection $q: H^3 \to \tilde{M}_f$. There is a map $\tilde{j\sigma}: \Delta \to H^3$ such that $q\tilde{j\sigma} = j\sigma$. Let straight $(j\sigma)$ be the geodesic 3-simplex in H^3 with the same vertices as $\tilde{j\sigma}$. The isometry class of straight $(j\sigma)$ depends only on $j\sigma$. We define a singular 3-cochain ϕ_f of S by

$$\phi_t(\sigma) = \varepsilon \text{ vol (straight } (j\sigma)),$$

for each 3-simplex σ , where vol denotes the hyperbolic volume and $\varepsilon = +1$ if $\tilde{j\sigma}$ maps Δ into H^3 orientation preservingly and $\varepsilon = -1$ otherwise. Since the volume of geodesic 3-simplices in H^3 has a finite upper bound ([7]), ϕ_f defines a bounded 3-cocycle of S.

§ 3. Linear independence of ϕ_f

Let Λ be the space of all the geodesic laminations on S with geometric topology ([7] § 8). Λ is compact. Any homeomorphism of S induces a homeomorphism of Λ . For a pseudo Anosov diffeomorphism f of S, there are two mutually transverse geodesic laminations λ_f^s and λ_f^u such that they are invariant by f, and for each simple closed geodesic $\tilde{\tau}$ on S, $f^k(\tilde{\tau}) \rightarrow \lambda_f^s$ and $f^{-k}(\tilde{\tau}) \rightarrow \lambda_f^u$ as $k \rightarrow +\infty$ ([2] [7]). λ_f^s and λ_f^u are called as the stable and the unstable geodesic lamination of f respectively.

Let T be a (not simplicial) triangulation of S such that it contains a simple closed geodesic γ and it has only one vertex lying on γ . Let τ_r be the Dehn twist along γ . Let $T_n = \tau_r^n T$ be the triangulation of S which is the image of T by τ_r^n for each non-negative integer n ($T_0 = T$). Let T_{∞} be the ideal traingulation of S which is the limit of T_n as $n \to \infty$.

Let $c, c_n = \tau_{r*}^n c$ and $c_{\infty} = \lim c_n$ be the singular 2-chains of S associated to T, T_n and T_{∞} respectively which represent the fundamental class of S.

Since f_*c_n is homologous to c_n , there is a singular 3-chain d_n such that $\partial d_n = f_*c_n - c_n$. We define a sequence of singular 3-chains of S by

$$D_n(f)_k = \sum_{i=-k}^k f_* d_n,$$

for $k=1, 2, \cdots$ and $n=0, 1, \cdots, \infty$. Then $\partial D_n(f)_k = f_*^{k+1}c_n - f_*^{-k}c_n$.

Proposition 1. Let f and g be two pseudo Anosov diffeomorphisms of S. Let λ_f^s , λ_f^u , λ_g^s and λ_g^u be the stable and the unstable geodesic laminations of f and g respectively. If none of λ_f^s and λ_f^u coincides with any of λ_g^s and λ_g^u , then ϕ_f and ϕ_g are linearly independent in $H_b^s(S, \mathbf{R})$.

Proof. Let $j_f: S \to \tilde{M}_f$ and $j_g: S \to \tilde{M}_g$ be the embeddings given in Section 2. For each *n* and *k*, the image of the 3-chain $j_f(D_n(f)_k)$ under the projection $\tilde{M}_f \to M_f$ gives a singular 3-chain of M_f representing (2k+1)-times the fundamental class of M_f . Hence we have $\phi_f(D_n(f)_k)$

=(2k+1) vol (M_f) by definition of ϕ_f . In particular,

$$\lim_{k\to\infty}\frac{1}{2k+1}\phi_f(D_\infty(f)_k)=\operatorname{vol}(M_f).$$

Next we consider $\phi_t(D_{\infty}(g)_k)$. Projecting the chain of the ideal geodesic simplices, straight $(j_t(D_{\infty}(g)_k))$, from H^3 to \tilde{M}_t , we may consider straight $(j_f(D_{\infty}(g)_k))$ as an ideal singular 3-chain of \widetilde{M}_f . The boundary, ∂ straight $(j_t(D_{\infty}(g)_k))$, consists of two pleated surfaces S_k and S_{-k} which are the straightenings of the ideal triangulations $g^{k+1}T_{\infty}$ and $g^{-k}T_{\infty}$ of S in \widetilde{M}_t respectively. The bending locus $b(S_k)$ (resp. $b(S_{-k})$) of S_k (resp. S_{-k}) is the geodesic lamination which is the straightening of the ideal 1-simplices of $g^{k+1}T_{\infty}$ (resp. $g^{-k}T_{\infty}$). Since T_{∞} contains a simple closed geodesic γ , $b(S_k)$ (resp. $b(S_{-k})$) converges in Λ to a geodesic lamination λ_+ (resp. λ_-) which contains λ_{α}^{s} (resp. λ_{α}^{u}) as $k \to \infty$. By assumption, none of λ_{+} and λ_{-} contains any of λ_{f}^{s} and λ_{f}^{u} . By Thurston's realization theorem of geodesic laminations in \tilde{M}_{t} ([7] 9.3.10), there exist two pleated surfaces S_{+} and S₁ in \tilde{M}_{f} whose bending laminations are λ_{+} and λ_{-} respectively. Since T_{∞} is an ideal triangulation of S, both of $S - \lambda_+$ and $S - \lambda_-$ consist of finite ideal triangles. Hence S_+ and S_- are uniquely determined, and the pleated surfaces S_k and S_{-k} converge to S_+ and S_- respectively as $k \rightarrow \infty$ ∞ ([7] 9.5.6, 7). Therefore $\phi_f(D_{\infty}(g)_k)$ converges to the volume of the compact region bounded by S_+ and S_- in \tilde{M}_+ as $k \to \infty$, and it is bounded. Hence,

$$\lim_{k\to\infty}\frac{1}{2k+1}\phi_f(D_{\infty}(g)_k)=0.$$

Exchanging f and g, we have

$$\lim_{k \to \infty} \frac{1}{2k+1} \phi_g(D_\infty(f)_k) = 0 \text{ and}$$
$$\lim_{k \to \infty} \frac{1}{2k+1} \phi_g(D_\infty(g)_k) = \operatorname{vol}(M_g).$$

Now suppose that $a\phi_f + b\phi_g = 0$ in $H^3_b(S, \mathbf{R})$ for some $a, b \in \mathbf{R}$ and $ab \neq 0$. Then $a\phi_f + b\phi_g = \delta\omega$ for some bounded 2-cochain ω of S. For each $0 \leq n < +\infty$,

$$(a\phi_{f}+b\phi_{g})(D_{n}(f)_{k}) = (\delta\omega)(D_{n}(f)_{k}) = \omega(f_{*}^{k+1}c_{n}) - \omega(f_{*}^{-k}c_{n}).$$

As ω is bounded and both of $f_*^{k+1}c_n$ and $f_*^{-k}c_n$ are sums of a constant number of simplices for each k, it follows

$$\lim_{k\to\infty}\frac{1}{2k+1}(a\phi_f+b\phi_g)(D_n(f)_k)=0.$$

Since ϕ_f and ϕ_g are continuous cochains, we have

$$\lim_{k\to\infty}\frac{1}{2k+1}(a\phi_f+b\phi_g)(D_{\infty}(f)_k)=0.$$

Replacing $D_{\infty}(f)_k$ by $D_{\infty}(g)_k$, the same equality holds. However this contradicts to the above facts. q.e.d.

The above proposition can be generalized in straightforward way as follows,

Proposition 2. Let f_1, \dots, f_m be pseudo Anosov diffeomorphisms of S. If the stable and the unstable geodesic laminations of f_1, \dots, f_m are all distinct from each other, then $\phi_{f_1}, \dots, \phi_{f_m}$ are linearly independent in $H^3_b(S, \mathbf{R})$.

Now let α and β be two simple closed curves on S such that $S - (\alpha \cup \beta)$ is a disjoint union of open 2-discs. Then $f_m = \tau_a^m \tau_\beta^{-m}$ is a pseudo Anosov diffeomorphism of S for each positive integer m ([8]). In [4], Masur calculates the stable and unstable geodesic laminations λ_m^s and λ_m^u of f_m (in terms of measured foliations and quadratic differentials), and it is shown that $\lambda_m^s \to \alpha$ and $\lambda_m^u \to \beta$ as $m \to \infty$. Hence we may choose an infinite family $\{f_m\}$ of pseudo Anosov diffeomorphisms such that each finite subset of $\{f_m\}$ satisfies the condition of Proposition 2. This proves Theorem 1.

References

- Brooks, R. and Series, C., Bounded cohomology for surface groups, Topology, 23, No. 1, (1984), 29-36.
- [2] Casson, A. J., Automorphisms of surfaces after Nielsen and Thurston, Lecture Note, Univ. of Texas, (1983).
- [3] Gromov, M., Volume and bounded cohomology, Publ. Math. I.H.E.S., 56 (1982), 5–99.
- [4] Masur, H., Dense geodesics in moduli space, Riemann surfaces and related topics, Ann. of Math. Studies, 97 (1981), 417-438.
- [5] Mitsumatsu, Y., Bounded cohomology and *l* homology of surfaces, Topology, 23, No. 4, (1984), 465–471.
- [6] Sullivan, D., Travaux de Thurston sur les groupes quasifuchsiens et les variétés hyperboliques de dimension 3 fibrés sur S¹, Lecture Note in Math. 842, Springer-Verlag, (1981), 196-214.
- [7] Thurston, W., The geometry and topology of 3 manifolds, Princeton Notes 1978.
- [8] —, On the geometry and dynamics of diffeomorphisms of surfaces, preprint, Princeton, (1977).

Department of Mathematics Faculty of Science Okayama University Okayama 700, Japan