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§1. Introduction

Let G be a compact Lie group and M,, M, be closed G-manifolds.
Suppose that there exists a G-homotopy equivalence

[ M——>M,.

Then a natural question is the following. What kind of consequences

follow from it?
For example, the following theorem holds.

Theorem 1 [14], [16]. We have the following equality in J,(M)):
JoT(M)=Js(f*(T(M,)).
Here T(M,) denote the tangent G-vector bundles of M, (i=1, 2) and
Jg: KOg(M))—>J (M)
denotes the equivariant Jz-homomorphism.

It is well-known that G-homotopy equivalent manifolds are not
necessarily G-diffeomorphic in general [5], [13], [15].

Our first result of the present paper is the following theorem.

Theorem 2. Let M, and M, be closed G-manifolds. If f: M\—M, is
a G-homotopy equivalence, then there exist G-vector bundles n;: E;—M,
(i=1, 2) and a G-diffeomorphism

f: E—>E,

such that the following diagram
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f

E,——>E,

1T

M—>M,
is G-homotopy commutative.

Definition. A G-homotopy equivalence f: M,— M, will be called a
tangential G-homotopy equivalence if there exists a G-representation space
V such that there is a G-vector bundle isomorphism:

T(M)Y®V = f*T(M)DV

where V' is the trivial G-vector bundle M, X V—M,, @ is the Whitney sum
operation, and f*T(M,) is the induced G-vector bundle of T(M,) via the
map f.

Then we have the following theorem which we announced in [17].

Theorem 3. Let M, and M, be closed G-manifolds and f: M,— M,
be a G-map. Then f is a tangential G-homotopy equivalence if and only if
there exist a G-representation space V and a G-diffeomorphism

f_: MIX V_—)sz V

such that the following diagram

M, X V—L>MZ XV
ﬂl ln
f
M— M,

is G-homotopy commutative. Here G-actions on M, XV are given by
diagonal actions and r: M; X V— M, denote the projection maps for i=1, 2.

Let: z: E—M be a differentiable G-vector bundle over a compact
G-mainfold M. As is well-known, there is a G-invariant Riemannian
metric { , » on E. Concerning the metric { , ), we set

lv|=+{v,v)  for veE.
Then we put for r >0,
E(r)={veEl|vl=r},
SE(r)={ve E||v]|=r},
E(=E(r)—SE(r)={ve E|||v|<r}.
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It is obvious that E(r) is a compact G-manifold and E(r)=Int E(r) if M
is a closed G-manifold and that E(r) is G-diffeomorphic to E.

An equivariant simple homotopy theory has been developed by
S. Illman [8], [10], [11], H. Hauschild [7], M. Rothenberg [22], D. R.
Anderson [1] and S. Araki [2].

For a finite group G, any G-manifold M has a unique G-triangula-
tion [9]. So an equivariant simple homotopy type is well-defined for a
compact G-manifold.

Although a unique G-triangulation of a G-manifold is not known
for a compact Lie group G, T. Matumoto and M. Shiota have shown
that an equivariant simple homotopy type itself is well-defined for a com-
pact G-manifold [18].

Theorem 4. Let M, and M, be closed G-manifolds. If f: M,—M,
is a G-simple homotopy equivalence, then there exist G-vector Pundles
7, E—~M, for i=1, 2, and a G-diffeomorphism

Fi E(r)—>E\r)
Sfor any r >0 such that the following diagram
E,(r)—LEz(r)
Ty Ty
M———M,
is G-homotopy commutative.

Corresponding to Theorem 3, we have the following theorem which
we conjectured in [17].

Theorem 5 [3]. Let M, and M, be closed G-manifolds and f: ]Ml—>M2
be a G-map. Then fis a tangential G-simple homotopy equivalence if and
only if there exist a G-representation space V and a G-diffeomorphism

Fi M XV(E)—>M, XV (r)
Jfor any r >0 such that the following diagram

M, X V(r)~f~>M2>< V(r)

T T

f

M—>M,

is G-homotopy commutative. Here we regard V as a G-vector bundle over
a point.
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The techniques to prove Theorems 4 and 5 are valid for the proof of
the following theorem.

Theorem 6 [3] (Stable equivariant s-cobordism theorem). Let (W; X,
Y) be a G s-cobordism. Namely (W; X, Y} is a G h-cobordism and the
equivariant torsion to(W, X) vanishes. Then there exists a G-representation
space V such that for any r >0, WX V(r) is G-diffeomorphic to X X I X V(r)
where I denotes the interval [0, 1] with trivial action.

Remark. An equivariant s-cobordism theorem is stated in [22].
Unfortunately the assumption of the theorem is not stated in terms of the
equivariant torsion z,(W, X) in the sense of Illman [8]. One of our tasks
for the proofs of Theorems 4, 5 and 6 is to show that the torsions which
will be defined successively vanish as well from the assumption z,(W, X)
=0.

Finally we show the following theorem.

Theorem 7. An equivariant h-cobordism theorem and an equivariant
s-cobordism theorem do not hold in general.

§ 2. Equivariant infinite repetition

We modify the method of infinite repetition of Mazur [19], [20], [21]
as follows.

Let G be a compact Lie group and M, be compact G-manifolds
with or without boundary (i =1, 2).

Definition. Let &, denote the set of G-maps f: M,— M, satisfying
these properties:

(1) f: M,—M,isa G-embedding,

(2) f(Int M) is open in M,,

3) f(M)CInt M,

For any sequence of G-manifolds and maps,

S: M, 3 M, 7 Ma,f3 fie?,
we denote by lim S the injective limit of the sequence S. A natural
smooth structure and a G-action may be placed on lim S in an obvious
manner. Clearly the G-action on lim .S is smooth. Thus we get a G-
manifold lim S.
In the present paper, we only deal with the following two types of
sequences:
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S i) M\i—>M,——>M—>M,—>. .., fie?,
S fa A fa

S M > M >M >,
(f) 7 I 7 fegvl

We then put
X(f,, £)=lim S(£, f),
X(f)=lim S(f).

Then the following lemma follows directly from the definition.

Lemma 8. X(f,-f) = X(/.,f) = X(f,, )= X(f,-f,). Here = stands
Jfor a G-diffeomorphism.

Definition. Let M be a compact G-manifold. We denote by Z,(M)
the set of G-maps f: M— M satisfying these properties:

D fez

Q) f~gid

(3) for any f/: M— M satisfying f’ € Z, and f’~,id, there exists a
G-diffeomorphism «: M— M such that the following diagram

M———)M

N

is commutative. Here f ~,id means that f is G-homotopic to the iden-
tity map.

Lemnia 9. If #,(M) is non empty, then
P(MY={f: M—>M|fe ﬂl,f% id}.

Proposition 10. Let M be a compact G-manifold with P (M)=+¢ and
let f: M—M satisfy f e P, and f~;id. Then we have

X(f)=Int M,
where = stands for a G-diffeomorphism.

Proof. When the boundary 6M of M is empty, then f ¢ &, implies
that f'is a G-diffeomorphism. Hence Proposition 10 holds obviously.

In the following we assume that dM==¢. Using the equivariant
collar neighborhood,
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c: oM XI—>M, c(OM X 1)=0M,
we can construct a G-map
d: M—>M
such that d € &#,, d ~;id and that
Tmage d=M-—c(aM > (é_ 1])
According to Lemma 9, f belongs to Z,(M).

We now consider the following ladder:

Mf\M f>M f)M s
I
]
|
v

I |
i I |
id l ay : o

|
/N SN AN
d d d d

Y

a3

Y

which we explain in a moment. Since f e #, (M), there exists a G-
diffeomorphism «;: M—M such that «,-f=d. It is easily seen that
a; ~,1d. Hence we have d-a, =~ ;id. On the other hand, d € &, implies
that d-a, € #,. It follows from the fact f € #,(M) that there exists a G-
diffeomorphism a,: M — M satisfying

Otz'f—'—‘d-afl.

Continuing these arguments, we obtain the ladder above.
Obviously the ladder implies that

X(f)=X(@).

On the other hand, it is quite easy to prove that
X(d)=Int M.

This completes the proof of Proposition 10.

Proposition 11. Let E—M be a G-vector bundle over a closed G-
manifold. Then there exists a G-representation space V such that for any
r>0,

ZAEDV)r)#¢

where V denotes the trivial G-vector bundle M X V—M.
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We now deduce Theorem 2 from Propositions 10 and 11.

As is well-known, there are G-representation spaces ¥V, and V, such
that M, and M, are G-embedded in ¥, and V, respectively. Denote by
e; M,—V, such G-embeddings and denote by v the normal bundle of the
G-embedding

fxe: M—->M,XV,.

According to [4], there are G-representation space V, and a G-vector
bundle & over M, such that

T(Mz)@f—:'—‘ V3=M2>< Va-

We now define two G-vector bundles

E=v®M XV, DV,),
Ezzsz(Vx@ Vz@ Vs)

over M, and M, respectively.
Then one verifies the following

Proposition 12, For any r >0, there are G-maps
fit E(r)—>Ey(r),
fzz Ez(r)“—‘>E1(r)

satisfying f,, f, € 2, and
foofizid and f-f,~id.
G G
It follows from Proposition 12 that the composition
f2 it El(r)_—>E1(r)

belongs to £, and f,-f; =~ id.
On the other hand, there exists a G-representation space ¥ such that

ZAEDVNr)+¢  for i=1,2,
by Proposition 11. We now set
E=E,®M, XV, i=1,2
Let ¢ be a real number satisfying 0<{e<(1. Then define maps
fi=fi®e: Ei()=(E,@ M, X V)(r)—>Eir)=(E,D M, X V)(r)
fi=f@e EXr)=(E.® M, XV)r)—>E{(r)=(E;® M, X V)(r)
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where & denotes the map defined by the scalar multiplication by &/v/ 2.
Obviously f;-f1 also belongs to &, and f;-f{~,id.
In view of Proposition 10, we have

X(fi-f) = Int Ef(r) = E7.
Similarly we have
X(fi-fi)=Int EYr) = E}.
It follows from Lemma 8§ that
E{=X(fi-f)=X(f1-f) = Es

It is easy to see that the following diagram

f

E{—>E;

L

M—>M,

is G-homotopy commutative, where f denotes the G-diffeomorphism
obtained above.

This completes a sketch of the proof of Theorem 2.

The proof of Theorem 3 is essentially similar to that of Theorem 2.

§ 3. Decomposition of G-manifolds

We first introduce some basic notations. Let G be a compact Lie
group. Whenever H is a closed subgroup of G, (H) denotes the conjugacy
class of H in G and N(H) denotes the normalizer of H in G. There is a
partial ordering relation among the set of conjugacy classes of closed
subgroups of G, i.e., (H,)<(H,) if and only if there exists g € G such that
gH g 'CH,.

Let W be a compact G-manifold. We shall denote the isotropy
group at x € W by G,, namely

G,={geCGlg-x=x}.
For a subgroup H of G, we shall put

Wi={xe W|G,DH)},
W(H)={x € W|(G.)=(H)}.

Since W is compact, there are only finite G-isotropy types, say
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{(Gx)lx € W}::(Hl)u s U(ch)

It is possible to arrange (H,) in such order that (H;)=(H,) implies i <.
We shall get a filtration

W=WDOW,D-.-DOW,
consisting of compact G-manifolds W, with corners such that
{(G)xe Wi=H)UH, YU --- UH,)

as follows.

Since (H)) is a maximal conjugacy class, W(H,) is a compact G-
invariant submanifold. We identify the normal bundle v, of W(H,) in W
with an open tubular neighborhood of W(H,) in W and impose a Rieman-
nian G-vector bundle structure on v,. Set

Wo=W—35,(1).
Then W, is a compact G-manifold with corner and satisfies
{(G)|x e Wit=H)UH)U - - - U(Hy).
Suppose that we get a filtration
W=WDoOW,D-.-DW,

such that
{(Gx)[x € Wj}z(Hj) U(Hj+x)U < U(HY

and W, is a compact G-manifold with corner for every j<i. Since (H,)
is a maximal conjugacy class among the set

{(G)xe Wi,

W,(H,) is a compact G-invariant submanifold of W,. We identify the
normal bundle v, of W,(H,) in W, with an open tubular neighborhood of
W.(H,) in W, and impose a Riemannian G-vector bundle structure on y,.
Set

Win= Wi_ii(l)‘
Then W,,, is a compact G-manifold with corner and satisfies
(G xe Wi y=(H DU - - - UH)).

This completes the inductive construction.
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Thus we have shown the following decomposition theorem.

Theorem 13. Let W be a compact G-manifold and (H,), - - -, (H,) be
the isotropy types appearing in W. Arrange {(H,)} in such order that (H,)
=(H,) implies i<j. Then there exist compact G-manifolds M, with
corners and G-vector bundles v,— M, for 1 <i <k such that

MH)=M, = W(H)

and that we have a decomposition
W =p,(1) Up,(1)U - - - Upy(1).

Moreover if we set
Wizpi(l) U l)134-1(1) U---u ”k(1)3

we have

{(G)|xe Wi=H)UH,)U - - - UH).

§ 4. Equivariant simple homotopy type

In this section, we give a sketch of the proof of Theorem 4.

Let f: M,—M, be a G-homotopy equivalence where M, are closed
G-manifolds (i=1,2). According to Theorem 2, there exist G-vector
bundles z,: E,—M,; (i=1, 2) and a G-diffeomorphism

f: E——>F,

such that the following diagram

f

E——>E,

o |m

Mx_f".‘>M2

is G-homotopy commutative.
In the manner of the proof of Lemma 3.2 in [16], we can prove the
following lemma.,

Lemma 14. There is a G-representation space V satisfying the follow-
ing conditions:
(i) for any non negative integer m, there is a G-diffeomorphism

fiE®V™——E,®V™
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such that . .
FUE@V™H()C Int(E,® V™)(1)

and that the following diagram'

EVH)-LE@V™1)

Ml—‘—}—ﬁMZ

is G-homotopy commutative, where V™ denotes the direct sum of m copies
of V.,

(i) ifm=dim G+3, then F(S(EDV™(1)) and S(EDHV™(1) are
strong G-deformation retracts of

(E.®V™(1)— f(Int (E;® V™)(1)).
For notational convenience, we put
W =(E,®¥V™)1) _f(Int (E;@V™(1)),
X =F(SEDV™D),
Y =S(EHV™)1).

Since X and Y are strong G-deformation retracts of W, we can define
equivariant torsions 74(W, X) and z4(W, Y) in the sense of Iliman [8].
Then we have the following lemma.

Lemma 15. Suppose that f: M,—M, is a G-simple homotopy equi-
valence, V¢+£{0} and that mz=dim G+3. Then the triad (W; X, Y) is a
G s-cobordism. Namely

(W, X)=1o(W, Y)=0.
Let W=W,DW,D ... 2D W, be the filtration in Theorem 13. Set
X,=XNW.,
Then by the observations of [2] and [16], we have the following lemma.

Lemma 16. If m=dim G+ 3, then X, are strong G-deformation re-
tracts of W, and to,(W, X)=0 implies to(W;, X;)=0.

Suppose now that the assumptions of Lemmas 14 and 15 are satis-
fied. Then by Lemma 16 we have z4(W;, X;)=0. Hence we have easily
that
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76( Wi(Hi)a Xi(Ht)) =0.
Moreover we assume that

m=dim G+6.
Then we can prove that
dim Wi>=dim G+ 6
and that
o(W{/N(H), X7*/N(H,))=0.

Here z( , ) denotes the non-equivariant Whitehead torsion. Hence by
the classical s-cobordism theorem, we have that W#: is diffeomorphic to
XHPixI. Furthermore one verifies that W¥: is N(H,)-diffeomorphic to
X7
Using the fact that (H,) is a maximal isotropy type of W,, we can
easily prove that there are natural G-diffeomorphisms:
W(H)=G X Wi,

N(H)
X(H)=G X X7
N(H)
It follows that W,(H,) is G-diffeomorphic to X,(H;) X I.
Denote by v,(W,(H,)) (resp. v,(X,(H,))) the v, of W (resp. X) of Theo-
rem 13. By the equivariant homotopy property of G-vector bundles, we
get an isomorphism

vi(Wi(H))=v(X,(H)) X1

of G-vector bundles.

Paying attention to the attaching maps, we can prove that W is G-
diffeomorphic to X X I by Theorem 13. Hence we finish a sketch of the
proof of Theorem 4. ‘

The idea of the proofs of Theorems 5 and 6 are similar.

§ 5. Equivariant %-cobordism and s-cobordism theorems do not hold in
general

In Section 4, we mentioned that an equivariant stable s-cobordism
theorem holds. In this section, we shall show Theorem 7. Namely
equivariant s-cobordism and s-cobordism theorems do not hold in general.

According to Giffen [6] and Sumners [23], for each pair of integers
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(n, p) with n=2 and p=2, there are infinitely many knots (§7*2, kS™)
which admit smooth semi-free Z,-actions such that the fixed point set is
kS™.

‘Choose arbitrary two points x and y from kS™. Let D(x) and D(y)
be Z -invariant closed tubular neighborhoods of x and y respectively in
S™*% satisfying

D(x)N D(y)=¢.
Then we put
W =S»**—1Int D(x)—Int D(y),
X=SD(x), Y=SD().

Note that W is diffeomorphic to $***X I and W?Z» is diffeomorphic to
XZo X I=8S""'XI

It follows from [12] that X and Y are Z,-deformation retracts of W.
Namely (W; X, Y) is a Z, h-cobordism. Since W has a Z -triangulation
[9], X is a strong G-deformation retract of W [8]. Hence we can define
the equivariant torsion ¢, (W, X).

If n=3, each component of any X%, HCZ,, is simply connected.
It follows from [8] that the equivariant Whitehead group Wh; (X) vanishes
for p=2, 3,4 or 6 and for n==3. Namely (W; X, Y) is a Z, s-cobordism
in this case.

On the other hand, one verifies the following lemma.

Lemma 17. If a knot (S™'% kS™) is non trivial, then the pair (W,
W N kS™) is not diffeomorphic to the pair (X, XNkS™) X 1.

Remark. Lemma 17 does not hold in general for knots of codimen-
sion greater than two.

It follows from Lemma 17 that W is not Z,-diffeomorphic to X X I.

This completes the proof of Theorem 7.

Added in November 1985. Professor K.H. Dovermann kindly in-
formed the author that some results related with our Theorem 3 are
obtained by S. Kwasik [24].
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