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§ 1. Introduction 

Let G be a compact Lie group and MJ> M2 be closed G-manifolds. 
Suppose that there exists a G-homotopy equivalence 

Then a natural question is the following. What kind of consequences 
follow from it? 

For example, the following theorem holds. 

Theorem 1 [14], [16]. We have the following equality in Ja(M!): 

Here T(Mi) denote the tangent G-vector bundles of Mi (i= 1,2) and 

denotes the equivariant Ja-homomorphism. 

It is well-known that G-homotopy equivalent manifolds are not 
necessarily G-diffeomorphic in general [5], [13], [15]. 

Our first result of the present paper is the following theorem. 

Theorem 2. Let M! and M2 be closed G-manifolds. Iff: M!-'>-M2 is 
a G-homotopy equivalence, then there exist G-vector bundles 7Ci: Ei-,>-Mi 
(i = 1, 2) and a G-diffeomorphism 

1:E!~E2 

such that the following diagram 
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is G-homotopy commutative. 

Definition. A G-homotopy equivalence f: MI-+M2 will be called a 
tangential G-homotopy equivalence if there exists a G-representation space 
V such that there is a G-vector bundle isomorphism: 

where V is the trivial G-vector bundle MI X V -+MlO EEl is the Whitney sum 
operation, andf*T(M2) is the induced G-vector bundle of T(M2) via the 
map! 

Then we have the following theorem which we announced in [17]. 

Theorem 3. Let MI and M2 be closed G-manifolds and f: M j -+M2 
be a G-map. Then f is a tangential G-homotopy equivalence if and only if 
there exist a G-representation space V and a G-diffeomorphism 

such that the following diagram 

J 
MIX V--+M2X V 

rrl f lrr 
MI )M2 

is G-homotopy commutative. Here G-actions on Mi X V are given by 
diagonal actions and "': Mi xV -+Mi denote the projection maps for i= 1,2. 

Let: "': E-+M be a differentiable G-vector bundle over a compact 
G-mainfold M. As is well-known, there is a G-invariant Riemannian 
metric < , > on E. Concerning the metric < , >, we set 

for VEE. 

Then we put for r >0, 

E(r)={v E E III vll;;:;;r}, 

SE(r)={v E Elllvll=r}, 
E(r)=E(r)-SE(r)={v E E III vll<r}. 
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It is obvious that E(r) is a compact G-manifold and E(r)=Int E(r) if M 
is a closed G-manifold and that E(r) is G-diffeomorphic to E. 

An equivariant simple homotopy theory has been developed by 
S. Illman [8], [10], [11], H. Hauschild [7J, M. Rothenberg [22], D. R. 
Anderson [1] and S. Araki [2]. 

For a finite group G, any G-manifold M has a unique G-triangula
tion [9]. So an equivariant simple homotopy type is well-defined for a 
compact G-manifold. 

Although a unique G-triangulation of a G-manifold is not known 
for a compact Lie group G, T. Matumoto and M. Shiota have shown 
that an equivariant simple homotopy type itself is well-defined for a com
pact G-manifold [18]. 

Theorem 4. Let Ml and M z be closed G-manifolds. iff: Mr-+Mz 
is a G-simple homotopy equivalence, then there exist G-vector hundles 
ITt: Ec"->;Mifor i=l, 2, and a G-diffeomorphism 

for any r > 0 such that the following diagram 

E1(r)LEz(r) 

~ll f 1~2 
Ml~Mz 

is G-homotopy commutative. 

Corresponding to Theorem 3, we have the following theorem which 
we conjectured in [17]. 

Theorem 5 [3]. Let Ml and M z be closed G-manifolds andf: M1-+Mz 
be a G-map. Then f is a tangential G-simple homotopy equivalence if and 
only if there exist a G-representation space V and a G-diffeomorphism 

for any r > 0 such that the following diagram 

MJX V(r)LMzX V(r) 

~l f l~ 
MJ >Mz 

is G-homotopy commutative. Here we regard Vas a G-vector bundle over 
a point. 
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The techniques to prove Theorems 4 and 5 are valid for the proof of 
the following theorem. 

Theorem 6 [3] (Stable equivariant s-cobordism theorem). Let (W; X, 
Y) be a G s-cobordism. Namely (W; X, Y) is a G h-cobordism and the 
equivariant torsion Ta(W, X) vanishes. Then there exists a G-representation 
space V such that for any r>O, Wx VCr) is G-diffeomorphic to XXIX VCr) 
where I denotes the interval [0, 1] with trivial action. 

Remark. An equivariant s-cobordism theorem is stated in [22]. 
Unfortunately the assumption of the theorem is not stated in terms of the 
equivariant torsion Ta(W, X) in the sense of Illman [8]. One of our tasks 
for the proofs of Theorems 4, 5 and 6 is to show that the torsions which 
will be defined successively vanish as well from the assumption Ta(W, X) 
=0. 

Finally we show the following theorem. 

Theorem 7. An equivariant h-cobordism theorem and an equivariant 
s-cobordism theorem do not hold in general. 

§ 2. Equivariant infinite repetition 

We modify the method of infinite repetition of Mazur [19], [20], [21] 
as follows. 

Let G be a compact Lie group and Mi be compact G-manifolds 
with or without boundary (i = 1,2). 

Definition. Let f!JJ1 denote the set of G-maps f: Ml-+M2 satisfying 
these properties: 

(1) f: Ml-+M2 is a G-embedding, 
(2) feInt M 1) is open in M 2, 

(3) f(M1)CInt M 2 • 

For any sequence of G-manifolds and maps, 

s: Mc-~ M 2----+ Ma----+' .. 
11 12 fa 

we denote by lim S the injective limit of the sequence S. A natural 
smooth structure and a G-action may be placed on lim S in an obvious 
manner. Clearly the G-action on lim S is smooth. Thus we get a G
manifold lim S. 

In the present paper, we only deal with the following two types of 
sequences: 
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S(f;,/Z): Mc-~Mz--~MI~Mz~···, 
fi h. fi f2 

S(f): M~M~M~ ... , 
f f f 

We then put 

X(f;,/z)=lim S(f;,/Z), 

X(f) = lim S(f). 

It E f!iJI, 

Then the following lemma follows directly from the definition. 

31 

Lemma 8. X(/z.j;) =:; X(f;,/Z) =:; X(fz,j;) =:; X(j; ·fz). Here =:; stands 
lor a G-difJeomorphism. 

Definition. Let M be a compact G-manifold. We denote by f!iJz(M) 
the set of G-maps/: M-?M satisfying these properties: 

(I) I E f!iJ1 

(2) I~Gid 
(3) for any I': M -? M satisfying I' E f!iJ1 and I' ~ G id, there exists a 

G-diffeomorphism a: M -? M such that the following diagram 

is commutative. Here I ~ G id means that I is G-homotopic to the iden
tity map. 

Lemma 9. If f!iJz(M) is non empty, then 

f!iJz(M)={/: M-?MII E f!iJI,J~ id}. 
G 

Proposition 10. Let M be a compact G-manifold with f!iJz(M)*ifJ and 
let I: M -? M satisly I E f!iJ I and I ~ G id. Then we have 

X(f) =:; Int M, 

where =:; stands lor a G-difJeomorphism. 

Proof When the boundary aM of M is empty, then I E f!iJ1 implies 
that/is a G-diffeomorphism. Hence Proposition 10 holds obviously. 

In the following we assume that aM*ifJ. Using the equivariant 
collar neighborhood, 
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c(aMX 1) = aM, 

we can construct a G-map 

d:M~M 

such that d e f!Jl, d::: a id and that 

According to Lemma 9,fbelongs to f!Jz(M). 
We now consider the following ladder: 

which we explain in a moment. Since f e f!Jz(M), there exists a G
diffeomorphism al : M ~ M such that a l • f = d. It is easily seen that 
al:::a id. Hence we have d· al:::a id.. On the other hand, de f!Jl implies 
that d·al e f!Jl' It follows fromthe factfe f!Jz(M) that there exists a G
diffeomorphism a z: M ~M satisfying 

Olz;f =d· al' 

Continuing these arguments, we obtain the ladder above. 
Obviously the ladder implies that 

X(f) :;; Xed). 

On the other hand, it is quite easy to prove that 

Xed) :;; Int M. 

This completes the proof of Proposition 10. 

Proposition 11. Let E~M be a G-vector bundle over a closed G
manifold. Then there exists a G-representation space V such that for any 
r>O, 

where V denotes the trivial G-vector bundle M X V ~M. 
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We now deduce Theorem 2 from Propositions 10 and 11. 
As is well-known, there are G-representation spaces V; and V2 such 

that MI and M z are G-embedded in VI and Vz respectively. Denote by 
ei Mc-+ Vi such G-embeddings and denote by lJ the normal bundle of the 
G-embedding 

fxe l : MI~MzX VI' 

According to [4], there are G-representation space Va and a G-vector 
bundle g over M z such that 

We now define two G-vector bundles 

EI =lJ EB MI X (Vz EB Va), 

Ez=Mz X (VI EB VzEB V3) 

over MI and M z respectively. 
Then one verifies the following 

Proposition 12. For any r > 0, there are G-maps 

J;: EI(r)~EzCr), 

fz: EzCr)~El(r) 

satisfying J;,fz E [llli and 

fz·J; ~ id and J;·fz ~ id. 
a a 

It follows from Proposition 12 that the composition 

belongs to [llli and fz·J; ~ G id. 
On the other hand, there exists a G-representation space V such that 

for i=I,2, 

by Proposition 11. We now set 

i=1,2. 

Let e be a real number satisfying O<e< 1. Then define maps 

f;=J;EBe: Ef(r)=(EIEBMI X V)(r)~E~(r)=(EzEBM2X V)(r) 

f~=fzEBe: E~(r)=(E2EBM2X V)(r)~E~(r)=(EIEBMIX V)(r) 
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where e denotes the map defined by the scalar multiplication by e/.[2. 
Obviously f~ Ii also belongs to 9 1 and f~ Ii:::: G id. 

In view of Proposition 10, we have 

X(f~ Ii) = Int Ei(r) = E;. 

Similarly we have 

It follows from Lemma 8 that 

Ei = X(f~ Ii) = X(fi I~) = E~. 
It is easy to see that the following diagram 

is G-homotopy commutative, where 1 denotes the G-diffeomorphism 
obtained above. 

This completes a sketch of the proof of Theorem 2. 
The proof of Theorem 3 is essentially similar to that of Theorem 2. 

§ 3. Decomposition of G-manifolds 

We first introduce some basic notations. Let G be a compact Lie 
group. Whenever H is a closed subgroup of G, (H) denotes the conjugacy 
class of H in G and N(H) denotes the normalizer of H in G. There is a 
partial ordering relation among the set of conjugacy classes of closed 
subgroups of G, i.e., (H1)-;;;;'(H2) if and only if there exists g E G such that 
gH1g- 1CH2• 

Let W be a compact G-manifold. We shall denote the isotropy 
group at x E W by G x, namely 

Gx={g E Glg·x=x}. 

For a subgroup H of G, we shall put 

WH ={x E WI Gx-::)H}, 

W(H)={x E WI (Gx) = (H)}. 

Since W is compact, there are only finite G-isotropy types, say 
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It is possible to arrange (Hi) in such order that (Hi»(HJ) implies i ~j. 
We shall get a filtration 

W= WI:::::> W2 ::J···:::::> Wk 

consisting of compact G-manifolds Wi with corners such that 

as follows. 
Since (HI) is a maximal conjugacy class, W(HI) is a compact G

invariant submanifold. We identify the normal bundle 1)1 of W(HI) in W 
with an open tubular neighborhood of W(HI ) in Wand impose a Rieman
nian G-vector bundle structure on 1)1. Set 

Then W2 is a compact G-manifold with corner and satisfies 

Suppose that we get a filtration 

W = WI:::::> W2 ::J· •• ::J Wi 

such that 

and Wj is a compact G-manifold with corner for every j ~ i. Since (Hi) 
is a maximal conjugacy class among the set 

Wt(Ht) is a compact G-invariant submanifold of Wi. We identify the 
normal bundle I)t of WiCHt) in Wt with an open tubular neighborhood of 
WiCHt) in Wi and impose a Riemannian G-vector bundle structure on I)i. 
Set 

Then Wi +1 is a compact G-manifold with corner and satisfies 

This completes the inductive construction. 
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Thus we have shown the following decomposition theorem. 

Theorem 13. Let W be a compact G-manifold and (HI)' ... , (Hk ) be 
the isotropy types appearing in W. Arrange {(Hi)} in such order that (Hi) 
>(Hj ) implies i<j. Then there exist compact G-manifolds Mi with 
corners and G-vector bundles 'I.Ii-+Mifor 1 ~i<k such that 

Mi(Hi) = Mi ~ W(Hi) 
G 

and that we have a decomposition 

Moreover if we set 

we have 

§ 4. Equivariant simple homotopy type 

In this section, we give a sketch of the proof of Theorem 4. 
Let f: MI-+M2 be a G-homotopy equivalence where Mi are closed 

G-manifolds (i = 1, 2). According to Theorem 2, there exist G-vector 
bundles iri: Ei-+Mi (i = 1, 2) and a G-diffeomorphism 

J:EI~E2 

such that the following diagram 

is G-homotopy commutative. 
In the manner of the proof of Lemma 3.2 in [16], we can prove the 

following lemma. 

Lemma 14. There is a G-representation space V satisfying the follow
ing conditions: 

(i) for any non negative integer m, there is a G-diffeomorphism 
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such that 

and that the following diagram 

(EIE8Vm)(l)L(E2E8Vm)(1) 

nIl rr2l 
MI )M2 

f 

37 

is G-homotopy commutative, where vm denotes the direct sum of m copies 
of v, 

(ii) ifm>dim G+3, then J(S(EIE8vm)(1» and S(E2E8vm)(l) are 
strong G-deformation retracts of 

For notational convenience, we put 

W =(E2E8 V m)(1)-J(Int (EI E8 vm)(l)), 

X = J(S(EIE8vm)(I», 

Y =S(E2E8Vm)(l). 

Since X and Yare strong G-deformation retracts of W, we can define 
equivariant torsions 'l"o(W, X) and 'l"o(W, Y) in the sense of Illman [8]. 

Then we have the following lemma. 

Lemma 15. Suppose that f: MI-+M2 is a G-simple homotopy equi
valence, V°:f:{O} and that m>dim G+3. Then the triad (W; X, Y) is a 
G s-cobordism. Namely 

Let W= WI:::> W2:::>· •. :::> Wk be the filtration in Theorem 13. Set 

Then by the observations of [2] and [16], we have the following lemma. 

Lemma 16. If m:2:dim G+3, then Xi are strong G-deformation re
tracts of Wi and 'l"GCW, X)=O implies 'l"aCWi' Xi)=O. 

Suppose now that the assumptions of Lemmas 14 and 15 are satis
fied. Then by Lemma 16 we have 'I" G( Wi' Xi) = O. Hence we have easily 
that 
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Moreover we assume that 

m~dimG+6. 

Then we can prove that 

and that 

Here ,,( , ) denotes the non-equivariant Whitehead torsion. Hence by 
the classical s-cobordism theorem, we have that Wf' is diffeomorphic to 
XftxI. Furthermore one verifies that Wfi is N(H,)-diffeomorphic to 
XfixI. 

Using the fact that (Hi) is a maximal isotropy type of Wi' we can 
easily prove that there are natural G-diffeomorphisms: 

Wi(Hi) :::; G X Wf', 
N(Htl 

Xt(Hi) :::; G X Xf'. 
N(Htl 

It follows that Wi(Hi) is G-diffeomorphic to Xi(Hi) X I. 
Denote by vi(W;(Hi» (resp. Vi(Xi(Hi») the Vi of W (resp. X) of Theo

rem 13. By the equivariant homotopy property of G-vector bundles, we 
get an isomorphism 

of G-vector bundles. 
Paying attention to the attaching maps, we can prove that W is G

diffeomorphic to Xx I by Theorem 13. Hence we finish a sketch of the 
proof of Theorem 4. 

The idea of the proofs of Theorems 5 and 6 are similar. 

§ 5. Equivariant h-cobordism and s-cobordism theorems do not hold in 
general 

In Section 4, we mentioned that an equivariant stable s-cobordism 
theorem holds. In this section, we shall show Theorem 7. Namely 
equivariant h-cobordism and s-cobordism theorems do not hold in general. 

According to Giffen [6] and Sumners [23], for each pair of integers 
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(n,p) with n>2 and p-:?2, there are infinitely many knots (sn+2, ksn) 
which admit smooth semi-free Zp-actions such that the fixed point set is 
ksn . 

. Choose arbitrary two points x and y from ksn. Let D(x) and D(y) 
be Zp-invariant closed tubular neighborhoods of x and y respectively in 
sn+2 satisfying 

D(x) n D(Y)=ifi. 

Then we put 

W =Sn+2-Int D(x)-Int D(y), 

X = SD(x), Y = SD(y). 

Note that W is diffeomorphic to sn+IXI and WZp is diffeomorphic to 
XZPXI=sn-1XI. 

It follows from [I2] that X and Yare Zp-deformation retracts of W. 
Namely (W; X, Y) is a Zp h-cobordism. Since W has a Zp-triangulation 
[9], X is a strong G-deformation retract of W [8]. Hence we can define 
the equivariant torsion !"z/W, X). 

If n>3, each component of any XH, HCZp , is simply connected. 
It follows from [8] that the equivariant Whitehead group Whz/X) vanishes 
for p=2, 3,4 or 6 and for n>3. Namely (W; X, Y) is a Zp s-cobordism 
in this case. 

On the other hand, one verifies the following lemma. 

Lemma 17. If a knot (sn t2, ksn) is non trivial, then the pair (W, 
W n ksn) is not diffeomorphic to the pair (X, X n ksn) X I. 

Remark. Lemma 17 does not hold in general for knots of codimen
sion greater than two. 

It follows from Lemma 17 that W is not Zp-diffeomorphic to X X [. 
This completes the proof of Theorem 7. 

Added in November 1985. Professor K. H. Dovermann kindly in
formed the author that some results related with our Theorem 3 are 
obtained by S. Kwasik [24]. 
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