Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 27–40

Stable Equivalence of G-Manifolds

Katsuo Kawakubo

Dedicated to Professor Minoru Nakaoka on his 60th birthday

§1. Introduction

Let G be a compact Lie group and M_1 , M_2 be closed G-manifolds. Suppose that there exists a G-homotopy equivalence

$$f: M_1 \longrightarrow M_2.$$

Then a natural question is the following. What kind of consequences follow from it?

For example, the following theorem holds.

Theorem 1 [14], [16]. We have the following equality in $J_G(M_1)$:

 $J_G(T(M_1)) = J_G(f^*(T(M_2))).$

Here $T(M_i)$ denote the tangent G-vector bundles of M_i (i=1, 2) and

 $J_G: KO_G(M_1) \longrightarrow J_G(M_1)$

denotes the equivariant J_{g} -homomorphism.

It is well-known that G-homotopy equivalent manifolds are not necessarily G-diffeomorphic in general [5], [13], [15].

Our first result of the present paper is the following theorem.

Theorem 2. Let M_1 and M_2 be closed G-manifolds. If $f: M_1 \rightarrow M_2$ is a G-homotopy equivalence, then there exist G-vector bundles $\pi_i: E_i \rightarrow M_i$ (i=1, 2) and a G-diffeomorphism

 $\overline{f}: E_1 \longrightarrow E_2$

such that the following diagram

Received February 25, 1985.

Research supported in part by Grant-in-Aid for Scientific Research.

is G-homotopy commutative.

Definition. A G-homotopy equivalence $f: M_1 \rightarrow M_2$ will be called a *tangential G-homotopy equivalence* if there exists a G-representation space V such that there is a G-vector bundle isomorphism:

$$T(M_1) \oplus V \cong f^* T(M_2) \oplus V$$

where V is the trivial G-vector bundle $M_1 \times V \rightarrow M_1$, \oplus is the Whitney sum operation, and $f^*T(M_2)$ is the induced G-vector bundle of $T(M_2)$ via the map f.

Then we have the following theorem which we announced in [17].

Theorem 3. Let M_1 and M_2 be closed G-manifolds and $f: M_1 \rightarrow M_2$ be a G-map. Then f is a tangential G-homotopy equivalence if and only if there exist a G-representation space V and a G-diffeomorphism

$$\overline{f}: M_1 \times V \longrightarrow M_2 \times V$$

such that the following diagram

is G-homotopy commutative. Here G-actions on $M_i \times V$ are given by diagonal actions and $\pi: M_i \times V \rightarrow M_i$ denote the projection maps for i=1, 2.

Let: $\pi: E \to M$ be a differentiable G-vector bundle over a compact G-mainfold M. As is well-known, there is a G-invariant Riemannian metric \langle , \rangle on E. Concerning the metric \langle , \rangle , we set

$$||v|| = \sqrt{\langle v, v \rangle}$$
 for $v \in E$.

Then we put for r > 0,

$$E(r) = \{v \in E \mid ||v|| \le r\},\$$

$$SE(r) = \{v \in E \mid ||v|| = r\},\$$

$$\mathring{E}(r) = E(r) - SE(r) = \{v \in E \mid ||v|| < r\}.\$$

It is obvious that E(r) is a compact G-manifold and $\mathring{E}(r) = \text{Int } E(r)$ if M is a closed G-manifold and that $\mathring{E}(r)$ is G-diffeomorphic to E.

An equivariant simple homotopy theory has been developed by S. Illman [8], [10], [11], H. Hauschild [7], M. Rothenberg [22], D. R. Anderson [1] and S. Araki [2].

For a finite group G, any G-manifold M has a unique G-triangulation [9]. So an equivariant simple homotopy type is well-defined for a compact G-manifold.

Although a unique G-triangulation of a G-manifold is not known for a compact Lie group G, T. Matumoto and M. Shiota have shown that an equivariant simple homotopy type itself is well-defined for a compact G-manifold [18].

Theorem 4. Let M_1 and M_2 be closed G-manifolds. If $f: M_1 \rightarrow M_2$ is a G-simple homotopy equivalence, then there exist G-vector bundles $\pi_i: E_i \rightarrow M_i$ for i = 1, 2, and a G-diffeomorphism

$$\overline{f}: E_1(r) \longrightarrow E_2(r)$$

for any r > 0 such that the following diagram

is G-homotopy commutative.

Corresponding to Theorem 3, we have the following theorem which we conjectured in [17].

Theorem 5 [3]. Let M_1 and M_2 be closed G-manifolds and $f: M_1 \rightarrow M_2$ be a G-map. Then f is a tangential G-simple homotopy equivalence if and only if there exist a G-representation space V and a G-diffeomorphism

 $\overline{f}: M_1 \times V(r) \longrightarrow M_2 \times V(r)$

for any r > 0 such that the following diagram

is G-homotopy commutative. Here we regard V as a G-vector bundle over a point.

The techniques to prove Theorems 4 and 5 are valid for the proof of the following theorem.

Theorem 6 [3] (Stable equivariant s-cobordism theorem). Let (W; X, Y) be a G s-cobordism. Namely (W; X, Y) is a G h-cobordism and the equivariant torsion $\tau_G(W, X)$ vanishes. Then there exists a G-representation space V such that for any r > 0, $W \times V(r)$ is G-diffeomorphic to $X \times I \times V(r)$ where I denotes the interval [0, 1] with trivial action.

Remark. An equivariant s-cobordism theorem is stated in [22]. Unfortunately the assumption of the theorem is not stated in terms of the equivariant torsion $\tau_G(W, X)$ in the sense of Illman [8]. One of our tasks for the proofs of Theorems 4, 5 and 6 is to show that the torsions which will be defined successively vanish as well from the assumption $\tau_G(W, X) = 0$.

Finally we show the following theorem.

Theorem 7. An equivariant h-cobordism theorem and an equivariant s-cobordism theorem do not hold in general.

§ 2. Equivariant infinite repetition

We modify the method of infinite repetition of Mazur [19], [20], [21] as follows.

Let G be a compact Lie group and M_i be compact G-manifolds with or without boundary (i = 1, 2).

Definition. Let \mathscr{P}_1 denote the set of *G*-maps $f: M_1 \rightarrow M_2$ satisfying these properties:

(1) $f: M_1 \rightarrow M_2$ is a G-embedding,

(2) $f(\text{Int } M_1)$ is open in M_2 ,

(3) $f(M_1) \subset \operatorname{Int} M_2$.

For any sequence of G-manifolds and maps,

$$S: M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_3 \xrightarrow{f_3} \cdots f_i \in \mathscr{P}_1,$$

we denote by $\lim S$ the injective limit of the sequence S. A natural smooth structure and a G-action may be placed on $\lim S$ in an obvious manner. Clearly the G-action on $\lim S$ is smooth. Thus we get a G-manifold $\lim S$.

In the present paper, we only deal with the following two types of sequences:

$$S(f_1, f_2): M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} \cdots, \qquad f_i \in \mathcal{P}_1,$$

$$S(f): M \xrightarrow{f} M \xrightarrow{f} M \xrightarrow{f} \cdots, \qquad f \in \mathcal{P}_1.$$

We then put

$$X(f_1, f_2) = \lim S(f_1, f_2),$$

 $X(f) = \lim S(f).$

Then the following lemma follows directly from the definition.

Lemma 8. $X(f_2 \cdot f_1) \cong X(f_1, f_2) \cong X(f_2, f_1) \cong X(f_1 \cdot f_2)$. Here \cong stands for a G-diffeomorphism.

Definition. Let *M* be a compact *G*-manifold. We denote by $\mathscr{P}_2(M)$ the set of *G*-maps $f: M \to M$ satisfying these properties:

- (1) $f \in \mathscr{P}_1$
- (2) $f \simeq_{g} id$

(3) for any $f': M \to M$ satisfying $f' \in \mathcal{P}_1$ and $f' \simeq_G id$, there exists a G-diffeomorphism $\alpha: M \to M$ such that the following diagram

is commutative. Here $f \simeq_{G}$ id means that f is G-homotopic to the identity map.

Lemma 9. If $\mathcal{P}_2(M)$ is non empty, then

$$\mathscr{P}_{2}(M) = \{f \colon M \to M \mid f \in \mathscr{P}_{1}, f \simeq_{\overline{g}} \mathrm{id}\}.$$

Proposition 10. Let M be a compact G-manifold with $\mathcal{P}_2(M) \neq \phi$ and let $f: M \rightarrow M$ satisfy $f \in \mathcal{P}_1$ and $f \simeq_g \text{id}$. Then we have

 $X(f) \cong \operatorname{Int} M,$

where \cong stands for a G-diffeomorphism.

Proof. When the boundary ∂M of M is empty, then $f \in \mathcal{P}_1$ implies that f is a G-diffeomorphism. Hence Proposition 10 holds obviously.

In the following we assume that $\partial M \neq \phi$. Using the equivariant collar neighborhood,

$$c: \partial M \times I \longrightarrow M, \qquad c(\partial M \times 1) = \partial M,$$

we can construct a G-map

$$d: M \longrightarrow M$$

such that $d \in \mathcal{P}_1$, $d \simeq_{g}$ id and that

Image
$$d = M - c \left(\partial M \times \left(\frac{1}{2}, 1 \right] \right)$$
.

According to Lemma 9, f belongs to $\mathcal{P}_2(M)$.

We now consider the following ladder:

which we explain in a moment. Since $f \in \mathscr{P}_2(M)$, there exists a *G*-diffeomorphism $\alpha_1: M \to M$ such that $\alpha_1 \cdot f = d$. It is easily seen that $\alpha_1 \simeq_G$ id. Hence we have $d \cdot \alpha_1 \simeq_G$ id. On the other hand, $d \in \mathscr{P}_1$ implies that $d \cdot \alpha_1 \in \mathscr{P}_1$. It follows from the fact $f \in \mathscr{P}_2(M)$ that there exists a *G*-diffeomorphism $\alpha_2: M \to M$ satisfying

$$\alpha_2 \cdot f = d \cdot \alpha_1.$$

Continuing these arguments, we obtain the ladder above. Obviously the ladder implies that

$$X(f) \cong X(d).$$

On the other hand, it is quite easy to prove that

$$X(d) \cong \operatorname{Int} M.$$

This completes the proof of Proposition 10.

Proposition 11. Let $E \rightarrow M$ be a G-vector bundle over a closed G-manifold. Then there exists a G-representation space V such that for any r > 0,

$$\mathscr{P}_{2}((E \oplus V)(r)) \neq \phi$$

where V denotes the trivial G-vector bundle $M \times V \rightarrow M$.

We now deduce Theorem 2 from Propositions 10 and 11.

As is well-known, there are G-representation spaces V_1 and V_2 such that M_1 and M_2 are G-embedded in V_1 and V_2 respectively. Denote by $e_i \quad M_i \rightarrow V_i$ such G-embeddings and denote by ν the normal bundle of the G-embedding

$$f \times e_1 \colon M_1 \longrightarrow M_2 \times V_1.$$

According to [4], there are G-representation space V_3 and a G-vector bundle ξ over M_2 such that

$$T(M_2) \oplus \xi \cong V_3 = M_2 \times V_3.$$

We now define two G-vector bundles

$$E_1 = \nu \oplus M_1 \times (V_2 \oplus V_3),$$

$$E_2 = M_2 \times (V_1 \oplus V_2 \oplus V_3)$$

over M_1 and M_2 respectively.

Then one verifies the following

Proposition 12. For any r > 0, there are *G*-maps

$$f_1: E_1(r) \longrightarrow E_2(r),$$

$$f_2: E_2(r) \longrightarrow E_1(r)$$

satisfying $f_1, f_2 \in \mathcal{P}_1$ and

$$f_2 \cdot f_1 \simeq \operatorname{id} \quad and \quad f_1 \cdot f_2 \simeq \operatorname{id}.$$

It follows from Proposition 12 that the composition

 $f_2 \cdot f_1 \colon E_1(r) \longrightarrow E_1(r)$

belongs to \mathscr{P}_1 and $f_2 \cdot f_1 \simeq_g$ id.

On the other hand, there exists a G-representation space V such that

$$\mathscr{P}_2((E_i \oplus V)(r)) \neq \phi$$
 for $i = 1, 2,$

by Proposition 11. We now set

$$E'_i = E_i \oplus M_i \times V, \qquad i = 1, 2.$$

Let ε be a real number satisfying $0 < \varepsilon < 1$. Then define maps

$$f_1' = f_1 \oplus \bar{\varepsilon} \colon E_1'(r) = (E_1 \oplus M_1 \times V)(r) \longrightarrow E_2'(r) = (E_2 \oplus M_2 \times V)(r)$$
$$f_2' = f_2 \oplus \bar{\varepsilon} \colon E_2'(r) = (E_2 \oplus M_2 \times V)(r) \longrightarrow E_1'(r) = (E_1 \oplus M_1 \times V)(r)$$

where ε denotes the map defined by the scalar multiplication by $\varepsilon/\sqrt{2}$. Obviously $f'_2 \cdot f'_1$ also belongs to \mathscr{P}_1 and $f'_2 \cdot f'_1 \simeq_g$ id.

In view of Proposition 10, we have

$$X(f'_2 \cdot f'_1) \cong \operatorname{Int} E'_1(r) \cong E'_1.$$

Similarly we have

$$X(f'_1 \cdot f'_2) \cong \operatorname{Int} E'_2(r) \cong E'_2.$$

It follows from Lemma 8 that

$$E'_1 \cong X(f'_2 \cdot f'_1) \cong X(f'_1 \cdot f'_2) \cong E'_2.$$

It is easy to see that the following diagram

is G-homotopy commutative, where \overline{f} denotes the G-diffeomorphism obtained above.

This completes a sketch of the proof of Theorem 2.

The proof of Theorem 3 is essentially similar to that of Theorem 2.

§ 3. Decomposition of G-manifolds

We first introduce some basic notations. Let G be a compact Lie group. Whenever H is a closed subgroup of G, (H) denotes the conjugacy class of H in G and N(H) denotes the normalizer of H in G. There is a partial ordering relation among the set of conjugacy classes of closed subgroups of G, i.e., $(H_1) \leq (H_2)$ if and only if there exists $g \in G$ such that $gH_1g^{-1} \subset H_2$.

Let W be a compact G-manifold. We shall denote the isotropy group at $x \in W$ by G_x , namely

$$G_x = \{g \in G \mid g \cdot x = x\}.$$

For a subgroup H of G, we shall put

$$W^{H} = \{x \in W | G_{x} \supset H\},\$$

$$W(H) = \{x \in W | (G_{x}) = (H)\}.$$

Since W is compact, there are only finite G-isotropy types, say

$$\{(G_x) \mid x \in W\} = (H_1) \cup \cdots \cup (H_k).$$

It is possible to arrange (H_i) in such order that $(H_i) \ge (H_j)$ implies $i \le j$.

We shall get a filtration

$$W = W_1 \supset W_2 \supset \cdots \supset W_k$$

consisting of compact G-manifolds W_i with corners such that

$$\{(G_x) \mid x \in W_i\} = (H_i) \cup (H_{i+1}) \cup \cdots \cup (H_k)$$

as follows.

Since (H_1) is a maximal conjugacy class, $W(H_1)$ is a compact *G*-invariant submanifold. We identify the normal bundle ν_1 of $W(H_1)$ in *W* with an open tubular neighborhood of $W(H_1)$ in *W* and impose a Riemannian *G*-vector bundle structure on ν_1 . Set

$$W_2 = W - \dot{\nu}_1(1).$$

Then W_2 is a compact G-manifold with corner and satisfies

$$\{(G_x) | x \in W_2\} = (H_2) \cup (H_3) \cup \cdots \cup (H_k).$$

Suppose that we get a filtration

$$W = W_1 \supset W_2 \supset \cdots \supset W_i$$

such that

$$\{(G_x) \mid x \in W_i\} = (H_i) \cup (H_{i+1}) \cup \cdots \cup (H_k)$$

and W_j is a compact G-manifold with corner for every $j \leq i$. Since (H_i) is a maximal conjugacy class among the set

$$\{(G_x) \mid x \in W_i\},\$$

 $W_i(H_i)$ is a compact G-invariant submanifold of W_i . We identify the normal bundle ν_i of $W_i(H_i)$ in W_i with an open tubular neighborhood of $W_i(H_i)$ in W_i and impose a Riemannian G-vector bundle structure on ν_i . Set

$$W_{i+1} = W_i - \dot{\nu}_i(1).$$

Then W_{i+1} is a compact G-manifold with corner and satisfies

$$\{(G_x) | x \in W_{i+1}\} = (H_{i+1}) \cup \cdots \cup (H_k).$$

This completes the inductive construction.

Thus we have shown the following decomposition theorem.

Theorem 13. Let W be a compact G-manifold and $(H_1), \dots, (H_k)$ be the isotropy types appearing in W. Arrange $\{(H_i)\}$ in such order that (H_i) $\geq (H_j)$ implies $i \leq j$. Then there exist compact G-manifolds M_i with corners and G-vector bundles $\nu_i \rightarrow M_i$ for $1 \leq i \leq k$ such that

$$M_i(H_i) = M_i \underset{G}{\simeq} W(H_i)$$

and that we have a decomposition

$$W = \nu_1(1) \cup \nu_2(1) \cup \cdots \cup \nu_k(1).$$

Moreover if we set

$$W_i = \nu_i(1) \cup \nu_{i+1}(1) \cup \cdots \cup \nu_k(1),$$

we have

$$\{(G_x) \mid x \in W_i\} = (H_i) \cup (H_{i+1}) \cup \cdots \cup (H_k).$$

§ 4. Equivariant simple homotopy type

In this section, we give a sketch of the proof of Theorem 4.

Let $f: M_1 \rightarrow M_2$ be a *G*-homotopy equivalence where M_i are closed *G*-manifolds (i=1, 2). According to Theorem 2, there exist *G*-vector bundles $\pi_i: E_i \rightarrow M_i$ (i=1, 2) and a *G*-diffeomorphism

$$\overline{f}: E_1 \longrightarrow E_2$$

such that the following diagram

is G-homotopy commutative.

In the manner of the proof of Lemma 3.2 in [16], we can prove the following lemma.

Lemma 14. There is a G-representation space V satisfying the following conditions:

(i) for any non negative integer m, there is a G-diffeomorphism

 $\overline{f}: E_1 \oplus V^m \longrightarrow E_2 \oplus V^m$

36

such that

$$\overline{f}((E_1 \oplus V^m)(1)) \subset \operatorname{Int}(E_2 \oplus V^m)(1)$$

and that the following diagram

is G-homotopy commutative, where V^m denotes the direct sum of m copies of V,

(ii) if $m \ge \dim G+3$, then $\overline{f}(S(E_1 \oplus V^m)(1))$ and $S(E_2 \oplus V^m)(1)$ are strong G-deformation retracts of

$$(E_2 \oplus V^m)(1) - \overline{f}(\operatorname{Int}(E_1 \oplus V^m)(1)).$$

For notational convenience, we put

$$W = (E_2 \oplus V^m)(1) - \overline{f} (\operatorname{Int} (E_1 \oplus V^m)(1)),$$

$$X = \overline{f} (S(E_1 \oplus V^m)(1)),$$

$$Y = S(E_2 \oplus V^m)(1).$$

Since X and Y are strong G-deformation retracts of W, we can define equivariant torsions $\tau_{\alpha}(W, X)$ and $\tau_{\alpha}(W, Y)$ in the sense of Illman [8].

Then we have the following lemma.

Lemma 15. Suppose that $f: M_1 \rightarrow M_2$ is a G-simple homotopy equivalence, $V^{a} \neq \{0\}$ and that $m \ge \dim G+3$. Then the triad (W; X, Y) is a G s-cobordism. Namely

$$\tau_{g}(W, X) = \tau_{g}(W, Y) = 0.$$

Let $W = W_1 \supset W_2 \supset \cdots \supset W_k$ be the filtration in Theorem 13. Set

$$X_i = X \cap W_i$$
.

Then by the observations of [2] and [16], we have the following lemma.

Lemma 16. If $m \ge \dim G+3$, then X_i are strong G-deformation retracts of W_i and $\tau_G(W, X) = 0$ implies $\tau_G(W_i, X_i) = 0$.

Suppose now that the assumptions of Lemmas 14 and 15 are satisfied. Then by Lemma 16 we have $\tau_G(W_i, X_i) = 0$. Hence we have easily that

$$\tau_G(W_i(H_i), X_i(H_i)) = 0.$$

Moreover we assume that

$$m \geq \dim G + 6$$
.

Then we can prove that

dim
$$W_i^{H_i} \ge \dim G + 6$$

and that

$$\tau(W_i^{H_i}/N(H_i), X_i^{H_i}/N(H_i)) = 0.$$

Here $\tau(,)$ denotes the non-equivariant Whitehead torsion. Hence by the classical *s*-cobordism theorem, we have that $W_i^{H_i}$ is diffeomorphic to $X_i^{H_i} \times I$. Furthermore one verifies that $W_i^{H_i}$ is $N(H_i)$ -diffeomorphic to $X_i^{H_i} \times I$.

Using the fact that (H_i) is a maximal isotropy type of W_i , we can easily prove that there are natural G-diffeomorphisms:

$$W_{i}(H_{i}) \cong G \underset{N(H_{i})}{\times} W_{i}^{H_{i}},$$
$$X_{i}(H_{i}) \cong G \underset{N(H_{i})}{\times} X_{i}^{H_{i}}.$$

It follows that $W_i(H_i)$ is G-diffeomorphic to $X_i(H_i) \times I$.

Denote by $\nu_i(W_i(H_i))$ (resp. $\nu_i(X_i(H_i))$) the ν_i of W (resp. X) of Theorem 13. By the equivariant homotopy property of G-vector bundles, we get an isomorphism

$$\nu_i(W_i(H_i)) \cong \nu_i(X_i(H_i)) \times I$$

of G-vector bundles.

Paying attention to the attaching maps, we can prove that W is G-diffeomorphic to $X \times I$ by Theorem 13. Hence we finish a sketch of the proof of Theorem 4.

The idea of the proofs of Theorems 5 and 6 are similar.

§ 5. Equivariant *h*-cobordism and *s*-cobordism theorems do not hold in general

In Section 4, we mentioned that an equivariant stable s-cobordism theorem holds. In this section, we shall show Theorem 7. Namely equivariant h-cobordism and s-cobordism theorems do not hold in general.

According to Giffen [6] and Sumners [23], for each pair of integers

38

(n, p) with $n \ge 2$ and $p \ge 2$, there are infinitely many knots (S^{n+2}, kS^n) which admit smooth semi-free Z_p -actions such that the fixed point set is kS^n .

Choose arbitrary two points x and y from kS^n . Let D(x) and D(y) be Z_p -invariant closed tubular neighborhoods of x and y respectively in S^{n+2} satisfying

$$D(x) \cap D(y) = \phi$$
.

Then we put

$$W = S^{n+2} - \operatorname{Int} D(x) - \operatorname{Int} D(y),$$

$$X = SD(x), \qquad Y = SD(y).$$

Note that W is diffeomorphic to $S^{n+1} \times I$ and W^{Z_p} is diffeomorphic to $X^{Z_p} \times I = S^{n-1} \times I$.

It follows from [12] that X and Y are Z_p -deformation retracts of W. Namely (W; X, Y) is a Z_p h-cobordism. Since W has a Z_p -triangulation [9], X is a strong G-deformation retract of W [8]. Hence we can define the equivariant torsion $\tau_{Z_n}(W, X)$.

If $n \ge 3$, each component of any X^H , $H \subset Z_p$, is simply connected. It follows from [8] that the equivariant Whitehead group $Wh_{Z_p}(X)$ vanishes for p=2, 3, 4 or 6 and for $n \ge 3$. Namely (W; X, Y) is a Z_p s-cobordism in this case.

On the other hand, one verifies the following lemma.

Lemma 17. If a knot (S^{n+2}, kS^n) is non trivial, then the pair $(W, W \cap kS^n)$ is not diffeomorphic to the pair $(X, X \cap kS^n) \times I$.

Remark. Lemma 17 does not hold in general for knots of codimension greater than two.

It follows from Lemma 17 that W is not Z_p -diffeomorphic to $X \times I$. This completes the proof of Theorem 7.

Added in November 1985. Professor K. H. Dovermann kindly informed the author that some results related with our Theorem 3 are obtained by S. Kwasik [24].

References

- D. R. Anderson, Torsion invariants and actions of finite groups, Michigan Math. J., 29 (1982), 27-42.
- [2] S. Araki, Equivariant simple homotopy theory, Lecture note, 1983.
- [3] S. Araki and K. Kawakubo, Equivariant s-cobordism theorems, to appear.
- [4] M. F. Atiyah and G. B. Segal, Equivariant K-theory, (mimeographed note), University of Warwick.

- [5] T. tom Dieck, Homotopy equivalent group representations, J. f. d. r. u. a. Math., 298 (1978), 182-195.
- [6] C. H. Giffen, The generalized Smith conjecture, Amer. J. Math., 88 (1966), 187-198.
- [7] H. Hauschild, Aquivariante Whiteheadtorsion, Manuscripta math., 26 (1978), 63-82.
- [8] S. Illman, Whitehead torsion and group actions, Ann. Acad. Sci. Fenn. Ser. A1 588 (1974), 1-44.
- [9] —, Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann., 233 (1978), 199-220.
- [10] —, Actions of compact Lie groups and equivariant Whitehead torsion, Osaka, J. Math., 23 (1986), to appear.
- [11] —, Equivariant Whitehead torsion and actions of compact Lie groups, Contemp. Math., 36 (1985), 91-106.
- [12] I. M. James and G. B. Segal, On equivariant homotopy type, Topology, 17 (1978), 267–272.
- [13] K. Kawakubo, The groups $J_G(*)$ for compact abelian topological groups G, Proc. Japan Acad., 54 (1978), 76-78.
- [14] —, G-homotopy equivalent manifolds and J_G -homomorphism, Proc. Japan Acad., 54 (1978), 104–106.
- [15] —, Equivariant homotopy equivalence of group representations, J. Math. Soc. Japan, 32 (1980), 105–118.
- [16] —, Compact Lie group actions and fiber homotopy type, J. Math. Soc. Japan, 33 (1981), 295–321.
- [17] —, talk at Topology symposium, Daisanbiru, Osaka, February 1984.
- [18] T. Matumoto and M. Shiota, Unique triangulation of the orbit space of a differentiable transformation group and its applications, in this volume, 41-55.
- [19] B. Mazur, Stable equivalence of differentiable manifolds, Bull. Amer. Math. Soc., 67 (1961), 377–384.
- [20] —, The method of infinite repetition in pure topology, I, Ann. of Math., 80 (1964), 201-226.
- [21] —, The method of infinite repetition in pure topology, II, Stable applications, Ann. of Math., 83 (1966), 387-401.
- [22] M. Rothenberg, Torsion invariants and finite transformation groups, Proc. Symp. Pure Math., 32 (1978), 267–311.
- [23] D. W. Sumners, Smooth Z_p-actions on spheres which leave knots pointwise fixed, Trans. Amer. Math. Soc., 205 (1975), 193-203.
- [24] S. Kwasik, Tangential equivalence of group actions, Trans. A.M.S. 283 (1984), 563-573.

Department of Mathematics Osaka University Toyonaka 560, Japan

40