Advanced Studies in Pure Mathematics 7, 1985 Automorphic Forms and Number Theory pp. 333-362

On Dirichlet Series Attached to Holomorphic Cusp Forms on SO(2,q)

Takashi Sugano

§ 0. Introduction

In [1] and [2], A. N. Andrianov has studied the relation of the L-function associated to a Siegel modular form of genus two and its Fourier coefficients, and using this relation he has proved the meromorphic continuation and the functional equation of the L-function. Let F be a Siegel cusp form of genus two of weight k. It has the Fourier expansion:

$$F(Z) = \sum_{T = tT > 0} a(T) e[\operatorname{Tr}(TZ)],$$

where Z is in the Siegel upper half plane of degree two and T runs through all semi-integral symmetric positive definite matrices. We assume that F is a simultaneous eigen function of all the Hecke operators $T_k(m)$:

(0.2)
$$T_k(m)F = \lambda_F(m)F \quad (m = 1, 2, \cdots).$$

Andrianov proved that, in some right half plane, the Dirichlet series

(0.3)
$$\sum_{m=1}^{\infty} \left\{ \sum_{T_i \in H(d)} a(mT_i) \chi(T_i) \right\} m^{-s}$$

has the Euler product expansion

(0.4)
$$\left\{\sum_{T_i \in H(d)} a(T_i) \chi(T_i)\right\} L_{\kappa}(s-k+2,\chi)^{-1} L_{F}(s).$$

Here d is the discriminant of an imaginary quadratic field $K=Q(\sqrt{d})$, H(d) denotes the set of equivalence classes under $SL_2(Z)$ of semi-integral symmetric primitive positive definite matrices with determinant -d/4. It forms an abelian group and is identified with the ideal class group of K; χ is a character of H(d), which is regarded as an ideal class character of K, and $L_{\kappa}(s, \chi)$ denotes the L-function with character χ . $L_{F}(s)$ is defined by

Received February 28, 1984.

$$L_F(s) = \zeta(2s-2k+4) \sum_{m=1}^{\infty} \lambda_F(m) m^{-s}.$$

The main purpose of this paper is to give a generalization of the theorem above by Andrianov in SO(2, q) case (Theorem 1). Note that $Sp(2, \mathbf{R})$ is isogenous to SO(2, 3). Let $q \geq 3$ be an integer and

$$\tilde{\mathcal{Q}} = \begin{pmatrix} & 0 \\ 1 & & 0 \end{pmatrix}$$

be a non-degenerate rational symmetric matrix with 2 positive and q negative eigenvalues. Let G [resp. G^*] be the special orthogonal group of \tilde{Q} [resp. Q]. For each prime p, put

$$K_p = G_p \cap SL_{q+2}(Z_p)$$
 and $K_f = \prod_p K_p$.

In Section 1 we define the space $\mathfrak{S}_k(K_f)$, which consist of holomorphic cusp forms on G_A of weight k with respect to K_f . Each element F in $\mathfrak{S}_k(K_f)$ has the Fourier expansion (cf. (1.11)):

$$F(g_f;\mathscr{Z}) = \sum_{\substack{\eta \in \hat{L}(g_f) \\ \sqrt{-1} \eta \in \varphi}} a(g_f;\eta) e[Q(\eta,\mathscr{Z})],$$

where $g_f \in G_{A,f}$, $\hat{L}(g_f)$ is a lattice in Q^q , and \mathscr{D} is a complex domain defined in (1.2). We assume that F is a simultaneous eigen function of the Hecke algebra \mathscr{H}_p determined by the pair (G_p, K_p) for almost all p. We fix a $g_f \in G^*_{A,f}$ and a $\xi \in \hat{L}(g_f)$ such that $\sqrt{-1}\xi \in \mathscr{D}$. We define a subgroup $H(\xi)$ of G^* by

$$H(\xi)_{\varrho} = \{g \in G_{\varrho}^* | g\xi = \xi\}.$$

Then $H(\xi)_{\infty}$, the group of *R*-rational points, is isomorphic to SO(q-1). For each prime *p*, put

$$M(g_{f};\xi)_{p} = H(\xi)_{p} \cap g_{f}K_{f}g_{f}^{-1}$$
 and $M(g_{f};\xi)_{f} = \prod M(g_{f};\xi)_{p}$.

Denote by $\mathscr{V}(g_f; \xi)$ the space of functions on $H(\xi)_A$, which are left $H(\xi)_Q$ invariant and right $H(\xi)_{\infty}M(g_f;\xi)_f$ invariant. Let $\{u_1, \dots, u_h\}$ be a complete system of representatives of $H(\xi)_Q \setminus H(\xi)_A / H(\xi)_{\infty}M(g_f;\xi)_f$, such that $u_{i,\infty} = 1$ $(i=1, \dots, h)$. Take an f in $\mathscr{V}(g_f; \xi)$ and assume that f is a simultaneous eigen function of the Hecke algebra \mathscr{H}'_p determined by the pair $(H(\xi)_p, M(g_f; \xi)_p)$ for almost all p. Then the Dirichlet series

(0.5)
$$\sum_{\substack{m=1\\(m,p)=1\\\forall p \in \mathcal{P}}}^{\infty} \mu(\xi)^{-1} \sum_{i=1}^{h} a(u_i g_f; m\xi) \frac{\overline{f(u_i)}}{e(\xi)_i} m^{-(s+k-q/2)}$$

has the Euler product expansion

(0.6)
$$\begin{cases} \mu(\xi)^{-1} \sum_{i=1}^{h} a(u_i g_f; \xi) \frac{\overline{f(u_i)}}{e(\xi)_i} \end{cases} L_{\mathscr{P}}(F; s) L_{\mathscr{P}}(\overline{f}; s+1/2)^{-1} \\ \times \begin{cases} 1 & \text{if } q \text{ is odd,} \\ \zeta_{\mathscr{P}}(2s)^{-1} & \text{if } q \text{ is even.} \end{cases}$$

Here $e(\xi)_i = \#\{H(\xi)_Q \cap M(u_ig_f; \xi)_f\}$ $(1 \le i \le h), \ \mu(\xi) = \sum_{i=1}^h e(\xi)_i^{-1}, \ \mathcal{P}$ is a sufficient large finite set of primes, $L_{\mathscr{P}}(F; s)$ [resp. $L_{\mathscr{P}}(\bar{f}; s)$] is the *L*-function of *F* [resp. \bar{f}], which is defined in 4-1, and $\zeta_{\mathscr{P}}(s)$ denotes the Riemann zeta function neglecting *p*-factors for *p* belonging to \mathcal{P} .

In Section 2 we recall some basic facts on the Hecke algebras following [5], and prepare two lemmata (Lemma 2 and Lemma 4). The proof of Theorem 1 is reduced to local argument and is similar to [6], in which the case q=3 is treated in detail. After we calculate local factors in Section 3, our main result will be stated and proved in Section 4. In Section 5 we study some related problems. The case which has interest for us is that f satisfies the condition $\sum a(u_i g_i; \xi) \overline{(f(u_i))}/e(\xi)_i) \neq 0$. It seems that in general a constant function on $H(\xi)_A$ does not have this Indeed, Proposition 3 asserts that if f=1, $p \notin \mathcal{P}$ and $n_p \ge 2$ property. $(n_p \text{ is the } Q_p \text{-rank of } G_p^*)$, then some relations, not depending to F, hold between the eigenvalues of the Hecke algebra \mathscr{H}_{p} . Finally, in a quite special situation, we give an integral representation of the Dirichlet series (0.5) of Rankin-Selberg type (Theorem 2).

The author wishes to express his deepest gratitude to Professors Hideo Shimizu, Shin-ichiro Ihara, and Takayuki Oda for their valuable advice and warm encouragement. He also thanks very much to the referee, who checked so carefully the original manuscript and corrected the errors contained in it.

Notations. We denote by Z, Q, R, and C, respectively, the ring of integers, the rational number field, the real number field, and the complex number field. For an associative ring R with identity element, R^{\times} denotes the group of all invertible elements. For any set S, $M_{m,n}(S)$ denotes the set of $m \times n$ matrices with entries in S. Put $M_{n,n}(S) = M_n(S)$. If R is a ring with unit element, $M_n(R)$ forms a ring and we denote by 1_n the unity of $M_n(R)$. Put $GL_n(R) = M_n(R)^{\times}$. If R is commutative, we denote by $SL_n(R)$ the special linear group of degree n. If $Q \in M_n(R)$ is a symmetric matrix, for X, $Y \in M_{n,1}(R)$ we put $Q(X, Y) = {}^tXQY$ and Q[X] = Q(X, X).

For each place v of Q, we denote by Q_v the v-completion of Q, and by $|x|_v$ the module of x for an $x \in Q_v^{\times}$. Q_A [resp. Q_A^{\times}] means the adele ring of Q [resp. the idele group of Q] and for $x = (x_v) \in Q_A^{\times}$ put $|x|_A = \prod_v |x|_v$. For an algebraic group G defined over Q and a field K containing Q, we denote by G_K the group of K-rational points of G. We abbreviate G_{Q_v} to G_v . We denote by G_A , G_{∞} , and $G_{A,f}$, the adelized group of G, the infinite part of G_A , and the finite part of G_A , respectively. Each prime p is identified with the corresponding finite place. When L is a Z module, we put $L_p = L \otimes_Z Z_p$. For $z \in C$, we put $e[z] = \exp(2\pi\sqrt{-1z})$. The cardinality of a finite set S is denoted by # S or |S|.

§ 1. Holomorphic cusp forms on SO(2, q)

1-1. Let $q \ge 3$ and Q be a non-degenerate rational symmetric matrix with 1 positive and q-1 negative eigenvalues. Put $L=Z^{q}$ (column vectors) and $V=L\otimes_{\mathbf{Z}} Q=Q^{q}$. We set

(1.1)
$$\tilde{Q} = \begin{pmatrix} & 1 \\ 1 & Q \end{pmatrix}.$$

Then it has 2 positive and q negative eigenvalues. We denote by G^* [resp. G] the special orthogonal group of Q [resp. \tilde{Q}] defined over Q: accordingly, the set of Q-rational points is

$$G_{Q}^{*} = \{g \in SL_{q}(Q) | {}^{t}gQg = Q\},$$

[resp. $G_{Q} = \{g \in SL_{q+2}(Q) | {}^{t}g\tilde{Q}g = \tilde{Q}\}$].

We regard G^* as a subgroup of G through the embedding $g \mapsto \begin{pmatrix} 1 & g \\ & 1 \end{pmatrix}$.

We denote by \mathcal{D} one of the connected components of

(1.2)
$$\{\mathscr{Z} \in V \bigotimes_{O} C | Q[\operatorname{Im} \mathscr{Z}] > 0\},\$$

where Im \mathscr{Z} means the imaginary part of \mathscr{Z} . This domain is isomorphic to the irreducible bounded symmetric domain of type IV_q . Let G^0_{∞} denote the identity component of G_{∞} . We define an action $g\langle \mathscr{Z} \rangle$ of G^0_{∞} on \mathscr{D} and a scalar valued automorphy factor $J(g, \mathscr{Z})$ on $G^0_{\infty} \times \mathscr{D}$ by

(1.3)
$$g\begin{pmatrix} -\frac{1}{2}Q[\mathscr{Z}]\\ \mathscr{Z}\\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{2}Q[g\langle \mathscr{Z} \rangle]\\ g\langle \mathscr{Z} \rangle\\ 1 \end{pmatrix} J(g, \mathscr{Z}) \quad (g \in G^0_{\infty}, \mathscr{Z} \in \mathscr{D}).$$

In this manner G_{∞}^{0} acts on \mathcal{D} transitively. We fix an element \mathscr{Z}_{0} in \mathcal{D} such that the real part of \mathscr{Z}_{0} is 0, and denote by K_{∞} the stabilizer subgroup of \mathscr{Z}_{0} in G_{∞}^{0} . Then \mathscr{D} is isomorphic to $G_{\infty}^{0}/K_{\infty}$.

For each prime p, put

(1.4)
$$K_p = G_p \cap SL_{q+2}(Z_p),$$

and we abbreviate $\prod_{p < \infty} K_p$ to K_f .

Let k be a positive integer. We say that a function F on G_A is a holomorphic cusp form of weight k and with respect to K_f if F satisfies the following three conditions:

 $F(g_{\infty}g_{t})J(g_{\infty},\mathscr{Z}_{0})^{k}$ depends only on g_{t} and $\mathscr{Z}=g_{\infty}\langle \mathscr{Z}_{0}\rangle$,

- (i) $F(\gamma gu) = F(g)$ for $\forall \gamma \in G_{Q}, \forall u \in K_{f}$,
- (ii) For any $g = g_{\infty}g_f$ ($g_{\infty} \in G_{\infty}^0$, $g_f \in G_{A,f}$),

(1.5)

(iii) F is bounded on G_A .

We denote by $\mathfrak{S}_k(K_f)$ the space of such functions. We introduce a positive definite hermitian inner product (the Petersson inner product), \langle , \rangle by

and it is holomorphic on \mathcal{D} as a function of \mathcal{Z} ,

(1.6)
$$\langle F_1, F_2 \rangle = \int_{\mathcal{G}_{\mathcal{Q}} \setminus \mathcal{G}_A} F_1(g) \overline{F_2(g)} d\dot{g},$$

where $F_1, F_2 \in \mathfrak{S}_k(K_f)$ and $d\dot{g}$ is a fixed right G_A -invariant measure on $G_Q \backslash G_A$. Equipped with this inner product, $\mathfrak{S}_k(K_f)$ forms a finite dimensional Hilbert space.

For each $F \in \mathfrak{S}_k(K_f)$ and $g_f \in G_{A,f}$, we put

(1.7)
$$F(g_f; \mathscr{Z}) = F(g_{\infty}g_f)J(g_{\infty}, \mathscr{Z}_0)^k \quad (\mathscr{Z} \in \mathscr{D}),$$

where $g_{\infty} \in G_{\infty}^{0}$ is chosen so that $\mathscr{Z} = g_{\infty} \langle \mathscr{Z}_{0} \rangle$. If we put

(1.8)
$$\Gamma(g_f) = G_Q \cap G^0_{\infty} \times g_f K_f g_f^{-1},$$

which is a discrete subgroup of G^0_{∞} , then $F(g_f; \mathcal{Z})$ satisfies

(1.9)
$$F(g_f; \mathcal{I}\langle \mathcal{Z} \rangle) = J(\mathcal{I}, \mathcal{Z})^k F(g_f; \mathcal{Z})$$
 for any $\mathcal{I} \in \Gamma(g_f)$.

For each $X \in V$, we define an element γ_X of G by

Since the holomorphic function $F(g_f; \mathscr{Z})$ is invariant under $\mathscr{Z} \mapsto \mathscr{Z} + X$, where X is in the lattice $L(g_f) = \{X \in V_Q | \mathcal{I}_X \in \Gamma(g_f)\}$, it has the following Fourier expansion.

(1.11)
$$F(g_f; \mathscr{Z}) = \sum_{\substack{\eta \in \hat{L}(g_f) \\ \sqrt{-1}\eta \in \mathscr{D}}} a(g_f; \eta) e[Q(\eta, \mathscr{Z})],$$

where $\hat{L}(g_f) = \{X \in V_Q | Q(X, Y) \in \mathbb{Z} \text{ for all } Y \in L(g_f)\}$ is the dual lattice of $L(g_f)$, and the right hand side of (1.11) converges absolutely and uniformly on any compact subset of \mathcal{D} .

Let us introduce adelic Fourier coefficients of F. Let $\chi = \prod_{v} \chi_{v}$ be the character of Q_{A} such that $\chi | Q = 1$ and $\chi_{\infty}(x) = e[x]$ for all $x \in \mathbf{R}$. For each $\xi \in V_{Q}$, put

(1.12)
$$F_{\chi}(g;\xi) = \int_{V_Q \setminus V_A} F(\mathcal{I}_X g) \chi(-Q(\xi,X)) dX \quad (g \in G_A).$$

where dX is the normalized Haar measure of $V_Q \setminus V_A$. We can easily check that for each $g_{\infty} \in G_{\infty}^0$ and $g_f \in G_{A,f}$,

(1.13)
$$F_{\chi}(g_{\omega}g_{f};\xi)=a(g_{f};\xi)J(g_{\omega},\mathscr{Z}_{0})^{-k}e[Q(\xi,g_{\omega}\langle\mathscr{Z}_{0}\rangle)],$$

where we understand $a(g_f; \xi) = 0$ if $\xi \notin \hat{L}(g_f)$ or $\sqrt{-1}\xi \notin \mathcal{D}$. The next properties follow easily from the above definition:

(1.14)
$$F_{z}(\mathcal{I}_{X}gu;\xi) = \chi(Q(\xi,X))F_{z}(g;\xi) \quad \text{for } \forall X \in V_{A}, \forall u \in K_{f},$$
$$F_{z}\left(\binom{\alpha}{\beta}_{\alpha^{-1}}g;\xi\right) = F_{z}(g;\beta^{-1}\xi\alpha) \quad \text{for } \forall \alpha \in \mathbf{Q}^{\times}, \forall \beta \in G_{\mathbf{Q}}^{*}$$
$$F(\mathcal{I}_{X}g) = \sum_{\xi \in V_{\mathbf{Q}}}F_{z}(g;\xi)\chi(Q(\xi,X)) \quad \text{for } \forall X \in V_{A}.$$

1-2. Fix a ξ in V_Q such that $\sqrt{-1}\xi \in \mathcal{D}$, and put $V^{(1)} = Q\xi$, $V^{(2)} = \{X \in V | Q(\xi, X) = 0\}$. We write $Q^{(i)} = Q | V^{(i)}$ (i=1, 2). Since $Q[\xi]$ is positive and Q has only one positive eigenvalue, we see that $Q^{(2)}$ is negative definite. Let us define an algebraic subgroup $H(\xi)$ of G^* by

(1.15)
$$H(\xi)_{Q} = \{g \in G_{Q}^{*} | g\xi = \xi\}.$$

It is nothing but the special orthogonal group of $Q^{(2)}$. For an element $g_f \in G_{A,f}$ and a prime p, we put

(1.16)
$$M(g_{f};\xi)_{p} = H(\xi)_{p} \cap g_{f}K_{f}g_{f}^{-1},$$

and we abbreviate $\prod_p M(g_f; \xi)_p$ to $M(g_f; \xi)_f$. We denote by $\mathscr{V}(g_f; \xi)$ the space of *C*-valued functions on $H(\xi)_A$ satisfying

(1.17)
$$f(\gamma hh_{\infty}m_f) = f(h)$$
 for $\forall \gamma \in H(\xi)_Q, \forall h_{\infty} \in H(\xi)_{\infty}, \forall m_f \in M(g_f; \xi)_f$.

In this space, the Petersson inner product is defined by

(1.18)
$$\langle f_1, f_2 \rangle_{H(\xi)} = \int_{H(\xi)_Q \setminus H(\xi)_A} f_1(h) \overline{f_2(h)} d\dot{h}$$

where $d\dot{h}$ is the right $H(\xi)_A$ invariant measure on $H(\xi)_Q \setminus H(\xi)_A$ with the total volume 1. Since $|H(\xi)_Q \setminus H(\xi)_A / H(\xi)_\infty M(g_f;\xi)_f|$ is finite, $\mathscr{V}(g_f;\xi)$ forms a finite dimensional Hilbert space.

When f is a left $H(\xi)_{q}$ -invariant function on $H(\xi)_{A}$, we put

(1.19)
$$\varphi_{F,\xi}^{f}(g) = \int_{H(\xi)Q \setminus H(\xi)_{A}} F_{\chi}(ug;\xi) \overline{f(u)} du \quad (g \in G_{A}).$$

Lemma 1. Let F be a non-zero element of $\mathfrak{S}_{k}(K_{f})$. Then there exist $g_{f} \in G_{A,f}^{*}$ and $\xi \in V_{Q}$ such that $F_{x}(g_{f}; \xi) \neq 0$. Furthermore there exists an f in $\mathscr{V}(g_{f}; \xi)$ such that $\varphi_{F,\xi}^{f}(g_{f}) \neq 0$.

Proof. First we note that

(1.20)
$$G_A = G_O G_{A,f}^* G_{\infty}^0 K_f.$$

Indeed, for any prime p, G_p is generated by G_p^* ,

$$\begin{pmatrix} a \\ 1_q \\ a^{-1} \end{pmatrix} (a \in Q_p^{\times}), \ \gamma_x \quad \text{and} \quad \gamma'_x = \begin{pmatrix} 1 \\ X & 1_q \\ -\frac{1}{2}Q[X] & -{}^t XQ & 1 \end{pmatrix} (X \in V_p).$$

Hence, (1.20) is an easy consequence of the approximation theorem of valuations. From this, we can take a $g_f \in G^*_{A,f}$ and $g_{\infty} \in G^0_{\infty}$ such that $F(g_{\infty}g_f) \neq 0$. Take a ξ in V_Q such that $F_{\chi}(g_{\infty}g_f; \xi) \neq 0$. Then from the property (1.13), we have $F_{\chi}(g_f; \xi) \neq 0$. Now we define a function f_1 on $H(\xi)_A$ by

(1.21)
$$f_1(u) = F_{\chi}(ug_f; \xi).$$

From (1.13) and (1.14), f_1 belongs to $\mathscr{V}(g_f; \xi)$. Therefore there exists an f in $\mathscr{V}(g_f; \xi)$ such that $\langle f_1, f \rangle_{H(\xi)} \neq 0$ and the function $\varphi_{F,\xi}^f$ has the required property. Q.E.D.

§ 2. Hecke algebra

2-1. In this subsection we recall the definitions and some properties of Hecke albebras following Satake [5]. Let p be a prime number, L a

lattice in Q_p^N (column vectors), and S a non-degenerate symmetric matrix of degree N with coefficients in Q_p . We say that L is Z_p -integral with respect to S if $S[x]/2 \in Z_p$ for all $x \in L$. We denote by SO(S) the special orthogonal group and put

$$SO(S; L) = \{g \in SO(S) | gL = L\}.$$

Denote by $\mathscr{L}(S; L)$ the Hecke algebra of the pair (SO(S), SO(S; L)); namely, $\mathscr{L}(S; L)$ is the set of bi-SO(S; L)-invariant functions on SO(S)with compact support, and it forms a *C*-algebra by the convolution product

(2.2)
$$(\phi_1 * \phi_2)(g) = \int_{SO(S)} \phi_1(gh^{-1}) \phi_2(h) dh,$$

where dh is the Haar measure of SO(S) normalized by the condition that the volume of SO(S; L) is 1. If L is a maximal \mathbb{Z}_p -integral lattice with respect to S, then SO(S; L) is a maximal compact subgroup of SO(S), and the Hecke algebra $\mathscr{L}(S; L)$ is commutative (cf. Satake [5]).

Let S_0 be an anisotropic symmetric matrix of size n_0 over Q_p , and assume that $Z_p^{n_0}$ is a maximal Z_p -integral lattice with respect to S_0 . From the well known property of quadratic forms over local fields, we have $0 \le n_0 \le 4$. For a non-negative integer n, we put

(2.3)
$$S_n = \begin{pmatrix} J_n \\ J_n \end{pmatrix}, L_n = Z_p^{2n+n_0}, \text{ and } V_n = Q_p^{2n+n_0},$$

where $J_n = \begin{pmatrix} & & 1 \\ 1 & & \end{pmatrix}$ (size *n*). Then L_n is a maximal Z_p -integral lattice with respect to S_n . Put $G_n = SO(S_n)$, $K_n = SO(S_n; L_n)$ and $\mathscr{L}_n = \mathscr{L}(S_n; L_n)$. Note that if *L* is a maximal Z_p -integral lattice with respect to *S*, then SO(S; L) is isomorphic to K_n for a suitable choice of S_0 and *n*. For an *n*-tuple of integers $r = (r_1, \dots, r_n)$, we set

(2.4)
$$\pi^{r} = \operatorname{diag}(p^{r_{1}}, \cdots, p^{r_{n}}, \underbrace{1, \cdots, 1}_{n_{0}}, p^{-r_{n}}, \cdots, p^{-r_{1}}) \in G_{n}.$$

Put

(2.5)
$$N_n = \left\{ g = \begin{pmatrix} X & * & * \\ 0 & 1_{n_0} & * \\ 0 & 0 & J_n {}^t X^{-1} J_n \end{pmatrix} \in G_n \middle| X = \begin{pmatrix} 1 & \cdot & * \\ 0 & \cdot & 1 \end{pmatrix} \in GL_n(\mathcal{Q}_p) \right\}.$$

Then the following Iwasawa and Cartan decomposition hold.

(2.6)
$$G_n = \bigcup_{\mathbf{r} \in \mathbf{Z}^n} N_n \boldsymbol{\pi}^{\mathbf{r}} K_n = \bigcup_{\mathbf{r} \in \mathbf{Z}^n} \boldsymbol{\pi}^{\mathbf{r}} N_n K_n$$

(2.7)
$$G_n = \coprod_{r \in A} K_n \pi^r K_n \text{ (disjoint)},$$

where

$$\boldsymbol{\Lambda} = \begin{cases} \{\boldsymbol{r} = (r_1, \cdots, r_n) \in \boldsymbol{Z}^n | r_1 \geq \cdots \geq r_n \geq 0\} \text{ if } n_0 \neq 0, \\ \{\boldsymbol{r} = (r_1, \cdots, r_n) \in \boldsymbol{Z}^n | r_1 \geq \cdots \geq r_{n-1} \geq |r_n| \} \text{ if } n_0 = 0. \end{cases}$$

We often identify the Hecke algebra \mathscr{L}_n with the set of finite *C*linear combinations of double K_n cosets. In [5], I. Satake gives an explicit isomorphism between \mathscr{L}_n and an affine algebra. We recall it here. Let X_1, \dots, X_n be algebraically independent variables over *C* and $C[X_1^{\pm}, \dots, X_n^{\pm}]$ be an affine algebra generated by $X_1, X_1^{-1}, \dots, X_n, X_n^{-1}$. Let \mathfrak{S}_n denote the group of all permutations of the variables X_1, \dots, X_n and $w^{(i)}$ $(1 \le i \le n)$ denotes the transformation; $X_i \mapsto X_i^{-1}, X_j \mapsto X_j$ $(i \ne j)$. For each $g \in G_n$, the double coset $K_n g K_n$ can be decomposed into right K_n cosets in the form

(2.8)
$$K_n g K_n = \coprod_{i \in I} n_i \pi^{r_i} K_n,$$

where $\mathbf{r}_i = (r_{i,1}, \dots, r_{i,n}) \in \mathbb{Z}^n$, $n_i \in N_n$ and *I* is a finite index set. The set $\{\mathbf{r}_i | i \in I\}$ is uniquely determined by $K_n g K_n$. Put

(2.9)
$$\Phi_n(K_ngK_n) = \sum_{i \in I} \prod_{j=1}^n (p^{1-n_0/2-j}X_j)^{r_i,n+1-j},$$

and extend it to a *C*-linear mapping from \mathscr{L}_n to $C[X_1^{\pm}, \dots, X_n^{\pm}]$. Then it gives an algebra isomorphism

(2.10)
$$\Phi_n: \mathscr{L}_n \xrightarrow{\cong} C[X_1^{\pm}, \cdots, X_n^{\pm}]^{W_n},$$

where W_n denotes the group of automorphisms of the algebra $C[X_1^{\pm}, \dots, X_n^{\pm}]$ generated by \mathfrak{S}_n and $w^{(i)}$ $(1 \leq i \leq n)$ [resp. \mathfrak{S}_n and $w^{(i)}w^{(j)}$ $(1 \leq i, j \leq n)$] if $n_0 \geq 1$ [resp. $n_0 = 0$], and $C[X_1^{\pm}, \dots, X_n^{\pm}]^{W_n}$ denotes the subalgebra of all W_n invariants.

Now we set

(2.11)
$$T_n(1) = \{g \in G_n \mid pg \in M_{2n+n_0}(\mathbb{Z}_p)\}.$$

For each $r (0 \leq r \leq n)$, we put

(2.12)
$$\tilde{c}_n^{(r)} = \{g \in T_n(1) | \operatorname{rank}_{Z_n/pZ_n}(pg) = r\},\$$

where rank $Z_{p/pZ_p}(pg)$ means the rank of pg in $M_{2n+n_0}(Z_p/pZ_p)$. Then we have

(2.13)
$$T_n(1) = \coprod_{0 \leqslant r \leqslant n} \tilde{c}_n^{(r)} \quad \text{(disjoint)},$$

and from the Cartan decomposition (2.7),

(2.14)
$$\tilde{c}_n^{(r)} = \begin{cases} K_n c_n^{(r)} K_n & \text{if } n_0 \neq 0 \text{ or } r \neq n, \\ K_n c_n^{(r)} K_n \coprod K_n c_n^{(r)'} K_n & \text{if } n_0 = 0 \text{ and } r = n, \end{cases}$$

where $c_n^{(r)} = \pi^{(1,\dots,1,0,\dots,0)}$ (in the upper suffix, 1 appears r times) and $c_n^{(n)'} = \pi^{(1,\dots,1,-1)}$.

2-2. In this subsection we decompose $\tilde{c}_{n+1}^{(r)}$ into right K_{n+1} cosets inductively. For $r \ (1 \le r \le n), R_n^{(r)}$ [resp. $R_n^{(n)'}$] denotes a complete set of representatives of $K_n/(c_n^{(r)}K_nc_n^{(r)-1} \cap K_n)$ [resp. $K_n/(c_n^{(n)'}K_nc_n^{(n)'-1} \cap K_n)$]

Lemma 2. When $n_0 \ge 1$ or $0 \le r \le n-1$,

$$\tilde{c}_{n+1}^{(r)} = \coprod_{\substack{\varepsilon \in R_{h}^{(r-1)} \\ X_{1}}} {\binom{p}{\varepsilon c_{n}^{(r-1)}} } {p^{-1}} \tilde{\gamma}_{X_{1}} K_{n+1} \coprod_{\substack{\varepsilon \in R_{h}^{(r-2)} \\ X_{2}}} {\binom{1}{\varepsilon c_{n}^{(r-2)}} } {\binom{1}{\varepsilon c_{n}^{(r-1)}} } {\binom{1$$

Here, for $X \in V_n$, we have put

and X_1, \dots, X_4 runs through the following set, respectively.

$$\begin{cases} X_{1} = \begin{bmatrix} x_{1} \\ x_{2} \\ z \\ y_{2} \\ 0 \end{bmatrix} \in V_{n}/L_{n} \begin{vmatrix} x_{1} \in p^{-2} Z_{p}^{r-1}, x_{2}, y_{2} \in p^{-1} Z_{p}^{n-r+1} \\ z \in p^{-1} L_{0}, \end{vmatrix}, \\ \begin{cases} X_{2} = \begin{bmatrix} x_{1} \\ x_{2} \\ z \\ y_{2} \\ 0 \end{bmatrix} \in V_{n}/L_{n} \begin{vmatrix} x_{1} \in p^{-1} Z_{p}^{r-2}, x_{2}, y_{2} \in p^{-1} Z_{p}^{n-r+2}, \frac{1}{2} S_{n}[X] \in p^{-1} Z_{p} \\ z \in p^{-1} L_{0}, and x_{2} \text{ or } y_{2} \notin Z_{p}^{n-r+2} \end{cases} \end{cases}$$

$$\begin{cases} X_{3} = \begin{pmatrix} x_{1} \\ 0 \\ z \\ 0 \end{pmatrix} \in V_{n}/L_{n} \Big| \begin{array}{l} x_{1} \in p^{-1} \mathbb{Z}_{p}^{r-1}, \ z \in p^{-1}L_{0} - L_{0} \\ \frac{1}{2}S_{0}[z] \in p^{-1} \mathbb{Z}_{p} \end{cases} \\ \\ \left\{ X_{4} = \begin{pmatrix} x \\ 0 \end{pmatrix} \in V_{n}/L_{n} | x \in p^{-1} \mathbb{Z}_{p}^{r} \right\}. \end{cases}$$

We understand that $R_n^{(r)} = \phi$ if r < 0 or r > n. When $n_0 = 0$ and r = n, n+1, the identity (2.15) holds with an addition of the following K_{n+1} cosets to the right hand side:

$$\bigcup_{\substack{\varepsilon \in R_n^{(n)}, \\ X_4'}} \begin{pmatrix} 1 & \varepsilon c_n^{(n)'} \\ & 1 \end{pmatrix} \Upsilon_{X_4'} K_{n+1} & \text{if } r = n, \\
\bigcup_{\substack{\varepsilon \in R_n^{(n)}, \\ X_{1'}}} \begin{pmatrix} p & \\ \varepsilon c_n^{(n)'} \\ & p^{-1} \end{pmatrix} \Upsilon_{X_1'} K_{n+1} \\
\bigcup_{\substack{\varepsilon \in R_n^{(n)}, \\ r}} \begin{pmatrix} p^{-1} & \\ \varepsilon c_n^{(n)'} \\ & p \end{pmatrix} K_{n+1} & \text{if } r = n+1$$

where X'_4 , X'_1 runs through the following set, respectively;

$$\begin{cases} X'_{4} = \begin{pmatrix} x_{1} \\ 0 \\ y_{2} \\ 0 \end{pmatrix} \in V_{n}/L_{n} | x_{1} \in p^{-1} \mathbb{Z}_{p}^{n-1}, y_{2} \in p^{-1} \mathbb{Z}_{p} \\ \\ \begin{cases} X'_{1} = \begin{pmatrix} x_{1} \\ 0 \\ y_{2} \\ 0 \end{pmatrix} \in V_{n}/L_{n} | x_{1} \in p^{-2} \mathbb{Z}_{p}^{n-1}, y_{2} \in p^{-2} \mathbb{Z}_{p} \\ \end{cases} \end{cases},$$

Proof. We assume that $n_0 \ge 1$. From the definition of $T_{n+1}(1)$ and the Iwasawa decomposition (2.6), we have

$$T_{n+1}(1) = \prod_{\substack{-1 \leq a \leq 1 \\ 0 \leq i \leq n}} \prod_{e \in R_n^{(i)}} \prod_{X} \begin{pmatrix} p^a \\ e C_n^{(i)} \\ p^{-a} \end{pmatrix} \Upsilon_X K_{n+1},$$

where X runs through

$$\left\{X \in V_n/L_n \, \middle| \begin{array}{c} c_n^{(i)} X \in p^{-1}L_n, \, p^a S_n X \in p^{-1}L_n \\ \frac{1}{2} p^a S_n [X] \in p^{-1} \mathbb{Z}_p \end{array} \right\}.$$

For each $b = \begin{pmatrix} p^a & \\ & \varepsilon c_n^{(i)} \\ & & p^{-a} \end{pmatrix} \Upsilon_x$, $\operatorname{rank}_{Z_p/pZ_p}(pb)$ is calculated easily (note

that if $S_0[z] \in 2pZ_p$ then $S_0z \in L_0$, and our assertion follows. The case $n_0=0$ can be treated similarly. Q.E.D.

Put

(2.17)
$$L_0' = \left\{ z \in V_0 \middle| \frac{1}{2} S_0[z] \in p^{-1} \mathbb{Z}_p \right\}.$$

Then L'_0/L_0 is a vector space over Z_p/pZ_p . We denote by $\partial = \partial(S_0)$ its dimension $(0 \leq \delta \leq n_0)$. From Lemma 2 and the definitions of the Satake isomorphism Φ_n ((2.9)), we have

Lemma 3.

$$\begin{split} \Phi_{n+1}(\tilde{c}_{n+1}^{(r)}) &= p^{n+n_0/2}(X_{n+1} + X_{n+1}^{-1})\Phi_n(\tilde{c}_n^{(r-1)}) \\ &+ p^{r-1}(p^{\vartheta} - 1)\Phi_n(\tilde{c}_n^{(r-1)}) + p^r\Phi_n(\tilde{c}_n^{(r)}) \\ &+ p^{r-2}(p^{n-r+2} - 1)(p^{n-r+1+n_0} + p^{\vartheta})\Phi_n(\tilde{c}_n^{(r-2)}). \end{split}$$

Especially, since $\#\{\tilde{c}_n^{(r)}/K_n\}$ is given by the value $\Phi_n(\tilde{c}_n^{(r)})$ for $X_i = p^{n_0/2+i-1}$ $(1 \le i \le n)$, we can prove

(2.18)
$$\#\{\tilde{c}_n^{(r)}/K_n\} = \prod_{j=1}^r \frac{p^{j-1}(p^{n-j+1}-1)(p^{n-j+n_0}+p^{\vartheta})}{p^j-1}$$

by using this lemma and induction on n. This formula will be used in Section 5.

2-3. Let T be an indeterminate. Since each coefficient of

(2.19)
$$\prod_{j=1}^{n} (1 - X_j T) (1 - X_j^{-1} T)$$

is invariant under W_n , there uniquely exists a polynomial

(2.20)
$$P_n(T) = P_{S_n}(T) = \sum_{k=0}^{2n} (-1)^k \alpha_n(k) T^k \quad (\alpha_n(k) \in \mathcal{L}_n)$$

such that

$$\sum_{k=0}^{2n} (-1)^k \Phi_n(\alpha_n(k)) T^k = \prod_{j=1}^n (1 - X_j T) (1 - X_j^{-1} T).$$

From the reciprocity of (2.19), we have

$$\alpha_n(2n-k) = \alpha_n(k) \quad (0 \leq k \leq 2n).$$

In this subsection we determine $\alpha_n(k)$ inductively.

Lemma 4. (i) $\alpha_n(k)$ is written in the form $\alpha_n(k) = \sum_{0 \le r \le n} a_{n,k}(r) \tilde{c}_n^{(r)}$ with $a_{n,k}(r) \in C$. (ii) $a_{n+1,k}(r) = p^{-(n+n_0/2)} a_{n,k-1}(r-1)$ if $r \ge 1$, $= a_{n,k}(0) + a_{n,k-2}(0) - \frac{p^2 - 1}{p^{n+n_0/2}} a_{n,k-1}(0)$ $- \frac{(p^n - 1)(p^{n-1+n_0} + p^2)}{p^{n+n_0/2}} a_{n,k-1}(1)$ if r = 0.

(iii) When
$$0 \le k \le 2n+2$$
 and $1 \le r \le n$, the following relations hold
 $a_{n,k}(r) + a_{n,k-2}(r) = \frac{p^r(p^{\vartheta} - 1)}{p^{n+n_0/2}} a_{n,k-1}(r) + \frac{p^r}{p^{n+n_0/2}} a_{n,k-1}(r-1)$

$$+ \frac{p^r(p^{n-r} - 1)(p^{n-r-1+n_0} + p^{\vartheta})}{p^{n+n_0/2}} a_{n,k-1}(r+1).$$

Here we understand that $a_{n,k'}(r')=0$ unless $0 \leq k' \leq 2n$ or unless $0 \leq r' \leq n$.

Proof. If n=0, (i) is trivial. We shall prove our assertions by induction on n. Assume that (i) holds for n. Since

$$\Phi_{n+1}(P_{n+1}(T)) = \{1 - (X_{n+1} + X_{n+1}^{-1})T + T^2\} \sum_{k=0}^{2n} (-1)^k \Phi_n(\alpha_n(k))T^k,$$

we have

$$\Phi_{n+1}(\alpha_{n+1}(k)) = \Phi_n(\alpha_n(k)) + (X_{n+1} + X_{n+1}^{-1})\Phi_n(\alpha_n(k-1)) + \Phi_n(\alpha_n(k-2))$$

$$(0 \le k \le 2n+2).$$

From Lemma 3,

$$\begin{split} \varPhi_{n+1}(\alpha_{n+1}(k)) &- \frac{1}{p^{n+n_0/2}} \sum_{1 \le r \le n+1} a_{n,k-1}(r-1) \varPhi_{n+1}(\tilde{c}_{n+1}^{(r)}) \\ &- \left\{ a_{n,k}(0) + a_{n,k-2}(0) - \frac{p^{\vartheta} - 1}{p^{n+n_0/2}} a_{n,k-1}(0) \right. \\ (2.21) &- \frac{(p^n - 1)(p^{n-1+n_0} + p^{\vartheta})}{p^{n+n_0/2}} a_{n,k+1}(1) \right\} \\ &= \sum_{1 \le r \le n} \varPhi_n(\tilde{c}_n^{(r)}) \left\{ a_{n,k}(r) + a_{n,k-2}(r) - \frac{p^r(p^{\vartheta} - 1)}{p^{n+n_0/2}} a_{n,k-1}(r) \right. \\ &- \frac{p^r}{p^{n+n_0/2}} a_{n,k-1}(r-1) - \frac{p^r(p^{n-r} - 1)(p^{n-r-1+n_0} + p^{\vartheta})}{p^{n+n_0/2}} a_{n,k-1}(r+1) \right\}. \end{split}$$

Since the left hand side of (2.21) belongs to $C[X_1^{\pm}, \dots, X_{n+1}^{\pm}]^{\otimes_{n+1}}$ and the right hand side belongs to $C[X_1^{\pm}, \dots, X_n^{\pm}]^{\otimes_n}$, it must be a constant. From the fact that 1 and $\tilde{c}_n^{(r)}$ $(1 \leq r \leq n)$ are linearly independent over C, the coefficient of $\Phi_n(\tilde{c}_n^{(r)})$ must be 0 $(1 \leq r \leq n)$, so (iii) is proved. As Φ_{n+1} is an isomorphism, (i) holds for n+1 and (ii) is also proved. Q.E.D.

Let us define the local L-factor. As in Section 1, let L be a maximal Z_p -integral lattice in Q_p^N with respect to S. Denote by n the Witt index of S and put $n_0 = N - 2n$. If we take a suitable S_0 , then S is represented in the form (2.3) and $\mathscr{L}(S; L)$ is isomorphic to \mathscr{L}_n . We put $\partial = \partial(S; L)$ $= \partial(S_0)$ ($\partial(S_0)$ is defined after (2.17)). Through this isomorphism, we define a polynomial $P_s(T)$ in $\mathscr{L}(S; L)$ [T] (see (2.20)). When σ is a homomorphism from $\mathscr{L}(S; L)$ to C, we obtain a polynomial $P_s(T; \sigma)$ in C[T] replacing each coefficient of $P_s[T]$ by its σ -image. For $s \in C$, we put

(2.22)
$$L_{p}(S;\sigma;s) = \begin{cases} P_{S}(p^{-s};\sigma)^{-1} & \text{if } n_{0} = 0 \text{ or } 1, \\ P_{S}(p^{-s};\sigma)^{-1}(1-p^{-s+1-n_{0}/2})^{-1}(1+p^{-s+1+\vartheta-n_{0}/2})^{-1} & \text{if } n_{0} = 2 \text{ or } 3, \\ P_{S}(p^{-s};\sigma)^{-1}(1-p^{-s})^{-1}(1-p^{-s-1})^{-1}(1+p^{-s+1})^{-1} & \times (1+p^{-s+2})^{-1} & \text{if } n_{0} = 4. \end{cases}$$

Thus $L_p(S; \sigma; s)^{-1}$ is of degree N [resp. N-1] as a polynomial in p^{-s} if N is even [resp. odd].

§ 3. Euler factor

3-1. In this section we use the same notations as in Section 2. We denote by \hat{L}_n the dual lattice of L_n with respect to S_n ; so $\hat{L}_n = S_n^{-1}L_n$. Let ξ be a primitive element of \hat{L}_n and fix it throughout this section. We denote by $N(\xi)$ an element of Z_p such that $N(\xi)\xi$ is a primitive element of L_n . We assume that $N(\xi)S_n[\xi]$ is a unit of Z_p . Note that $N(\xi) \in 2Z_p$. Put

(3.1)
$$H(\xi) = \{g \in G_n | g\xi = \xi\},$$

and

(3.2)
$$\begin{aligned} W_{n+1,\xi}^{z} = \{ \varphi \colon H(\xi) \cap K_{n} \setminus G_{n+1}/K_{n+1} \longrightarrow C | \\ \varphi(\mathcal{I}_{X}g) = \mathcal{X}(S_{n}(\xi, X))\varphi(g) \text{ for all } X \in V_{n} \}, \end{aligned}$$

where $\chi = \chi_p$ is a character of Q_p whose conductor is Z_p . The Hecke algebra \mathscr{L}_{n+1} acts on $W_{n+1,\xi}^{\chi}$ by the right convolution;

(3.3)
$$(\varphi * \phi)(g) = \int_{G_p} \varphi(gh^{-1}) \phi(h) dh \quad (\varphi \in W_{n+1,\xi}^{\chi}, \phi \in \mathscr{L}_{n+1}).$$

Furthermore, when we denote by \mathscr{L}' the Hecke algebra determined by the pair $(H(\xi), H(\xi) \cap K_n)$, \mathscr{L}' acts on $W_{n+1,\xi}^{\chi}$ by the left convolution;

(3.4)
$$(\phi * \varphi)(g) = \int_{H(\xi)} \phi(h) \varphi(h^{-1}g) dh \quad (\varphi \in W_{n+1,\xi}^{\chi}, \phi \in \mathscr{L}').$$

In Proposition 1 and Proposition 2, we shall calculate the formal power series

(3.5)
$$F_{\varphi}(T) = \sum_{l=0}^{\infty} \varphi \left(\begin{pmatrix} p^{l} & \\ & 1 & \\ & p^{-l} \end{pmatrix} \right) T^{l},$$

when φ is a left \mathscr{L}' and right \mathscr{L}_{n+1} eigen function.

For $b \in G_n$, we denote by m_b the minimal integer such that $p^{m_b}b^{-1}\xi \in \hat{L}_n$. We can easily check that

$$(3.6) mmodes m_b \ge 0.$$

Lemma 5.

$$\bigcup_{\varphi \in W_{n+1,\xi}^{\chi}} \sup \varphi \subset \bigcup_{l \ge 0} \bigcup_{\substack{b \in G_n \\ X \in Y_n}} \gamma_X \begin{pmatrix} p^{m_b+l} & \\ & b \end{pmatrix} K_{n+1},$$

where supp φ means the support of φ .

Proof. Take any element g in G_{n+1} such that $\varphi(g) \neq 0$. From the Iwasawa decomposition (2.6) and the definition of $W_{n+1,\xi}^z$, we may assume that

where $a \in \mathbb{Z}$ and $b \in G_n$. Since for $X \in L_n$, $\varphi(g\gamma_x) = \varphi(g)$, $p^{a-m_b}S_n(p^{m_b}b^{-1}\xi, X)$ must be an integer. From the choice of m_b , we have $a \ge m_b$ and our assertion is verified. Q.E.D.

Let us describe the action of some elements of \mathscr{L}_{n+1} on $W_{n+1,\xi}^{\mathfrak{r}}$. For $l \in \mathbb{Z}$ and $r \ (0 \leq r \leq n)$, put

(3.8)
$$\varphi(r,l) = \begin{cases} \sum_{\varepsilon \in R_n^{(r)}} \varphi\left(\begin{pmatrix} p^l & \varepsilon c_n^{(r)} & p^{-l} \end{pmatrix} \right) & \text{if } n_0 \neq 0 \text{ or } r \neq n, \\ \sum_{\varepsilon \in R_n^{(n)}} \varphi\left(\begin{pmatrix} p^l & \varepsilon c_n^{(n)} & p^{-l} \end{pmatrix} \right) + \sum_{\varepsilon \in R_n^{(n)'}} \varphi\left(\begin{pmatrix} p^l & \varepsilon c_n^{(n)'} & p^{-l} \end{pmatrix} \right) \\ & \text{if } n_0 = 0 \text{ and } r = n. \end{cases}$$

Note that if *l* is negative $\varphi(r, l) = 0$.

Lemma 6. For $l \ge 0$ and r $(0 \le r \le n+1)$, the following identity holds.

$$(\varphi * \tilde{c}_{n+1}^{(r)}) \left(\begin{pmatrix} p^{l} & \\ & p^{-l} \end{pmatrix} \right) = p^{2n+n_{0}} \varphi(r-1, l+1) + p^{r} \varphi(r, l) + \varphi(r-1, l-1)$$

$$+ \begin{cases} p^{r-2} (p^{n-r+2}-1)(p^{n-r+1+n_{0}}+p^{\vartheta}) \varphi(r-2, l) + p^{r-1}(p^{\vartheta}-1) \varphi(r-1, l) \\ & if \ l \ge 1, \end{cases}$$

$$\varphi'(r-2, 0) - p^{r-2} \varphi''(r-2, 0) + p^{r-1} \varphi''(r-1, 0) - p^{r-1} \varphi(r-1, 0) \\ & if \ l = 0. \end{cases}$$

Here we have put

(3.9)
$$\varphi'(r,0) = \sum_{\substack{\varepsilon \in R_n^{(n)} \\ X \in p^{-1}L_n/L_n \\ c_n^{(r)} X \in p^{-1}L_n \\ \frac{1}{2}S_n[X] \in p^{-1}Z_p}} \chi(S_n(\xi, \varepsilon c_n^{(r)}X))\varphi\begin{pmatrix} 1 \\ \varepsilon c_n^{(r)} \\ 1 \end{pmatrix} \end{pmatrix}$$

(3.10)
$$\varphi''(r,0) = \sum_{\substack{\varepsilon \in R_n^{(r)} \\ \frac{1}{2}S_0[Z] \in p^{-1}Z_p \\ \frac{1}{2}S_0[Z] \in p^{-1}Z_p \\ X = \begin{pmatrix} 0 \\ 0 \end{pmatrix}} \chi(S_n(\xi, \varepsilon c_n^{(r)}X))\varphi\begin{pmatrix} 1 \\ \varepsilon c_n^{(r)} \\ 1 \end{pmatrix}$$

and $\varphi''(n, 0) = \varphi(n, 0)$ if $n_0 = 0$ and r = n.

This lemma is a direct consequence of Lemma 2. In the right hand side of (3.9) and (3.10), every element ε of $R_n^{(r)}$ which contributes the sum, must satisfy $c_n^{(r)-1}\varepsilon^{-1}\xi \in \hat{L}_n$ (cf. Lemma 5).

3-2. In this subsection we assume that φ is an eigen function of \mathscr{L}_{n+1} . We denote by σ_{φ} the homomorphism of \mathscr{L}_{n+1} to C determined by φ :

(3.11)
$$\varphi * \phi = \sigma_{\varphi}(\phi)\varphi \qquad (\phi \in \mathscr{L}_{n+1}).$$

We put

(3.12)
$$Q_{\varphi}(T) = P_{S_{n+1}}(p^{-(n+n_0/2)}T; \sigma_{\varphi})$$
$$= \sum_{k=0}^{2n+2} (-1)^k \sigma_{\varphi}(\alpha_{n+1}(k)) \left(\frac{T}{p^{n+n_0/2}}\right)^k,$$

and

$$(3.13) P_{\varphi}(T) = F_{\varphi}(T) \times Q_{\varphi}(T),$$

where $F_{\varphi}(T)$ is the formal power series defined in (3.5).

Proposition 1. Notation being as above, we have

$$P_{\varphi}(T) = \sum_{k=0}^{2n+1} (-1)^{k} \left(\frac{T}{p^{n+n_{0}/2}}\right)^{k} (\sum_{0 \le r \le n} B_{\varphi,k}(r)),$$

where

$$B_{\varphi,k}(r) = \left\{ a_{n,k}(r) - \frac{p^{r}(p^{n-r}-1)(p^{n-r-1+n_{0}}+p^{\partial})}{p^{n+n_{0}/2}} a_{n,k-1}(r+1) \right. \\ \left. - p^{r+\partial - (n+n_{0}/2)} a_{n,k-1}(r) \right\} \varphi(r,0) \\ \left. + p^{-(n+n_{0}/2)} a_{n,k-1}(r+1) \varphi'(r,0) \right. \\ \left. + p^{r-(n+n_{0}/2)} a_{n,k-1}(r) - a_{n,k-1}(r+1) \right\} \varphi''(r,0).$$

Proof. Put

$$P_{\varphi}(T) = \sum_{l=0}^{\infty} (-1)^{l} B'_{\varphi}(l) T^{l}.$$

From Lemma 6, we have

$$B'_{\varphi}(l) = (-1)^{l} \sum_{k=0}^{2n+2} (-1)^{k} p^{-k(n+n_{0}/2)} \\ \times \sum_{0 < r < n+1} a_{n+1,k}(r) \sigma_{\varphi}(\tilde{c}_{n+1}^{(r)}) \varphi\left(\begin{pmatrix} p^{l-k} & \\ & p^{k-l} \end{pmatrix}\right) \\ (3.14) = \sum_{k=0}^{2n+2} (-1)^{k+l} p^{-k(n+n_{0}/2)} \sum a_{n+1,k}(r) \\ \times \{\delta(l \ge k) p^{2n+n_{0}} \varphi(r-1, l-k+1) + \delta(l \ge k) p^{r} \varphi(r, l-k) \\ + \delta(l \ge k) \varphi(r-1, l-k-1) + \delta(l > k) p^{r-1}(p^{\partial}-1) \varphi(r-1, l-k) \\ + \delta(l \ge k) p^{r-2}(p^{n-r+2}-1)(p^{n-r+1+n_{0}}+p^{\partial}) \varphi(r-2, l-k) \\ + \delta(l = k) \varphi'(r-2, 0) - \delta(l = k) p^{r-2} \varphi''(r-2, 0) \\ + \delta(l = k) p^{r-1} \varphi''(r-1, 0) - \delta(l = k) p^{r-1} \varphi(r-1, 0) \},$$

where the symbol $\delta((*))$ means 1 or 0 according as the condition (*) is satisfied or not. We write the right hand side of (3.14) as

$$\sum_{\substack{0 \le m \le l \\ n \le r \le n}} u_{l,m}(r)\varphi(r,m) + \sum_{0 \le r \le n-1} u_l'(r)\varphi'(r,0) + \sum_{0 \le r \le n} u_l''(r)\varphi''(r,0)$$

From (iii) of Lemma 4, we have $u_{l,m}(r) = 0$ if $m \ge 1$, and

$$u_{l,0}(r) = p^{-(n+n_0/2)(l-1)} \{ a_{n+1,l+1}(r+1) - p^{r-(n+n_0/2)}(p^{n-r}-1) \\ \times (p^{n-r-1+n_0}+p^{\vartheta}) a_{n+1,l}(r+2) - p^{r+\vartheta-(n+n_0/2)}a_{n+1,l}(r+1) \} \\ = p^{-(n+n_0/2)l} \{ a_{n,l}(r) - p^{r-(n+n_0/2)}(p^{n-r}-1)(p^{n-r-1+n_0}+p^{\vartheta}) \\ \times a_{n,l-1}(r+1) - p^{r+\vartheta-(n+n_0/2)}a_{n,l-1}(r) \}.$$

Here we used the inductive property (ii) in Lemma 4. The values of $u'_i(r)$ and $u''_i(r)$ are easily seen, and our assertion is verified. Q.E.D.

3-3. Changing a Z_p basis of L_n , we may assume that

(3.15)
$$S_n = \begin{pmatrix} & J_{n'} \\ J_{n'} & & \end{pmatrix}, \quad \tilde{S}'_0 = \begin{pmatrix} N(\xi)s \\ & S'_0 \end{pmatrix}, \quad \xi = \begin{pmatrix} 0 \\ N(\xi)^{-1} \\ 0 \\ 0 \end{pmatrix},$$

where s is a unit of Z_p , S'_0 is an anisotropic symmetric matrix of size n'_0 $(n'_0=n_0+1 \text{ or } n_0-1)$ and n' is the Q_p -rank of $H(\xi)$. We fix such a realization, and put

$$S_{n'}' = \begin{pmatrix} & J_{n'} \\ & S_0' & \\ J_{n'} & & \end{pmatrix}.$$

We define $G'_{n'}$, $K'_{n'}$, $T'_{n'}(1)$, $\tilde{e}^{(n)}_{n'}$, $e^{(r)}_{n'}$ or $P'_{n'}(T)$ in the same way as G_n , K_n , $T_n(1)$, $\tilde{c}^{(r)}_n$, $c^{(r)}_n$ or $P_n(T)$, respectively.

Lemma 7.

$$\{g \in T_n(1) | g^{-1} \xi \in \hat{L}_n\} = T'_{n'}(1) K_n.$$

Proof. Take any element g in $T_n(1)$ such that $g^{-1}\xi \in \hat{L}_n$. We shall prove that $g \in T'_n(1)K_n$. From the Iwasawa decomposition (2.6) we may assume that

$$g \in \begin{pmatrix} a & & \\ & b & \\ & & J_{n'}{}^{i}a^{-1}J_{n'} \end{pmatrix} \begin{pmatrix} 1_{n'} & X_{Z} & Y_{Z} + Y \\ & 1_{n_{0'+1}} & Z \\ & & & 1_{n'} \end{pmatrix},$$

where $a \in GL_{n'}(\mathbf{Q}_p)$, $b \in SO(\widetilde{S}'_0)$, $Z \in M_{n_0'+1,n'}(\mathbf{Q}_p)$, $X_Z = -J_{n'}{}^t Z \widetilde{S}'_0$, $Y_Z = -\frac{1}{2}J_{n'}{}^t Z \widetilde{S}'_0 Z$ and $Y \in M_{n'}(\mathbf{Q}_p)$ satisfying $J_{n'}Y + {}^t Y J_{n'} = 0$. Let us show that if $b^{-1}\xi \in \hat{L}_n$, then b is in $M_{n_0'+1}(\mathbf{Z}_p)$. Put $b = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$, where $\alpha \in \mathbf{Q}_p$, $\beta \in M_{1,n_0'}(\mathbf{Q}_p)$, $\gamma \in M_{n_0',1}(\mathbf{Q}_p)$ and $\delta \in M_{n_0'}(\mathbf{Q}_p)$. We know

(3.16)
$$\binom{N(\xi)s}{S_0'} = \binom{N(\xi)s\alpha^2 + S_0'[\gamma]}{N(\xi)s\,{}^t\beta\alpha + {}^t\delta S_0'\gamma} \frac{N(\xi)s\alpha\beta + {}^t\gamma S_0'\delta}{N(\xi)s\,{}^t\beta\alpha + {}^t\delta S_0'\gamma}.$$

Since $b^{-1} \binom{N(\xi)^{-1}}{0} = \binom{\alpha/N(\xi)}{sS'_0^{-1}t_\beta} \in \widetilde{S}'_0^{-1}Z_p^{n_0'+1}$, we obtain $\alpha \in \mathbb{Z}_p$ and $\beta \in M_{1,n_0'}(\mathbb{Z})$. Comparing (1, 1) block of (3.16) we have $S'_0[7] \in 2\mathbb{Z}_p$ (here we have used the fact that $N(\xi) \in 2\mathbb{Z}_p$). Since S'_0 is anisotropic, we have $7 \in M_{n_0',1}(\mathbb{Z}_p)$. Similarly by comparing (2, 2) block of (3.16), we know that $\delta \in M_{n_0'}(\mathbb{Z}_p)$, and b is in $M_{n_0'+1}(\mathbb{Z}_p)$. Thus we may assume that b=1. Put $\mathbb{Z} = \binom{z_1}{z_2}$, where $z_1 \in M_{1,n'}(\mathbb{Q}_p)$ and $z_2 \in M_{n_0',n'}(\mathbb{Q}_p)$. Since $g^{-1}\xi \in \hat{L}_n$, we know that $z_1 \in M_{1,n'}(\mathbb{Z}_p)$, and we may assume that $z_1=0$. Then g belongs to $G'_{n'} \cap T_n(1)$, the above statement has been checked. Q.E.D.

We denote by $\mathscr{L}'_{n'}$ the Hecke algebra determined by the pair $(G'_{n'}, K'_{n'})$. Hereafter we suppose that $\varphi \in W^{\chi}_{n+1,\varepsilon}$ is a simultaneous eigen function of $\mathscr{L}'_{n'}$, and denote by σ'_{φ} the homomorphism of $\mathscr{L}'_{n'}$ to C determined by φ :

(3.17)
$$\phi * \varphi = \sigma'_{\varphi}(\phi)\varphi \quad (\phi \in \mathscr{L}'_{n'})$$

Lemma 8.

(i)
$$\varphi(r, 0) = \sigma'_{\varphi}(\tilde{e}_{n'}^{(r)})\varphi(1),$$

(ii)
$$\varphi'(r, 0) = p^{n'}C'\sigma'_{\varphi}(\tilde{e}^{(r)}_{n'})\varphi(1),$$

(iii)
$$\varphi''(r, 0) = C'' \sigma'_{\varphi}(\tilde{e}_{n'}^{(r)}) \varphi(1),$$

where
$$C' = \sum_{\substack{z \in p^{-1}Z_p^{n0'+1}/Z_p^{n0'+1} \\ \frac{1}{2}\bar{S}_0(z] \in p^{-1}Z_p}} \chi\left(\tilde{S}'_0\left(\binom{N(\xi)^{-1}}{0}, z\right)\right), and$$

 $C'' = \sum_{\substack{z \in p^{-1}L_0/L_0 \\ \frac{1}{2}S_0[z] \in p^{-1}Z_p}} \chi\left(S_n\left(\xi, \begin{pmatrix}0\\z\\0\end{pmatrix}\right)\right).$

Proof. Lemma 7 assures that we can take a set of representatives of $\tilde{e}_{n'}^{(r)}/K'_{n'}$ as that of $\{g \in \tilde{c}_n^{(r)} | g^{-1}\xi \in \hat{L}_n\}/K_n$. Thus we have

$$\varphi(r, 0) = \sum_{g \in \tilde{e}_{n'}^{(r)}/K'_{n'}} \varphi\left(\begin{pmatrix} 1 & g \\ & g \end{pmatrix}\right) = \sigma_{\varphi}'(\tilde{e}_{n'}^{(r)})\varphi(1).$$

We shall prove (ii). From the definition (3.9), we get

$$\varphi'(r,0) = \sum_{\substack{g \in \tilde{g}_{n}^{(r)}/K_{n}, \\ X \in p^{-1}L_{n}/L_{n} \\ \frac{g X \notin p^{-1}L_{n}}{\frac{1}{2}S_{n}[X] \in p^{-1}Z_{p}}} \chi(S_{n}(\xi, X))\varphi\left(\begin{pmatrix} 1 & & \\ & & \\ & & \\ \end{pmatrix}\right)$$
$$= \{\sum_{\substack{X \in p^{-1}L_{n}/L_{n} \\ e_{n}^{(r)}X \in p^{-1}L_{n} \\ \frac{1}{2}S_{n}[X] \in p^{-1}Z_{p}}} \chi(S_{n}(\xi, X))\}\varphi(r, 0).$$

It is easy to see that the coefficient of $\varphi(r, 0)$ coincides to $p^{n'}C'$. (iii) is proved quite similarly. Q.E.D.

Let ∂' denote the dimension of the vector space $\{z \in p^{-1}Z_p^{n_0'} | \frac{1}{2}S'_0[X] \in p^{-1}Z_p\}/Z_p^{n_0'}$ over Z_p/pZ_p (i.e., $\partial' = \partial(S'_0)$).

Lemma 9.

(i)
$$\partial' = \begin{cases} \partial \text{ or } \partial - 1 & \text{ if } n'_0 = n_0 - 1, \\ \partial & \text{ if } n'_0 = n_0 + 1, \end{cases}$$

(ii) $C'' = \begin{cases} p^{\partial} & \text{ if } \partial' = \partial, \\ 0 & \text{ if } \partial' = \partial - 1, \end{cases}$
(iii) $C' = \begin{cases} p^{\partial} & \text{ if } \partial' = \partial \text{ and } n'_0 = n_0 - 1, \\ -p^{n_0} & \text{ if } \partial' = \partial \text{ and } n'_0 = n_0 + 1, \\ 0 & \text{ if } \partial' = \partial - 1. \end{cases}$

This lemma is easily checked by using the complete list of S_0 in [3, Satz 9.7].

Proposition 2. Let φ be an element of $W_{n+1,\xi}^{\mathfrak{r}}$. Assume that φ is an eigen function of $\mathscr{L}'_{n'}$ and \mathscr{L}_{n+1} , and denote by σ'_{φ} and σ_{φ} the homomorphisms defined by (3.17) and (3.11), respectively. Then the following identity holds.

$$P_{\varphi}(T) = \mathcal{Q}_{\varphi}(T)F_{\varphi}(T) = P'_{n'}\left(\frac{T}{p^{n+(n_{0}+1)/2}}; \sigma'_{\varphi}\right)\varphi(1)$$

$$\times \begin{cases} 1 & \text{if } n' = n \text{ and } \partial' = \partial, \\ (1+p^{\partial-(n+n_{0})}T) & \text{if } n' = n \text{ and } \partial' = \partial-1, \\ (1-p^{-(n+n_{0})}T)(1+p^{\partial-(n+n_{0})}T) & \text{if } n' = n-1 \text{ and } \partial' = \partial, \end{cases}$$

where $P'_{n'}(T; \sigma'_{\omega})$ denotes the image of $P'_{n'}(T)$ by σ'_{ω} .

Proof. Suppose that n'=n and $\partial'=\partial$. We can write $P'_n(T)$ in the form

$$P'_{n}(T) = \sum_{k=0}^{2n} (-1)^{k} (\sum_{0 \leq r \leq n} b_{n,k}(r) \tilde{e}_{n}^{(r)}) T^{k}.$$

By induction on *n*, we shall prove

$$(3.18) \qquad B_{\varphi,k}(r) = p^{-k/2} b_{n,k}(r) \sigma_{\varphi}'(\tilde{e}_n^{(r)}) \varphi(1). \quad (0 \leq k \leq 2n, \ 0 \leq r \leq n)$$

From the above two lemmata, we know

$$B_{\varphi,k}(r) = \{a_{n,k}(r) - (p^{n-r-1+n_0/2} - p^{-1+n_0/2})a_{n,k-1}(r+1)\}\sigma_{\varphi}'(e_n^{(r)})\varphi(1).$$

Clearly (3.18) holds for n=0; so we assume that (3.18) holds for n. If $r \ge 1$, then

$$(3.19) \quad a_{n+1,k}(r) - p^{n_0/2}(p^{n-r} - p^{-1})a_{n+1,k-1}(r+1) - p^{-k/2}b_{n+1,k}(r) (0 \le k \le 2n+2)$$

is equal to

$$p^{-(n+n_0/2)}\{a_{n,k-1}(r-1)-p^{n_0/2}(p^{n-(r-1)-1}-p^{-1})a_{n,k-2}(r)-p^{-(k-1)/2}b_{n,k-1}(r-1)\},$$

from (ii) of Lemma 4, and it vanishes by the induction assumption. Let r be 0. Then (3.19) is equal to

$$a_{n,k}(0) + a_{n,k-2}(0) - p^{-(n+n_0/2)}(p^{\hat{\sigma}} - 1)a_{n,k-1}(0) - p^{-(n+n_0/2)}(p^n - 1)(p^{n-1+n_0} + p^{\hat{\sigma}})a_{n,k-1}(1) - (1 - p^{-1-n})a_{n,k-2}(0) - p^{-k/2} \{b_{n,k}(0) + b_{n,k-2}(0) - p^{-(n+(n_0-1)/2)}(p^{\hat{\sigma}} - 1)b_{n,k-1}(0) - p^{-(n+(n_0-1)/2)}(p^n - 1)(p^{n-1+n_0-1} + p^{\hat{\sigma}})b_{n,k-1}(1)\}.$$

Using the induction assumption and the fact

$$p^{1-(n+n_0/2)}(p^{n-1}-1)(p^{n-1+n_0-1}+p^{\vartheta})a_{n,k-2}(2)$$

= $a_{n,k-1}(1) + a_{n,k-3}(1) - p^{1-(n+n_0/2)}(p^{\vartheta}-1)a_{n,k-2}(1)$
 $- p^{1-(n+n_0/2)}a_{n,k-2}(0),$

we know that (3.19) is 0. Hence our assertion is proved. The other cases follow similarly. Q.E.D.

§ 4. Main Theorem

4-1. In this section we shall state our main theorem and its proof. We use the same notations as in Section 1. For each prime p, we denote by \mathscr{H}_p the Hecke algebra $\mathscr{L}(\tilde{Q}; \mathbb{Z}_p^{q+2})$. Let \mathscr{H}_p act on $\mathfrak{S}_k(K_f)$ by

(4.1)
$$(F*\phi)(g) = \int_{\mathcal{G}_p} F(gh^{-1})\phi(h)dh \quad (F \in \mathfrak{S}_k(K_f), \phi \in \mathcal{H}_p).$$

Note that

(4.2)
$$\langle F_1 * \phi, F_2 \rangle = \langle F_1, F_2 * \tilde{\phi} \rangle$$
 $(F_1, F_2 \in \mathfrak{S}_k(K_f), \phi \in \mathscr{H}_p),$

where $\phi(g) = \overline{\phi(g^{-1})}$ (denotes the complex conjugation). Thus, if \mathscr{H}_p is commutative, then each element of \mathscr{H}_p acts on $\mathfrak{S}_k(K_f)$ as a normal operator with respect to the Petersson inner product \langle , \rangle .

We denote by \mathscr{P}_1 the set of all primes p such that L_p is not maximal \mathbb{Z}_p -integral with respect to Q. Since $Q \in GL_q(\mathbb{Z}_p)$ for almost all p, $\#\mathscr{P}_1$ is finite. We note that if $p \notin \mathscr{P}_1$ then \mathscr{H}_p is commutative. Hereafter we assume that $F \in \mathfrak{S}_k(K_f)$ is a simultaneous eigen function of all \mathscr{H}_p such that $p \notin \mathscr{P}_1$. We denote by $\sigma_{F,p}$ the homomorphism from \mathscr{H}_p to C determined by F:

(4.3)
$$F*\phi = \sigma_{F, p}(\phi)F \quad (\phi \in \mathcal{H}_p).$$

For any finite set \mathscr{P} containing \mathscr{P}_1 , and for $s \in C$, we define the *L*-function $L_{\mathscr{P}}(F; s)$ by

(4.4)
$$L_{\mathscr{P}}(F;s) = \prod_{p \notin \mathscr{P}} L_p(\tilde{\mathcal{Q}};\sigma_{F,p};s),$$

where $L_p(\tilde{Q}; \sigma_{F,p}; s)$ is defined in (2.22). Since every coefficient of $L_p(\tilde{Q}; \sigma_{F,p}; s)^{-1}$ in p^{-s} is bounded by p^{A_F} , where A_F is a positive constant not depending on p, the product in (4.4) converges absolutely in some right half plane.

We fix $g_f \in G_{A,f}^*$ and $\xi \in V_Q$ such that $F_z(g_f; \xi) \neq 0$. Denote by \mathscr{H}'_p the Hecke algebra $\mathscr{L}(Q^{(2)}; L(g_f) \cap V^{(2)})$. It acts on $\mathscr{V}(g_f; \xi)$ by the convolution, and has a property similar to (4.2). Let $N(\xi)$ be the minimal (positive) integer such that $N(\xi)\xi$ is in L. Assume that ξ is a primitive element of \hat{L}_p ; then $L_p = (V^{(1)} \cap L)_p \oplus (V^{(2)} \cap L)_p$ if and only if $N(\xi)Q[\xi] \in \mathbb{Z}_p^{\times}$. Denote by $\mathscr{P}(g_f; \xi)$ the minimal set such that if p does not belong to $\mathscr{P}(g_f; \xi)$, then

(4.5)

$$\begin{cases}
i) \quad p \notin \mathscr{P}_{1}, \\
ii) \quad \xi \text{ is a primitive element in } \hat{L}_{p}, \\
iii) \quad N(\xi)Q[\xi] \in \mathbb{Z}_{p}^{\times}, \\
iv) \quad \text{the } p\text{-part of } g_{f} \text{ is in } K_{n}.
\end{cases}$$

Clearly the number of elements of $\mathscr{P}(g_f;\xi)$ is finite, and if $p \notin \mathscr{P}(g_f;\xi)$ then \mathscr{H}'_p is commutative. When an element f of $\mathscr{V}(g_f;\xi)$ is an eigen

function for such \mathscr{H}'_p , we denote by $\sigma_{f,p}$ the homomorphism from \mathscr{H}'_p to C determined by f:

(4.6)
$$f * \phi = \sigma_{f, p}(\phi) f \quad (\phi \in \mathscr{H}_p).$$

For any finite set \mathscr{P} of primes containing $\mathscr{P}(g_f; \xi)$ and $s \in C$, we define $L_{\mathscr{P}}(f; s)$ by

(4.7)
$$L_{\mathscr{P}}(f;s) = \prod_{p \notin \mathscr{P}} L_p(Q^{(2)};\sigma_{f,p};s).$$

Now we state our main result.

Theorem 1. Let F be an element of $\mathfrak{S}_{k}(K_{f})$, and assume that it is a simultaneous eigen function of $\mathscr{H}_{p}(\P p \notin \mathscr{P}_{1})$. Fix a $g_{f} \in G_{A,f}^{*}$ and a $\xi \in V_{Q}$, and put $\mathscr{P}_{2} = \mathscr{P}(g_{f}; \xi)$. Take an element f of $\mathscr{V}(g_{f}; \xi)$, which is a simultaneous eigen function of all $\mathscr{H}'_{p}(\P p \notin \mathscr{P}_{2})$. Take a finite set \mathscr{P} of primes containing \mathscr{P}_{2} . Then the following Euler product expansion holds in some right half plane.

$$\sum_{\substack{m=1\\(m,p)=1\\\text{for } \forall p \in \mathscr{I}}}^{\infty} \mu(\xi)^{-1} \sum_{i=1}^{h} a(u_i g_f; m\xi) \frac{\overline{f(u_i)}}{e(\xi)_i} m^{-(s+k-q/2)}$$

$$= \left\{ \mu(\xi)^{-1} \sum_{i=1}^{h} a(u_i g_f; \xi) \frac{\overline{f(u_i)}}{e(\xi)_i} \right\} L_{\mathscr{I}}(F; s) L_{\mathscr{I}}(\overline{f}; s+\frac{1}{2})^{-1}$$

$$\times \left\{ \prod_{\substack{p \notin \mathscr{I}\\\partial_p \neq \delta'_p}}^{\prod p \notin \mathscr{I}} (1+p^{-s+\partial_p-1/2}) \quad if \ q \ is \ odd, \right\}$$

$$\times \left\{ \prod_{\substack{p \notin \mathscr{I}\\\partial_p \neq \delta'_p}}^{\prod p \notin \mathscr{I}} (1-p^{-s})(1+p^{-s+\partial_p}) \prod_{\substack{p \notin \mathscr{I}\\\partial_p \neq \delta'_p}} (1+p^{-s-1+\partial_p}) \quad if \ q \ is \ even. \right\}$$

Here a(;) is defined in (1.11), $\{u_1, \dots, u_h\}$ is a complete set of representatives of $H(\xi)_Q \setminus H(\xi)_A / H(\xi)_\infty M(g_f; \xi)_f$ such that $u_{i,\infty} = 1$ $(1 \le i \le h)$, $e(\xi)_i =$ $\#\{H(\xi)_Q \cap M(u_i g_f; \xi)_f\}$, and $\mu(\xi) = \sum_{i=1}^h e(\xi)_i^{-1}$. For $p \notin \mathscr{P}_2$ we put $\partial_p =$ $\partial(\tilde{Q}; \mathbb{Z}_p^{p+2})$ and $\partial'_p = \partial(Q^{(2)}; (V^{(2)} \cap L)_p)$.

Remark. (i) If f is an eigen function of \mathscr{H}'_p , then \overline{f} is also an eigen function of \mathscr{H}'_p .

(ii) $\partial_p = \partial'_p = 0$ for almost all p.

(iii) Note that

$$\varphi_{F,\xi}^{f}(g_{f}) = \mu(\xi)^{-1} \sum_{i=1}^{h} a(u_{i}g_{f};\xi) \frac{f(u_{i})}{e(\xi)_{i}} e[Q(\xi,\mathscr{Z}_{0})].$$

Therefore the identity (4.8) is not trivial for a suitable choice of g_f , ξ and f (Lemma 1).

This theorem is reduced to some local problems. Let p be a prime not belonging to \mathcal{P} , and put

(4.9)
$$W(g_{f};\xi)_{p}^{\chi} = \{\varphi; M(g_{f};\xi)_{p} \setminus G_{p}/K_{p} \longrightarrow C | \\ \varphi(\Upsilon_{\chi}g) = \chi(Q(\xi,X))\varphi(g) \quad \forall X \in V_{p}\}.$$

Note that as a function on G_p , $\varphi_{F,\xi}^f$ belongs to $W(g_f; \xi)_p^z$. Since p is not in \mathscr{P}_2 , this space is nothing but the space $W_{n_p+1,\xi}^z(n_p)$ is the Witt index of Q over Q_p , so we can use the results in Section 3.

4-2. Now we are going to prove Theorem 1. Let c(t) denote the characteristic function of $\mathbf{R}^{\times} \times \prod_{p \in \mathscr{P}} \mathbf{Z}_p^{\times} \times \prod'_{p \notin \mathscr{P}} \mathbf{Q}_p^{\times}$ in \mathbf{Q}_A^{\times} , where \prod' means the usual restricted product. In two manners we calculate

(4.10)
$$\int_{\mathcal{Q}_A^{\times}} c(t) \varphi_{F,\varepsilon}^f \left(\begin{pmatrix} t & & \\ & 1 & \\ & & t^{-1} \end{pmatrix} g_f \right) |t|_A^{s-q/2} d^{\times} t,$$

where $d^{\times}t = \prod d^{\times}t_v$ is a Haar measure of Q_A^{\times} . First, this integral is equal to

$$\int_{\mathcal{Q}^{\times}\setminus\mathcal{Q}^{\times}_{A}} \sum_{m \in \mathcal{Q}^{\times}} c(mt) \varphi_{F,m\xi}^{f} \left(\begin{pmatrix} t & 1 \\ & t^{-1} \end{pmatrix} g_{f} \right) |t|_{A}^{s-q/2} d^{\times} t$$

$$= \int_{0}^{\infty} \sum_{\substack{m \in \mathcal{Q}^{\times} \\ m \in \mathbb{Z}^{\times}_{p} \\ (\nabla p \in \mathscr{P})}} \left\{ \mu(\xi)^{-1} \sum_{i=1}^{h} a(u_{i}g_{f}; m\xi) \frac{\overline{f(u_{i})}}{e(\xi)_{i}} t^{s+k-q/2} e[mtQ(\xi, \mathcal{Z}_{0})] \right\} d^{\times} t.$$

Since ξ is primitive in \hat{L}_p for $p \notin \mathcal{P}$, $a(u_i g_f; m\xi) = 0$ unless $m \in \mathbb{Z}_p$. Hence (4.10) is equal to

$$(4.11) \quad \sum_{\substack{m=1 \ (m,p)=1 \\ (\forall p \in \mathscr{P})}}^{\infty} \mu(\xi)^{-1} \sum_{i=1}^{h} a(u_i g_f; m\xi) \frac{\overline{f(u_i)}}{e(\xi)_i} m^{-(s+k-q/2)} \frac{\Gamma(s+k-q/2)}{A^{s+k-q/2}}$$

where we have put $2\pi\sqrt{-1}Q(\xi, \mathscr{Z}_0) = -A$ (A>0). On the other hand, if $p \notin \mathscr{P}_2$, the function

 $\varphi(g) = \varphi_{F,\xi}^f(g'g) \quad (g \in G_p),$

where g is a fixed element of G_A whose p-part is 1, belongs to $W_{n_p+1,\varepsilon}^{x}$ $(n_p$ is the Witt index of Q over Q_p). Note that

(4.12)
$$\begin{aligned} \phi * \varphi = \sigma_{\overline{J}, p}(\tilde{\phi})\varphi & (\phi \in \mathscr{H}'_p) \\ \varphi * \phi = \sigma_{F, p}(\phi)\varphi & (\phi \in \mathscr{H}_p). \end{aligned}$$

From Proposition 2, we have

$$\begin{split} \int_{\mathcal{Q}_{p}^{\times}} \varphi_{F,\xi}^{f} & \left(g'\binom{t}{1} \right) \\ & = \varphi_{F,\xi}^{f} (g') P_{\varphi}(p^{-(s-q/2)}) Q_{\varphi}(p^{-(s-q/2)})^{-1} \\ & = \varphi_{F,\xi}^{f} (g') L_{p}(\tilde{Q}; \sigma_{F,p}; s) L_{p}(Q^{(2)}; \sigma_{\overline{J},p}; s+\frac{1}{2})^{-1} \\ & \times \begin{cases} 1 & \text{if } q \text{ is odd and } \partial_{p}' = \partial_{p}, \\ (1+p^{-s+\partial_{p}-1/2}) & \text{if } q \text{ is odd and } \partial_{p}' = \partial_{p}, \\ (1-p^{-s})(1+p^{-s+\partial_{p}}) & \text{if } q \text{ is even and } \partial_{p}' = \partial_{p}, \\ (1-p^{-s})(1+p^{-s+\partial_{p}})(1+p^{-s-1+\partial_{p}}) & \text{if } q \text{ is even and } \partial_{p}' = \partial_{p}, \end{cases}$$

Therefore (4.10) is equal to

Comparing (4.11) with (4.13), we obtain our theorem.

§ 5. Some related problems

5-1. In this subsection, we prove Proposition 3, which asserts that in Theorem 1 if we can take a constant function as f, then F must be a kind of old form. We use the same notations as in Theorem 1. For each prime p, we denote by n_p the Q_p -rank of G^* (thus the Q_p -rank of G is n_p+1), and we put $n_{0,p}=q-2n_p$. Let \mathcal{P}_3 be a finite set of primes including $\mathcal{P}_2=\mathcal{P}(g_f;\xi)$ and satisfies the condition: if $p \notin \mathcal{P}_3$ then $Q \in GL_q(\mathbb{Z}_p)$. Therefore if p is not in \mathcal{P}_3 , then $0 \leq n_{0,p} \leq 2$ and $\partial_p = 0$.

Proposition 3. Notations being as above, and we assume that

(5.1)
$$\sum_{i=1}^{h} a(u_i g_f; \xi) e(\xi)_i^{-1} \neq 0.$$

Let p be a prime not belonging to \mathscr{P}_s and assume that $n_p \ge 2$. Then between $\sigma_{F,p}(\tilde{c}_{n_p+1}^{(r)})$ $(0 \le r \le n_p+1)$, the following (n_p-1) relations hold:

(5.2)
$$\sigma_{F,p}(\tilde{c}_{n_{p+1}}^{(r)}) = A_p^{(r)} \sigma_{F,p}(\tilde{c}_{n_{p+1}}^{(2)}) - B_p^{(r)} \sigma_{F,p}(\tilde{c}_{n_{p+1}}^{(1)}) + C_p^{(r)} \sigma_{F,p}(\tilde{c}_{n_{p+1}}^{(0)})$$
(3 \le r \le n_p+1),

Q.E.D.

Here

$$\begin{split} A_{p}^{(r)} &= \frac{p^{r-1}-1}{p^{r-2}(p^{n_{p}}-1)(p^{n_{p}+n_{0,p}-1}+1)} \times D_{p}^{(r)}, \\ B_{p}^{(r)} &= \frac{p^{r-2}-1}{p^{r-2}(p-1)} \times D_{p}^{(r)}, \\ C_{p}^{(r)} &= \frac{(p^{r-2}-1)(p^{r-1}-1)(p^{n_{p}+1}-1)(p^{n_{p}+n_{0,p}}+1)}{p^{r-2}(p-1)(p^{2}-1)(p^{r}-1)} \times D_{p}^{(r)} \\ D_{p}^{(r)} &= \#(\tilde{c}_{n_{p}}^{(r-1)}/K_{n_{p}}) \\ &= \prod_{j=1}^{r-1} \frac{p^{j-1}(p^{n_{p}-j+1}-1)(p^{n_{p}-j+n_{0,p}}+1)}{p^{j}-1}. \end{split}$$

Proof. We fix p ($p \notin \mathscr{P}_3$), and abbreviate n_p to n. We assume that $n_{0,p} = 1$, since the other cases are proved quite similarly. We use the same notations as in Section 3. To prove this assertion, it is sufficient to show that if $\varphi \in W_{n+1,\varepsilon}^{z}$ is left $H(\xi)$ -invariant and $\varphi(1) \neq 0$, then the relation (5.2) holds. We may assume that

$$\xi = \begin{pmatrix} 0 \\ \xi_1 \\ 0 \end{pmatrix}, \qquad \xi_1 = \begin{pmatrix} 1 \\ 0 \\ c \end{pmatrix} \in \hat{L}_1.$$

First we reformulate Lemma 5 in a more precise form. Put for $l, m \ge 0$,

$$h'_{m} = \begin{pmatrix} p^{m} & & \\ & 1 & \\ & & p^{-m} \end{pmatrix} \in G_{1}, \qquad h_{m} = \begin{pmatrix} 1_{n-1} & & \\ & h'_{m} & \\ & & 1_{n-1} \end{pmatrix} \in G_{n},$$

and

$$g_{m,l} = \begin{pmatrix} p^{m+l} & \\ & h_m \\ & & p^{-(m+l)} \end{pmatrix} \in G_{n+1}.$$

Then we have

(5.3)
$$\bigcup_{\varphi \in W_{n+1,\xi}^{\chi}} \sup \varphi \subset \bigcup_{\substack{l \ge 0 \\ m \ge 0}} NH(\xi) g_{m,l} K_{n+1},$$

where $N = \{ \mathcal{I}_X | X \in V_n \}$. Indeed, from Lemma 5 it remains to prove that for each $b \in G_n$,

$$(5.4) b \in H(\xi)h_mK_n$$

where $m=m_b$. We put $b^{-1}\xi=p^{-m}\xi'$, where ξ' is a primitive element of \hat{L}_n . Then there exists a k in K_n such that

$$k\xi' = \begin{pmatrix} 0\\ \xi'_1\\ 0 \end{pmatrix}, \qquad \xi'_1 = \begin{pmatrix} 1\\ 0\\ c' \end{pmatrix} \in \hat{L}_1$$

Since $\frac{1}{2}S_n[\xi] = c = p^{-2m}c'$, we have

$$\xi_1'=h_m'^{-1}p^m\xi_1.$$

If we put $bk^{-1}h_m^{-1} = u$, then u belongs to $H(\xi)$, and (5.4) is proved. It is easily seen that the right hand side of (5.3) is a disjoint union. Now, we prove our proposition by using Lemma 6. Since $\varphi(\in W_{n+1,\xi}^z)$ is left $H(\xi)$ invariant, each term appearing in the right hand side in Lemma 6 is written in terms of $\varphi(g_{m', t'})$. For $1 \leq r \leq n+1$, we have

(5.5)
$$\sigma_{F,p}(\tilde{c}_{n+1}^{(r)})\varphi(1) = p^{2n+1}\varphi(r-1,1) + p^{r}\varphi(r,0) + \varphi'(r-2,0) - p^{r-2}\varphi(r-2,0).$$

From Lemma 7, Lemma 8, and Lemma 9, we know that

$$\varphi(j,0) = \#(\tilde{e}_{n'}^{(j)}/K'_{n'})\varphi(1), \qquad \varphi'(j,0) = \#(\tilde{e}_{n'}^{(j)}/K'_{n'})p^{n'}C'\varphi(1),$$

and

$$\varphi(j,1) = \#(\tilde{e}_{n'}^{(j)}/K'_{n'})\varphi(g_{0,1}) + \{\#(\tilde{c}_{n'}^{(j)}/K_{n}) - \#(\tilde{e}_{n'}^{(j)}/K'_{n'})\}\varphi(g_{1,0}),$$

where n' is the Q_p -rank of $H(\xi)$ and C' is given in Lemma 9. Therefore the right hand side of (5.5) is written as a linear combination of $\varphi(1)$, $\varphi(g_{0,1})$ and $(g_{1,0})$, and their coefficients are easily calculated by (2.18). Cancelling $\varphi(g_{0,1})$ and $\varphi(g_{1,0})$ by using (5.5) for r=1 and r=2, we obtain our assertion. Q.E.D.

5-2. In a special case we give an integral representation of Rankin-Selberg type of the Dirichlet series in Theorem 1. We put

$$Q = \begin{pmatrix} N & 0 \\ 0 & T \end{pmatrix}$$
 and $\xi = \begin{pmatrix} N^{-1} \\ 0 \end{pmatrix}$,

where N is a positive even integer and T is an even integral symmetric negative definite matrix of degree q-1, and assume that for each prime p, \mathbb{Z}_p^q is a maximal \mathbb{Z}_p -integral lattice with respect to Q. Furthermore for the sake of simplicity, we assume that $\mathscr{Z}_0 = \sqrt{-1} \xi (\mathscr{Z}_0$ is the origin of \mathscr{P}). Note that in this case, $\mathscr{P}_2 = \mathscr{P}(1; \xi) = \phi$. We denote by G'' the special orthogonal group of $\begin{pmatrix} 1\\1 \end{pmatrix}$, regarded as a subgroup of G. We define a maximal parabolic subgroup B'' of G'' by

(5.6)
$$B_{\varrho}^{\prime\prime} = \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \in G_{\varrho}^{\prime\prime} \right\}.$$

For any prime p,

$$K_p'' = G_p'' \cap SL_{q+1}(Z_p)$$

is a maximal compact subgroup of G''_p and G''_p has the Iwasawa decomposition $G''_p = B''_p K''_p$. We put

$$K_{\infty}^{\prime\prime} = K_{\infty} \cap G_{\infty}^{\prime\prime},$$

where K_{∞} is the stabilizer subgroup of \mathscr{Z}_0 in G_{∞}^0 . Then we have $G_{\infty}'' = B_{\infty}''K_{\infty}''$. We put $K'' = \prod_{v} K_v''$, For any $g \in G_A''$, we put

$$g = \begin{pmatrix} t(g) & * & * \\ 0 & u(g) & * \\ 0 & 0 & t(g)^{-1} \end{pmatrix} k(g),$$

where $t(g) \in \mathbf{Q}_A^{\times}$, $u(g) \in H(\xi)_A = SO(T)_A$ and $k(g) \in K''$.

Let F [resp. f] be an element of $\mathfrak{S}_k(K_f)$ [resp. $\mathscr{V}(1; \xi)$], and assume that F [resp. f] is a simultaneous eigen function of \mathscr{H}_p [resp. \mathscr{H}'_p] for all p.

Theorem 2. Let the assumptions be as above. Then

has the following integral representation in some right half plane:

(5.8)
$$\int_{G'_{Q} \setminus G'_{A}} F(g) E(g, s-1/2; \overline{f}) d\dot{g}.$$

Here $E(g, s; \overline{f}) = \sum_{\tau \in B'_{Q} \setminus G'_{Q}} |t(\tau g)|_{A}^{s+(q-1)/2} \overline{f(u(\tau g))}$, and the other notations are the same as in Theorem 1.

Proof. We start from (4.10). Put

(5.9)
$$\Phi_{F,\xi}^{f}(s) = \int_{\mathcal{Q}_{A}^{\times}} \varphi_{F,\xi}^{f}\left(\begin{pmatrix} t & & \\ & 1 & \\ & & t^{-1} \end{pmatrix} \right) |t|_{A}^{s-q/2} d^{\times}t.$$

As we have already seen in 4-2, it is enough to prove that $\Phi_{F,\varepsilon}^{f}(s)$ has the integral representation (5.8). The right hand side of (5.9) is equal to

$$\int_{\mathcal{Q}^{\times} \setminus \mathcal{Q}^{\times}_{A}} \sum_{\varepsilon \in \mathcal{Q}^{\times}} \varphi^{f}_{F, \varepsilon \varepsilon} \left(\begin{pmatrix} t & & \\ & 1 & \\ & & t^{-1} \end{pmatrix} \right) |t|^{s-q/2}_{A} d^{\times} t.$$

We can easily see that

$$\sum_{\varepsilon \in \mathcal{Q}} F_{\chi}(g; \varepsilon \xi) = \int_{V_{\mathcal{Q}}^{(2)} \setminus V_{\mathcal{A}}^{(2)}} F(\Upsilon_{Y}g) dY \quad (g \in G_{\mathcal{A}}).$$

Therefore we have

(5.10)
$$\begin{aligned}
\Phi_{F,\epsilon}^{f}(s) = \int_{\mathcal{Q}^{\times} \setminus \mathcal{Q}_{A}^{\times}} \int_{H(\epsilon)_{\mathcal{Q}} \setminus H(\epsilon)_{A}} \int_{V_{\mathcal{Q}}^{(2)} \setminus V_{A}^{(2)}} F\left(\tau_{Y}\begin{pmatrix}t\\ & u\\ & t^{-1}\end{pmatrix}\right) |t|_{A}^{s-q/2} \overline{f(u)} dY du d^{\times}t.
\end{aligned}$$

Since $G''_A = B''_A K''$, taking a suitable right G''_A invariant measure on $B''_Q \backslash G''_A$, the right hand side of (5.10) is equal to

$$\int_{B'_{\underline{0}}\setminus G'_{\underline{4}}} F(g)|t(g)|_{A}^{s-1+q/2}\overline{f(u(g))}d\dot{g}$$
$$=\int_{G''_{\underline{0}}\setminus G''_{\underline{4}}} F(g)\{\sum_{\substack{r\in B''_{\underline{0}}\setminus G''_{\underline{0}}}} |t(rg)|_{A}^{s-1+q/2}\overline{f(u(rg))}\}d\dot{g}.$$

So our theorem has been proved.

Q.E.D.

References

- [1] A. N. Andrianov, Dirichlet series with Euler products in the theory of Siegel modular forms of genus 2, Trudy Mat. Inst. Steklov, 112 (1971), 73-94.
 = Proc. Steklov Inst., 122 (1971), 70-93.
- [2] —, Euler products corresponding to Siegel modular forms of genus 2, Uspekhi Mat. Nauk, 29:3 (1974), 43-110. = Russian Math. Surveys, 29:3 (1974), 45-116.
- [3] M. Eichler, Quadratische Formen und orthogonale Gruppen, Springer, Berlin-Göttingen-Heidelberg, 1952.
- [4] T. Oda, On modular forms associated with indefinite quadratic forms of signature (2, n-2), Math. Ann., 231 (1977), 97-144.
- [5] I. Satake, Theory of spherical functions on reductive algebraic groups over p-adic fields, Publ. Math IHES, 18 (1963).
- [6] T. Sugano, On holomorphic cusp forms on quaternion unitary groups of degree 2, J. Fac. Sci. Univ. Tokyo, 31 (1984), 521-568.

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113, Japan