Congruences between Hilbert Cusp Forms

Hiroshi Saito and Masatoshi Yamauchi

§ 0. Introduction

This is a continuation of our previous paper [14]. In that paper, we reported an example of a congruence relation between Hilbert cusp forms over a real quadratic field. In this paper, we study such a congruence relation in a more general setting, and add several examples. More precisely, let F be a totally real algebraic number field and K a quadratic extension of F with the relative discriminant \mathfrak{q}. For simplicity, we assume \mathfrak{q} is a prime ideal not dividing 2 . Mainly, we treat the case where K has two real archimedean places, namely rank $E_{K}=\operatorname{rank} E_{F}+1$. Here E_{K} (resp. E_{F}) denote the group of units in K (resp. F). When the class number of F in the narrow sense is odd, we can show that E_{K} is generated by E_{F} and a unit η of K. We define a certain polynomial $H_{\nu}(X)$ with rational integral coefficients associated with η and a positive integer ν (for the definition of $H_{\nu}(X)$, see the text $\left.\S 2(2.4)\right)$. Under a condition on η (see the text $\S 2(2.6)$), for each prime p which satisfies $p \mid H_{\nu}(1)$ and $p \nmid H_{\nu-1}(1)$, we can construct characters λ of K with the conductor $\mathfrak{Q}^{2 \nu} \mathfrak{\beta} \tilde{w}$, where \mathfrak{Q} is the prime ideal of K lying above \mathfrak{q} and \mathfrak{P} is an ideal of K such that $\mathfrak{P} \mathfrak{B}^{\sigma}=(p)$ and $\left(\mathfrak{F}, \mathfrak{P}^{\sigma}\right)=1$ with the non-trivial automorphism σ of K over $F . \quad \tilde{w}$ is one of real archimedean places of K. The Hilbert cusp form f_{λ} over F associated with λ is of weight 1 and of level $q^{2 \nu+1}(p)$. Under some assumptions on the special value of L-functions of F (see the text $\S 2$ (2.7)), we can show that there exists a primitive cusp form f over F of weight 2 and of level $\mathfrak{q}^{2 \nu+1}$, which is congruent to f_{λ} modulo a prime ideal P lying above p. On the prime p, we note the following. When $F=\boldsymbol{Q}$ the rational number field, K is a real quadratic field $Q(\sqrt{q})$ and η is the fundamental unit ε of K. We see in this case

$$
H_{\nu}(1)=-\operatorname{tr} \varepsilon^{q^{\nu}} .
$$

So the value $H_{\nu}(1)$ is a natural generalization of $\operatorname{tr} \varepsilon$ in Shimura [16] and of $\operatorname{tr} \varepsilon^{q^{\nu}}$ in Doi-Yamauchi [6] and Ishii [8]. In Section 3, we give examples of the above results and also include the examples in the case where

[^0]$\operatorname{rank} E_{K}=\operatorname{rank} E_{F}$ and $\operatorname{rank} E_{K}=\operatorname{rank} E_{F}+2$. In the former case, we find a congruence relation between two Hilbert cusp forms, one of which is associated with a Grossencharacter of K. In the latter case, as the examples suggest, the situation seems to be different.

§ 1. Hilbert modular forms and Hecke operators

Let F be a totally real algebraic number field of degree n, and $\mathfrak{o}_{F}=$ $\mathfrak{D}, \mathfrak{b}$ the ring of integers, the different of F respectively. In this paper, we assume $n \geq 2$. For a place v of F, F_{v} denotes the completion of F at v, and when v is a finite place, \mathfrak{o}_{v} denotes the ring of v-adic integers in F_{v}. To each finite place v, we fix a prime element ϖ_{v} of \mathfrak{o}_{v}. Let F_{A} and F_{A}^{\times} be the adele ring and the idele group of F respectively, and $\mathfrak{U}_{F}=\prod_{v} \mathfrak{o}_{v}^{\times} \times$ $\prod_{w} F_{w}^{\times}$, where v and w run through all finite and infinite places respectively. For $a \in F_{A}^{\times}$, let $|a|$ be the module of a with respect to a Haar measure of F_{A} and a_{0} the ideal of F determined by $\left(a_{0}\right) \mathfrak{o}_{v}=a_{v} \mathfrak{o}_{v}$ for finite v. Here a_{v} is the v-component of a. We choose a non-trivial additive character $\tau=\prod_{v} \tau_{v}$ of F_{A}, trivial on F. We assume that

$$
\tau_{w}(x)=e^{-2 \pi \sqrt{-1} x}
$$

for infinite places w. For each finite v, let $\delta(v)$ be the integer so that τ_{v} is trivial on $\widetilde{\varpi}_{v}^{-\delta(v)} \mathfrak{o}_{v}$ but not on $\widetilde{\varpi}_{v}^{-\delta(v)-1} \mathfrak{o}_{v}$, and d the element of F_{A}^{\times}given by $d_{v}=\widetilde{\omega}_{v}^{-\delta(v)}$ for finite v and $d_{w}=1$ for infinite w. Then we have $d \mathfrak{o}=\delta$.

Let $G=G L(2)$ be the general linear group in 2 variables, considered as an algebraic group over F, and Z the center of G. We write G_{A}, Z_{A} for the corresponding adelized groups. Z_{A} can be identified with F_{A}^{\times}. We denote by G_{0} and G_{∞} the finite part and the infinite part of G_{A} respectively. For a place v, let $G_{v}=G L\left(2, F_{v}\right)$ and let $G_{F}=G L(2, F)$.

In this section, we fix an integral ideal c of F. Let $\psi=\Pi_{v} \psi_{v}$ be a character of $F_{\boldsymbol{A}}^{\times} / F^{\times}$of finite order such that $\mathfrak{f}(\psi)$ divides \mathfrak{c}, where $f(\psi)$ is the finite part of the conductor of ψ. To each infinite place w, we choose a positive integer $\kappa(w)$ satisfying $(-1)^{\kappa(w)}=\psi_{w}(-1)$, and put $\bar{\kappa}=$ $(\kappa(w))$. To \mathfrak{c}, ψ, and $\bar{\kappa}$, we define a compact subgroup $K=K(c)$ of G_{A} and a 1 -dimensional representation ρ of \boldsymbol{K}. To a finite place v not dividing \mathfrak{c}, put $\boldsymbol{K}_{v}=G L\left(2, \mathfrak{o}_{v}\right)$, and to an infinite place w, put $\boldsymbol{K}_{w}=\operatorname{SO}(2, \boldsymbol{R})$. For a finite place v dividing \mathfrak{c}, let $\nu_{v}=\operatorname{ord}_{v}(\mathfrak{c})=\operatorname{ord}_{v}\left(c_{v}\right)$, where c_{v} is an element of F_{v} such that $\mathrm{co}_{v}=c_{v} \mathrm{o}_{v}$ and ord_{v} is the additive valuation of F_{v} normalized as $\operatorname{ord}_{v}\left(\varpi_{v}\right)=1$. Let

$$
\boldsymbol{K}_{v}=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in G L\left(2, \mathfrak{o}_{v}\right) \right\rvert\, \operatorname{ord}_{v}(\mathfrak{c}) \geq \nu_{v}\right\}
$$

and let $K=\prod_{v} \boldsymbol{K}_{v}$. For a positive integer m, let ρ_{m} be the representation
of $S O(2, R)$ given by

$$
\rho_{m}\left(\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\right)=e^{m \theta \sqrt{-1}}
$$

For $k=\left(k_{v}\right) \in K$, we define

$$
\rho(k)=\prod_{v \mid \mathrm{c}} \psi_{v}\left(d_{v}\right) \prod_{w \text { ininite }} \rho_{\kappa(w)}\left(k_{w}\right),
$$

where

$$
k_{v}=\left[\begin{array}{ll}
a_{v} & b_{v} \\
c_{v} & d_{v}
\end{array}\right]
$$

Now we define a space of Hilbert nıodular forms associated with the triple $(c, \psi, \bar{\kappa})$. We call a C-valued continuous function f on G_{A} a Hilbert modular form (over F) of type ($c, \psi, \bar{\kappa}$) if f satisfies the following conditions:
(1.1) $f(\gamma g z k)=\psi(z) \rho(k) f(g)$ for $\gamma \in G_{F}, z \in Z_{A}$, and $k \in K$;
(1.2) as a function of $g_{w} \in G L\left(2, F_{w}\right)$ for infinite $w, f\left(g g_{w}\right)$ is of C^{∞}-class and satisfies $X f\left(g g_{w}\right)=0$ for $g \in G_{A}$, where $X=\left[\begin{array}{rr}1 & -\sqrt{-1} \\ \sqrt{-1} & -1\end{array}\right]$ in the complex Lie algebra of $G L\left(2, F_{w}\right)$;
(1.3) for any compact set $S\left(\subset G_{A}\right)$ and a positive integer c, there exist constants C and N so that

$$
\left|f\left(\left[\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right] g\right)\right| \leq C|a|^{N}
$$

for all $g \in S$ and $a \in F_{A}^{\times}$with $|a|>c$.
Let $M(c, \psi, \bar{\kappa})$ denote the space of Hilbert modular forms of type $(c, \psi, \bar{\kappa}) . \quad f$ in $M(\mathfrak{c}, \psi, \bar{\kappa})$ is called a Hilbert cusp form of type $(\mathfrak{c}, \psi, \bar{\kappa})$ if f satisfies the condition:
(1.4) $\int_{F \backslash F_{A}} f\left(\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]\right) d a=0$ for all $g \in G_{\boldsymbol{A}}$, where $d a$ is the Haar measure of $F \backslash F_{A}$.

We denote by $S(\mathfrak{c}, \psi, \bar{\kappa})$ the space of Hilbert cusp forms of type $(\mathfrak{c}, \psi, \bar{\kappa})$. In the rest of this section, we assume $\kappa(w)=\kappa$ for all infinite w, and put $\tilde{\kappa}=(\kappa, \cdots, \kappa)$. Let f be an element of $M(c, \psi, \tilde{\kappa})$, then f has a Fourier expansion;

$$
f\left(\left[\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right]\right)=C_{0}(y)|y|^{\mid / 2}+|y|^{k / 2} \sum_{\substack{\xi \in F^{x} \\
\xi \ll 0}} C(\xi d y 0) e^{-2 \pi \mathrm{Tr}\left(\xi y_{\infty}\right)} \tau(\xi x),
$$

for $x \in F_{A}$ and $y \in F_{A^{+}}^{\times}=\left\{a \in F_{A} \mid a_{w}>0\right.$ for infinite $\left.w\right\}$. Here the sum is extended over totally negative $\xi \in F^{\times}$. For $y \in F_{A}^{\times}, y_{\infty}$ is the infinite component of y and $\operatorname{Tr}\left(y_{\infty}\right)=\sum_{w} y_{w} . C\left(y_{0}\right)=0$ unless y_{0} is integral and $C_{0}(y)$ satisfies $C_{0}(y u)=C_{0}(y)$ for $u \in F^{\times} \prod_{v} \mathfrak{o}_{v}^{\times} \prod_{w} F_{w+}^{\times}$with $F_{w^{+}}^{\times}=\left\{a \in F_{w}^{\times} \mid a\right.$ $>0\}$. If $f \in S(c, \psi, \tilde{\kappa})$, then $C_{0}(y)=0$. For f, we set

$$
L(s, f)=\sum_{\mathfrak{m}} C(\mathfrak{m}) N(\mathfrak{m})^{-s}
$$

where \mathfrak{m} runs through all integral ideals of F.
To each integral ideal \mathfrak{a}, the Hecke operator $T_{\mathfrak{c}}(\mathfrak{a})$ on $M(\mathfrak{c}, \psi, \tilde{\kappa})$ or $S(c, \psi, \tilde{\kappa})$ is defined in the following way. For finite $v \nmid c($ resp. $v \mid c)$. Put

$$
\begin{gathered}
\boldsymbol{\Xi}_{v}(\mathfrak{a})=\left\{g \in M_{2}\left(\mathfrak{o}_{v}\right) \mid \operatorname{ord}_{v}(\operatorname{det} g)=\operatorname{ord}_{v}(\mathfrak{a})\right\} \\
\left(\operatorname{resp} . \Xi_{v}(\mathfrak{a})=\left\{\left.g \in\left[\begin{array}{ll}
\mathfrak{o}_{v} & \mathfrak{o}_{v} \\
\mathcal{C o}_{v} & \mathfrak{v}_{v}^{\times}
\end{array}\right] \right\rvert\, \operatorname{ord}_{v}(\operatorname{det} g)=\operatorname{ord}_{v}(\mathfrak{a})\right\}\right)
\end{gathered}
$$

and put $\boldsymbol{E}(\mathfrak{a})=\prod_{v: \text { finite }} \boldsymbol{\Xi}_{v}(\mathfrak{a})$. Let $\boldsymbol{E}(\mathfrak{a})=\bigcup_{i=1}^{d} g_{i} \boldsymbol{K}_{0}\left(\boldsymbol{K}_{0}=\boldsymbol{G}_{0} \cap \boldsymbol{K}\right)$ be a disjoint union. For $f \in M(\mathfrak{c}, \psi, \tilde{\kappa})$, we define

$$
\left(T_{\mathrm{c}}(\mathfrak{a}) f\right)(g)=N(a)^{(\mathfrak{k}-2) / 2} \sum_{i=1}^{d} \bar{\psi}\left(d_{i}\right) f\left(g g_{i}\right)
$$

where $g_{i}=\left[\begin{array}{cc}a_{i} & b_{i} \\ c_{i} & d_{i}\end{array}\right]$. Let $C(\mathfrak{m})\left(\right.$ resp. $\left.C^{\prime}(\mathfrak{m})\right)$ be the Fourier coefficients of $f\left(\right.$ resp. $\left.T_{\mathrm{c}}(\mathfrak{a}) f\right)$, then it holds

$$
C^{\prime}(\mathfrak{m})=\sum_{\mathfrak{l} \mid a, \mathfrak{m}} \psi^{*}(\mathfrak{l}) C\left(\mathfrak{m a} / \mathfrak{l}^{2}\right) N(\mathfrak{l})^{\kappa-1}
$$

Here $\psi^{*}(\mathfrak{l})=0$ unless \mathfrak{l} is prime to \mathfrak{c}, and when \mathfrak{l} is prime to \mathfrak{c}, let $l \in F_{A}^{\times}$ so that $l_{\infty}=1, l_{v}=1$ for $v \nmid c, l_{0}=\mathfrak{l}$, and put $\psi^{*}(\mathfrak{l})=\psi(l)$. It is shown in Shimura [17] that $M(c, \psi, \tilde{\kappa})$ and $S(\mathfrak{c}, \psi, \tilde{\kappa})$ are spanned by forms for which $C(\mathfrak{m})$ are integers in an algebraic number field and that the eigenvalues for $T_{\mathrm{c}}(\mathfrak{a})$ are algebraic integers. Let f and h be Hilbert cusp forms with coefficients $C(\mathfrak{m})$ and $C^{\prime}(\mathfrak{m})$ in the localization of the ring of integers of an algebraic number field M at a prime ideal P of M. We say f is congruent to h modulo P if $C(\mathfrak{m}) \equiv C^{\prime}(\mathfrak{m})$ modulo P for all integral ideals m.

We introduce Eisenstein series following Hida [7]. Let $\chi=\prod_{v} \chi_{v}$ be a character of $F_{A}^{\times} / F^{\times}$of finite order. Assume $\chi_{w}(x)=\operatorname{sgn}(x)=x /|x|$ for all infinite w or $\chi_{w}=$ trivial for all infinite w. We also assume $c=f(\chi) \neq 0$
and $\chi_{w}(-1)=(-1)^{x}$. Then there exists $E_{\kappa, \chi}$ in $M(c, \chi, \tilde{\kappa})$, whose Fourier expansion is given by

$$
E_{\kappa, \chi}\left(\left[\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right]\right)=|y|^{\kappa / 2}+\frac{2^{n}|y|^{\kappa / 2}}{L(1-\kappa, \chi)} \cdot \sum_{\xi \in \mathbb{F} \mathrm{F}} C_{\kappa, \chi}(\xi d y \mathfrak{p}) e^{-2 \pi \operatorname{Tr}\left(\xi y_{\infty}\right)} \tau(\xi x)
$$

where

$$
C_{x, \chi}(\mathfrak{m})= \begin{cases}\sum_{\mathfrak{a} \mid \mathfrak{m}} \chi^{*}(\mathfrak{m} / \mathfrak{a}) N(\mathfrak{a})^{\kappa-1} & \text { if } \mathfrak{m} \text { is integral } \\ 0 & \text { otherwise }\end{cases}
$$

Let \widetilde{S} be the set of prime factors of c. For $S \subset \widetilde{S}$, put

$$
\left(W_{s} f\right)(g)=f\left(g w_{s}\right)
$$

where $w_{S}=\left[\begin{array}{rr}0 & -1 \\ x & 0\end{array}\right]$ with $x_{v}=\widetilde{\varpi}_{v}^{\nu_{v}}$ for $v \in S$ and $x_{v}=1$ for $v \notin S$. For $v \in \tilde{S}$, put

$$
G\left(\bar{\chi}_{v}\right)=\sum_{\left.a \in\left(v_{v} / \tilde{\sigma}_{v}^{\nu}\right\rangle\right) x} \bar{\chi}_{v}(a) \tau_{v}\left(a /\left(d_{v} \widetilde{\sigma}_{v}^{\nu_{v}}\right)\right)
$$

Then we have by [7]

$$
\begin{gathered}
\left(W_{\tilde{S}} E_{\kappa, \chi}\right)\left(\left[\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right]\right)=(-1)^{\kappa g} \cdot 2^{n} \cdot L(1-\kappa, \chi)^{-1} N c^{\kappa / 2-1}\left(\prod_{v \mid c} \chi_{v}\left(-\widetilde{\varpi}_{v}^{v}\right) G\left(\bar{\chi}_{v}\right)\right) \\
\times\left(\delta_{\kappa}|y|^{k / 2} \chi(y d) C_{\bar{\chi}}(y)+|y|^{k / 2} \sum_{\substack{\xi \in F \times \\
\xi<0}} \chi(y d) C_{\kappa, \chi}^{\prime}(\xi d y 0) e^{-2 \pi \mathrm{Tr}\left(\xi y_{\infty}\right)} \tau(\xi x)\right),
\end{gathered}
$$

where $\delta_{\kappa}=0$ if $\kappa>1$ and $\delta_{\kappa}=1$ if $\kappa=1 . \quad C_{\bar{\chi}}(y)=2^{-n} L(0, \bar{\chi})$, and $C_{\kappa, \bar{\chi}}^{\prime}(\mathfrak{m})$ $=\sum_{\mathfrak{a} \mid \mathfrak{m}} \bar{\chi}^{*}(\mathfrak{m} / \mathfrak{a}) N(\mathfrak{a})^{x-1}$ if \mathfrak{m} is integral and $C_{\kappa, \bar{\chi}}^{\prime}(\mathfrak{m})=0$ if \mathfrak{m} is not integral. Later, we need the action of W_{S} for $S \subsetneq \widetilde{S}$.

Proposition 1.1. Let $f \in M(\mathfrak{c}, \psi, \tilde{\kappa})$ be an eigenfunction for all $T_{\mathfrak{c}}(\mathfrak{a})$. Assume $\left(W_{S} f\right) \bar{\psi}(\operatorname{det}) \in M(\mathfrak{c}, \bar{\psi}, \tilde{\kappa})$ is also an eigenfunction for all $T_{\mathrm{c}}(\mathfrak{a})$ with eigenvalues $\lambda(\mathfrak{a})$. Let S be a proper subset of \tilde{S}. Assume $\mathfrak{f}(\psi) \mathfrak{o}_{v}=\mathfrak{c o}_{v}$ for $v \in S$ and $\left(\psi \prod_{v \in S} \bar{\psi}_{v}\right)\left(0^{\times}\right) \neq\{1\}$. Then the Fourier expansion of $h=W_{S} f$ is given by

$$
\begin{aligned}
h\left(\left[\begin{array}{cc}
y & x \\
0 & 1
\end{array}\right]\right)= & \prod_{v \in S} \lambda\left(\widetilde{\omega}_{v} \mathfrak{0}\right)^{-\nu_{v}}\left|\varpi_{v}\right|^{-\nu_{v}(\kappa / 2-1)} \psi_{v}\left(-\widetilde{\varpi}_{v}^{\nu_{v}}\right) G\left(\bar{\psi}_{v}\right) \\
& \times\left(|y|^{\kappa / 2} \sum_{\xi \in \xi^{F} \times} \prod_{v \in S} \psi_{v}\left((\xi d y)_{v}\right) C^{\prime}(\xi d y \mathfrak{0}) e^{-2 \pi \operatorname{Tr}\left(\xi y_{\infty}\right)} \tau(\xi x)\right) .
\end{aligned}
$$

For an integral ideal \mathfrak{m}, let $\mathfrak{m}=\mathfrak{m}_{1} \mathfrak{m}_{2}$ be the decomposition into integral ideals $\mathfrak{m}_{1}, \mathfrak{m}_{2}$ so that \mathfrak{m}_{1} is prime to $\prod_{v \in S} \widetilde{\sigma}_{v} 0$ and all the prime factor of \mathfrak{m}_{2} is contained in S. Then $C^{\prime}(\mathfrak{m})=C\left(\mathfrak{m}_{1}\right) \lambda\left(\mathfrak{m}_{2}\right)$.

This can be verified in the same way as in Asai [1], and the proof will be omitted.

§ 2. Construction of characters λ and congruences

Let K be a quadratic extension of F, and $\tilde{f}_{K / F}$ its conductor. Let $\operatorname{Gal}(K / F)=\langle\sigma\rangle$. We assume the following;
(2.1) only one infinite place of F decomposes in K.

We denote it by w_{1} and the other places by w_{2}, w_{3}, \cdots, and w_{n}. Let E_{F} and E_{K} be the groups of units of F and K respectively. Then by the above assumption, we have rank $E_{K}=\operatorname{rank} E_{F}+1=n$. Let $E_{K}^{1}=\left\{\varepsilon \in E_{K} \mid\right.$ $\left.N_{K / F}(\varepsilon)=1\right\}, E_{F}^{+}=\left\{\varepsilon \in E_{F} \mid w_{i}(\varepsilon)>0\right.$ for all $\left.i\right\}$, and $\widetilde{E}_{F}=\left\{\varepsilon \in E_{F} \mid w_{i}(\varepsilon)>0\right.$ for $i \geq 2\}$. Later, for the sake of simplicity, we assume the following conditions:
(2.2) $\mathfrak{f}_{K / F}$ is a prime ideal \mathfrak{q} which is prime to 2 and \mathfrak{D}_{F};
(2.3) the class number of F is odd and $\left[E_{F}: E_{F}^{+}\right]=2^{n}$.

Let $N q=q^{\alpha}$ with a rational prime q and a positive integer α.
Proposition 2.1. (1) If (2.2) is satisfied, there exists η_{0} in E_{K} so that E_{K} is generated by η_{0} and E_{F}.
(2) If (2.2) and (2.3) are satisfied, then $N_{K / F}\left(E_{K}\right)=\widetilde{E}_{F}$ and E_{K}^{1} is generated by ± 1 and $\eta_{0}^{2} N_{K / F}\left(\eta_{0}\right)^{-1}$.

Proof. (1) It is enough to show that E_{K} / E_{F} is torsion-free. Let $\eta \in E_{K}$ and assume $\eta^{m} \in E_{F}$, then $\left(\eta^{\sigma} / \eta\right)^{m}=1$. Since K is not totally imaginary, $\eta^{\sigma} / \eta= \pm 1$. If $\eta^{\sigma} / \eta=-1$, then $\eta^{2} \in E_{F}$ and $K=F(\eta)$. This contradicts (2.2).
(2) Since $N_{K / F}\left(E_{K}\right) \subset \widetilde{E}_{F}$ and $\left[\widetilde{E}_{F}: E_{F}^{+}\right]=\left[\widetilde{E}_{F}: E_{F}^{2}\right]$ by the condition (2.3), it is enough to show that $N_{K / F}\left(\eta_{0}\right)$ is not contained in $E_{F}^{+}=E_{F}^{2}$. Assume $\eta_{0} \eta_{0}^{\sigma}=\varepsilon^{2}$ with $\varepsilon \in E_{F}$, then $\left(\eta_{0} / \varepsilon\right)^{\sigma}\left(\eta_{0} / \varepsilon\right)=1$. Put $\mu=1+\eta_{0} / \varepsilon$, then μ satisfies $\mu=\mu^{\sigma} \eta_{0} / \varepsilon$. If μ is a unit, then

$$
\eta_{0} / \varepsilon=\mu / \mu^{\sigma}=\mu \mu^{\sigma} /\left(\mu^{\sigma}\right)^{2}=\left(\varepsilon^{\prime} / \mu^{\sigma}\right)^{2}
$$

with $\varepsilon^{\prime} \in E_{F}$. But this contradicts the fact that η_{0} gives a generator of E_{K} / E_{F}. Hence μ is not a unit. Let \mathfrak{J} be the ideal of K generated by μ,
then \mathfrak{J} satisfies $\mathfrak{S}^{\sigma}=\mathfrak{S}$. Let α be an element of F so that $K=F(\sqrt{\alpha})$. Then, there exists an ideal \mathfrak{a} of F so that $\mathfrak{J}=(\sqrt{\alpha}) \mathfrak{a}_{K}$. Since the class number of F is odd, \mathfrak{a} is a principal ideal, which is generated by $a \in F$. Hence $\mu=\eta a \sqrt{\alpha}$ with a unit η of K, and we have

$$
\eta_{0} / \varepsilon=\mu / \mu^{\sigma}=-\eta / \eta^{\sigma}=-\left(\varepsilon^{\prime} / \eta^{\sigma}\right)^{2}
$$

with $\varepsilon^{\prime 2}=\eta \eta^{\sigma}$. This is a contradiction, and the proof is completed.
Let η_{0} be as in Proposition 2.1. We note $N_{K / Q}\left(\eta_{0}\right)=-1$. For each positive integer ν, we define a polynomial in $Z[X]$ of degree 2^{n} associated with η_{0}. Let $f_{\nu}(X)=X^{2}-s X+m$ be the minimal polynomial of $\eta_{0}^{q^{\nu}}$ over F. For $a \in F$, let $a^{(i)}, 1 \leq i \leq n$, be all distinct conjugates of a over \boldsymbol{Q}, and let

$$
X^{2}-s^{(i)} X+m^{(i)}=\left(X-\alpha_{i 1}\right)\left(X-\alpha_{i 2}\right)
$$

Let S be the n-tuple products of the set $\{1,2\}$. We define $H_{\nu}(X)$ by

$$
\begin{equation*}
H_{\nu}(X)=\prod_{\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in S}\left(X-\prod_{i=1}^{n} \alpha_{i s_{i}}\right) \tag{2.4}
\end{equation*}
$$

Then we see $H_{\nu}(X) \in Z[X]$ and $\operatorname{deg} H_{\nu}=2^{n}$. It is easy to see that $\left|H_{\nu}(1)\right|$ is unchanged if we replace η_{0} by η_{0}^{-1} or by $\eta_{0} \varepsilon$ for $\varepsilon \in E_{F}$. To each prime divisor p of $H_{\nu}(1)$ satisfying the following condition, we construct idele class characters of K. Let p be a prime satisfying

$$
\begin{equation*}
p \mid H_{\nu}(1), \quad p \ngtr H_{\nu-1}(1), \quad \text { and } \quad \operatorname{ord}_{p}\left(H_{\nu}(1)\right)=1 \tag{2.5}
\end{equation*}
$$

Let \boldsymbol{C}_{p} be the completion of the algebraic closure $\overline{\boldsymbol{Q}}_{p}$ of Q_{p}. We fix embeddings $\iota_{\infty}: \overline{\boldsymbol{Q}} \rightarrow \boldsymbol{C}$ and $\iota_{p}: \overline{\boldsymbol{Q}} \rightarrow \boldsymbol{C}_{p}$. By means of ι_{∞} and ι_{p}, algebraic numbers can be seen as elements of C and as elements of C_{p}. Let σ_{1}, σ_{2}, \cdots, σ_{n} be all the distinct embeddings of F into \bar{Q}. We assume w_{i} corresponds to $\iota_{\infty} \sigma_{i}$ for each i. Let us consider sets of embeddings $T=$ $\left\{\tau_{1}, \tau_{2}, \cdots, \tau_{n}\right\}$ of K into \bar{Q} such that the restriction of τ_{i} to F coincides with σ_{i} for all i. There exists 2^{n} such T 's. We denote them by T_{i}, $1 \leq i \leq 2^{n}$. For $x \in K$, we set $x^{T}=\prod_{i=1}^{n} x^{\tau i}$. Then $H_{\nu}(1)=\prod_{T}\left(1-\eta_{0}^{q^{\nu}}\right)^{T}$. We consider K and F as subfields of $\overline{\boldsymbol{Q}}$ by fixing an embedding $\tau: K \rightarrow \overline{\boldsymbol{Q}}$ such that $\tau \mid F=\sigma_{1}$. Let \widetilde{K} and \widetilde{F} be the Galois closure of K and F over \boldsymbol{Q} respectively. Then it is easy to see $[\tilde{K}: \tilde{F}]=2^{n}$ by (2.1). Let $\tilde{G}=$ $\operatorname{Gal}(\tilde{K} / Q), \tilde{H}=\operatorname{Gal}(\tilde{K} / K)$ and $H=\operatorname{Gal}(\tilde{K} / F)$. Then there exists a natural one to one correspondence between the left cosets $\widetilde{H} \backslash \widetilde{G}$ (resp. $H \backslash \widetilde{G}$) and the embeddings of K (resp. F) into \bar{Q}, and ρ in \widetilde{G} induces a permutation among T_{i} by the multiplication on the right. The embedding ι_{p} determines a prime ideal $\widetilde{\mathfrak{P}}$ of \widetilde{K} lying above p. We denote the decompo-
sition group of $\tilde{\mathfrak{P}}$ by D.
Lemma 2.2. Let $\mathfrak{T}=\{T \mid T \gamma=T$ for $\gamma \in D\}$, and $\mathfrak{I}^{\prime}=\{T \mid T \gamma \neq T$ for some $\gamma \in D\}$. Then
(1) $\iota_{p}\left(x^{T}\right) \in \boldsymbol{Q}_{p}$ for all $x \in K$ if and only if $T \in \mathbb{I}$.
(2) Let p be a prime satisfying (2.5) and assume p is unramified in K. Then, there exists only one $T \in \mathfrak{T}$ such that $\iota_{p}\left(\left(1-\eta_{0}^{q^{2}}\right)^{T}\right)$ is divided by p, and all prime ideals \mathfrak{p} of F lying above p decomposes in K.

Proof. (1) is obvious, because $\iota_{p}\left(x^{T}\right) \in \boldsymbol{Q}_{p}$ for all $x \in K \Leftrightarrow x^{T r}=x^{T}$ for all $x \in K$ and all $\gamma \in D \Leftrightarrow T \gamma=T$ for all $\gamma \in D$. If p divides $\iota_{p}\left(\left(1-\eta_{0}^{q^{\nu}}\right)^{T}\right)$ for T in \mathbb{T}^{\prime}, then p^{2} divides $H_{\nu}(1)$. The first assertion of (2) follows from this. Let T be the set in \mathscr{I} satisfying the above condition. Then there exists $g_{i}, 1 \leq i \leq d$, in \widetilde{G} so that T corresponds to the cosets $\bigcup_{i=1}^{d} \widetilde{H} \backslash \widetilde{H} g_{i} D$ in the correspondence stated above, where we assume $\bigcup_{i=1}^{d} \tilde{H} \backslash \tilde{H} g_{i} D$ is a disjoint union. By the condition on T, we have $\widetilde{G}=\bigcup_{i} H g_{i} D$. Now it holds

$$
|\tilde{H} \backslash \widetilde{G}| \leq \sum_{i}\left|\tilde{H} \backslash H g_{i} D\right| \leq 2 \sum_{i}\left|\tilde{H} \backslash \tilde{H} g_{i} D\right|=2[F: Q]=|\tilde{H} \backslash \tilde{G}|
$$

Hence the union $\cup_{i} H g_{i} D$ is disjoint, and $\left|\tilde{H} \backslash H g_{i} D\right|=2\left|\tilde{H} \backslash \tilde{H} g_{i} D\right|$. The second assertion follows from this.

Let T be as in Lemma 2.2 (2). The mappings $\iota_{p} \tau_{i}: x \rightarrow \iota_{p}\left(x^{\tau_{i}}\right)$ can be extended to a homomorphism of $K \otimes \boldsymbol{Q}_{p}$ into \boldsymbol{C}_{p} and the mapping $x \rightarrow$ $\iota_{p}\left(x^{T}\right)$ can be extended to a homomorphism as multiplicative groups of $\left(K \otimes \boldsymbol{Q}_{p}\right)^{\times}$into $\boldsymbol{Q}_{p}^{\times}$. We denote it by ι_{T}. Let P be a prime ideal of $\boldsymbol{Q}\left(1^{1 /(p-1)}\right)$ lying above p and ω_{p} the character of $\boldsymbol{Z}_{p}^{\times}$of order $p-1$ such that $\omega_{p}(a) \equiv a \bmod p$ for $a \in Z$ prime to p. Then q^{ν} divides $p-1$ and the order of $\omega_{p}\left(\iota_{T}\left(\eta_{0}\right)\right)$ is q^{ν}. Let ω_{T} be the character of $\left(\mathfrak{o}_{K} \otimes_{Z} Z_{p}\right)^{\times}$given by $\omega_{T}(a)=\omega_{p}\left(c_{T}(a)\right)$, where \mathfrak{o}_{K} is the ring of integer of K. Then we obtain the following by virtue of Lemma 2.2.

Corollary 2.3. Let \mathfrak{P}_{T} be the conductor of ω_{T}, then \mathfrak{P}_{T} is prime to $\mathfrak{P}_{T}^{\sigma}$ and $\mathfrak{P}_{T} \mathfrak{B}_{T}^{\sigma}=(p)$.

Let \mathfrak{Q} be the prime ideal of K lying above \mathfrak{q} and $\mathfrak{o}_{K, \Omega}$ be the completion of \mathfrak{o}_{K} at $\mathfrak{\Omega}$. Let Π be a prime element of $\mathfrak{o}_{K, \mathfrak{Q}}$ and let $\eta_{0}=a+b \Pi$ with $a, b \in \mathfrak{D}_{q}$. We consider the following condition on η_{0}.

$$
\begin{equation*}
\eta_{0}=a+b \Pi \text { with a unit } b \tag{2.6}
\end{equation*}
$$

Lemma 2.4. If (2.6) is satisfied, then the order of the class $\tilde{\eta}_{0}$ of η_{0} in $\left(\mathfrak{o}_{K, 0} / \mathfrak{q}^{\nu} \mathfrak{o}_{K, \mathfrak{Q}}\right)^{\times}$is q^{ν} and $\left\langle\tilde{\eta}_{0}\right\rangle \cap\left(\mathfrak{o}_{q} / \mathfrak{q}^{\nu}\right)^{\times}=\left\langle\tilde{\eta}_{0}^{q \nu}\right\rangle$, where $\left\langle\tilde{\eta}_{0}\right\rangle$ is the subgroup generated by $\tilde{\eta}_{0}$.

Proof. For $u+v \Pi$ with $u, v \in \mathfrak{o}_{q}$, put $(u+v \Pi)^{q}=u^{\prime}+v^{\prime} \Pi$ with $u^{\prime}, v^{\prime} \in \mathfrak{o}_{q}$. It is easy to see that if u is a unit in \mathfrak{o}_{q} and $\operatorname{ord}_{q}(v)=m$, then u^{\prime} is a unit in \mathfrak{p}_{q} and $\operatorname{ord}_{q}\left(v^{\prime}\right)=m+1$. Our assertion easily follows from this.

Let $(/ \mathfrak{Q})$ be the quadratic residue symbol of $\left(\mathfrak{o}_{q} / \mathfrak{q}\right)^{\times} \cong\left(\mathfrak{o}_{K, \mathfrak{n}} / \mathfrak{Q}\right)^{\times}$, then the infinite place \tilde{w}_{1} of K lying above w_{1} is uniquely determined by

$$
\operatorname{sgn} \tilde{w}_{1}\left(\eta_{0}\right)=\left(\frac{\eta_{0}}{\Im}\right)
$$

Let ω be the Dirichlet character modulo p of order $p-1$ given by $\omega(a) \equiv$ $a \bmod P$. Now we prove the following theorem.

Theorem 2.5. Let K be a quadratic extension of F satisfying (2.1), (2,2), and (2.3), and assume the condition (2.6). Let p be a prime number satisfying (2.5) for a positive integer ν, and assume p is unramified in K. Let T be as in Lemma 2.2 for ν, then for each $k, 1 \leq k \leq p-1$, the character ω_{T}^{k} of $\left(\mathfrak{o}_{K} \otimes_{Z} Z_{p}\right)^{\times}$can be extended in $(N \mathfrak{q} / q)^{\nu} h_{K} / h_{F}$ ways to idele class characters λ of K so that the conductor of λ is $\mathfrak{\Omega}^{2 \nu} \Re_{T} \tilde{w}_{1}$ and the restriction to F is $\omega N_{F / Q} \chi_{K / F}$ where $\chi_{K / F}$ is the quadratic character of F corresponding to the extension $K / F . \quad h_{K}$ and h_{F} are the class numbers of K and F respectively.

Proof. For $\tilde{\eta}_{0}^{\alpha} a \in\left\langle\tilde{\eta}_{0}\right\rangle\left(\mathfrak{o}_{q} / q^{\nu}\right)^{\times}$, put

$$
\left.\lambda_{1}\left(\tilde{\eta}_{0}^{\alpha} a\right)=\overline{\left(\omega_{T}\left(\eta_{0}\right)^{k}\right.} \operatorname{sgn} \tilde{w}_{1}\left(\eta_{0}\right)\right)^{\alpha}\left(\frac{a}{\mathfrak{Q}}\right)
$$

Then, by Lemma 2.2, λ_{1} is well-defined and gives a character of $\left\langle\tilde{\eta}_{0}\right\rangle\left(\eta_{q} / q^{\nu}\right)^{\times}$, since the order of $\omega_{T}\left(\eta_{0}\right)$ is q^{ν} and

$$
\left(\overline{\omega_{T}\left(\eta_{0}\right)^{k}} \operatorname{sgn} \tilde{w}_{1}\left(\eta_{0}\right)\right)^{q^{\nu}}=\left(\frac{\eta_{0}}{\mathfrak{\Omega}}\right)^{q^{\nu}} .
$$

λ_{1} can be extended to characters of $\left(\mathfrak{0}_{K, 0} / \mathfrak{q}^{\nu} 0_{K, \mathfrak{Q}}\right)^{\times}$of conductor $\mathfrak{S}^{2 \nu}$ in $(N \mathfrak{q} / q)^{\nu-1}$ ways. Let λ_{2} be one of such characters. For $(a, b, c) \in \mathfrak{o}_{K, Q}^{\times} \times$ $\left(\mathfrak{o}_{K} \otimes_{Z} \boldsymbol{Z}_{p}\right)^{\times} \times K_{\tilde{w}_{1}}^{\times}$, put

$$
\lambda_{3}((a, b, c))=\lambda_{2}(a) \omega_{T}(b)^{k} \operatorname{sgn}(c)
$$

Then, by the definition, we see

$$
\lambda_{3}\left(\left(\eta_{0}, \eta_{0}, \eta_{0}\right)\right)=\overline{\omega_{T}\left(\eta_{0}\right)^{k}} \operatorname{sgn} \tilde{w}_{1}\left(\eta_{0}\right) \omega_{T}\left(\eta_{0}\right)^{k} \operatorname{sgn} \tilde{w}_{1}\left(\eta_{0}\right)=1
$$

For $\varepsilon \in E_{F}$ with $N_{F / Q}(\varepsilon)=1$, we have

$$
\lambda_{3}((\varepsilon, \varepsilon, \varepsilon))=\left(\frac{\varepsilon}{\mathfrak{Q}}\right) \operatorname{sgn} w_{1}(\varepsilon)
$$

Since $\prod_{i=1}^{n} \operatorname{sgn} w_{i}(\varepsilon)=1$, and $\chi_{K / F}(\varepsilon)=(\varepsilon / @) \prod_{i=2}^{n} \operatorname{sgn} w_{i}(\varepsilon)=1$, we see $\lambda_{3}((\varepsilon, \varepsilon, \varepsilon))=1$. By Proposition 2.1, E_{K} is generated by η_{0} and ε in E_{F} with $N_{F / Q}(\varepsilon)=1$, hence we have $\lambda_{3}((\eta, \eta, \eta))=1$ for all $\eta \in E_{K}$. We can conclude from this that λ_{3} can be extended to characters of $K_{A}^{\times} / K^{\times}$of conductor $\mathfrak{Q}^{2 \nu} \Re_{T} \tilde{w}_{1}$ of finite order in h_{K} ways. But in these extensions, h_{K} / h_{F} characters satisfy the second condition, since $\mathfrak{U}_{K} K^{\times} \cap F_{A}^{\times}=\mathfrak{U}_{F} F^{\times}$by (2.3). Here $\mathfrak{U}_{K}=\prod_{\tilde{v}} \mathfrak{o}_{K}^{\times}, \tilde{v} \times \prod_{\tilde{w}} K_{\tilde{w}}^{\times}$, where \tilde{v} and \tilde{w} run through all finite and infinite places respectively. This completes the proof.

Let λ be as in Theorem 2.5. Then by a result of Jacquet-Langlands [9], there exists a cusp form f_{2} in $S\left(q^{2 \nu+1}(p), \omega \cdot N_{F / Q}, \tilde{1}\right)$ such that $L\left(s, f_{\lambda}\right)$ $=L(s, \lambda)$. Following the argument of Koike [10], we will show that there exists a cusp form in $S\left(\mathfrak{q}^{2 \nu+1}, 1, \tilde{2}\right)$ congruent to f_{2} modulo a prime ideal dividing p under the following assumption (2.7) on $L\left(0, \overline{\omega N_{F / Q}}\right)$ and $L\left(0, \omega N_{F / Q}\right)$.
(2.7) $L\left(0, \overline{\omega N_{F / Q}}\right) \equiv a / p \bmod p$ with $a \in Z$ prime to p and $L\left(0, \omega N_{F / Q}\right)$ is prime to p.

Let $S^{0}\left(\mathfrak{q}^{2 \nu+1}, 1, \tilde{2}\right)$ denote the subspace of new forms in $S\left(\mathfrak{q}^{2 \nu+1}, 1, \tilde{2}\right)$ (for definition cf. Miyake [12]). Under (2.7), we can prove the following theorem.

Theorem 2.6. Let K, p and λ be as in Th. 2.5. Assume (2.7). Then there exist a prime \widetilde{P} of \bar{Q} lying above $P\left(\subset Q\left(1^{1 / p-1}\right)\right)$ and a primitive form h in $S^{0}\left(q^{2 \nu+1}, 1, \tilde{2}\right)$ which is congruent to f_{2} modulo \tilde{P}.

Proof. Let $f^{\prime}=f_{\lambda} E_{1,{ }_{1}(\nu)}^{\omega N}$, where $E_{1, \omega \bar{\omega}}^{(\nu)}(g)=E_{1, \overleftarrow{\omega N}}\left(g\left[\begin{array}{cc}1 & 0 \\ 0 & \widetilde{\boldsymbol{w}}_{q}^{\nu}\end{array}\right]\right)$ with $N=$ $N_{F / Q}$, and let P^{\prime} be a prime ideal lying above P of the field generated by the value of λ over $\boldsymbol{Q}\left(1^{1 /(p-1)}\right)$. Then $f^{\prime} \in S\left(q^{2 \nu+1}, 1, \tilde{2}\right)$ and $f \equiv f^{\prime} \bmod P^{\prime}$ by (2.7). Put

Let \widetilde{S} be the set of prime divisors of p in F, and for a subset S of \widetilde{S}, put $T_{S}=\prod_{\mathfrak{p} \in S} T_{c}(\mathfrak{p})$ for $\mathfrak{c}=q^{2 \nu+1}(p)$ and $\psi^{*}(S)=\prod_{p \in S} \psi_{p}\left(\widetilde{\sigma}_{\mathfrak{p}}\right)$ with $\psi=\omega N$. Then we see \tilde{f} is contained in $S\left(q^{2 \nu+1}, 1, \tilde{2}\right)$, and

$$
\tilde{f}=f^{\prime}+\sum_{S=\tilde{s}} \psi^{*}(S) T_{S} W_{S} f^{\prime}
$$

By Proposition 1.1 and (2.7), it is easy to see that $\tilde{f} \equiv f^{\prime} \bmod P^{\prime}$, and \tilde{f} is a common eigen function for all $T_{c^{\prime}}(\mathfrak{a})$ modulo \widetilde{P} with $\mathfrak{c}^{\prime}=q^{2 \nu+1}$. Let χ be a character of F_{q}^{\times}such that $\chi \mid \mathfrak{o}_{q}^{\times}=(/ \mathcal{q})$, and U_{x} be the operator defined in [15]. Then in the same way as in Corollary 4.2 [13], we see $U_{x} f^{\prime}=$ $\left(U_{\chi} f_{\chi}\right) E_{1, \omega \bar{N}}^{(\nu)}=c_{\chi} f^{\prime}$ with a non-zero constant c_{x}. Since Tr and U commute with each other, it follows from Theorem 1.4 in [15] that $\tilde{f}=\operatorname{Tr}\left(f^{\prime}\right)$ is contained in $S^{0}\left(\mathfrak{q}^{2 \nu+1}, 1, \tilde{2}\right)$. They by a Lemma of Deligne-Serre [4], we obtain our result.

Remark 2.7. The condition (2.7) is always satisfied if $F=\boldsymbol{Q}$ and $p \geq 5$, since $L(0, \bar{\omega}) \equiv-\zeta(2-p) \equiv 1 / p \bmod Z_{p}$ and $L(0, \omega) \equiv \zeta(-1)=-$ $1 / 12 \bmod P$. For $n \geq 2$, assume p is prime to \mathfrak{D}_{F}. Then we have

$$
\begin{align*}
& L\left(0, \overline{\omega N_{F / Q}}\right) \equiv-\zeta_{F}(2-p) \bmod Z_{p} \\
& L\left(0, \omega N_{F / Q}\right) \equiv \zeta_{F}(-1) \bmod P \tag{2.8}
\end{align*}
$$

Here ζ_{F} is the Dedekind zeta function of F. Hence the condition (2.7) can be stated as $\zeta_{F}(2-p) / \zeta(2-p)$ and $\zeta_{F}(-1) / \zeta(-1)$ are p-units. (2.8) can be shown in the following way. Let $L_{p}(\lambda, s)$ be the p-adic L-function of a ray class character λ of F constructed in Deligne-Ribert [5] and Cassou-Nouguès [3]. Then for a suitable ideal \mathfrak{c}, $\left(\lambda(c)(N c / \omega(N c))^{1-s}\right.$ $-1) L_{p}(\lambda, s)$ is an Iwasawa function. Hence

$$
(\lambda(\mathrm{c})(N \mathrm{c} / \omega(N \mathrm{c}))-1) L_{p}(\chi, 0) \equiv\left(\lambda(\mathrm{c})(N \mathrm{c} / \omega(N \mathrm{c}))^{p-1}-1\right) L_{p}(\chi, 2-p) \bmod P
$$

where P is the prime ideal of $Q_{p}(\lambda)$ the field generated by the values of λ over \boldsymbol{Q}_{p}. If \mathfrak{b}_{F} is prime to \mathfrak{p}, we can choose as \mathfrak{c} an integral ideal such that

$$
\operatorname{ord}_{p}((N \mathfrak{c} / \omega(N \mathfrak{c}))-1)=1
$$

The first congruence follows from this taking $\lambda=$ trivial. The second one can be shown in the same way taking $\lambda=\left(\omega N_{F / Q}\right)^{2}$. Furthermore, if F is an abelian extension of \boldsymbol{Q}, for a prime p with $\left(p, 2 d_{F} n\right)=1$ it is known by Leopoldt [11] that

$$
\zeta_{F}(2-p) / \zeta(2-p) \equiv \frac{2^{n-1} h_{F} R_{p}}{\sqrt{d_{F}}} \bmod p
$$

where $R_{p}=\operatorname{det}\left(Q_{p}\left(\varepsilon_{i}^{\sigma}\right)\right)_{1 \leq i \leq n-1, \sigma \in \operatorname{Gal(F/Q)}}$ for a system of fundamental units $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n-1}$ of F, and Q_{p} is the Fermatquotient $\bmod p$, namely for an integer A of F prime to p,

$$
Q_{p}(A) \equiv \frac{A^{q-1}-1}{p} \bmod p
$$

Here q is the norm of a prime divisor of \mathfrak{p} in F. Hence in this case, the condition on $\zeta_{F}(2-p) / \zeta(2-p)$ can be checked by h_{F} and R_{p}.

§ 3. Numerical Examples

In this section, we will discuss a few examples of Theorem 2.5 and Theorem 2.6, and examples of different type. Before giving them, we explain some notations. Let χ and U_{χ} be as in Section 2. Then $S^{0}\left(q^{2 \nu+1}, 1, \tilde{2}\right)$ decomposes into a direct sum of four subspaces $S_{\mathrm{I}}, S_{\mathrm{II}}, S_{\mathrm{II}}$, and S_{III}. Each subspace is given as follows;

$$
\begin{aligned}
& S_{\mathrm{I}}=\left\{f \in S^{0}\left(\mathfrak{q}^{2 \nu+1}, 1, \tilde{2}\right) \mid W f=f, U_{\chi} f=f\right\}, \\
& S_{\mathrm{II}}=\left\{f \in S^{0}\left(\mathfrak{q}^{2 \nu+1}, 1, \tilde{2}\right) \mid W f=f, U_{\chi} f=-f\right\}, \\
& S_{\mathrm{II}}=\left\{f \in S^{0}\left(\mathfrak{q}^{2 \nu+1}, 1, \tilde{2}\right) \mid W f=-f, U_{\chi} f=-f\right\}, \\
& S_{\mathrm{III}}=\left\{f \in S^{0}\left(\mathfrak{q}^{2 \nu+1}, 1, \tilde{2}\right) \mid W f=-f, U_{\chi} f=f\right\}
\end{aligned}
$$

Here $(W f)(g)=f\left(g\left[\begin{array}{cc}0 & -1 \\ \widetilde{\varpi}_{q}^{2 \nu+1} & 0\end{array}\right]\right)$. These subspaces are stable under Hecke operators. We write $G_{T(\alpha)}^{\mathrm{I}}, G_{T(a)}^{\mathrm{II}}, G_{T(\mathrm{a})}^{\mathrm{II}}$, and $G_{T(a)}^{\mathrm{III}}$ for the characteristic polynomials of $T_{\mathrm{c}}(\mathfrak{a})$ with $\mathfrak{c}=\mathfrak{q}^{2 \nu+1}$ on $S_{\mathrm{I}}, S_{\mathrm{II}}, S_{\mathrm{II}_{\chi}}$, and $S_{\text {III }}$ respectively. Let $h(X)=\Sigma a_{i} X^{i}$ be a polynomial with coefficients in an algebraic number field M. We set $\left(N_{M / Q} h\right)(X)=\prod_{\sigma}\left(\Sigma a_{i}^{\sigma} x^{i}\right)$, where σ runs through all the distinct embeddings of M into $\overline{\boldsymbol{Q}}$. For a prime q and $j, 1 \leq j \leq$ $(q-3) / 2$, let $\alpha_{j}=e^{2 \pi j \sqrt{-1} / q}+e^{-2 \pi j \sqrt{-1} / q}$, and $\alpha_{0}=1$. We express by $\left(a_{0}, \cdots\right.$, $\left.a_{(q-3) / 2}\right)$ the algebraic number $a_{0} \alpha_{0}+\cdots+a_{(q-3) / 2} \alpha_{(q-3) / 2}$ in the maximal real field F_{q} of $\boldsymbol{Q}\left(1^{1 / q}\right)$. Let η_{0} be as in Proposition 2.1, and $\eta_{1}=\eta_{0}^{2} N_{K / F} \eta_{0}^{-1}$. If we define the polynomial $H_{\nu}^{\prime}(X)$ in the same way as $H_{\nu}(X)$ taking η_{1} instead of η_{0}, then we find $H_{\nu}^{\prime}(-1)=H_{\nu}(1)^{2}$. The formula for $H_{\nu}^{\prime}(-1)$ is simpler than that of $H_{\nu}(1)$. For example, let $X^{2}-s X+1$ be the minimal polynomial of η_{1}^{\prime}, then $H_{\nu}^{\prime}(-1)=\left(s+s^{\prime}\right)^{2}$ for $n=2$, and $H_{\nu}^{\prime}(-1)=$ $\left(s^{2}+s^{\prime 2}+s^{\prime \prime 2}+s s^{\prime} s^{\prime \prime}-4\right)^{2}$ for $n=3$. Here s^{\prime} and $s^{\prime \prime}$ are the conjugates of s over \boldsymbol{Q}. Throughout the following examples, we assume $\nu=1$, namely the level is a cube of a prime ideal. The examples 1,2 and 3 are the case where $\operatorname{rank} E_{K}=\operatorname{rank} E_{F}+1$. The example 4 treats the case where rank $E_{K}=\operatorname{rank} E_{F}$. In this case, K is a totally imaginary quadratic extension of F. The examples 5 and 6 concern the case where rank E_{K} $=\operatorname{rank} E_{F}+2$. We note that this case does not occur for $F=\boldsymbol{Q}$. These examples are calculated by the formula in Saito [15].

Example 1. Let $F=\boldsymbol{Q}(\sqrt{5})$, and $\mathfrak{q}=(\theta)$ with $\theta=-1+2 \sqrt{5}, N_{F / Q}(\theta)$ $=-19$. Then we find $\operatorname{dim} S_{\mathrm{I}}=36$ and $\operatorname{dim} S_{\mathrm{III}}=18$, and the followings:

$$
\begin{aligned}
& G_{T((2))}^{\mathrm{II}}(X)= \\
& \quad N_{F_{19} / Q}\left(X^{2}-A\right) \\
& \text { with } \quad A=(4,-1,0,0,1,-1,-1,1,1), \quad N_{F_{19} / Q}(A)=419 ; \\
& G_{T((3))}^{\mathrm{II}}(X)= N_{F_{19} / Q}\left(X^{2}-B\right) \\
& \text { with } \quad B=(6,-5,-2,-5,-5,-2,-5,-4,-3), \\
& N_{F_{19} / Q}(B)=37^{2} \cdot 419 .
\end{aligned}
$$

Let $K=F(\sqrt{\theta})$, then $\mathfrak{f}_{K / F}=\mathfrak{q}$ and F and K satisfy the conditions (2.1), (2.2), and (2.3). We remark that for a prime ideal \mathfrak{I} of F which remains prime in K, the Fourier coefficient for \mathfrak{l} of f_{λ} associated with an idele class character λ of K vanishes. Hence the modulus P in Theorem 2.6 should divide the constant of the characteristic polynomial of $T(\emptyset)$ on $S_{\text {III }}$. In the above example, the prime ideals (2) and (3) in F remain prime in K, so P should divide 419 . In fact, we may set

$$
\eta_{0}=\frac{1-\sqrt{\theta}}{2}, \quad \eta_{1}=\frac{5+\sqrt{5}}{4}-\frac{1+\sqrt{5}}{4} \sqrt{\theta} .
$$

Then we find

$$
\begin{aligned}
\eta_{1}^{19}= & \frac{-7815395405-3495151081 \sqrt{5}}{4} \\
& +\frac{4194233399+1875718199 \sqrt{5}}{4} \sqrt{\theta},
\end{aligned}
$$

and

$$
\begin{aligned}
& H_{0}^{\prime}(-1)=H_{0}(1)^{2}=5^{2} \\
& H_{1}^{\prime}(-1)=H_{1}(1)^{2}=(5 \cdot 419 \cdot 3730499)^{2}
\end{aligned}
$$

Since we have

$$
Q_{p}\left(\frac{1+\sqrt{5}}{2}\right) \equiv 158 \sqrt{5} \bmod p \quad \text { for } \quad p=419
$$

and $\zeta_{F}(-1) / \zeta(-1)=-2 / 5$, we see the prime 419 satisfies the conditions in Theorem 2.5 and Theorem 2.6. So the above example gives a verification of our Theorem 2.6. Now, the prime 3730499 in $H_{1}(1)^{2}$ appears in the remaining space S_{I} as follows:

$$
\begin{aligned}
G_{T((2))}^{I}(X) & =N_{F_{19} / \ell}\left(X^{4}-\mathrm{C} X^{2}+D\right) \\
\text { with } \quad & C=(13,1,0,0,1,1,3,1,1) \\
& D=(28,7,0,-6,-1,9,15,5,7), \\
& N_{F_{19} / \ell}(D)=37^{2} \cdot 3730499 .
\end{aligned}
$$

Since we have $Q_{p}(1+\sqrt{5}) / 2 \equiv 1640877 \cdot \sqrt{5} \bmod p$ for $p=3730499$, the condition (2.7) is valid also in this case.

Example 2. Let $F=F_{7}$ and $\beta_{j}=e^{2 \pi j \sqrt{-1 / 7}}+e^{-2 \pi j \sqrt{-1 / 7}}$ for an integer j. We set $\mathfrak{q}=(\theta)$ with $\theta=-3+4 \beta_{1}+\beta_{2}$ then $N_{F_{7} / Q}(\theta)=13$. We find

$$
\operatorname{dim} S_{\mathrm{I}}=12, \quad \operatorname{dim} S_{\mathrm{III}}=0,
$$

and the following:

$$
\begin{aligned}
& G_{T((2))}^{I}(X)=N_{F_{13} / Q}\left(X^{2}-A\right) \\
& \text { with } \quad A=(9,0,0,-2,-2,-4,-8) \\
& N_{F_{13} / Q}(A)=3^{3} .4447 .
\end{aligned}
$$

Let $K=F(\sqrt{\theta})$, then F and K satisfy the conditions (2.1), (2.2), and (2.3). We note $\chi_{K / F}((2))=-1$. We may set

$$
\eta_{0}=\frac{1+2 \beta_{2}+\sqrt{\theta}}{2}, \quad \eta_{1}=\frac{-\left(1+\beta_{1}\right)-\left(1+\beta_{1}\right) \sqrt{ } \bar{\theta}}{2} .
$$

Then we find

$$
\eta_{1}^{13}=\frac{-\left(326+261 \beta_{1}+117 \beta_{2}\right)-\left(714+573 \beta_{1}+255 \beta_{2}\right) \sqrt{\theta}}{2}
$$

and

$$
H_{0}^{\prime}(-1)=3^{2}, \quad H_{1}^{\prime}(-1)=\left(3^{4} \cdot 4447\right)^{2}
$$

Since we have

$$
\begin{aligned}
R_{p} & \equiv \operatorname{det}\left(\begin{array}{ll}
Q_{p}\left(\beta_{2}\right) & Q_{p}\left(\beta_{1}\right) \\
Q_{p}\left(\beta_{1}\right) & Q_{p}\left(\beta_{3}\right)
\end{array}\right) \\
& \equiv 2613+1622 \beta_{1}+2439 \beta_{1}^{2} \bmod p \quad \text { for } p=4447,
\end{aligned}
$$

and $\zeta_{F}(-1) / \zeta(-1)=-4 / 7$, the condition (2.7) is satisfied.
Example 3. Let $F=\boldsymbol{Q}(\beta)$, where β is the unique solution of $X^{3}-4 X$ $+2=0$ satisfying $0<\beta<1$. We take $\mathfrak{q}=(\theta)$ with $\theta=5+2 \beta-3 \beta^{2}$. Then $N_{F / Q}(\theta)=5$, and we find

$$
\operatorname{dim} S_{\mathrm{I}}=4, \quad \operatorname{dim} S_{\mathrm{III}}=0,
$$

and

$$
\begin{aligned}
& G_{T\left(p_{2}\right)}^{I}(X)=X^{4}-8 X^{2}+11 \\
& G_{T\left(p_{13}\right)}^{I}(X)=X^{4}-17 X^{2}+11,
\end{aligned}
$$

where $\mathfrak{p}_{2}=(\beta)$ with $N \mathfrak{p}_{2}=2$ and $\mathfrak{p}_{13}=\left(6-\beta-\beta^{2}\right)$ with $N \mathfrak{p}_{13}=13$. Let $K=$ $F(\theta)$, then F and K satisfy the conditions (2.1), (2.2), and (2.3), and the prime ideals \mathfrak{p}_{2} and \mathfrak{p}_{13} remain prime in K. In this case we may take

$$
\eta_{0}=\frac{1-\beta+\sqrt{\theta}}{2}, \text { and } \eta_{1}=\frac{-3+\beta+\beta^{2}+\left(1-2 \beta+\beta^{2}\right) \sqrt{\theta}}{2}
$$

We find

$$
\eta_{1}^{5}=\frac{-9+\beta+2 \beta^{2}+\left(-5+2 \beta+2 \beta^{2}\right) \sqrt{\theta}}{2}
$$

and

$$
H_{0}^{\prime}(-1)=2^{2} \quad H_{1}^{\prime}(-1)=2^{4} 11^{2}
$$

We know by the table 8 in Cartier and Roy [2] that $\zeta_{F}(2-p) / \zeta(2-p)$ and $\zeta_{F}(-1) / \zeta(-1)$ are p-units for $p=11$, hence the condition (2.7) is satisfied.

Example 4. Let $F=\boldsymbol{Q}(\sqrt{2})$, and $\mathfrak{q}=(\theta)$ with $\theta=-7+4 \sqrt{2}$. Here $N_{F / Q}(\theta)=17$. Then we find

$$
\operatorname{dim} S_{\mathrm{I}}=8 \cdot 8, \quad \operatorname{dim} S_{\mathrm{III}}=4 \cdot 8
$$

and

$$
\begin{aligned}
G_{T((\sqrt{2}))}^{\mathrm{II}}(X) & =N_{F_{17} / Q}\left((X-A)^{2}\left(X^{2}-B X+C\right)\right) \\
\text { with } \quad A & =(0,0,1,0,0,0,0,0,0) \\
B & =(1,0,-1,1,1,0,0,0,0) \\
C & =(0,0,0,1,0,-1,-1,1,0) \\
G_{T((3))}^{\mathrm{II}}(X) & =N_{F_{17} / Q}\left(\left(X^{2}-D\right) X^{2}\right) \\
D & =(10,-1,-2,1,0,3,2,1,0) .
\end{aligned}
$$

Let $G_{T((\sqrt{2}))}^{0}(X)$ and $G_{T((3))}^{0}(X)$ be the second factors of $G_{T((\sqrt{2}))}^{\mathrm{III}}(X)$ and $G_{T((3))}^{\mathrm{III}}(X)$ respectively. Then we find

$$
\begin{align*}
& N_{F_{17} / Q}\left(G_{T((\sqrt{2}))}^{0}(A)\right)=953 \cdot 1123 \\
& N_{F_{17} / Q}\left(G_{T((3))}^{0}(\sqrt{D})\right)=953 \cdot 1123 . \tag{3.1}
\end{align*}
$$

Here we note A and \sqrt{D} are the roots of the first factors of $G_{T((\sqrt{2}))}^{\mathrm{II}}(X)$
and $G_{T(3))}^{\mathrm{II}}(X)$ respectively. Let $K=F(\sqrt{\theta})=F(\sqrt{-7+4 \sqrt{2}})$, then K is a totally imaginary quadratic extension of F with the conductor $\mathfrak{q}, h_{K}=$ 1 , and $E_{K}=\langle \pm 1,1-\sqrt{2}\rangle$. Let σ_{1} and σ_{2} be the embeddings of K into C given by $\sigma_{1}(\beta)=\beta$ for $\beta \in K$ and

$$
\sigma_{2}(\beta)=(a-b \sqrt{2})+(c-d \sqrt{2}) \sqrt{\theta}
$$

for $\beta=a+b \sqrt{2}+(c+d \sqrt{2}) \sqrt{\theta}$ with $a, b, c, d \in \boldsymbol{Q}$. Then all the embeddings of K into C are given by $\sigma_{1}, \rho \sigma_{1}, \sigma_{2}$ and $\rho \sigma_{2}$ with the complex conjugation ρ. For $a \in \mathfrak{o}_{K}$ prime to \mathfrak{q}, let $a \equiv a^{\prime} b \bmod (\sqrt{\theta})$ with $a^{\prime} \in \mathfrak{o}$ and $b \in \mathfrak{o}_{K}$ congruent to 1 modulo $(\sqrt{\theta})$, and for b let $b \equiv 1+u \sqrt{\theta} \bmod (\sqrt{\theta})^{2}$ with $u \in \mathbb{D}$, and put $\psi(b)=e^{2 \pi i u / 17}$. Let χ be the quadratic residue symbol of $\left(\mathfrak{o}_{K} /(\sqrt{\theta})\right)^{\times} \simeq(\mathfrak{o} / \theta)^{\times}$. For $a \in \mathfrak{o}_{K}$ prime to q, define

$$
\begin{aligned}
& \lambda_{1}((a))=\chi\left(a^{\prime}\right) \psi(b) \sigma_{1}(a) \rho \sigma_{2}(a), \\
& \lambda_{2}((a))=\chi\left(a^{\prime}\right) \psi(b) \rho \sigma_{1}(a) \sigma_{2}(a),
\end{aligned}
$$

then λ_{1} and λ_{2} give Grossencharacters of K with conductors $(\sqrt{\theta})^{2}$. Let f_{1} and f_{2} be the cusp forms satisfying $L\left(s, f_{1}\right)=L\left(s, \lambda_{1}\right)$ and $L\left(s, f_{2}\right)=$ $L\left(s, \lambda_{2}\right)$, then we see f_{1} and f_{2} are contained in $S_{\text {III }}$. Let $C_{1}(\mathfrak{m})$ and $C_{2}(\mathfrak{m})$ be the Fourier coefficients of f_{1} and f_{2} respectively, then we find

$$
\begin{aligned}
& N_{F_{17} / Q}\left(X-C_{1}((\sqrt{2}))\left(X-C_{2}((\sqrt{2}))\right)=G_{T((\sqrt{2}))}^{0}(X)\right. \\
& N_{F_{17} / Q}\left(\left(X-C_{1}((3))\left(X-C_{2}((3))\right)=G_{T((3))}^{0}(X),\right.\right.
\end{aligned}
$$

namely $G_{T((\sqrt{2}))}^{0}(X)$ and $G_{T((3))}^{0}(X)$ correspond to the subspace spanned by the companions of f_{1} and f_{2}. Hence (3) suggests that f_{1} and f_{2} are congruent to some cusp forms in $S_{\text {III }}$ which are different from the companions of f_{1} and f_{2} modulo prime ideals lying above 953 and 1123 .

Example 5. Let $F=\boldsymbol{Q}(\sqrt{5})$ and $q=(\theta)$ with $\theta=(11+\sqrt{5}) / 2$. Here $N_{F / Q}(\theta)=29$. Then we find

$$
\operatorname{dim} S_{\mathrm{I}}=8 \cdot 14, \quad \operatorname{dim} S_{\mathrm{III}}=6 \cdot 14,
$$

and

$$
\begin{aligned}
G_{T((2))}^{I}(X) & =N_{F_{29} / Q}\left(X^{6}-A X^{4}+B X^{2}-C\right) \\
\text { with } A & =(13,0,0,1,1,0,0,-2,1,0,0,0,1,0,1) \\
B & =(40,2,1,10,3,2,2,-9,7,0,-1,5,5,2,7) \\
C & =(28,7,5,14,6,14,3,1,14,2,8,12,5,16,10), \\
G_{T((2))}^{\mathrm{III}}(X) & =N_{F_{29} / Q}\left(X^{8}-D X^{6}+E X^{4}-F X^{2}+G\right)
\end{aligned}
$$

$$
\begin{aligned}
D= & (22,0,0,1,1,0,0,4,1,0,0,0,1,2,1) \\
E= & (154,5,0,6,15,1,7,60,11,7,0,0,13,29,19) \\
F= & (324,-17,140,-68,-17,-44,25,160,-15,25,-63, \\
& -61,-4,78,17) \\
G= & (118,-103,-117,-156,-104,-108,-51,-11, \\
& -112,-60,-146,-126,-89,-14,-104) .
\end{aligned}
$$

In the above two cases, we find $N_{F_{29} / \ell}(C)=59^{4} \cdot 173^{2}$ and $N_{F_{29} / Q}(G)=$ $33871^{2} \cdot 763223^{2}$ for the constant terms C and G of $G_{T((2))}^{I}(X)$ and $G_{T((2))}^{\mathrm{III}}(X)$ respectively.

We shall give one more example of the same type as Example 5.
Example 6. Let $F=\boldsymbol{Q}(\sqrt{29})$, and $\mathfrak{q}=(\theta)$ with $\theta=11+2 \sqrt{29}$. Here $N_{F / Q}(\theta)=5$. Then we find $\operatorname{dim} S^{\mathrm{I}}=2, \operatorname{dim} S^{\text {III }}=4$, and

$$
\begin{aligned}
G_{T((2))}^{\mathrm{I}}(X) & =N_{F_{5} / Q}\left(X^{4}-A X^{2}+B\right) \\
\text { with } A & =(15,3) \\
B & =(5,-5)^{2} \\
G_{T((2))}^{\mathrm{III}}(X) & =N_{F_{5} / Q}\left(X^{2}-C\right) \\
C & =(1,-1)^{2}
\end{aligned}
$$

References

[1] T. Asai, On the Fourier coefficients of automorphic forms at various cusps and some application to Rankin's convolution, J. Math. Soc. Japan, 28 (1976), 48-61.
[2] P. Cartier and Y. Roy, Certain calculs numériques relatifs à l'interpolation p-adique des series de Dirichlet, Modular functions of one variable, 269350, Lecture Notes in Math., vol. 350, Springer-Verlag.
[3] P. Cassou-Nougès, Valeurs aux entiers négatifs des fonction zêta et fonctions zêta p-adiques, Invent. Math., 51 (1979), 29-59.
[4] P. Deligne and J. P. Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup., 7 (1974), 507-530.
[5] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math., 59 (1980), 227-286.
[6] K. Doi and M. Yamauchi, On Hecke operators for $\Gamma_{0}(N)$ and the class fields over quadratic fields, J. Math. Soc. Japan, 25 (1973), 629-643.
[7] H. Hida, On the values of Heck's L-functions at non-negative integers, J. Math. Soc. Japan, 30 (1978), 249-278.
[8] H. Ishii, Congruences between cusp forms and fundamental units of real quadratic fields, Japan. J. Math., 7 (1981), 257-267.
[9] H. Jacquet and R. Langlands, Automorphic forms on GL(2), Lecture Notes in Math., vol. 114 Springer Verlag.
[10] M. Koike, Congruences between cusp forms and linear representations of the Galois group, Nagoya Math. J., 64 (1976), 63-85.
[11] H. Leopoldt, Uber Fermatquotienten von Kreiseinheiten und Klassenzah1formeln modulo p, Rend. Circ. Math. Palermo, 2, Ser., 9 (1960), 1-12.
[12] T. Miyake, On automorphic forms on $G L_{2}$ and Hecke operators, Ann. of Math., 94 (1971), 174-189.
[13] H. Saito, On a decomposition of spaces of cusp forms and trace formula of Hecke operators, Nagoya Math. J., 80 (1980), 129-165.
[14] H. Saito and M. Yamauchi, Congruences between Hilbert cusp forms and units in quadratic fields, J. Fac. Sci. Univ. Tokyo, 28 (1981), 687-694.
[15] H. Saito, On an operator U_{x} acting on spaces of Hilbert cusp forms, to appear in J. Math. Kyoto Univ., 24 (1984), 285-303.
[16] G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math., 95 (1972), 130-190.
[17] - The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-679.

Department of Mathematics
College of General Education
Kyoto University
Kyoto 606 Japan

[^0]: Received December 12, 1983.

