Advanced Studies in Pure Mathematics 7, 1985 Automorphic Forms and Number Theory pp. 277-294

Congruences between Hilbert Cusp Forms

Hiroshi Saito and Masatoshi Yamauchi

§ 0. Introduction

This is a continuation of our previous paper [14]. In that paper, we reported an example of a congruence relation between Hilbert cusp forms over a real quadratic field. In this paper, we study such a congruence relation in a more general setting, and add several examples. More precisely, let F be a totally real algebraic number field and K a quadratic extension of F with the relative discriminant q. For simplicity, we assume q is a prime ideal not dividing 2. Mainly, we treat the case where K has two real archimedean places, namely rank E_{κ} = rank E_{κ} + 1. Here E_{κ} (resp. E_F) denote the group of units in K (resp. F). When the class number of F in the narrow sense is odd, we can show that E_{κ} is generated by E_F and a unit η of K. We define a certain polynomial $H_{\nu}(X)$ with rational integral coefficients associated with η and a positive integer ν (for the definition of $H_{\mu}(X)$, see the text § 2 (2.4)). Under a condition on η (see the text § 2 (2.6)), for each prime p which satisfies $p|H_{\mu}(1)$ and $p \not\mid H_{u-1}(1)$, we can construct characters λ of K with the conductor $\mathbb{Q}^{2\nu} \Re \tilde{w}$, where Ω is the prime ideal of K lying above q and \mathfrak{P} is an ideal of K such that $\mathfrak{PP}^{\sigma} = (p)$ and $(\mathfrak{P}, \mathfrak{P}^{\sigma}) = 1$ with the non-trivial automorphism σ of K over F. \tilde{w} is one of real archimedean places of K. The Hilbert cusp form f_{λ} over F associated with λ is of weight 1 and of level $q^{2\nu+1}(p)$. Under some assumptions on the special value of L-functions of F (see the text § 2 (2.7)), we can show that there exists a primitive cusp form f over F of weight 2 and of level $q^{2\nu+1}$, which is congruent to f_{λ} modulo a prime ideal P lying above p. On the prime p, we note the following. When F=Q the rational number field, K is a real quadratic field $Q(\sqrt{q})$ and η is the fundamental unit ε of K. We see in this case

$$H_{\nu}(1) = -\operatorname{tr} \varepsilon^{q^{\nu}}.$$

So the value $H_{\nu}(1)$ is a natural generalization of tr ε in Shimura [16] and of tr $\varepsilon^{q^{\nu}}$ in Doi-Yamauchi [6] and Ishii [8]. In Section 3, we give examples of the above results and also include the examples in the case where

Received December 12, 1983.

H. Saito and M. Yamauchi

rank E_{κ} = rank E_{F} and rank E_{κ} = rank E_{F} + 2. In the former case, we find a congruence relation between two Hilbert cusp forms, one of which is associated with a Grossencharacter of K. In the latter case, as the examples suggest, the situation seems to be different.

§ 1. Hilbert modular forms and Hecke operators

Let F be a totally real algebraic number field of degree n, and $\mathfrak{o}_F = \mathfrak{o}$, b the ring of integers, the different of F respectively. In this paper, we assume $n \ge 2$. For a place v of F, F_v denotes the completion of F at v, and when v is a finite place, \mathfrak{o}_v denotes the ring of v-adic integers in F_v . To each finite place v, we fix a prime element ϖ_v of \mathfrak{o}_v . Let F_A and F_A^{\times} be the adele ring and the idele group of F respectively, and $\mathfrak{U}_F = \prod_v \mathfrak{o}_v^{\times} \times \prod_w F_w^{\times}$, where v and w run through all finite and infinite places respectively. For $a \in F_A^{\times}$, let |a| be the module of a with respect to a Haar measure of F_A and ao the ideal of F determined by $(a\mathfrak{o})\mathfrak{o}_v = a_v\mathfrak{o}_v$ for finite v. Here a_v is the v-component of a. We choose a non-trivial additive character $\tau = \prod_v \tau_v$ of F_A , trivial on F. We assume that

$$\tau_w(x) = e^{-2\pi \sqrt{-1}x}$$

for infinite places w. For each finite v, let $\delta(v)$ be the integer so that τ_v is trivial on $\varpi_v^{-\delta(v)} \mathfrak{o}_v$ but not on $\varpi_v^{-\delta(v)-1} \mathfrak{o}_v$, and d the element of F_A^{\times} given by $d_v = \varpi_v^{-\delta(v)}$ for finite v and $d_w = 1$ for infinite w. Then we have $d\mathfrak{o} = \mathfrak{d}$.

Let G = GL(2) be the general linear group in 2 variables, considered as an algebraic group over F, and Z the center of G. We write G_A , Z_A for the corresponding adelized groups. Z_A can be identified with F_A^* . We denote by G_0 and G_∞ the finite part and the infinite part of G_A respectively. For a place v, let $G_v = GL(2, F_v)$ and let $G_F = GL(2, F)$.

In this section, we fix an integral ideal c of F. Let $\psi = \prod_{v} \psi_{v}$ be a character of $F_{A}^{\times}/F^{\times}$ of finite order such that $\mathfrak{f}(\psi)$ divides c, where $\mathfrak{f}(\psi)$ is the finite part of the conductor of ψ . To each infinite place w, we choose a positive integer $\kappa(w)$ satisfying $(-1)^{\kappa(w)} = \psi_{w}(-1)$, and put $\overline{\kappa} = (\kappa(w))$. To c, ψ , and $\overline{\kappa}$, we define a compact subgroup K = K(c) of G_{A} and a 1-dimensional representation ρ of K. To a finite place v not dividing c, put $K_{v} = GL(2, \mathfrak{o}_{v})$, and to an infinite place w, put $K_{w} = \mathrm{SO}(2, \mathbb{R})$. For a finite place v dividing c, let $\nu_{v} = \mathrm{ord}_{v}(c) = \mathrm{ord}_{v}(c_{v})$, where c_{v} is an element of F_{v} such that $\mathrm{co}_{v} = c_{v}\mathfrak{o}_{v}$ and ord_{v} is the additive valuation of F_{v} normalized as $\mathrm{ord}_{v}(\varpi_{v}) = 1$. Let

$$K_{v} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in GL(2, \mathfrak{o}_{v}) | \operatorname{ord}_{v}(\mathfrak{c}) \geq \nu_{v} \right\},$$

and let $K = \prod_{v} K_{v}$. For a positive integer *m*, let ρ_{m} be the representation

of $SO(2, \mathbf{R})$ given by

$$\rho_m \left(\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \right) = e^{m\theta \sqrt{-1}}.$$

For $k = (k_v) \in K$, we define

$$\rho(k) = \prod_{v \mid c} \psi_v(d_v) \prod_{w \text{ infinite}} \rho_{\epsilon(w)}(k_w),$$

where

$$k_v = \begin{bmatrix} a_v & b_v \\ c_v & d_v \end{bmatrix}.$$

Now we define a space of Hilbert modular forms associated with the triple (c, ψ, \bar{k}) . We call a *C*-valued continuous function f on G_A a Hilbert modular form (over F) of type (c, ψ, \bar{k}) if f satisfies the following conditions:

(1.1)
$$f(\gamma gzk) = \psi(z)\rho(k)f(g)$$
 for $\gamma \in G_F$, $z \in Z_A$, and $k \in K$;

(1.2) as a function of $g_w \in GL(2, F_w)$ for infinite $w, f(gg_w)$ is of C^{∞} -class and satisfies $Xf(gg_w)=0$ for $g \in G_A$, where $X = \begin{bmatrix} 1 & -\sqrt{-1} \\ \sqrt{-1} & -1 \end{bmatrix}$ in the complex Lie algebra of $GL(2, F_w)$;

(1.3) for any compact set $S(\subset G_A)$ and a positive integer c, there exist constants C and N so that

$$\left|f\left(\begin{bmatrix}a&0\\0&1\end{bmatrix}g\right)\right|\leq C|a|^{N},$$

for all $g \in S$ and $a \in F_A^{\times}$ with |a| > c.

Let $M(c, \psi, \bar{\kappa})$ denote the space of Hilbert modular forms of type $(c, \psi, \bar{\kappa})$. f in $M(c, \psi, \bar{\kappa})$ is called a Hilbert cusp form of type $(c, \psi, \bar{\kappa})$ if f satisfies the condition:

(1.4) $\int_{F \setminus F_A} f\left(\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}\right) da = 0$ for all $g \in G_A$, where da is the Haar measure of $F \setminus F_A$.

We denote by $S(c, \psi, \bar{\kappa})$ the space of Hilbert cusp forms of type $(c, \psi, \bar{\kappa})$. In the rest of this section, we assume $\kappa(w) = \kappa$ for all infinite w, and put $\bar{\kappa} = (\kappa, \dots, \kappa)$. Let f be an element of $M(c, \psi, \bar{\kappa})$, then f has a Fourier expansion; H. Saito and M. Yamauchi

$$f\left(\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}\right) = C_0(y) |y|^{\varepsilon/2} + |y|^{\varepsilon/2} \sum_{\substack{\xi \in F^{\times} \\ \xi \ll 0}} C(\xi dy_0) e^{-2\pi \operatorname{Tr}(\xi y_\infty)} \tau(\xi x),$$

for $x \in F_A$ and $y \in F_{A^+}^{\times} = \{a \in F_A | a_w > 0 \text{ for infinite } w\}$. Here the sum is extended over totally negative $\xi \in F^{\times}$. For $y \in F_A^{\times}$, y_{∞} is the infinite component of y and $\operatorname{Tr}(y_{\infty}) = \sum_w y_w$. $C(y_0) = 0$ unless y_0 is integral and $C_0(y)$ satisfies $C_0(y_0) = C_0(y)$ for $u \in F^{\times} \prod_v \mathfrak{o}_v \prod_w F_{w^+}^{\times}$ with $F_{w^+}^{\times} = \{a \in F_w^{\times} | a > 0\}$. If $f \in S(c, \psi, \tilde{\kappa})$, then $C_0(y) = 0$. For f, we set

$$L(s,f) = \sum_{\mathfrak{m}} C(\mathfrak{m}) N(\mathfrak{m})^{-s}$$

where \mathfrak{m} runs through all integral ideals of F.

To each integral ideal α , the Hecke operator $T_{c}(\alpha)$ on $M(c, \psi, \tilde{\kappa})$ or $S(c, \psi, \tilde{\kappa})$ is defined in the following way. For finite v |c(resp. v|c). Put

$$\Xi_{v}(\mathfrak{a}) = \{g \in M_{2}(\mathfrak{o}_{v}) | \operatorname{ord}_{v}(\det g) = \operatorname{ord}_{v}(\mathfrak{a})\}$$

$$\left(\operatorname{resp.} \Xi_{v}(\mathfrak{a}) = \left\{g \in \begin{bmatrix}\mathfrak{o}_{v} & \mathfrak{o}_{v}\\ \mathfrak{c}\mathfrak{o}_{v} & \mathfrak{v}_{v}^{\times}\end{bmatrix} | \operatorname{ord}_{v}(\det g) = \operatorname{ord}_{v}(\mathfrak{a})\right\}\right)$$

and put $E(\alpha) = \prod_{v: \text{ finite}} E_v(\alpha)$. Let $E(\alpha) = \bigcup_{i=1}^d g_i K_0$ $(K_0 = G_0 \cap K)$ be a disjoint union. For $f \in M(c, \psi, \tilde{\kappa})$, we define

$$(T_{\mathfrak{c}}(\mathfrak{a})f)(g) = N(a)^{(s-2)/2} \sum_{i=1}^{d} \overline{\psi}(d_i)f(gg_i),$$

where $g_i = \begin{bmatrix} a_i & b_i \\ c_i & d_i \end{bmatrix}$. Let $C(\mathfrak{m})$ (resp. $C'(\mathfrak{m})$) be the Fourier coefficients of $f(\text{resp. } T_{\mathfrak{c}}(\mathfrak{a})f)$, then it holds

$$C'(\mathfrak{m}) = \sum_{\mathfrak{l}|\mathfrak{a},\mathfrak{m}} \psi^*(\mathfrak{l}) C(\mathfrak{m}\mathfrak{a}/\mathfrak{l}^2) N(\mathfrak{l})^{\mathfrak{c}-1}.$$

Here $\psi^*(\mathfrak{l})=0$ unless \mathfrak{l} is prime to c, and when \mathfrak{l} is prime to c, let $l \in F_A^*$ so that $l_{\infty}=1$, $l_v=1$ for $v \nmid c$, $lo=\mathfrak{l}$, and put $\psi^*(\mathfrak{l})=\psi(l)$. It is shown in Shimura [17] that $M(c, \psi, \tilde{\kappa})$ and $S(c, \psi, \tilde{\kappa})$ are spanned by forms for which $C(\mathfrak{m})$ are integers in an algebraic number field and that the eigenvalues for $T_c(\mathfrak{a})$ are algebraic integers. Let f and h be Hilbert cusp forms with coefficients $C(\mathfrak{m})$ and $C'(\mathfrak{m})$ in the localization of the ring of integers of an algebraic number field M at a prime ideal P of M. We say f is congruent to h modulo P if $C(\mathfrak{m})\equiv C'(\mathfrak{m})$ modulo P for all integral ideals \mathfrak{m} .

We introduce Eisenstein series following Hida [7]. Let $\chi = \prod_{v} \chi_{v}$ be a character of $F_{A}^{\times}/F^{\times}$ of finite order. Assume $\chi_{w}(x) = \operatorname{sgn}(x) = x/|x|$ for all infinite w or $\chi_{w} = \operatorname{trivial}$ for all infinite w. We also assume $c = f(\chi) \neq o$

280

and $\chi_w(-1) = (-1)^{\epsilon}$. Then there exists $E_{\epsilon,\chi}$ in $M(c,\chi,\tilde{\kappa})$, whose Fourier expansion is given by

$$E_{\boldsymbol{\kappa},\boldsymbol{\chi}}\left(\begin{bmatrix}\boldsymbol{y} & \boldsymbol{x}\\ 0 & 1\end{bmatrix}\right) = |\boldsymbol{y}|^{\boldsymbol{\kappa}/2} + \frac{2^n |\boldsymbol{y}|^{\boldsymbol{\kappa}/2}}{L(1-\boldsymbol{\kappa},\boldsymbol{\chi})} \cdot \sum_{\substack{\boldsymbol{\xi} \in F^{\boldsymbol{\chi}}\\ \boldsymbol{\xi} \leqslant 0}} C_{\boldsymbol{\kappa},\boldsymbol{\chi}}(\boldsymbol{\xi} d\boldsymbol{y} \mathfrak{o}) e^{-2\pi \operatorname{Tr}(\boldsymbol{\xi} \boldsymbol{y}_{\infty})} \tau(\boldsymbol{\xi} \boldsymbol{x}),$$

where

$$C_{\epsilon,\chi}(\mathfrak{m}) = \begin{cases} \sum_{\alpha \mid \mathfrak{m}} \chi^*(\mathfrak{m}/\alpha) N(\alpha)^{\epsilon-1} & \text{if } \mathfrak{m} \text{ is integral} \\ 0 & \text{otherwise.} \end{cases}$$

Let \tilde{S} be the set of prime factors of c. For $S \subset \tilde{S}$, put

 $(W_s f)(g) = f(g w_s),$

where $w_s = \begin{bmatrix} 0 & -1 \\ x & 0 \end{bmatrix}$ with $x_v = \varpi_v^{v_v}$ for $v \in S$ and $x_v = 1$ for $v \notin S$. For $v \in \tilde{S}$, put

$$G(\bar{\lambda}_v) = \sum_{a \in (v_v/\bar{a}_v^{v_v})^{\times}} \bar{\lambda}_v(a) \tau_v(a/(d_v \varpi_v^{v_v}))$$

Then we have by [7]

$$(W_{\tilde{s}}E_{\epsilon,\chi})\left(\begin{bmatrix}y & x\\ 0 & 1\end{bmatrix}\right) = (-1)^{\epsilon g} \cdot 2^{n} \cdot L(1-\epsilon,\chi)^{-1} N c^{\epsilon/2-1} (\prod_{v \mid \epsilon} \chi_{v}(-\varpi_{v}^{v_{v}})G(\bar{\chi}_{v})) \\ \times (\delta_{\epsilon}|y|^{\epsilon/2} \chi(yd)C_{\bar{\chi}}(y) + |y|^{\epsilon/2} \sum_{\substack{\xi \in F^{\times} \\ \xi \leqslant 0}} \chi(yd)C'_{\epsilon,\chi}(\xi dy_{0})e^{-2\pi \operatorname{Tr}(\xi y_{\infty})}\tau(\xi x)),$$

where $\delta_{\kappa} = 0$ if $\kappa > 1$ and $\delta_{\kappa} = 1$ if $\kappa = 1$. $C_{\bar{\chi}}(y) = 2^{-n}L(0, \bar{\chi})$, and $C'_{\kappa,\bar{\chi}}(\mathfrak{m}) = \sum_{\alpha \mid \mathfrak{m}} \bar{\chi}^*(\mathfrak{m}/\alpha) N(\alpha)^{\kappa-1}$ if \mathfrak{m} is integral and $C'_{\kappa,\bar{\chi}}(\mathfrak{m}) = 0$ if \mathfrak{m} is not integral. Later, we need the action of W_S for $S \subseteq \tilde{S}$.

Proposition 1.1. Let $f \in M(c, \psi, \tilde{\kappa})$ be an eigenfunction for all $T_{c}(\alpha)$. Assume $(W_{s}f)\overline{\psi}(\det) \in M(c, \overline{\psi}, \tilde{\kappa})$ is also an eigenfunction for all $T_{c}(\alpha)$ with eigenvalues $\lambda(\alpha)$. Let S be a proper subset of \tilde{S} . Assume $\tilde{\uparrow}(\psi)\mathfrak{o}_{v} = \mathfrak{co}_{v}$ for $v \in S$ and $(\psi \prod_{v \in S} \overline{\psi}_{v})(\mathfrak{o}^{\times}) \neq \{1\}$. Then the Fourier expansion of $h = W_{s}f$ is given by

$$h\left(\begin{bmatrix} y & x \\ 0 & 1 \end{bmatrix}\right) = \prod_{v \in S} \lambda(\varpi_v \mathfrak{o})^{-\nu_v} | \varpi_v |^{-\nu_v(\kappa/2-1)} \psi_v(-\varpi_v^{\nu_v}) G(\overline{\psi}_v) \\ \times (|y|^{\kappa/2} \sum_{\substack{\xi \in F^\times \\ \xi \leqslant 0}} \prod_{v \in S} \psi_v((\xi dy)_v) C'(\xi dy \mathfrak{o}) e^{-2\pi \operatorname{Tr}(\xi y_\infty)} \tau(\xi x)).$$

For an integral ideal \mathfrak{m} , let $\mathfrak{m} = \mathfrak{m}_1 \mathfrak{m}_2$ be the decomposition into integral ideals \mathfrak{m}_1 , \mathfrak{m}_2 so that \mathfrak{m}_1 is prime to $\prod_{v \in S} \varpi_v \mathfrak{o}$ and all the prime factor of \mathfrak{m}_2 is contained in S. Then $C'(\mathfrak{m}) = C(\mathfrak{m}_1)\lambda(\mathfrak{m}_2)$.

This can be verified in the same way as in Asai [1], and the prooj will be omitted.

§ 2. Construction of characters λ and congruences

Let K be a quadratic extension of F, and $f_{K/F}$ its conductor. Let $\operatorname{Gal}(K/F) = \langle \sigma \rangle$. We assume the following;

(2.1) only one infinite place of F decomposes in K.

We denote it by w_1 and the other places by w_2, w_3, \dots , and w_n . Let E_F and E_K be the groups of units of F and K respectively. Then by the above assumption, we have rank $E_K = \operatorname{rank} E_F + 1 = n$. Let $E_K^1 = \{\varepsilon \in E_K | N_{K/F}(\varepsilon) = 1\}, E_F^+ = \{\varepsilon \in E_F | w_i(\varepsilon) > 0 \text{ for all } i\}$, and $\tilde{E}_F = \{\varepsilon \in E_F | w_i(\varepsilon) > 0 \text{ for } i \ge 2\}$. Later, for the sake of simplicity, we assume the following conditions:

(2.2) $f_{K/F}$ is a prime ideal q which is prime to 2 and b_F ;

(2.3) the class number of F is odd and $[E_F : E_F^+] = 2^n$.

Let $Nq = q^{\alpha}$ with a rational prime q and a positive integer α .

Proposition 2.1. (1) If (2.2) is satisfied, there exists η_0 in E_K so that E_K is generated by η_0 and E_F . (2) If (2.2) and (2.3) are satisfied, then $N_{K/F}(E_K) = \tilde{E}_F$ and E_K^1 is generated by ± 1 and $\eta_0^2 N_{K/F}(\eta_0)^{-1}$.

Proof. (1) It is enough to show that E_K/E_F is torsion-free. Let $\eta \in E_K$ and assume $\eta^m \in E_F$, then $(\eta^{\sigma}/\eta)^m = 1$. Since K is not totally imaginary, $\eta^{\sigma}/\eta = \pm 1$. If $\eta^{\sigma}/\eta = -1$, then $\eta^2 \in E_F$ and $K = F(\eta)$. This contradicts (2.2).

(2) Since $N_{K/F}(E_K) \subset \tilde{E}_F$ and $[\tilde{E}_F : E_F^+] = [\tilde{E}_F : E_F^2]$ by the condition (2.3), it is enough to show that $N_{K/F}(\eta_0)$ is not contained in $E_F^+ = E_F^2$. Assume $\eta_0 \eta_0^\sigma = \varepsilon^2$ with $\varepsilon \in E_F$, then $(\eta_0/\varepsilon)^\sigma(\eta_0/\varepsilon) = 1$. Put $\mu = 1 + \eta_0/\varepsilon$, then μ satisfies $\mu = \mu^\sigma \eta_0/\varepsilon$. If μ is a unit, then

$$\eta_0/\varepsilon = \mu/\mu^{\sigma} = \mu\mu^{\sigma}/(\mu^{\sigma})^2 = (\varepsilon'/\mu^{\sigma})^2,$$

with $\varepsilon' \in E_F$. But this contradicts the fact that η_0 gives a generator of E_K/E_F . Hence μ is not a unit. Let \Im be the ideal of K generated by μ ,

then \Im satisfies $\Im'' = \Im$. Let α be an element of F so that $K = F(\sqrt{\alpha})$. Then, there exists an ideal α of F so that $\Im = (\sqrt{\alpha}) \alpha \mathfrak{o}_K$. Since the class number of F is odd, α is a principal ideal, which is generated by $a \in F$. Hence $\mu = \eta a \sqrt{\alpha}$ with a unit η of K, and we have

$$\eta_0/\varepsilon = \mu/\mu^{\sigma} = -\eta/\eta^{\sigma} = -(\varepsilon'/\eta^{\sigma})^2,$$

with $\varepsilon'^2 = \eta \eta''$. This is a contradiction, and the proof is completed.

Let η_0 be as in Proposition 2.1. We note $N_{K/Q}(\eta_0) = -1$. For each positive integer ν , we define a polynomial in $\mathbb{Z}[X]$ of degree 2^n associated with η_0 . Let $f_{\nu}(X) = X^2 - sX + m$ be the minimal polynomial of $\eta_0^{q\nu}$ over F. For $a \in F$, let $a^{(i)}$, $1 \le i \le n$, be all distinct conjugates of a over O, and let

$$X^{2}-s^{(i)}X+m^{(i)}=(X-\alpha_{i1})(X-\alpha_{i2}).$$

Let S be the *n*-tuple products of the set $\{1, 2\}$. We define $H_{\nu}(X)$ by

(2.4)
$$H_{\nu}(X) = \prod_{(s_1, s_2, \dots, s_n) \in S} \left(X - \prod_{i=1}^n \alpha_{is_i} \right)$$

Then we see $H_{\nu}(X) \in \mathbb{Z}[X]$ and deg $H_{\nu} = 2^n$. It is easy to see that $|H_{\nu}(1)|$ is unchanged if we replace η_0 by η_0^{-1} or by $\eta_0 \varepsilon$ for $\varepsilon \in E_F$. To each prime divisor p of $H_{\nu}(1)$ satisfying the following condition, we construct idele class characters of K. Let p be a prime satisfying

(2.5)
$$p|H_{\nu}(1), p|H_{\nu-1}(1), \text{ and } \operatorname{ord}_{p}(H_{\nu}(1))=1.$$

Let C_{p} be the completion of the algebraic closure \overline{Q}_{p} of Q_{p} . We fix embeddings $\iota_{\infty}: \overline{Q} \to C$ and $\iota_p: \overline{Q} \to C_p$. By means of ι_{∞} and ι_p , algebraic numbers can be seen as elements of C and as elements of C_{p} . Let σ_{1}, σ_{2} , \cdots, σ_n be all the distinct embeddings of F into \overline{Q} . We assume w_i corresponds to $\iota_{\infty}\sigma_i$ for each *i*. Let us consider sets of embeddings T= $\{\tau_1, \tau_2, \dots, \tau_n\}$ of K into \overline{Q} such that the restriction of τ_i to F coincides with σ_i for all *i*. There exists 2^n such T's. We denote them by T_i , $1 \le i \le 2^n$. For $x \in K$, we set $x^T = \prod_{i=1}^n x^{\tau_i}$. Then $H_{\nu}(1) = \prod_T (1 - \eta_0^{a\nu})^T$. We consider K and F as subfields of \overline{O} by fixing an embedding $\tau: K \rightarrow \overline{O}$ such that $\tau | F = \sigma_1$. Let \tilde{K} and \tilde{F} be the Galois closure of K and F over Q respectively. Then it is easy to see $[\tilde{K}:\tilde{F}]=2^n$ by (2.1). Let $\tilde{G}=$ $\operatorname{Gal}(\widetilde{K}/Q), \widetilde{H} = \operatorname{Gal}(\widetilde{K}/K)$ and $H = \operatorname{Gal}(\widetilde{K}/F)$. Then there exists a natural one to one correspondence between the left cosets $\tilde{H} \setminus \tilde{G}$ (resp. $H \setminus \tilde{G}$) and the embeddings of K (resp. F) into \overline{Q} , and ρ in \widetilde{G} induces a permutation among T_i by the multiplication on the right. The embedding ι_p determines a prime ideal $\hat{\mathfrak{B}}$ of \tilde{K} lying above p. We denote the decomposition group of $\tilde{\mathfrak{B}}$ by D.

Lemma 2.2. Let $\mathfrak{T} = \{T | T \mathfrak{r} = T \text{ for } \mathfrak{r} \in D\}$, and $\mathfrak{T}' = \{T | T \mathfrak{r} \neq T \text{ for some } \mathfrak{r} \in D\}$. Then

(1) $\iota_p(x^T) \in \mathbf{Q}_p$ for all $x \in K$ if and only if $T \in \mathfrak{T}$.

(2) Let p be a prime satisfying (2.5) and assume p is unramified in K. Then, there exists only one $T \in \mathbb{X}$ such that $\iota_p((1-\eta_0^{qv})^T)$ is divided by p, and all prime ideals \mathfrak{p} of F lying above p decomposes in K.

Proof. (1) is obvious, because $\iota_p(x^T) \in Q_p$ for all $x \in K \Leftrightarrow x^{TT} = x^T$ for all $x \in K$ and all $\tilde{\gamma} \in D \Leftrightarrow T\tilde{\gamma} = T$ for all $\tilde{\gamma} \in D$. If p divides $\iota_p((1-\eta_0^{qv})^T)$ for T in \mathfrak{T}' , then p^2 divides $H_r(1)$. The first assertion of (2) follows from this. Let T be the set in \mathfrak{T} satisfying the above condition. Then there exists g_i , $1 \le i \le d$, in \tilde{G} so that T corresponds to the cosets $\bigcup_{i=1}^{d} \tilde{H} \setminus \tilde{H} g_i D$ in the correspondence stated above, where we assume $\bigcup_{i=1}^{d} \tilde{H} \setminus \tilde{H} g_i D$ is a disjoint union. By the condition on T, we have $\tilde{G} = \bigcup_i H g_i D$. Now it holds

$$|\widetilde{H} \setminus \widetilde{G}| \leq \sum_{i} |\widetilde{H} \setminus Hg_{i}D| \leq 2 \sum_{i} |\widetilde{H} \setminus \widetilde{H}g_{i}D| = 2[F:Q] = |\widetilde{H} \setminus \widetilde{G}|.$$

Hence the union $\bigcup_i Hg_i D$ is disjoint, and $|\tilde{H} \setminus Hg_i D| = 2|\tilde{H} \setminus \tilde{H}g_i D|$. The second assertion follows from this.

Let T be as in Lemma 2.2 (2). The mappings $\iota_p \tau_i : x \to \iota_p(x^{\tau_i})$ can be extended to a homomorphism of $K \otimes Q_p$ into C_p and the mapping $x \to \iota_p(x^T)$ can be extended to a homomorphism as multiplicative groups of $(K \otimes Q_p)^{\times}$ into Q_p^{\times} . We denote it by ι_T . Let P be a prime ideal of $Q(1^{1/(p-1)})$ lying above p and ω_p the character of Z_p^{\times} of order p-1 such that $\omega_p(a) \equiv a \mod p$ for $a \in \mathbb{Z}$ prime to p. Then q^{ν} divides p-1 and the order of $\omega_p(\iota_T(\tau_0))$ is q^{ν} . Let ω_T be the character of $(\mathfrak{o}_K \otimes_{\mathbb{Z}} \mathbb{Z}_p)^{\times}$ given by $\omega_T(a) = \omega_p(\iota_T(a))$, where \mathfrak{o}_K is the ring of integer of K. Then we obtain the following by virtue of Lemma 2.2.

Corollary 2.3. Let \mathfrak{P}_T be the conductor of ω_T , then \mathfrak{P}_T is prime to \mathfrak{P}_T^{σ} and $\mathfrak{P}_T\mathfrak{P}_T^{\sigma}=(p)$.

Let \mathfrak{Q} be the prime ideal of K lying above \mathfrak{q} and $\mathfrak{o}_{K,\mathfrak{Q}}$ be the completion of \mathfrak{o}_K at \mathfrak{Q} . Let Π be a prime element of $\mathfrak{o}_{K,\mathfrak{Q}}$ and let $\eta_0 = a + b\Pi$ with $a, b \in \mathfrak{o}_q$. We consider the following condition on η_0 .

(2.6)
$$\eta_0 = a + b\Pi$$
 with a unit b.

Lemma 2.4. If (2.6) is satisfied, then the order of the class $\tilde{\eta}_0$ of η_0 in $(\mathfrak{o}_{K,\mathfrak{Q}}/\mathfrak{q}^*\mathfrak{o}_{K,\mathfrak{Q}})^{\times}$ is \mathfrak{q}^* and $\langle \tilde{\eta}_0 \rangle \cap (\mathfrak{o}_q/\mathfrak{q}^*)^{\times} = \langle \tilde{\eta}_0^{q^*} \rangle$, where $\langle \tilde{\eta}_0 \rangle$ is the subgroup generated by $\tilde{\eta}_0$.

284

Proof. For $u+v\Pi$ with $u, v \in \mathfrak{o}_q$, put $(u+v\Pi)^q = u'+v'\Pi$ with $u', v' \in \mathfrak{o}_q$. It is easy to see that if u is a unit in \mathfrak{o}_q and $\operatorname{ord}_q(v) = m$, then u' is a unit in \mathfrak{o}_q and $\operatorname{ord}_q(v') = m+1$. Our assertion easily follows from this.

Let $(/\Omega)$ be the quadratic residue symbol of $(\mathfrak{o}_q/\mathfrak{q})^{\times} \cong (\mathfrak{o}_{K,\mathfrak{Q}}/\Omega)^{\times}$, then the infinite place \tilde{w}_1 of K lying above w_1 is uniquely determined by

sgn
$$\tilde{w}_1(\eta_0) = \left(\frac{\eta_0}{\mathfrak{Q}}\right).$$

Let ω be the Dirichlet character modulo p of order p-1 given by $\omega(a) \equiv a \mod P$. Now we prove the following theorem.

Theorem 2.5. Let K be a quadratic extension of F satisfying (2.1), (2,2), and (2.3), and assume the condition (2.6). Let p be a prime number satisfying (2.5) for a positive integer ν , and assume p is unramified in K. Let T be as in Lemma 2.2 for ν , then for each k, $1 \le k \le p-1$, the character ω_T^k of $(o_K \otimes_Z Z_p)^{\times}$ can be extended in $(Nq/q)^{\nu}h_K/h_F$ ways to idele class characters λ of K so that the conductor of λ is $\Omega^{2\nu} \mathfrak{P}_T \tilde{w}_1$ and the restriction to F is $\omega N_{F/\Omega} \chi_{K/F}$ where $\chi_{K/F}$ is the quadratic character of F corresponding to the extension K/F. h_K and h_F are the class numbers of K and F respectively.

Proof. For $\tilde{\eta}_0^{\alpha} a \in \langle \tilde{\eta}_0 \rangle (\mathfrak{o}_{\mathfrak{q}}/\mathfrak{q}^{\nu})^{\times}$, put

$$\lambda_1(\tilde{\eta}_0^{\alpha}a) = \overline{(\omega_T(\eta_0)^k} \operatorname{sgn} \tilde{w}_1(\eta_0))^{\alpha} \left(\frac{a}{\mathfrak{Q}}\right).$$

Then, by Lemma 2.2, λ_1 is well-defined and gives a character of $\langle \tilde{\eta}_0 \rangle (\mathfrak{o}_0/\mathfrak{q}^{\nu})^{\times}$, since the order of $\omega_T(\eta_0)$ is q^{ν} and

$$(\overline{\omega_T(\eta_0)}^k \operatorname{sgn} \tilde{w}_1(\eta_0))^{q\nu} = \left(\frac{\eta_0}{\mathfrak{Q}}\right)^{q\nu}.$$

 λ_1 can be extended to characters of $(\mathfrak{o}_{K,\mathfrak{Q}}/\mathfrak{q}^{\nu}\mathfrak{o}_{K,\mathfrak{Q}})^{\times}$ of conductor $\mathfrak{Q}^{2\nu}$ in $(N\mathfrak{q}/q)^{\nu-1}$ ways. Let λ_2 be one of such characters. For $(a, b, c) \in \mathfrak{o}_{K,\mathfrak{Q}}^{\times} \times (\mathfrak{o}_K \otimes_{\mathbb{Z}} \mathbb{Z}_p)^{\times} \times K_{\mathfrak{W}_1}^{\times}$, put

$$\lambda_3((a, b, c)) = \lambda_2(a)\omega_T(b)^k \operatorname{sgn}(c).$$

Then, by the definition, we see

$$\lambda_3((\eta_0, \eta_0, \eta_0)) = \omega_T(\eta_0)^k \operatorname{sgn} \tilde{w}_1(\eta_0) \omega_T(\eta_0)^k \operatorname{sgn} \tilde{w}_1(\eta_0) = 1.$$

For $\varepsilon \in E_F$ with $N_{F/O}(\varepsilon) = 1$, we have

$$\lambda_3((\varepsilon, \varepsilon, \varepsilon)) = \left(\frac{\varepsilon}{\Omega}\right) \operatorname{sgn} w_1(\varepsilon).$$

Since $\prod_{i=1}^{n} \operatorname{sgn} w_i(\varepsilon) = 1$, and $\chi_{K/F}(\varepsilon) = (\varepsilon/\mathfrak{Q}) \prod_{i=2}^{n} \operatorname{sgn} w_i(\varepsilon) = 1$, we see $\lambda_3((\varepsilon, \varepsilon, \varepsilon)) = 1$. By Proposition 2.1, E_K is generated by η_0 and ε in E_F with $N_{F/Q}(\varepsilon) = 1$, hence we have $\lambda_3((\eta, \eta, \eta)) = 1$ for all $\eta \in E_K$. We can conclude from this that λ_3 can be extended to characters of K_A^{\times}/K^{\times} of conductor $\mathfrak{Q}^{2\nu}\mathfrak{P}_T\tilde{w}_1$ of finite order in h_K ways. But in these extensions, h_K/h_F characters satisfy the second condition, since $\mathfrak{U}_K K^{\times} \cap F_A^{\times} = \mathfrak{U}_F F^{\times}$ by (2.3). Here $\mathfrak{U}_K = \prod_{\tilde{v}} \mathfrak{o}_{K,\tilde{v}}^{\times} \times \prod_{\tilde{w}} K_{\tilde{w}}^{\times}$, where \tilde{v} and \tilde{w} run through all finite and infinite places respectively. This completes the proof.

Let λ be as in Theorem 2.5. Then by a result of Jacquet-Langlands [9], there exists a cusp form f_{λ} in $S(q^{2\nu+1}(p), \omega \cdot N_{F/Q}, \tilde{1})$ such that $L(s, f_{\lambda}) = L(s, \lambda)$. Following the argument of Koike [10], we will show that there exists a cusp form in $S(q^{2\nu+1}, 1, \tilde{2})$ congruent to f_{λ} modulo a prime ideal dividing p under the following assumption (2.7) on $L(0, \omega N_{F/Q})$ and $L(0, \omega N_{F/Q})$.

(2.7) $L(0, \omega N_{F/Q}) \equiv a/p \mod p$ with $a \in \mathbb{Z}$ prime to p and $L(0, \omega N_{F/Q})$ is prime to p.

Let $S^{0}(q^{2\nu+1}, 1, \tilde{2})$ denote the subspace of new forms in $S(q^{2\nu+1}, 1, \tilde{2})$ (for definition cf. Miyake [12]). Under (2.7), we can prove the following theorem.

Theorem 2.6. Let K, p and λ be as in Th. 2.5. Assume (2.7). Then there exist a prime \tilde{P} of \bar{Q} lying above $P(\subset Q(1^{1/p-1}))$ and a primitive form h in $S^{0}(q^{2\nu+1}, 1, \tilde{2})$ which is congruent to f_{λ} modulo \tilde{P} .

Proof. Let $f' = f_{\lambda} E_{1, \overline{wN}}^{(\nu)}$, where $E_{1, \overline{wN}}^{(\nu)}(g) = E_{1, \overline{wN}} \left(g \begin{bmatrix} 1 & 0 \\ 0 & \varpi_{q}^{\nu} \end{bmatrix}\right)$ with $N = N_{F/Q}$, and let P' be a prime ideal lying above P of the field generated by the value of λ over $Q(1^{1/(p-1)})$. Then $f' \in S(q^{2\nu+1}, 1, \tilde{2})$ and $f \equiv f' \mod P'$ by (2.7). Put

$$\tilde{f} = \operatorname{Tr}(f') = \sum_{\substack{a \in \prod \\ \mathfrak{p} \mid p} \left(\begin{bmatrix} \mathfrak{p}_{\mathfrak{p}} & \mathfrak{p}_{\mathfrak{p}} \\ \mathfrak{p} \mathfrak{p}_{\mathfrak{p}} & \mathfrak{p}_{\mathfrak{p}} \end{bmatrix}^{\times} \setminus GL(2, \mathfrak{p}_{\mathfrak{p}}) \right)} f'(ga)$$

Let \tilde{S} be the set of prime divisors of p in F, and for a subset S of \tilde{S} , put $T_{s} = \prod_{\mathfrak{p} \in S} T_{\mathfrak{c}}(\mathfrak{p})$ for $\mathfrak{c} = \mathfrak{q}^{2\nu+1}(p)$ and $\psi^{*}(S) = \prod_{\mathfrak{p} \in S} \psi_{\mathfrak{p}}(\varpi_{\mathfrak{p}})$ with $\psi = \omega N$. Then we see \tilde{f} is contained in $S(\mathfrak{q}^{2\nu+1}, 1, \tilde{2})$, and

$$\tilde{f} = f' + \sum_{S \subset \tilde{S}} \psi^*(S) T_S W_S f'.$$

286

By Proposition 1.1 and (2.7), it is easy to see that $\tilde{f} \equiv f' \mod P'$, and \tilde{f} is a common eigen function for all $T_{c'}(\alpha) \mod \tilde{P}$ with $c' = q^{2\nu+1}$. Let χ be a character of F_q^{\times} such that $\chi | \mathfrak{o}_q^{\times} = (/\mathfrak{q})$, and U_χ be the operator defined in [15]. Then in the same way as in Corollary 4.2 [13], we see $U_\chi f' = (U_\chi f_\lambda) E_{1, \sqrt[\infty]{wN}}^{(\nu)} = c_\chi f'$ with a non-zero constant c_χ . Since Tr and U commute with each other, it follows from Theorem 1.4 in [15] that $\tilde{f} = \operatorname{Tr}(f')$ is contained in $S^0(\mathfrak{q}^{2\nu+1}, 1, \tilde{2})$. They by a Lemma of Deligne-Serre [4], we obtain our result.

Remark 2.7. The condition (2.7) is always satisfied if F=Q and $p \ge 5$, since $L(0, \overline{\omega}) \equiv -\zeta(2-p) \equiv 1/p \mod \mathbb{Z}_p$ and $L(0, \omega) \equiv \zeta(-1) = -1/12 \mod P$. For $n \ge 2$, assume p is prime to \mathfrak{d}_F . Then we have

(2.8)
$$L(0, \omega N_{F/Q}) \equiv -\zeta_F(2-p) \mod Z_p,$$
$$L(0, \omega N_{F/Q}) \equiv \zeta_F(-1) \mod P.$$

Here ζ_F is the Dedekind zeta function of F. Hence the condition (2.7) can be stated as $\zeta_F(2-p)/\zeta(2-p)$ and $\zeta_F(-1)/\zeta(-1)$ are p-units. (2.8) can be shown in the following way. Let $L_p(\lambda, s)$ be the *p*-adic *L*-function of a ray class character λ of F constructed in Deligne-Ribert [5] and Cassou-Nouguès [3]. Then for a suitable ideal c, $(\lambda(c)(Nc/\omega(Nc))^{1-s} - 1)L_p(\lambda, s)$ is an Iwasawa function. Hence

$$(\lambda(\mathfrak{c})(N\mathfrak{c}/\omega(N\mathfrak{c}))-1)L_p(\mathfrak{X},0)\equiv(\lambda(\mathfrak{c})(N\mathfrak{c}/\omega(N\mathfrak{c}))^{p-1}-1)L_p(\mathfrak{X},2-p) \bmod P,$$

where *P* is the prime ideal of $Q_p(\lambda)$ the field generated by the values of λ over Q_p . If \mathfrak{d}_F is prime to \mathfrak{p} , we can choose as \mathfrak{c} an integral ideal such that

$$\operatorname{ord}_{n}((N\mathfrak{c}/\omega(N\mathfrak{c}))-1)=1.$$

The first congruence follows from this taking $\lambda = \text{trivial}$. The second one can be shown in the same way taking $\lambda = (\omega N_{F/Q})^2$. Furthermore, if F is an abelian extension of Q, for a prime p with $(p, 2d_F n) = 1$ it is known by Leopoldt [11] that

$$\zeta_F(2-p)/\zeta(2-p) \equiv \frac{2^{n-1}h_F R_p}{\sqrt{d_F}} \mod p,$$

where $R_p = \det(Q_p(\varepsilon_i^{\sigma}))_{1 \le i \le n-1, \sigma \in \operatorname{Gal}(F/Q)}$ for a system of fundamental units $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_{n-1}$ of F, and Q_p is the Fermatquotient mod p, namely for an integer A of F prime to p,

$$Q_p(A) \equiv \frac{A^{q-1}-1}{p} \mod p.$$

Here q is the norm of a prime divisor of \mathfrak{p} in F. Hence in this case, the condition on $\zeta_F(2-p)/\zeta(2-p)$ can be checked by h_F and R_p .

§ 3. Numerical Examples

In this section, we will discuss a few examples of Theorem 2.5 and Theorem 2.6, and examples of different type. Before giving them, we explain some notations. Let χ and U_{χ} be as in Section 2. Then $S^{0}(q^{2\nu+1}, 1, \tilde{2})$ decomposes into a direct sum of four subspaces S_{I} , S_{II} , $S_{II_{\chi}}$, and S_{III} . Each subspace is given as follows;

$$\begin{split} S_{\mathrm{I}} &= \{f \in S^{0}(\mathfrak{q}^{2\nu+1}, 1, \tilde{2}) | Wf = f, \ U_{\chi}f = f\}, \\ S_{\mathrm{II}} &= \{f \in S^{0}(\mathfrak{q}^{2\nu+1}, 1, \tilde{2}) | Wf = f, \ U_{\chi}f = -f\}, \\ S_{\mathrm{II}_{\chi}} &= \{f \in S^{0}(\mathfrak{q}^{2\nu+1}, 1, \tilde{2}) | Wf = -f, \ U_{\chi}f = -f\}, \\ S_{\mathrm{III}} &= \{f \in S^{0}(\mathfrak{q}^{2\nu+1}, 1, \tilde{2}) | Wf = -f, \ U_{\chi}f = f\}. \end{split}$$

Here $(Wf)(g) = f\left(g\begin{bmatrix}0 & -1\\ \varpi_q^{2\nu+1} & 0\end{bmatrix}\right)$. These subspaces are stable under Hecke operators. We write $G_{T(\alpha)}^{I}, G_{T(\alpha)}^{II}, G_{T(\alpha)}^{II}$, and $G_{T(\alpha)}^{III}$ for the characteristic polynomials of $T_c(a)$ with $c = q^{2\nu+1}$ on S_I , S_{II} , S_{II_z} , and S_{III} respectively. Let $h(X) = \sum a_i X^i$ be a polynomial with coefficients in an algebraic number field M. We set $(N_{M/O}h)(X) = \prod_{\sigma} (\Sigma a_i^{\sigma} x^i)$, where σ runs through all the distinct embeddings of M into \overline{Q} . For a prime q and j, $1 \le j \le j$ (q-3)/2, let $\alpha_j = e^{2\pi j \sqrt{-1}/q} + e^{-2\pi j \sqrt{-1}/q}$, and $\alpha_0 = 1$. We express by (a_0, \dots, a_n) $a_{(q-3)/2}$) the algebraic number $a_0\alpha_0 + \cdots + a_{(q-3)/2}\alpha_{(q-3)/2}$ in the maximal real field F_q of $Q(1^{1/q})$. Let η_0 be as in Proposition 2.1, and $\eta_1 = \eta_0^2 N_{K/F} \eta_0^{-1}$. If we define the polynomial $H'_{\nu}(X)$ in the same way as $H_{\nu}(X)$ taking η_1 instead of η_0 , then we find $H'_{\nu}(-1) = H_{\nu}(1)^2$. The formula for $H'_{\nu}(-1)$ is simpler than that of $H_{\nu}(1)$. For example, let $X^2 - sX + 1$ be the minimal polynomial of η_1^{ν} , then $H'_{\nu}(-1) = (s+s')^2$ for n=2, and $H'_{\nu}(-1) =$ $(s^2+s'^2+s''^2+ss's''-4)^2$ for n=3. Here s' and s'' are the conjugates of s over Q. Throughout the following examples, we assume $\nu = 1$, namely the level is a cube of a prime ideal. The examples 1, 2 and 3 are the case where rank $E_{K} = \operatorname{rank} E_{F} + 1$. The example 4 treats the case where rank E_{K} = rank E_{F} . In this case, K is a totally imaginary quadratic extension of F. The examples 5 and 6 concern the case where rank E_{κ} =rank E_F +2. We note that this case does not occur for F=Q. These examples are calculated by the formula in Saito [15].

Example 1. Let $F = Q(\sqrt{5})$, and $q = (\theta)$ with $\theta = -1 + 2\sqrt{5}$, $N_{F/Q}(\theta) = -19$. Then we find dim $S_I = 36$ and dim $S_{III} = 18$, and the followings:

$$\begin{aligned} G_{T((2))}^{\text{III}}(X) = & N_{F_{10}/Q}(X^2 - A) \\ \text{with} \quad A = (4, -1, 0, 0, 1, -1, -1, 1, 1), \quad N_{F_{10}/Q}(A) = 419; \\ G_{T((3))}^{\text{III}}(X) = & N_{F_{10}/Q}(X^2 - B) \\ \text{with} \quad B = (6, -5, -2, -5, -5, -2, -5, -4, -3), \\ & N_{F_{10}/Q}(B) = 37^2 \cdot 419. \end{aligned}$$

Let $K = F(\sqrt{\theta})$, then $f_{K/F} = q$ and F and K satisfy the conditions (2.1), (2.2), and (2.3). We remark that for a prime ideal l of F which remains prime in K, the Fourier coefficient for l of f_{λ} associated with an idele class character λ of K vanishes. Hence the modulus P in Theorem 2.6 should divide the constant of the characteristic polynomial of T(l) on S_{III} . In the above example, the prime ideals (2) and (3) in F remain prime in K, so P should divide 419. In fact, we may set

$$\eta_0 = \frac{1-\sqrt{\theta}}{2}, \quad \eta_1 = \frac{5+\sqrt{5}}{4} - \frac{1+\sqrt{5}}{4}\sqrt{\theta}.$$

Then we find

$$\eta_{1}^{19} = \frac{-7815395405 - 3495151081\sqrt{5}}{4} + \frac{4194233399 + 1875718199\sqrt{5}}{4}\sqrt{\theta},$$

and

$$H'_0(-1) = H_0(1)^2 = 5^2,$$

 $H'_1(-1) = H_1(1)^2 = (5 \cdot 419 \cdot 3730499)^2.$

Since we have

$$Q_p\left(\frac{1+\sqrt{5}}{2}\right) \equiv 158\sqrt{5} \mod p \quad \text{for} \quad p=419,$$

and $\zeta_F(-1)/\zeta(-1) = -2/5$, we see the prime 419 satisfies the conditions in Theorem 2.5 and Theorem 2.6. So the above example gives a verification of our Theorem 2.6. Now, the prime [3730499 in $H_1(1)^2$ appears in the remaining space S_I as follows:

$$\begin{aligned} G_{T((2))}^{I}(X) = & N_{F_{19}/Q}(X^4 - CX^2 + D) \\ \text{with} \quad C = (13, 1, 0, 0, 1, 1, 3, 1, 1) \\ D = & (28, 7, 0, -6, -1, 9, 15, 5, 7), \\ & N_{F_{19}/Q}(D) = & 37^2 \cdot 3730499. \end{aligned}$$

Since we have $Q_p(1+\sqrt{5})/2\equiv 1640877 \cdot \sqrt{5} \mod p$ for p=3730499, the condition (2.7) is valid also in this case.

Example 2. Let $F = F_7$ and $\beta_j = e^{2\pi j \sqrt{-1/7}} + e^{-2\pi j \sqrt{-1/7}}$ for an integer *j*. We set $q = (\theta)$ with $\theta = -3 + 4\beta_1 + \beta_2$ then $N_{F_7/Q}(\theta) = 13$. We find

$$\dim S_{\rm I} = 12, \quad \dim S_{\rm III} = 0,$$

and the following:

$$G_{T_{((2))}}^{I}(X) = N_{F_{13}/Q}(X^{2} - A)$$

with $A = (9, 0, 0, -2, -2, -4, -8)$
 $N_{F_{13}/Q}(A) = 3^{3} \cdot 4447.$

Let $K = F(\sqrt{\theta})$, then F and K satisfy the conditions (2.1), (2.2), and (2.3). We note $\chi_{K/F}((2)) = -1$. We may set

$$\eta_0 = \frac{1+2\beta_2+\sqrt{\theta}}{2}, \quad \eta_1 = \frac{-(1+\beta_1)-(1+\beta_1)\sqrt{\theta}}{2}.$$

Then we find

$$\eta_1^{13} = \frac{-(326 + 261\beta_1 + 117\beta_2) - (714 + 573\beta_1 + 255\beta_2)\sqrt{\theta}}{2}$$

and

$$H'_0(-1)=3^2$$
, $H'_1(-1)=(3^4\cdot 4447)^2$.

Since we have

$$R_{p} \equiv \det \begin{pmatrix} Q_{p}(\beta_{2}) & Q_{p}(\beta_{1}) \\ Q_{p}(\beta_{1}) & Q_{p}(\beta_{2}) \end{pmatrix}$$

$$\equiv 2613 + 1622\beta_{1} + 2439\beta_{1}^{2} \mod p \quad \text{for} \quad p = 4447,$$

and $\zeta_F(-1)/\zeta(-1) = -4/7$, the condition (2.7) is satisfied.

Example 3. Let $F = Q(\beta)$, where β is the unique solution of $X^3 - 4X + 2 = 0$ satisfying $0 < \beta < 1$. We take $q = (\theta)$ with $\theta = 5 + 2\beta - 3\beta^2$. Then $N_{F/Q}(\theta) = 5$, and we find

$$\dim S_{\rm I}=4, \quad \dim S_{\rm III}=0,$$

and

$$G_{T(\mathfrak{p}_2)}^I(X) = X^4 - 8X^2 + 11,$$

$$G_{T(\mathfrak{p}_1)}^I(X) = X^4 - 17X^2 + 11,$$

where $\mathfrak{p}_2 = (\beta)$ with $N\mathfrak{p}_2 = 2$ and $\mathfrak{p}_{13} = (6 - \beta - \beta^2)$ with $N\mathfrak{p}_{13} = 13$. Let $K = F(\theta)$, then F and K satisfy the conditions (2.1), (2.2), and (2.3), and the prime ideals \mathfrak{p}_2 and \mathfrak{p}_{13} remain prime in K. In this case we may take

$$\eta_0 = \frac{1 - \beta + \sqrt{\theta}}{2}$$
, and $\eta_1 = \frac{-3 + \beta + \beta^2 + (1 - 2\beta + \beta^2)\sqrt{\theta}}{2}$

We find

$$\eta_1^5 = rac{-9+eta+2eta^2+(-5+2eta+2eta^2)\sqrt{ heta}}{2},$$

and

$$H'_0(-1) = 2^2$$
 $H'_1(-1) = 2^4 11^2$.

We know by the table 8 in Cartier and Roy [2] that $\zeta_F(2-p)/\zeta(2-p)$ and $\zeta_F(-1)/\zeta(-1)$ are *p*-units for p=11, hence the condition (2.7) is satisfied.

Example 4. Let $F = Q(\sqrt{2})$, and $q = (\theta)$ with $\theta = -7 + 4\sqrt{2}$. Here $N_{F/0}(\theta) = 17$. Then we find

$$\dim S_{\mathrm{I}} = 8 \cdot 8, \qquad \dim S_{\mathrm{III}} = 4 \cdot 8,$$

and

$$G_{T((\sqrt{2}))}^{\text{III}}(X) = N_{F_{17/Q}}((X-A)^2(X^2 - BX + C))$$

with $A = (0, 0, 1, 0, 0, 0, 0, 0, 0)$
 $B = (1, 0, -1, 1, 1, 0, 0, 0, 0)$
 $C = (0, 0, 0, 1, 0, -1, -1, 1, 0)$
 $G_{T((3))}^{\text{III}}(X) = N_{F_{17/Q}}((X^2 - D)X^2)$
 $D = (10, -1, -2, 1, 0, 3, 2, 1, 0).$

Let $G^0_{T((\sqrt{2}))}(X)$ and $G^0_{T((3))}(X)$ be the second factors of $G^{III}_{T((\sqrt{2}))}(X)$ and $G^{III}_{T((3))}(X)$ respectively. Then we find

(3.1)
$$N_{F_{17}/Q}(G^{0}_{T((\sqrt{2}))}(A)) = 953 \cdot 1123 \\ N_{F_{17}/Q}(G^{0}_{T((3))}(\sqrt{D})) = 953 \cdot 1123.$$

Here we note A and \sqrt{D} are the roots of the first factors of $G_{T((\sqrt{2}))}^{III}(X)$

and $G_{T((3))}^{III}(X)$ respectively. Let $K = F(\sqrt{\theta}) = F(\sqrt{-7+4\sqrt{2}})$, then K is a totally imaginary quadratic extension of F with the conductor q, $h_K =$ 1, and $E_K = \langle \pm 1, 1 - \sqrt{2} \rangle$. Let σ_1 and σ_2 be the embeddings of K into C given by $\sigma_1(\beta) = \beta$ for $\beta \in K$ and

$$\sigma_2(\beta) = (a - b\sqrt{2}) + (c - d\sqrt{2})\sqrt{\theta},$$

for $\beta = a + b\sqrt{2} + (c + d\sqrt{2})\sqrt{\theta}$ with $a, b, c, d \in Q$. Then all the embeddings of K into C are given by $\sigma_1, \rho\sigma_1, \sigma_2$ and $\rho\sigma_2$ with the complex conjugation ρ . For $a \in o_K$ prime to q, let $a \equiv a'b \mod(\sqrt{\theta})$ with $a' \in o$ and $b \in o_K$ congruent to 1 modulo $(\sqrt{\theta})$, and for b let $b \equiv 1 + u\sqrt{\theta} \mod(\sqrt{\theta})^2$ with $u \in o$, and put $\psi(b) = e^{2\pi i u/17}$. Let χ be the quadratic residue symbol of $(o_K/(\sqrt{\theta}))^{\times} \simeq (o/\theta)^{\times}$. For $a \in o_K$ prime to q, define

$$\lambda_1((a)) = \chi(a')\psi(b)\sigma_1(a)\rho\sigma_2(a),$$

$$\lambda_2((a)) = \chi(a')\psi(b)\rho\sigma_1(a)\sigma_2(a),$$

then λ_1 and λ_2 give Grossencharacters of K with conductors $(\sqrt{\theta})^2$. Let f_1 and f_2 be the cusp forms satisfying $L(s, f_1) = L(s, \lambda_1)$ and $L(s, f_2) = L(s, \lambda_2)$, then we see f_1 and f_2 are contained in S_{III} . Let $C_1(\mathfrak{m})$ and $C_2(\mathfrak{m})$ be the Fourier coefficients of f_1 and f_2 respectively, then we find

$$N_{F_{17/2}}(X - C_1((\sqrt{2}))(X - C_2((\sqrt{2}))) = G^0_{T((\sqrt{2}))}(X)$$

$$N_{F_{17/2}}((X - C_1((3))(X - C_2((3))) = G^0_{T((3))}(X),$$

namely $G^0_{T((\sqrt{2}))}(X)$ and $G^0_{T((3))}(X)$ correspond to the subspace spanned by the companions of f_1 and f_2 . Hence (3) suggests that f_1 and f_2 are congruent to some cusp forms in S_{III} which are different from the companions of f_1 and f_2 modulo prime ideals lying above 953 and 1123.

Example 5. Let $F = Q(\sqrt{5})$ and $q = (\theta)$ with $\theta = (11 + \sqrt{5})/2$. Here $N_{F/0}(\theta) = 29$. Then we find

dim $S_1 = 8 \cdot 14$, dim $S_{111} = 6 \cdot 14$,

and

$$\begin{aligned} G^{I}_{T((2))}(X) = & N_{F_{29}/2}(X^{6} - AX^{4} + BX^{2} - C) \\ \text{with } A = & (13, 0, 0, 1, 1, 0, 0, -2, 1, 0, 0, 0, 1, 0, 1) \\ B = & (40, 2, 1, 10, 3, 2, 2, -9, 7, 0, -1, 5, 5, 2, 7) \\ C = & (28, 7, 5, 14, 6, 14, 3, 1, 14, 2, 8, 12, 5, 16, 10), \\ G^{III}_{T((2))}(X) = & N_{F_{29}/2}(X^{8} - DX^{6} + EX^{4} - FX^{2} + G) \end{aligned}$$

Hilbert Cusp Forms

$$D = (22, 0, 0, 1, 1, 0, 0, 4, 1, 0, 0, 0, 1, 2, 1)$$

$$E = (154, 5, 0, 6, 15, 1, 7, 60, 11, 7, 0, 0, 13, 29, 19)$$

$$F = (324, -17, 140, -68, -17, -44, 25, 160, -15, 25, -63, -61, -4, 78, 17)$$

$$G = (118, -103, -117, -156, -104, -108, -51, -11, -112, -60, -146, -126, -89, -14, -104).$$

In [the above two cases, we find $N_{F_{29}/Q}(C) = 59^4 \cdot 173^2$ and $N_{F_{29}/Q}(G) = 33871^2 \cdot 763223^2$ for the constant terms C and G of $G_{T_{((2))}}^I(X)$ and $G_{T_{((2))}}^{III}(X)$ respectively.

We shall give one more example of the same type as Example 5.

Example 6. Let $F = Q(\sqrt{29})$, and $q = (\theta)$ with $\theta = 11 + 2\sqrt{29}$. Here $N_{F/Q}(\theta) = 5$. Then we find dim $S^{I} = 2$, dim $S^{III} = 4$, and

$$G_{T((2))}^{I}(X) = N_{F_{5}/Q}(X^{4} - AX^{2} + B)$$

with $A = (15, 3)$
 $B = (5, -5)^{2}$
 $G_{T((2))}^{III}(X) = N_{F_{5}/Q}(X^{2} - C)$
 $C = (1, -1)^{2}$

References

- T. Asai, On the Fourier coefficients of automorphic forms at various cusps and some application to Rankin's convolution, J. Math. Soc. Japan, 28 (1976), 48-61.
- P. Cartier and Y. Roy, Certain calculs numériques relatifs à l'interpolation p-adique des series de Dirichlet, Modular functions of one variable, 269– 350, Lecture Notes in Math., vol. 350, Springer-Verlag.
- [3] P. Cassou-Nougès, Valeurs aux entiers négatifs des fonction zêta et fonctions zêta p-adiques, Invent. Math., 51 (1979), 29-59.
- [4] P. Deligne and J. P. Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup., 7 (1974), 507-530.
- [5] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math., 59 (1980), 227-286.
- [6] K. Doi and M. Yamauchi, On Hecke operators for $\Gamma_0(N)$ and the class fields over quadratic fields, J. Math. Soc. Japan, 25 (1973), 629-643.
- [7] H. Hida, On the values of Heck's L-functions at non-negative integers, J. Math. Soc. Japan, 30 (1978), 249-278.
- [8] H. Ishii, Congruences between cusp forms and fundamental units of real quadratic fields, Japan. J. Math., 7 (1981), 257-267.
- [9] H. Jacquet and R. Langlands, Automorphic forms on GL(2), Lecture Notes in Math., vol. 114 Springer Verlag.
- [10] M. Koike, Congruences between cusp forms and linear representations of the Galois group, Nagoya Math. J., 64 (1976), 63-85.

- [11] H. Leopoldt, Uber Fermatquotienten von Kreiseinheiten und Klassenzahlformeln modulo p, Rend. Circ. Math. Palermo, 2, Ser., 9 (1960), 1–12.
- [12] T. Miyake, On automorphic forms on GL_2 and Hecke operators, Ann. of Math., 94 (1971), 174–189.
- [13] H. Saito, On a decomposition of spaces of cusp forms and trace formula of Hecke operators, Nagoya Math. J., 80 (1980), 129-165.
- [14] H. Saito and M. Yamauchi, Congruences between Hilbert cusp forms and units in quadratic fields, J. Fac. Sci. Univ. Tokyo, 28 (1981), 687-694.
- [15] H. Saito, On an operator U_{χ} acting on spaces of Hilbert cusp forms, to appear in J. Math. Kyoto Univ., 24 (1984), 285-303.
- [16] G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math., 95 (1972), 130–190.
- [17] —, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., 45 (1978), 637-679.

Department of Mathematics College of General Education Kyoto University Kyoto 606 Japan