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Analytic Representations of SL: over a

p-Adic Number Field, II1

Yasuo Morita

§0. Introduction

0-1. 1In our former paper [12], we have constructed a p-adic analogue
of the holomorphic discrete series of SL,(R) which is related to the theory
of p-adic Schottky groups of D. Mumford. We have also constructed a
p-adic analogue of the non-unitary principal series in [11], and have
studied the relation between our discrete series and our principal series.
The main purpose of this paper is to study the irreducibilities and the
equivalences of our principal series.

Let @, be the p-adic number field, let L be a finite extension of Q,,
and let k be a field containing L. We assume (i) the p-adic valuation of
Q, can be extended to a valuation | | of k, and (ii) k is maximally com-
plete with respect to | | (cf. § 1 for a definition). These conditions are
satisfied if k is a finite extension of L. Let L* and £* be the multiplicative
groups of L and k, respectively, and let X: L*—k* be a homomorphism
which can be expressed as %(z)=exp {a(X) log ()} for some a(¥) c k if z is
sufficiently close to 1. Hence X is a locally analytic character of L* with
values in k*.

Let G denote the group SL,(L), and let P be the subgroup of G of all
lower triangular matrices. We define a one-dimensional representation
X of P by

P> (g 2)1——>X(a) e k¥,

and construct the induced representation Ind (P, G, X) of G in the category
of k-valued locally analytic functions (cf. § 1 and § 2 for the exact defini-
tion). Further we realize this representation of G on a space D, of
k-valued locally analytic functions on L in a natural manner. Then it is
not difficult to find all closed G-invariant subspaces of D,. For simplicity,
we assume that «(X) is not a non-negative integer. Then our main result
in this case can be stated as the following:
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Theorem. Let the notation and assumptions be as above. Then each
D, is a topologically irreducible G-module, and no two of the G-modules D,
Jor all such s are equivalent.

0-2. In Section 1, we define a natural topology on the space of the
locally analytic functions on a given p-adic non-singular algebraic variety.
In Section 2, we use the result of Section 1 and construct a locally analytic
representation 7, of G on a space D, of locally analytic functions on L,
and state our main results (cf. Theorems 1 and 2). In Section 3, we define
an action dT,, of the Lie algebra g={X e M,(L); tr X=0} of G on D,, and
prove a lemma (Key Lemma) which plays a crucial role in-the proof of
the irreducibility of D,. In Section 4, we study the action of g on the
germ D, ,, of functions of D,, at each point w of P'(L), and obtain a local
irreducibility assertion (cf. Proposition 2). In Section 5, we use differential
operators L,, acting on D, , and show that the family {D, ,; we P(L)}
satisfies the assumption of the Key Lemma (cf. Proposition 3 for the exact
statement). Then we use the Key Lemma to patch these local irreduci-
bilities to the global irreducibility of D,.

If a(X) is a non-negative integer m, then D, has a clsoed G-invariant
subspace Di*»™ (cf. §2). We prove in Sectlon 5 the irreducibility of
D,/Die™ also. In Section 6, we prove the Frobenius reciplocity law (cf.
Proposition 4), and, by using it, construct closed G-invariant subspaces of
Dy>™ and intertwining operators between them (cf. Propositions 5 and 6).
In Section 7, we prove that D*>™ has no other (g, G)-invariant subspaces.
In. Section 8, we study 1ntertwm1ng operators between these G-modules,
and prove Theorem 2.

0-3. Remarks. (1) If «(X) is a non-negative integer, then we have
Hom,(D,, D)=k id. though D, is not irreducible (cf. Proposition 5).
Hence D, is not completely irreducible and Schur’s lemma does not hold
in our case. This phenomenon causes the main difficulty in studying the
irreducibility of our module.

(2) Our Key Lemma is a generalization of an irreducibility criterion
of induced modules of finite groups. T. Shintani used the criterion to
study representations of p-adic groups on complex vector spaces (cf.
Shintani [15]). So we modify Shintani’s proof into the present form and
overcome the difficulty in studying the irreducibility.

(3) Let o be the integer ring of L, and let K be the maximal com-
pact subgroup SL,(0) of G. Then the irreducibility of D, (or D,/D\**™)
holds not only as a G-module but also as a K-module.

(4) An essential part of Theorem 2 is due to W. Casselman. He
proved the Frobenius reciplocity law for our module Ind (P, G, X) and
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calculated Hom,(D,, D;). The author would like to express his thanks
to Casselman for this contribution.

8 1. Spaces of locally analytic functions

1-1. Let k be a field with a non-trivial non-archimedean valuation
| |- We assume that (k,| |) is maximally complete. Namely, we assume
that for any decreasing sequence C,0C,D---2C,D--- of balls in k,
the intersection N C, is not empty. It is obivous that-a maximally com-
plete field is complete, and that a locally compact non-archimedean field
is maximally complete. Let L be a locally compact subfield of k.

Let {r,};_, be a strictly decreasing sequence in the value group |L*|
of the multiplicative group L* of L satisfying lim, r,=0. For any positive
integer n and for any a=(a,, - - -, ay) € L7, let

Ba,n={2:(zls ety ZI\') € LN; {Zi_ail<rn (i_—‘l, Tty N)}’

Since the valuation | |‘is non-archimedean, B, ,NB,,,%¢ iff B, , =B, ,.
We define a space .«7/(B,,,) by

A (B, )={f(@)=2] cx(z—a)¥; cy € k, |cy| " is bounded},

where M=(m,, - - -, my) runs over the set of all N-tuples of non-negative
integers, | M|=m,+ - « - +my, and (z—a)¥ =(z,—a,)™ - - -(zy—ay)™. Then
/'(B,,,) becomes a complete Banach space with the following norm:

[/ lla,n="Sup [es|r;"!.
M

If m>n, then r,<r,. Hence B, , can be expressed as a finite disjoint
union of certain B, ,’s: B, ,= || B;.. (b € B(m)). Since B, ,=B, , for
any b ¢ B(m), /(B )=s'(B,,). Let

pb,n,m: 'Q{,(Bb,n)—)"q{,(Bb,m)

w w

>, cM(z——b)Mn——+§ ¢ u(z—b)*

be the restriction map. Since r,<r,, |cy|r}}'—0 ((M|—>oco). Further
the image of the unit ball

{3 eulz—B)"; ey el <1}

of «/'(B,,,) with the induced topology from .«/’(B, ,) is homeomorphic
to the direct product space
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{C=(CM); Cu € k’ Mz(mls Sty mN)’ m; € Zs 209 chlrlel_<_l}

of a countable number of closed balls in k. Since k is maximally com-
plete, it follows from Springer [16], 1.17 that this subset of =7’(B,,,) is
c-compact. Hence the restriction map

‘oz,m:—(pb,n,m): d’(Ba’n)__)beg-? ) &{,(Bb,m)
is a c-compact map.
Let

(B, )=injlim{ @D (B, )}
m beB(m)

be the injective limit of the Banach spaces @, .«/'(B,,,) with respect to the
restriction maps. Then it follows from the result of [9], 3-1 that .«/(B,,,)
is a Hausdorff complete reflexive bornologic locally convex k-vector space,
and the strong dual of «/(B, ,) is a Fréchet space.

Remark. Put

A B =@ =2 culz—a)"; cx € k; [ex |10 (M| 00)}.

Then «"'(B,,,) is a closed subspace of «/’(B,,,), and the restriction map
0%, induces an injection (B, .)=>Psenim & (B,,,) for any m>n.
Hence

A(B,,)=injlim D {"(B, )}
m bEB(m)

holds. This expression will be used in Sections 2 ~7.

1-2. Let ¥V be an N-dimensional non-singular algebraic variety
defined over L, let 7 be the set of all L-valued points of V, and let W be
an open subset of ¥,. Since L is locally compact, ¥, and W are locally
compact. Since V is non-singular, ¥ has an open covering % such that
each member U of % is contained in an affine L-subset of ¥, which is
L-isomorphic to a Zariski open L-subset of L¥. Since W is locally com-
pact and paracompact, we may assume that each U e % is an open com-
pact subset, and that % is locally finite. Here, by taking a refinement if
necessary, we may assume that % is a mutually disjoint covering. Since
any open compact subset of L¥ is a finite disjoint union of balls of the
form B, ,, by taking a refinement if necessary, we may assume that each
Ue % is L-analytically isomorphic to a ball of the form B, , (2¢ L?,
ne Z, >0). Therefore we have proved that W has an open disjoint
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covering % such that for each U e %, there is an L-analytic isomorphism
iyt B,,>Ufor someae L and ne Z, >0.
Let «/(B,,,) be as in 1-1, and let

AO)={f:U—k; foiy e (B, )}

We choose the topology on «7(U) which makes the map /(U) > f—>fo iy
e #(B,,,) into a topological isomorphism. Since W is the disjoint union
of the U’s, we put

L(W)=T] A(0).

It is easy to see that this definition of the locally convex k-vector space
(W) does not depend on a special choice of # and the i;’s. We call
an element of /(W) a locally analytic function on W. Note that a
k-valued function f: W—k is locally analytic in this sense iff for any
w e W, there exists an open neighbourhood U of w such that the restric-
tion of f to U can be expressed as a convergent power series of local
coordinates of W at w. Obviously, (i) /(W) is a complete Hausdorff
locally convex space, and (ii) the addition and the multiplication are con-
tinuous in the topology of «Z(W). Further (iii), if G is an algebraic
L-group, the right and the left translations of G induce automorphisms
of «/(G,.), and (iv), if W CL?, then the partial differentiation 6/0z;
(i=1, .-+, N) induces a continuous map of o/ (W).

§2. The main results

2-1. Construction of the representations. Let k be a field with a
non-trivial non-archimedean valuation | |, and let L be a locally compact
subfield of k. Hereafter we assume that (1) (k,| |) is maximally com-
plete and (2) L is a finite extension of the p-adic number field Q,. Let o
be the integer ring of L, let p be the maximal ideal of o, let o* be the unit
group of o, and let g be the cardinality of the residue field o/p of L. We
fix a prime element of L and denote it by .

Let G=SL,(L), K=SL,0), and let P be the subgroup of G consist-
ing of all lower triangular matrices. Let X: L*¥*—k* be a locally analytic
homomorphism from the multiplicative group of L to the multiplicative
group of k. Hence X can be expressed as

A(z)=exp {a(X) log (2)}

if z e L* is sufficiently close to 1, where a(X) is a constant in &, and exp (w)
and log (w) are the p-adic exponential function >, w"/n! and the p-adic
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logarithmic function 3, (— 1)**}(z—1)*/n, respectively. Note that «(X)
is the value of (d/dz)X(z) at z=1. We extend X to a representation of P
by

a 0

1: P> (C d)n-——)X(a) e k¥,
Let Ind (P, G, X) be the space of locally analytic functions F: G—k such

that
F(pg)=2(a)F(g) <p=<‘c’ 2) c P)

holds for any p. Since G is a non-singular algebraic variety defined over
L, the space «/(G) of all k-valued locally analytic functions on G has a
natural locally convex topology (cf. § 1). Since Ind (P, G, X) is a closed
subspace of /(G), the topology of Ind (P, G, X) is also Hausdorff and
complete. For any element g, of G, we put

T(g)F(g)=F(gg) (FelInd(P,G,1)).

Then T(g,) is an automorphism of the k-vector space Ind (P, G, X), and
T defines a continuous representation of the p-adic group G on the p-adic
vector space Ind (P, G, %).

Let U be the unipotent radical of P. Then, for any elements g and
g’ of G, Ug= Ug’ holds iff the first rows of them coincide. Since X(x)=1
for any u € U, F(ug)=F(g) holds for any ue U. Hence

F(g)=F(a, .1, 0) (g=<? ‘;))

depends only on (@, B). Therefore we write F(g)=F(a, ). Then the
space Ind (P, G, X) is identified with the space of all locally analytic func-
tions

F: {(a, B) € L*; (a, B)==(0, 0)}——k
satisfying the condition

Flpa, up)=1(p)F(a, p)
for any g e L*. Further the group G acts on this space by

T(g)F(a, f)= Faa+cB, ba+dp) (g1=(‘c’ 2) ¢ G>,

and the topology on this space coincides with the induced topology from
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A ({(a, p) € L*; (a, B)#(0, 0)]).
For any element F(«, ) of Ind (P, G, X), we define a function f: L—k
by
f(@)=F(z, 1).

Then fis a locally analytic function on L, and the function

22" f(@)=Uz2)""F(z, )=F(1, z7)

is expanded into a convergent power series of z~! if z-* is sufficiently
small. Let D, be the space of locally analytic functions f: L—k such
that X(z)~'f(2) can be expanded into a convergent power series of z~* for
|z|>0. Then we see that the map

i:Ind (P, G, ) > F(a, )——>f(2)=F(z, 1) e D,

is bijective. Further, if we define T,(g) (g€ G) by T(g)oi=ioT(g),
then we have

b
T,()f@)=1bz+d)f(@z+0)ez+d) (e=(3 5)e0).
We choose the topology on D, which makes the map i into a topological
isomorphism.

Remark. Put

M@=@ &J C@=C $’I=C£ b

(@ae L*, ce L). Then I and the C(c)’s generate the whole group G, and
they act on our space D, as

T(A(@)f@)=1(0)"'f(@*2),
T(CE)@=fE+c),
TN/ =2 (~1]2).

These formulas will be frequently used.

2-2, The irreducibility. We assume that a(X)=m is a non-negative
integer. Then X(z)=2z™¢(z) with a locally constant character ¢. Let D™
be the space of functions f: L—k such that (i) for any z, € L, there exist a
ball V, ={ze L;|z—z|<r} (r>0) and a polynomial p,,(z) € k[z] with
deg p, (2) <m satisfying f(z)=p, (2) for any z e V,, and (ii) there exist a
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ball V,={ze P¥(L);|z|>r'} (r’>0) and a polynomial p.(z) € k[z] with
deg p..<m satisfying f(z)=X(z)p.(z"?) for any ze LNV,. Since G is
generated by I and the C(c)’s (ce L), we observe that D™ is a G-
invariant k-subspace of D,. Since the derivation d/dz acts on D, con-
tinuously, the kernel D*>™ of the continuous map (d/dz)"*': D,—D, is a
closed subspace of D,. Hence D>»™ is a closed G-invariant k-subspace
of D,.

Now we assume that X(z)=z™ (m € Z, m>0) holds for any z e L*
(resp. z € 0*). Let P, be the space of functions f: L—k such that there
exists a polynomial p(z) e k[z] with deg p(z)<m satisfying f(z)= p(z) for
any z € L. Then P, is a finite dimensional G-invariant (resp. K-invariant)
k-subspace of D,. Since D, is a Hausdorff space, the finite dimensional
subspace P,, of D, is closed. Hence P,, is also a closed G-invariant (resp.
K-invariant) subspace of D,. Obviously D,DD>">P,D{0}.

Let N: L*¥*—k* be the locally constant character such that N(z)=1
holds for any z e 0* and such that N(z")=g" for any integer n. Then
we have the following:

Theorem 1. (i) If a(X) is not a non-negative integer, then D, is a
topologically irreducible K-module.

(i) If «(X) is a non-negative integer m, let D'>>™ be as above. Then
D, /D™ is a topologically irreducible K-module. Let e(z)=z"™X(z) and
let 1=1(X) be the smallest positive integer such that ¢(z)=1 holds for any
z e 0¥ with |z—1|<|7t|. Then:

(ii-a) If «(z2)=1 holds for any z € L*, then P, is a topologically irre-
ducible G-module, and any element of DY*™P, generates D™ as a
topological G-module. In particular, D°|P,, is a topologically irreducible
G-module.

(ii-b) If e(z2)=N(z)* holds for any z e L*, then D™ contains a
topologically irreducible G-submodule Q,, such that D™ Q, 2{0} and
such that any element of D>™Q,, generates D™ as a topological G-
module. In particular, D*>™|Q,, is a topologically irreducible G-module.

(ii-<c) We assume that (z)*=N(2)* holds for any z e L* and that
e(z)£N(2) holds for some z e L*. If e(z)#1 holds for some z e o*, we
also assume that ¥e(—1)q*® is contained in k. Then Di=™ js a direct
sum D™ @DY>™ of two non-equivalent topologically irreducible G-sub-
modules D™ and D*>™,

(ii-d)  If e(z) does not satisfy any of the conditions in (ii-a), (ii-b) and
(ii-c), then D>>™ is a topologically irreducible G-module.

2-3. The equivalence. We assume that «(X) is a non-negative integer
m. Hence X(z)=e(z)z™ holds with a locally constant character e: L¥—>k*.
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Put .
8(2)=z"""*(2)=¢e(z)z" ™"

For any element f(z) of D,, put
g(2)=(d/dz)"*'f(2).

It is obvious that g(2) is a locally analytic functxon on L. Further since
we can write

FO=1@) 3 e,z =e(2) 3, 27"

with a convergent power series >, ¢,z e k{z} for |z|>0, we have

£(@)=e(2) 3 (m—r)m—n—1)- --(=n)e,z"""
= (@) 33 (= " D+ (ot Dy 2"

for |z|3>0. Hence g(2) is an element of D, Further we observe from
this calculation that for any g(z).e D,, there exists a function f(z) in D,
satisfying (d/dz)™*'f(z)=g(z), Since the kernel of D, 3 fgeD; is
D™, the correspondence f(z)—g(z) = (d/dz)™*'f(z) 1nduces a continuous
bijection SF: D,/D*>™—D,. Here, if f(z) is expanded into a convergent
power series on a ball B, then g(z) is also expanded into a convergent
power series on B. Hence it follows from the open mapping theorem in
the category of Banach k-vector spaces that S=S} is a topological
. isomorphism (cf. § 4 also).

Since T(C(e)f(2)=f(z+c), we dlﬂerentlate this formula (m-+1)-
times and obtain So T (C(c))f(z2)=g(z+¢c)=S(f)z+c). By induction
onm, we obtain (d/dz)"*![z"f(—1/z)]=z"""*(d/dz)"*'f)(—1/z). Since
T(Df(2)=1(2)f(—1/z)=e(z)z"f(— 1/z), we obtain

So T,(Nf(D)=e(2)(d]dz)"*'(z"f(— 1/2))
=e(2)z” ™ *(d]d2)™ f)(—1/z)
=6@)S(f)—1/D=TD) > S(f)2).

Hence S¥: D,/D\*™—D, is a G-isomorphism.
Now we have the following:

Theorem 2. Let V, and V, be two dzﬁ"erent topologically irreducible
G-modules constructed in Theorem 1. Hence V, and V, are one of the
following topologically irreducible G-modules: D,, D*>™, D,/D¥™, P,,
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D™ P, Qn, D™ Q,,, DX%™, Di2™ (the corresponding X’s for V, and V,
may be different). Then V, and V, are G-equivalent if and only if one of
the following conditions is satisfied.:

(i) «(X) is a non-negative integer m, 5(z)=z"*""*X(z), V,=D, /D™
and V,=D,.

(ii) m is a non-negative integer, £(z) is a locally constant character
such that (z)#1, N(2)* and (2)*#£N(2)%, X(z) =z"(2), 6(z)=z"e(2) ' N(2)’,
Vi=D>™ and V,=Dy>™,

(iii) m is a non-negative integer, X(z)=z", 8(z)=z"N(z)’, V=P,
(resp. Vi=D\*™|P,) and V,=D}>"[Q,, (resp, Vo= Q).

Remark. The construction of the subspaces 0, and D°;™ and the
construction of the intertwining operators

Hx: D;oc,m/Pm ans Ha5 D}}oc,m/Qm )Pm

and the projection operators H,, .: D*™—D;™ are a bit complicated.
We construct them explicitly in Section 6 by using the Frobenius reciplo-
city law.

§ 3. Action of the Lie algebra g and the Key Lemma
3-1. The Lie algebra g. Let
g={X e My(L); tr (X)=0}

be the Lie algebra of G. Then for any X e g, the series

exp (tX)= Zj:o (tX)"/n!

converges in M,(L) to an element of G if ¢ is sufficiently small. Further
exp (1X) belongs to any given congruence subgroup of K=SL,(0) if ¢ is
sufficiently small.

Put
_ {0 1 _ {0 0 {1 0
=0 o)} *=(1 o) r=(o 1)

Then X,, X_ and Y span the Lie algebra g as an L-vector space, and

exp(tX+)=<(1) i), exp(tX_):(i (1)), exp(tY):(St 2-¢>-

Let D, and T, be as in Section 2. For any element X of g, we define an
operator (dT,)}(X) on D, by
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(TYf@)=lim (T exp (X)f2)— )}

(f(2) e D).
Since X(xy)=2(x)(y) for any x, y ¢ L,

X (x)=X'(DX(x)/x= a()X(x)/x.
Hence we obtain

@T)(X.)f(@)=1im t~'(X(tz+ 1) f(z/(1z+ 1)) — f(2))
=a(0)zf(2)—2"f"(2),

(@)X )f()=lim t"(f(z+1)— f(2))
=1,

(@T)(Y)/f(2)=Tim 1~ (X(e™*)f(e*2) — f(2))
= —a()f(2)+22f"(2),

where f'(z)=(d/dz)f(z). Since X,, X_ and Y span g, (dT,)X(X) is a well-
defined continuous k-linear endomorphism on D, for any X e g. Hence
dT, defines a continuous representation of the Lie algebra g on D,. Itis
obvious that any closed K-invariant subspace of D, is g-invariant.

3.2, The Key Lemma. LetV, (i=1, --.,n) be a finite number of
Banach spaces over k. We assume: (i) V,5{0}; (i) Each V, is a topologi-
cally irreducible g-module; (jii) If { =, then there exists no triple (W, f, g)
such that (a) W is a Banach space over k¥ on which g acts as continuous
endomorphisms, (b) f: V,—W and g: V,— W are injective continuous k-
linear g-homomorphisms, and (¢) the image im (f) of f and the image
im (g) of g are dense in W. Note that the condition (iii) implies that V,
and V, are not g-equivalent. Further, if ¥, and V; are finite dimensional
Banach spaces over k, then the condition (iii) is equivalent to the non-
equivalence of V; and V.

Key Lemma. Let V,(i=1, ---,n) be as above, and let V=@V, be
the direct sum of these Banach g-modules. Let U be a closed g-invariant
k-subspace of V. Then there exists a subset I of {1, - - -, n} such that U is
the direct sum of the Vs ((el): U=@;c: Vi

Proof. We are going to prove the lemma by induction on n. It is
obvious that the lemma holds for n=1. Hence we assume that the lemma
holds for any smaller integer.
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Let Q: V—V/U=V* be the natural map. Since U is a closed sub-
space of the Banach space V, V* has a natural structure of a Banach
space (cf. e.g. van Rooij [14]). Further, V'* is a continuous g-module
and Q is a continuous g-homomorphism. Put V¥=0(V)).

Since the kernel ker (Q|¥,) of the restriction of Q to V¥, is a closed
g-invariant subspace, ker (Q|V,) is either V, or {0}. If ker(Q| V)=V,
then ¥, U, and hence

U= V@((@ Vynu).

Since (P;.: V)NUisa closed g-invariant subspace of @, V;, it follows
from the assumption on #n that (@;,.; V,)N U is a direct sum of a finite
number of the V’s (j#i). Hence U isa direct sum of a finite number of
the Vs (j=1,---,n). Since the lemma holds in this case, we may
assume ker (Q|V,)={0} for eachi. Then Q|V,; Vi—>V* is an injective
continuous k-linear g-homomorphism.

Let V'=@s. Vs Since the kernel ker(Q)| V') of the restriction
Q|V’of Q to ¥V’ is a closed g-invariant subspace of V', it follows from
the assumption on #n that ker (Q| V) is a direct sum of a finite number of
the Vs (i#n). Hence ker (Q|V")#{0} iff it contains” some V; (i+£n).
Since this contradicts our assumption, we may assume that Q| V’: ®,., V.,
—>V'* is an injective g-homomorphism. Note that the image of Q| V" is
Vi*=Vit .+ VE L

Let V*¢ be the closure of V¥ in V*, Then V} N V'*.is a closed
g-invariant subspace of ¥V’*. Since Q|V’: V'—V’* is a continuous map,
@V (V¥ NV’*) is a closed g-invariant subspace of V'=@,., V.
By our assumption on n, this subspace of ¥’ is a direct sum of a finite
number of the V,’s (i £n).

If this space is not the total space ¥, then there is an index ] f<n—1
such that (Q| V")~ (V}*NV’*) is a subspace of @P;.;,V:. It follows
that ‘

vienid o+ VideVi4 Vit Viat -+ Vi
Let u=u,+-.-4u, (u; e V;) be any element of U. Then
O+ - - - + 1y 1)+ Q)= Q(u)=0.
Hence O(u,+ - - - +u,_)=0(—u,) is an element of
VENV*=VINTE+- -+ V).

By our assumption on j, there exists v;, - - -, v,_, such that v, e V,, v,=0
and Q(v+---+v,.)=0@+---+u,_,). Since Q|V’ ‘is injective,
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U4V =u4 - u, . -Hence u=u; 4+ - Hu,_ tu,=v,+---
+U,.1+u, is an element of P,,; ¥,. It follows that U is a closed g-
invariant' subspace of @;.; V;. By our assumption on #, the lemma
holds in this case. Hence we may assume (Q| V)" '(V¥N\V'*)=V"'.

Now we have VN V'*=0Q(V’')=V'*.. Hence V¥is dens¢ in V'*,
Since V¥=V'*4-V* V¥ is dence in V*, We repeat similar arguments
for each i, and observeé that the lemma does not hold ionly in the case
such that n>2 and each V'} is dense in ¥*. Put W=V* f=Q|V,: V,
—V* and g= Q] V,: Vi—V*. Then the triple (W, f, g) contradicts the
assumption (iii). = It follows that no such case occurs. Therefore the Key
Lemma is proved.

§4. Proof of Theorem 1, I (the local study)
4-1. The space V.. ,® @y Vu.n. Let n be a positive integer, let’

Ko={e=(2 B)esL@ila=tbibllcl i—nipl]

and, for any element w of L satisfying |w|<|p="|, let r,, n_lp |1f[w[<1
and r,,, ,=|p"w? if 1<|w|<|p~"|. Then |p"|<r,, n<|p‘”] Put

Bw,n={z € L; [Z'_,W]Srw,n}
B..,={ze P‘,(L); lz|=]p[}

Since the valuation | | is non-archimedean, B,,,N B, ,#¢ iff B, ,=B,,,.
Hence the one-dimensional projective space PY(L)=LU {oo} can be
expressed as a disjoint union B. ,[||[wew Bw,» With a certain subset
W=W, of {we L; |w|<|p~™|} containing 0. Since J and the C(c) (c € 0)
generate the group K, it follows from the definition of r, , that this
decomposition B, ,[]][Buw,. is preserved by any ge K. Further, if
K, then it is easy to see that g(B..,,)=B..,, and g(B,,,)=B,, , hold.
Let V., ,=V,,a,, be the space of formal power series

f@)= OS%I _enlz—w)" e kllz—w]]

such that |¢,|r®,~>0 (m—>00). Since k is complete, ¥, , becomes a
Banach space over k with || fil=|f H,,,,,,~Max]cm[r » Obviously any
J@ eV, glves a (locally analytlc) function on B,,,. We extend f(2) to
a function f(z) on L by putting f(z)=0 for any ze L\B,,,. Then this
extended function f(z) belongs to D,, and we can regard V,,, as a
subspace of D, by this injection Von 32— f@) e D, (cf. Remark in
1-1). Slmllarly, let V., ,=V...., be the space of series
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f(z)=x(z)o Z CnZ™™  (Cn Gk)

such that | ¢, p™|—0 (m—o0). Then V., , becomes a Banach space over
k with ||f|=|fll...=Max|c,p™], and there exists a similar injection
V. .—D, Further the direct sum V,=V, ,=V. . .® Puecw Vu,ny 15
regarded as a.subspace of D,, the inclusion maps V,=—D, induce
injective maps V, ,—V,.,,, and the injective limit injlim ¥V, , of the
V... 's coincides with the space D, (cf. § 1 and 2-1).

Proposition 1. I X(z) is analytic for |z—1|<|p™|, then V., , and the
V'S are preserved by the endomorphism

Ty(8): Dy > f@)—>1bz+d) f((az+)/(bz+d)) e D,

of D, for any g= (‘cl Z) e K, satisfying |b|<| p*"|.

Since this proposition can be proved in a straight way, we omit the
proof. We note that this proposition shows that the Li¢ algebra g acts
continuously on V., , and the V,, ,’s.

4-2. The local irreducibility. Let X_, X, and Y be asin 2-2. Then
they act on V,, , and the V,, ,’s by

@TYX)f@)=1"(), @IY)X)f(D)=aX)zf(z)—2"1"(2),
@I )(Nf@)=—a(0)f(2)+22f"(2).

Hence they act on (z—w)" e V,, , and 2(2)z=™ eV, , as

AT )X )z—w)y"=m(z—w)"",

@T )X )z—w)"=a(X)z(z—w)™ — z°m(z— w)™*
= (a(X) —m)(z—w)™** 4+ (a(X) — 2m)w(z — w)™ — mw*(z— w)™",

AT )(Y)(z—w)"= — a(X)(z—w)"+ 2zm(z — w)™~*
=(—a(X)+2m)(z—w)™ 4 2mw(z—w)™"!,

@T )X @)z =(at)—m@)z ™",

@T)(X M@z = a2z ™ =2 —m@z " =mit(z)z ™",

(AT )(V)X(z)z ™= — a(U(2)z™+2z(a(X) — m)X(z)z ™™~
=(a(0)—2m)A(z)z"™

Now we have the fbllowing:

Proposition 2. (1) If «(X) is not a non-negative integer, then V,, ,
and V.., are topologically irreducible g-modules.
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() If «X) is a non-negative integer, then the subspace

I)uJ,n:{.f(Z)=0S Z(i) Cm(Z—W)m; Cp € k}

m<a

of V., and the subspace

P.,={f@=Xz) > cuz7™;c,ek}

o<m<ealy)

of V... are g-invariant. Further P, , and P, , are irreducible g-modules,
and any element of V., , (resp. V.. ,) which does not belong to the space
P,,, (resp. P .,) spans the space V, , (resp. V..,) topologically as a g-
module. In particular, V,, [P, , and V. [P, , are topologically irreducible
g-modules.

Proof. 1f a(X) is a non-negative integer, then
(AT )= W) 0 = — apw(z— W) ® — W'z —wyo "
is an element of P, ,, and
@T )X )z)z-*@=0.

Since g is spanned by X,, X_ and ¥, it follows that P, , and P, , are
g-invariant subspaces.
In general, put

L,=[dT)XY)—-2w(dT )X )+ a(x)id.]/2.
Then we have
L, (z—w)"=m(z—w)™

for any m. Let f(z)=>] c,(z—w)™ be an element of V,, ,, and let M and
N be two different non-negative integers. Then

m—M

N cp(z—w)™.

(N—M)"(L,— M id.)f(z)= ZO

Hence, repeating this process for 0< M <<H (N <H), M+N, we obtain
([ (N—M)" (Lo — M i)/ ()

=cylz—w)"

+ 3 mim—1)- . .(m—N+1)(m—N—1)-.-(m—H)
wSH N(N—1)- . . (N—N+DN—-N—-1)---(N—H)

cuz—w)™
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Since the coefficient

(—1)a-¥ m! . (m—-N—1D)!
N!(m—N)! (H-—-N)!(m—H-1)!

of ¢, (z—w)™ is an integer, the second term of the right hand side of this
equation belongs to V,,,,. Further the norm of this term satisfies

<Max|c,|rr,—>0 (H—+c0).
m>H .

Hence

N4 H . N=M)"(L,—Mid) 2, CaZ—W)"—>cy(z—w)Y

in vV, , for H—>+oco. Hence the minimal closed g-invariant subspace
U, of V,,, containing f(z)= 3 c,(z—w)™ contains cy(z—w)" for any N.
We assume that f(z)=> c¢,(z—w)™ is a non-zero element of V, ,.
Then there is a non-zero coefficient cy. Hence the minimal closed
g-invariant subspace U; contains (z—w)”. If «(X) is a non-negative
integer, then we assume f(z) ¢ P, ,. In this case, there is a non-zero
coefficient ¢y with N >a(X). Hence U, contains (z—w)¥ with N > a(X).
Since
@dT) (X )(z—w)"=m(z—w)"",
[AT)X.) — (@) — 2mw id. +WdT Y Xz w)™
= (a() —m)z—w)"*,

it follows that U, contains all polynomials of z—w. Since they are dense
in V,,, ., U, coincides with V,,,. Hence V,, , (or V., ./P,. ) is a topolo-
gically irreducible g-module. The irreducibility of P, , can be proved
similarly.

Let

L, = '— [T )(Y)—a(x)id.]/2.
Then we have ‘
L x(2)z""=x(z)mz"™.

Further
@TY(X )12z =X(2)mz=™*" and (dT)(X ) X(z)z"™=(a(X)—m)X(z)z=™.

Hence the irreducibility of V., , (or V., ,/P.. ,or P, ,) can be proved
similarly. :
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§5. Proof of Theorem 1, II (the irreducibility of D, or D,/D¥>™)

5-1. Proof of the assumption (iii) of the Key Lemma. Let n be a
positive integer, and let V, ,=V.. .. x@ (—Bw won,z (WE W,)be as in 4-1.
Then V. .=V, .. and the ¥V, .=V, .,’s are non-zero Banach spaces
over k. If a(X) is not a non-negatlve integer, then, by Proposition 2, each
of them is a topologically irreducible g-module. If a(X) is a non-negative
integer, then V., /P, , and the V, /P, ’s are non-zero Banach spaces
over k, and topologically irreducible g-modules.

Proposition 3. If a(X) is not a non-negative integer, then any two of

w,n and the V., ’s (w e W,) satisfy the condition (iii) of 3-2. If a(X) isa

non-negatlve integer, then any two of V. /P, andthe V., [P, ’s (W € W,,)
satisfy the condition (iii) of 3-2.

Proof. First we reduce the proof of the proposition to the case
where k is an algebraically closed field.

Let (k’,| |') be any extension of (k,| |) such that (k/,| |) is max-
imally complete. For any Banach space U over k, let U’ be the complete
tensor product &’ ®,U (cf. van Rooij [14], Chap. 4). Then V. ,=
kK ® Vi, is the space of all elements of k'[[z—w]] which converge for
lz—w|<Lry,, ., and V., =k’ K.V, . 18 the space consisting of all X(2)A(z~Y)
such that 4(z) is an element of k[[z]] which converges for |z|<| p"|. Hence
each V)  (v=oc0 orve W,) is made from V, , simply by replacing k
with %/,

If a(X) is not a non-negative integer, then V7, , is a non-zero topologi-
cally irreducible g-module. ILet A: V, ,—W be a continuous k-linear
g-homomorphism. Then % can be extended to a continuous k’-linear
g-homomorphism #’: V), ,—W’. Since the complete tensor products
give an exact functor (cf. van Rooij [14], Chap. 4), & is injective (resp. has
a dense image) iff /4’ is injective (resp. has a dense image). Hence, to
prove the proposition, we may replace k by any maximally complete
extension k’ of k. Therefore we may assume that k& is algebraically closed
because there exists a pair (K, | |') satisfying this condition (cf. ibid.).

The reduction of the proof in the case where a(X) is a non-negative
integer is similar,

Let a(X) be arbitrary, let w be an element of W, -and let

L, =[@dT)(Y)—2w(@dT )X )+ a(x) id.]/2
be as in 4-2. Then
L, f(z2)=(z—w)d|dz)f(z)
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holds for any f(z) € V,,,,. Lets be a positive integer >>2, and put
L, ,=(L,—(p*—1)idYL,—(p*—2)id.)- - - (L, —id.)L,.
Then for any element f(2)= >, c.(z—w)™ of V,, ,, we have

Ly, f@=2 (n—p +D)(m—p*+2)- - - (m— Dme,(z—w)™.

Since m![{(m—p®)! p*!} is an integer, |(m—p*+1)(m—p*+2)- - -(m—1)m|
<|p°!l. Hence

[ Lo, SN <1 2° IS @

Since k is algebraically closed, the valuation of k£ is dense. Hence
there is an element p of k which satisfies | p*!|<{| p|<<|p*!p~'|. Then the
operator norm ||p~'L,, ,|| of p~'L,,, is smaller than 1. Hence

(0L, ))—>0 (leZ, |-+ oc0)

strongly on V', ,.
Let F(T) be the polynomial in k[T] defined by

F(I)=(T—p'+1)(T—p°'+2)- - (T—1)T—p,
and let ¢ ¢ k be a solution of F(T)=0. Since |p|<|p*!p!|<1,
|¢—p*+1)- - - (1 = D |=]p|<L.

Hence there is an integer i such that 0<<i<{p*—1 and|t—i|<]l. We
assume |¢ —i|<|t— j| for any j with 0<{j<{p°*. Then

|t—jl=lt =D+ —D|=t—il

Hence |t —j|=>|i —j| for any j with 0<j < p*. Lete=t—i. Then

(p*lp [ >pl=|(t—p*+1)- - - (1 — D]
>G—p 41 e (=1)-e-1-20 - ]
=|(p*—i—D!illle|=[(p*—1)!]le].

Therefore |e|<|p*~Y. If |e]<|p?], then |e]=]|t—i|<|i—j] for any j=i.
Hence |1—j|=|i—j| and |p|=|(t—p*+1)- - -(t— )t |=]e|(p* — D! <[ p*].
Since this is a contradiction, we obtain | p*|<|e|<|p*~!]. In particular,
e is not an integer.

Let v be an element of W, such that B, ,+#B,, ,. Thenr, ,<|v—w|.
Since |e—m|< Max (e, |ml), |(e—m)/m|<|e/m| (resp. 1) if |m|<|e| (resp.
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|m|>le]). Since |p*|<|e|<|p*~!|, |m|<|e| holds iff m is divisible by p°.
Hence

e=D): le=m) | _|(ep=syimmfp1|
m:

glep—s-l/(ll—l) l[m/px]<l p_zp_,lm’
where [m/p] is the largest integer m* satisfying m* <[m/p’]. ‘Since p~'—0

(s—+ ), | p**7’|=>1 (s—>+o0). We choose a sufficiently large integer s
so that r, ,/lu—w|<|p**7°|<1 holds. Then

(322)- 3, eteome (amey

converges for |z—v|<r, ,. Hence

h(z)=(z—w)i<1+ z—v )e

is a non-zero element of ¥, ,. Since

e _ e-1
”)+(z—w)" ¢ (1+z ”)
v—w

Z—
V—Ww V—w

%h(z): i(z—w)i“’(l +

—( )it z—v \*
—G+o—w (14220,
L h(2)=(z—w)(d|d2)h(z)= (i + e)h(z)=1th(z). Hence

p_iLw,sh(Z)z P_I(Lw —Dp'+ 1) e (Lw - I)Lwh(z)
=p !t —p*+1)- - -(t = Dth(z2)=h(2).

Now we assume that «(X) is not a non-negative integer. Suppose that
there is a triple (W, f, g) such that W is a Banach space over k on which
g acts continuously, and f: V, ,—W and g:V,,—W are injective
continuous g-homomorphisms with dense images. Since (p~'L,,,)'—0
(I—+ o) strongly on V, ,, it follows from the continuity of f that
(o7'L,,;)'—0 (I—+ oo) strongly on the image of f. Since the image of f
is dense in W, (p~'L,,,)'—0 (/—-+ oo) strongly on W. On the other
hand, A(z) is a non-zero element of V, , satisfying p~'L,,(z)=h(2).
Since g is an injective g-homomorphism, 0=+ g(h(z)) € W satisfies
o 'L,,,8(h(z))=g(h(z)). Since this contradicts the assumption (o~'L,, )"
—0 (I—+ o0) on W, there exists no triple (W, f, g) such that f: V,, ,—>W
and g: V, ,—»W (w,ve W, B, ,+B,,,) satisfy the conditions (a), (b), (c)
of 3-2. Hence the proposition holds in this case.
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We can prove that the condition (iii) of 3-2 for V, ,/P,,, and
VoulPow W,ve W,, B, ,#B,,) holds in the case when a(X) is a non-
negative integer in the same way, because /4(z) does not belong to P, ,.

Now we assume that «(X) is not a non-negative integer, and that
[V W (weW,) and g: V., ,— W satisfy the conditions (a), (b), (c)
of 3-2. Let ¢ be an element of o satisfying | p"|<|w+c|, and let T be
the endomorphism

T/l): Dy—>D, (Ic=<i Jb?)(_‘l’ (l))gK)

of D,. Then T induces local homomorphisms
T V_oyweeyn—>Vun and To: V,,—V, ., '
and they satisfy the condition
Ty o (AT )(X)=(@TYUI.XI7") o Ty,

for any Xeg. Hence, if we twist the action of g on W by I, then
foTu,: V_yjwear,n—>W and go T.: V, ,—> W satisfy the conditions (a), (b),
(c) of 3-2. Since this contradicts to what we have proved, the condition
(iii) of 3-2 is satisfied also in this case.

We can prove the condition (iii) for V., /P, , and V,, /P, . in the
same way. Therefore the proof of Proposition 3 is completed.

5-2.  Proof of the irreducibility of D,/D¥>™. We assume in 5-2 that
«(X) is a non-negative integer m. ‘Let f be an element of D, which does
not belong to Dy*>™, and let U, be the minimal closed K-invariant sub-
space of D, containing f. We are going to show U,=0D,.

Since K acts -transitively on P'(L), replacing f by T(g)f (g€ K) if
necessary, we may assume that the Taylor expansion of fat z=0 is not a
polynomial of degree <<m. We choose a positive integer » such that
@) 22)f(z™") is analytic for |z|>|p"]| (i.e. X(z)f(z™") is expanded into a
convergent power series of z~* for |z|>| p"|), and (ii) for any w e L satisfy-
ing | p"w|<1, f(2) is analytic for |z—w|<r, ,. Then f(z) is an element
of V,. Hence we can write f(2)=f.(2)+ D fuf2) (fl2) € Ve, [u(2) €
Vs w € W,). By our assumption, fi(z) € V;, does not belong to P, .
Since (Veo,n/Po,n) P Do (Vs n/Pw,n) satisfies the assumption of the Key
Lemma, the minimal closed g-invariant subspace U, , of ¥V, containing f
has an element A(z) of the form

h)=ho(@)+ 2 1(2) € Vit DD Vo,

where hw(z)bePw,,,, hy(2) e P,,, if B, ,#B,,, hz)—z"*'eP,,. Then
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(@YX )" he(@) =[dTYX )" *ho(2)=0 0£w € W) and
[@T)X )™ ho(2)=(m+1)! € P, .

By the assertion (ii) of Proposition 2, P, , is an irreducible g-module.
Hence U,,, contains P,,. Since T,(C(—w))P, =P, . (we W,,|w|<L]),
U,,, contains the direct sum P{" of the P, ,’s with we W,, [w|<I1.
Similarly U, , contains the direct sum P{* of the P, ,’s with we W,
|w]<1. Since n can be arbitrarily small, U, contains the injective limit
of the PP*’s. Since T,(I) (inj lim P{*) contains the direct sum P{® of
P.,, and the P, ,’s with we W,, |w|>1, U, contains the direct sum of
P, , and the P, ’s (we W,). Hence, by substracting an element of this
space if necessary, we may assume that s (z)=z"*' and h.(z)=h,(z)=0
for any non-zero w e W,.

By the assertion (ii) of Proposition 2, 4,(z) spans V,, , topologically as
a g-module. Since T,(C(—w)P, =V, . (we W,, |w|<1), U, contains
the direct sum V' of the V, ,’s with we W,, |[w|<1. Since n can be
arbitrarily small, U, contains the injective limit of the V'{"’s. Similarly,
U, contains the injective limit of the direct sum V®* of the V,, ,’s with
we W, |[w|<l. Then T,(I) (inj lim V'{"*) is the injective limit of the
direct sum V® of V.., and the V,,,’s with we W,, |w|>1. Hence U,
contains (inj lim V)@ (inj lim V@)= D,. Therefore we have proved
U,=D,.

5-3. Proof of the irreducibility of D,. We assume in 5-3 that «(X) is
not a non-negative integer. Let f be a non-zero element of D,, and let
U, be the minimal closed K-invariant subspace of D, containing f. We
must show U,=D,. We can prove this fact in the same way as in 5-2.
Simply replace D™, P_ , and the P, ,’s (w e W,) by the zero space {0},
and do the same arguments. Since the argument about P, ,P D, Py, .
is trivial in this case, the proof is far easier than in 5-2.

§ 6. The Frobenius reciplocity law

6-1. The Frobenius reciplocity law. For any topological group N
and for any linear topological k-vector spaces V; and V, on which the
group N acts continuously, let Hom, (¥}, V) denote the k-module of all
continuous N-linear homomorphisms from ¥, to V,. '

Let G=SL,(L), let V be a linear topological k-vector space, and let
T:.G—Aut,(V) be a continuous representation. We assume that for any
fixed v, T(g)v is a locally analytic function of g with values in V. Let
X: L*—k* be a locally analytic character, and let P, Ind (P, G, X) and D,
be as in Section 2. Note that for each f(z) € D,~Ind (P, G, X), T,(2)f(z)
is a locally analytic function .of g with values in D,.



206 Y. Morita

Let H be a continuous G-homomorphism from ¥V to Ind (P, G, ).
Then for any v e V, H(v) is a locally analytic function on G with values
in k and satisfies

HYpe)=1@HE) (g G.p=(3 0)<P).

Since H is a G-homomorphism, we have

H(gw)(g)=T(g)H(v)(g)=H(v)(gg,)

a 0

for any g, g,eGandve V. Since p= (C a“) acts on k by the multi-

plication of x(a),
H*=H( Y1): Vosv—H@W() ek

is a continuous P-homomorphism.
Conversely, if H* is a P-homomorphism from V to k, then we define

Hu)@)=H*(gv) (veV,geq).
Then H(v): G-k is a locally analytic function, and satisfies
H(v)(pg)=H*(pgv)=2(a)H*(gv)=X(a)H (v)(g)

for any p e P. Hence H(v) is an element of Ind (P, G, X). Since H( )(1)
=H* as k-valued functions on ¥V, we have the following Frobenius
reciplocity law:

Proposition 4 (Casselman). Let the notation and assumptions be as
before. Then the correspondence Hw—H*=H( )(1) induces a k-linear
bijection

Hom, (V, Ind (P, G, X))—>Hom, (¥, k),

where pz(z 2_ ,) € P acts on k by the multiplication of X(a).

6-2. Hom,(D,, D;). Let X and & be k-valued locally analytic
characters of L*. Then, by Proposition 4, H is a continuous G-homo-
morphism from D, to Ind(P, G, d) iff H*=H( )(1) is a continuous
P-homomorphism from D, to k, where P acts on k by 4. Since P is
generated by the A(a)’s and the C(c)’s (@ € L*, ¢ € L), H e Hom,(D,, Ind
(P, G, 0)) iff H*: D,—k is a continuous k-linear operator and satisfies
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H*(f(z+c))=H*(f(2)) (ce L),
H*(f(@2))=Xa)d()H*(f(z))  (aeL¥)

for any f(z) ¢ D,. Therefore, taking the limits for ¢c—0 and for a—1, we
obtain

H*(@AT)X.)f(2)=0 and H*((dT)(Y)f(z))=a(0)H*(f(2)).
Foranyne Z, n>0,re|L*|and c e L, put

X2z |z|=r
0 lz|<r

0 |z—c|>r

(z—o)* |z—c|<r.

fx.w,,,,r(z)={ and fc,,,,,(z)z{

Since (AT )X )fe,ns1,,@)=@O+Df e 0, (2), H*(f.,.,(2))=0 for any c, n
and r. Since

@THX ) fryon, @)= () = 1)1, 0,n41,1(2);

H*(f1,00,0,+(2)#0 only if a(X)=n—1or n=0. Since f; .. ., A2)— fr,w,n,(2)
(r'>r) vanishes for |z|>r’, this element of D, can be expressed as an
infinite linear combination of the f, .. ,.(2)’s. It follows that

H*(fr,0nA2)=H*(f1,0,0,(2))>

and hence H*(f,..,,,(2)) does not depend on r. Since f; ... (@°2)=
X(@)a " f1, . n,1a-2-(2), We have

H*(fy,,n,(@2) =2a)'a™ " H*(f3,2,0,(2))-

Therefore H*(fy,.,,,.(2))#0 only if (a)a*"=2¥(a)d(a) holds for any
ae L* We note that H*=0 iff H*(f;, ..., .(2))5#0 for some n, because
the f,.»,-(z)’s and the f, , .(z)’s span a dense subspace of D,.

We assume that «(X) is not a non-negative integer. If H*=5:0, then
H*(f1,00,0..(2))70. Hence we have X(a)=d(a) for any ae L*. In this
case, Hom, (D,, D,) contains the identity mapping id. and Hom,(D,, D,)
~Hom(D,, k) is one-dimensional. Hence Hom,(D,, D;)=k id. and
Homg (D,, D;)=0 if X(a)+#d(a) for some a.

Next we assume that «(X) is a non-negative integer m. If H*=£0,
thet H*(fy w0 (@)#0 0f H*(fyaims (D) E0. I H*(fre . (2)#0,
then we have X(a)=0d(a) for any ae L*. If H*(f;, .« ms1,-(2))50, then
1) a- " =A(a)d(a@). Hence X(a)=a""**d(a) holds for any a e L*. Since
m>0, a™**=1 for some a. Hence Homg(D,; D;)=~Hom(D,, k) is a one
dimensional k-vector space in either case. In particular, Hom,(D,, D,)
=kid.
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We assume that H*(f} ... .1, A2)=7£0. Put S, f(2)=(d/dz)"*'f(2)
for any f(z) ¢ D,. Then, by our identification Ind (P, G, §)~D,, f(z) € D,
corresponds to

HEDN( ) =T ) @) =H*(xe+w (- +w—1)>-
= *(1@f (YETYD)) = B @) o=z € Dy

as a function of w. If f(2)=> 7., c.(z—w)" for |z—w|<r, then

H¥ @) =2 = H¥( 5, eu(= 1 Fumr)

=(=1)"* Ty, = (=" ((m+ 1)Y= '7(d/dw)™*'f(w)
= (=1 H(m+ DY~ 7S (f(W)).

Therefore Homy (D,, D;)=kS, if «(X) is a non-negative integer m and
8(z)=z"*"%(z). Summarizing, we obtain the following:

Proposition 5 (Casselman). (i) If «(X) is a non-negative integer m,
put 8(z)=z"""*(z) for any z e L*. Then

Syt Dy 3 f(z)—>(d|dz)" " f(z) ¢ D;

is a continuous G-homomorphism and we have Homg, (D,, D;)=kS,.

(ii) In general, let %, 6: L¥—k* be locally analytic characters. Then
Homg(D,, D)=k id., and Homg(D,, D,)=0 if X(z)6(z) and if %(z) and
8(z) do not satisfy the condition of (i).

6-3. ‘Hom,(Dy>™, D,). We assume in 6-3 that «(X¥) is a non-
negative integer m. Hence X(z)=¢e(z)z™ holds with a locally constant
character e: L*—k*. Let D>™ be as in Section 2. Then f; .. ,,.(z) and
Sfens(®) (e Z,0<n<m, re [L*l c e L) are elements of D™, and any
element of D™ can be expressed as a finite k-linear combmatlon of
them. Let H be a non-zero element of Hom, (D™, Ind (P, G, 3)). Then
H*=H( )(1) is a continuous mappmg of Dl to k and satisfies

H*(fz+c)=H *(f(Z)) - (eel,
HXf(@2)=Ua)d(QH*(f(2)) (aeL¥)

for any f(z) e D>»™. Hence, as in 6-2, we have H*(f,,, ,(2))=0 (0<n<m)
and H*(f, . ,(z)) O (0<n<m) Put

H (.f;),m,l(z))—'a and H*(f; w0, 1(Z)= 8.
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gince H*(fz+c)=H*(f(2)), we have H*(f, p,1:/(2))=H*(fy,m,1n(2))-
ince

Joma(2)= ce%ﬂfc,m,lxﬂ(z),

and since H* is linear, we obtain H*(f, ,,.;.»(2))=¢ "«. Hence we have
H*(fom,1en(2) =g "at.
It follows that

@@ H*(fo @) = H*(fy . a'2)
=@ H(fy . -0l (D) = @"N (@ H*(fy n 2))-

Therefore, if @0, then %(2)d(z) =z*"N(z)* holds for any z € L*.
Let /=/(x) be the smallest positive integer / such that ¢(z)=1 holds
for |z—1|<|z*|. Then we have

Fumtin@=Frmoi@= 7 o0 3 (7)em Fuie@)

c€ (p1—7\p)/pl

for any n e Z, n>>0, and hence

H*(frwoiem@)=8— 2, elc)g e
cE (pTP\p)/pl
If ¢ is not trivial on 0¥, then .., e(c)=0 and hence 3. yi-nyyy €(C)
=0. Ifeis trivial on 0¥, then we obtain /=1 and 3 .o el0)=g—1.
Hence
)=(q—De(D+ (" —@e(m) '+ - - +(¢" — g™ De(m)~"**.
c€ (p1—m\p)/pl

If e(r) =g, then this sum is equal to n(g—1). If &(z)=~¢q, then this sum is
equal to (g—1) {1—ge(@) '} {1 —(ge(x)")"}. Therefore H*(fy,w,0, 1. (2))
is equal to the following:

(i) B if e(z) is not trivial on o%;

(ii) p—nlg—g ‘e if ¢(z)=N(2) holds for any z e L*;

) B—{l—(ge(m)"H)"Hl—ge(n) '} {g—1g '« if ¢ is trivial on
o* and e(n) 4.
It is easy to see that this, formula holds also for n e Z, n<<0, and that
H*(fy,w0.0,120(Z+ ) =H*(fy, 0 ,0,122(2)) holds for any ce L. Since

K@ H*(fre,0,10-21(2) = H*(f1,0,0,(@2) = U@ H*(f3,,0,42))

. for any a € L*, the following condition must be satisfied:
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(1) X2)=0d(2) if f£0, and if @=0 or ¢ is not trivial on o*;
(ii) X=)™{B+2n(g—1)g 'a}=28(x)"p if @50 and ¢(2)=N(2);
{i) 28— {1 — (qe(m) "1 — ge(a) ) — Dg~'al=3(x)"8 if
a+0, e(r)+#q and ¢ is trivial on o*.
The second case is obviously impossible. In the third case, e(z)=z""X(2)
=z"N(z)*6(z)"* must satisfy

{1—(ge(@) )" {— (1 —gqe(m) ) (g— g~ 'a}=0.
Hence either e(r)= —g or f=(1—ge(x)"))"(g—1)g'a. Note that

H*(f1,0,01:m(@) =1 —qe(@) )" (g— g "l ge(z) )"

holds if B=(1—gqe(z)"")"(g—1)g'a. We observe that a(d)=a(X)=m
holds in general, and that Hom,(DY*™, k)~Hom,(D>™, D;) is two
dimensional if %(z)=0(z), ¢(z)’=N(2)* and &(z) £ N(z), is one dimensional
if Uz)=0(z) and e(2)*£=N(2)’, or if Xz)=8(z)=2z"N(2), or if X(2)d(z)=
z""N(z)* and e(z)*5£ N(z)?, and is zero dimensional otherwise.

If Xz2)=6d(z) and e(z)*£N(z)’, or if X(z)=06(z)=2z"N(z), then
Hom, (D¥>™, D;) contains the identity mapping id. Hence Hom, (D\*>™, D;)
=kid. If X2)d(z)=2z""N(z)’ and e(z)’£N(z)’, we denote by H¥ the
element of Homp(DY>™, k) which satisfies H*(f; ...(z))=1, and denote
by H, the element of Hom,(DY>™, D;)=~Hom,(Dy>™, Ind (P, G, §))=
Hom, (D™ k) corresponding to H by this isomorphism. Then we
have Hom (D™, D;)=kH,.

In general, for any f(z) ¢ D, we assume that H e Hom, (D)™, D;)
corresponds to H* e Hom, (D*™, k) =~ Hom, (D¥>™, Ind (P, G, 9)) =
Homg (D?>™, D;). Then

H(f@)w)=H* (Tz((”)” ; 1>f(z)) =H*((2)f(w—2"")
holds for any f(2z) € D*>™.  Since [(dT )X )]"*'f(z2)=0,

(@djdw)™ ' H(f(@))(w)= [T )X )" H(f(2))(w)
= H([(dT)(X )"+ f(2))(w)=O0.

Hence im (H)cC Dy>™, and H € Hom, (D¥>™, DP>™).

We assume that ¢(z)=1 holds for any ze L* with |z—1|<1. If
lw—ec|<|z"], then |(w—z )—c|<|a"] holds iff |z|>|x""|. Since the
coefficient of z™ in z"(w—z '—¢)t is (w—c)! (0<i<<m), we obtain
H*QUD) ot (9 = 2N = H¥(fy e em@)w— ). If [w—c|>[z"], then
|w—2z —c]<|zx"] holds iff |z— (w—c)!|<|a"(w—c)?. Since
[I—(w—c)z|<|x"(w—c)Y|<], e(z)=e(w—c)"'. Hence
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H*(X(Z).fc,i, IH"I(W—Z_I))ZE(W— c)-l(w—c)iH*(.f(w—c)—l,m,ln"(w—-c)—ﬂl(z))
=e(W—c) 'N(w—c)’q "a(w—-c)’.
Similarly, if |z~"|<|w|, then [w—z""|>|z""] holds iff [z—w™!|>|z""w"?|.
Since
X2)(w—z) A(w—z Y =AWw XEz—w W Ez—w ) +w } (z—w )¢,
H*(U2) [ 1,001, 1m W — 2" =AW W H (3, 10,1202 (2))
=XW) "W H (S, 0,150 (W2) = H*(fr, 0,100 (2D (W)W .
If |z="|>|w|, then |w—z"*|>|z""| holds iff |z|<|z"], Since |zw|<1,
e(zw—1)=e(—1). Since 1@Z)w—z") " U(w—z N=e(wz— Dz™"(w—z"H)™"?,
we obtain

H*U2) 1y 0,1,15m (W =27 N=e(— DW™  H*(fy , o0 (2)) = &(— 1)g ~"aw™ .
If X(z2)=2z™ and 6(z)=2z"N(z)?, then

Hz(ﬂ,i,[m(Z))(w): {q_na(W—C)(W—C)—m” |W—Cl>[7rn|

—q"{(w—c)’ |w—c|<]|z"),

_— n—la -1 ~-n
Hx(ﬂ,m,i,lnﬂl(z))(w)::{ —Z m—i(W)w |W|%|”_nl

q-"w [w|<|z~"],

Hy(fe1,1am(@)W)=q " "(w—c),

Hy(fs,0,01:m@)W) =g "w™ %,
We observe that H;o H,=H, o H;=0. Let P, and Q,, be the kernels of
H, and H,, respectively. Then H, and H, induce continuous G-homomor-
phisms D»™/P_—Q, and Dy*™/Q,—P,, respectively.

If p=£2, then &(z)*=N(z)* implies e(z)=1 for |z—1|<1. If &(z)*=

N(z)*for any z € L*, &(z)=1 for any z e 1 +p, and &(z) 1 for some z ¢ 0%,
then for any «, B € k, the conditions

H*(fem,m@)=¢""a and H*(fi,, = (2)=F
define an element H of Hom, (D;>>™, Di*>™). In this case, we have
g "aX(w—c)w—c) ™t |w—c|>|x"]
Bw—c)’ [w—cl|<|a"],
Br(wyw* lw|>]z="|
e(—1Dg "aw™ ¢ w| <z

H(fy o em@9) = {

H(f1,00,6,1:m(@)(W) = {

Hence we have
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H(fy 01e@)) = 8o 1) 4" oty (W),
H(ﬂ,m,i,lnm(z))(w):.Bf;c,ee,i,lnnl(w)‘l‘e(" Dg="afym_i,jz-n+1;(W).

If &(z)*= N(z)* holds for any z € L* and if &(z) is not trivial on 145,
then p=2 and /=/(X)>>1. In this case, these formulas are modified as

H(ﬁa,z,|zn|(z))(W)=Ach‘),z,wl(W)‘f'q_n“f'pw,md,w—nl(w),
H(fr 0,012 @)W = Bf 1, 1,1:m W) (= DG ™" fo, -, 22-2 (W)

In particular,

H(fy,1,1::@)W) = (B +e(—Dg ' o)) fo, 1, 150(W) +20 "B S, 0rm =1, 120-m1 (W),
H(f1,0,0,1:0(@)W) = (B +e(— g~ o) f1,00,1,12m (W)
+2e(— l)q'"a,@ﬁ),m_,‘],,z_n](w).

If /e(—1)q* is not contained in k, then the operator H correspond-
ing to (&, p=(g%, 0) is denoted by I,. Then we have

I’ =¢(—1)g'id. and Hom, (D™, D)=k id. D kI,.

In particular, the endomorphism ring End, (D}>™) is isomorphic to the
field k(v/e(— D)g?).
If 4/e(—1)q" is contained in k, then the operator H corresponding to

(& B=(£ V(= Da". )
is denoted by H,,.. Then we have
H),=H,,#0, H:_=H,_+#0, H, +H, _=id.
Therefore H,,, and H,, _ are projection operators. Put
Dim—im (H,,,) and DI™=im (H,, ).
Then these spaces D>™ are closed G-invariant subspaces of D*>™, and
Dl = Dl Diem,
If e(z)=1 for any z € 0* and e(r)= —g, then we have

q "aX(W—c)(w—c) ™+t lw—c|>|z"|

H i,]an = .
(fc,,l I(Z))(W) {[‘3_2_1(1_q_1)(1_(_l)n)a](w_c)z Iw—c|<|z"),
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[—27'(0—g YA —(=DMak(ww=*  |w|>[a""]
mow™ Iw|<|z""|.

H(fy,0,0,1:m(@)W)= {

We denote by H, . and H, _ the operators corresponding to

(@ B)= ( q ) and <__“q R )
g+17 g+1 g+1 gq+1
respectively. Then we have H: ,=H, ,+0, H: _=H, _+0, H, .+ H, .
=id. Hence DI%™=im (H,,,) and D1°c 'm—=im (H, _) are closed G-
invariant subspaces of D)™, and D> ™= D;‘fi”‘@D;‘i“_’m.
Summarizing, we obtain the following:

Proposition 6. Let m be a non-negative integer, and let D'>>™ be as
in2-2. Let N(2) be as in 2-2. Then:

(i) Ifx(z)=z™ and 6(z)=z"N(2)*, then there are non-zero continuous
G-homomorphisms H,: D>™—DP>™ and H;: DY>™—D*™ such that
H;o Hy=H, o H;=0. Hence P,=ker(H,) and Q,=Xker(H;) are non-
trivial closed G-invariant subspaces. Further we have Homg (D)™, D;)
=kH, and Homg (D*>™, D,)=kH,.

(ii) We assume X(z)=z"e(2), e(z)*=N(2)%, e(z)#N(z). Let I=1(X)
be the smallest positive integer 1 such that e(z)=1 holds for |z—1|<|z*].
If &(2) is not trivial on o*, and if ¥'e(— 1)q* is not contained in k, then there
is a continuous G-endomorphism I, of D™ such that I =e(— 1)q* id. and
Hom, (Di*>™, D))=k id. ®kI,. If &(z) is trivial on o*, or if Ve(—1)q? is
contained in k, then there are continuous G-endomorphisms H, , and Hy _
of D™ such that H: ,=H, ,+0, H _=H, =0, H, ,+H, _=id. Put
Diem—=im (H,,.). Then these spaces are closed G-invariant subspaces of
D1°c’”‘ and D™= D™ @ D°™ holds. Further we have Homg (D)™, D,)
=kH 1+ @ka,_. In particular, D>%™ and D'>>™ are not G-equivalent.

(i) If X(2)=2z"e(2), 6(z)=z™e(z) ‘N (2)’, and e(z)*£N(z)?, then there
is a non-zero continuous G-homomorphism H,: D>>™—DP*™ and we have
Hom, (Dy>™, D;)=kH,.

(iv) If X(2)=6(z)=2z"(z) and if «(z) does not satisfy the conditions
e(z2)'=N(z)* and «(z)=N(z), then we have Hom, (D>>™, D)=k id.

(v) If e(X)=m, and if X and & do not satisfy any one of (i)-(iv), then
we have Homg (D™, D;)=0.

§7. Proof of Theorem 1, III (the irreducibility of D>>™)

In Section 7, we assume that «(X) is a non-negative integer m. Hence
e(z)=2z"™X(z) is a locally constant character. - Let / =I(X) be the smallest
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positive integer such that e(z)=1 holds for any z € L* with |z—1|<|z!].
For any element f of D)>*™, let U, be the minimal (g, G)-invariant sub-
space of DY>™ containing f. Then U, is contained in any closed G-
invariant subspace of D\°*™ containing f. We study in Section 7 this
(g, G)-module U, and prove the irreducibility of (ii) of Theorem 1 not as
topological G-modules but as algebraic (g, G)-modules. Let f;, .., .(2)
and f, , .(z) be as in 6-2.

7-1. A standard generator of DY>™.

Lemma 2. Let f(z)=f;,,.(2z) € Di>™ be the characteristic function of
0, then f(z) generates D*™ as an algebraic (g, G)-module.

Proof. For any positive integer n, 2(p)~"T,(A(p~™")f(2)=1s., p(2)
is contained in U,. Since |1 —z!|<|p*|iff |z—1|<|p*", for0,1pem (1 —277)
=1 (resp. 0) if [z— 1|<| p*"| (resp. otherwise). We choose a large integer
n such that e(z)=1 holds for |z—1|<|p**|. Then

((n—D))@T )X 0 To(I) o To(C(1)) fo,0,1500/(2)
=((m—10)) " (d/dz)™"z™e(2) f1,0, 20/ (2)
O<i<m) is z* (resp. 0) if |z—1|<|p*™| (resp. otherwise). Since these
elements span P,,, (cf. Proposition 2), U, contains P,,,. Since the
translations C(c): z—>z-+c¢ (c € L) act homogeneously on L, U, contains
the direct sum @, P,,q, (Wwe W,). Since Ty(I)P,,,=P.. ,,, U, contains

P, .., DP,P,., Since n can be arbitrarily small, U, contains the
injective limit space inj im (P.. 5, B Py Po,2n)=D™.

Corollary. Let f(z) be one of the f, ;. (2)'s and the f; ... =(2)s
(ieZ, 0<i<m,neZ ceL). Thenf(z)generates D>™ as an algebraic
(g, G)-module.

Proof. Let N be a positive integer satisfying 2N > —n. Then
Mn;ﬂﬂ T(C(c*)) o Tu(A(x™")) o T(C()) o [([ATIX )] S, 1,1:m(2)
=11 ()" fo,0,4(2)-

It follows from Lemma 2 that f, ;.. (z) generates D™ as a (g, G)-
module. Since

TZ(I)fZ,eo,i.ln"I(z)=x(_ D(— l)iﬁy,i,mnl(z),

J1,,1,1:n(2) generates D™ as a (g, G)-module.



Analytic Representations of Sk 215

7-2.  Irreducibility of D?*™. We assume in 7-2 that the locally
constant character e(z) is neither 1 nor N(z), and that ¢(z)*= N(z)? implies
&(z)=N(z) as functions on L*. Let f(z) be a non-zero element of D)>>™,
We want to show D™ U,.

Since the translations C(c¢): z+>z+¢ (¢ € L) act homogeneously on L,
we may assume f(0)5£0. We write f(2)=D ,<i<nfi(2)z" with locally
constant functions f;(z) e D> Since f(0) is not zero, f,(0) is not zero.
Since

[@T )X )" o Ti(D)f(2)=m!e(2)fo(—1/2)

is contained in U, to prove U,=D>™, we may assume that f(z) is a
locally constant function, and f(z)=7e(z) for |z|>|p ™| (T e k*, ne Z,
n>0). Since p~""e(p)"T(A(p~"Nf2)=e(p)*" (p~*"2)=Te(z) for |z|>1,
we may assume that f(z)=7¢(z) for |z|>>1. We note that for any locally
constant function A(z) in D™,

T.(Dh(z)= (m) " [([dTHX )" o T(Dh(2)

is contained in U,.

Put /=I(X), let = be a prime element of p, and let » be a positive
integer such that n>>/ and f(x)=f(y) holds for |x|, |»|<1 and |x—y|<
|z"]. Let C be a representative of p modulo p”. Put

h2)= 2, T(CeDf2).

Then A(z)=g"~'7e(2) for |z|>|a'"*|, H(z)=0 for |z'~*|>|z|>1, and A(z)=
> cecf(o) for |z|<1. Put?,=q" 'V and 7,= .o f(c).

If 7,=0, then 4(2)=7fy, . ,m,(2) is contained in U,. It follows from
the corollary to Lemma 2 that U,=.D,>*™ holds in this case.

If 7,50, then the function

@)= 3 TR

=q%7.e(z) for |z|>|x"'"t|, =0 for |z~'">|z|>|z""), =7, for |z|<|x"}|
if &(z) is not trivial on 0¥, =7, (¢g— D7 ,+(g*—q)re(x)~* for |z|<|x™"]
if e(z) is trivial on o*.

If &(z) is not trivial on 0¥, then

h(z)—q 'z~ "e(m) T(A(z=Dh*(2)=h(z) — q *e(x)’h*(x~*2) ¢ U,

is equal to (1—q %(m)")7ofy.0.1,(2). Since e(z)’#N(z)’, we can choose a
suitable prime element 7 so that e(z)’s£N(z)*=¢q>. Hence f,, .(z) is
contained in U,. It follows from the corollary to Lemma 2 that U,=
D>™ holds in this case.
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If e(2) is trivial on 0%, then /=1 and A(z)—q ~*z~ "e(x) T.(A(x~))A*(2)
=[1,—q (@)1 +(q— D11 +(q*— Q)e(m) T} fo,0,1-(2).  Since

T:—q @1+ (g— D+ (q° — @)e(z) 7}
=q ¥ e(@)+ @) {(g— (@), — (g— De(@)71},

and since e(zr)#—gq, U, contains f,,,.,(2) if (g —e(@m)r.5#(g— De(m)7s.
In this case, U, contains f; ¢,(z) and hence U,= D™,
If (g—e(x))1 .= (g— De(m)7,, put

K@= 2, TACE)AE).

Then #**(2)=q7e(z) for Izl.>1, =(g—1)r,+7, for |z]<1. Then
{(q_‘ 1)T1+Tz}h(z)"’rzh**(z)= (q_' 1)71(71 —7,)e(2) for IZI >1, = {(q_‘ nr.+
7.}(r;—7,) for |z|=1, and =0 for |z|<{I. Hence

I, TLC@) e TUDH@— DN+ T —1d%*@] =0 for |z[>1,

and =(g— D(q7,+7)(7.—7,) for |z|<1. Since (g—e(z))V.=(q— De(m)7s,
7,=T7, implies e(zr)=1. Since &(z)=~1, this is a contradiction. If 7,= —q7,,
then e(n)=¢% Since &(z):=N(z)’, this is a contradiction. Hence
(g —1(gr,+7)7,—7,)#0. Therefore U, contains f;,,(z) and hence
U,=D>™ Therefore we have proved that U,=D>™ holds in any case.

7-3. Irreducibility of Q,, and D¥*™/Q,,. Let 8(2)=z"N(z)* and let
7(@)=N(z)’. Let H;: Dy>™—P,, Q,=ker (H;) etc. be as in Proposition
6. Let f(z) be a non-zero element of DyP>™. We want to study U,. We
repeat the argument in 7-2 and may assume that f(z) is a locally constant
function, and that f(z)=779(z) (+ € k*) holds for |z|>>1. Let n be a
positive integer such that f(x)=f(y) holds for |x|, | |<1 and |x— y|<|z"].
Put 7,=¢""'7 and 7;=> ¢, f(c). Then

@)= 3, T{CE)E)

=7, for |z|>1, and =7, for |z]<<1. We repeat the argument in 7-2 and
observe that —(g-+ 1)(g— D(7.+471) fo.0,12(2) is contained in U,.

If f(z) is not contained in Q,, Hf(f(2)=7+q ;=g ™q",+75)
#0. Hence U, contains f,,,,(z). It follows from the corollary to
Lemma 2 that U,=Dp>™.

If f(z) is contained in Q,,, then 7,= —qn Since 7,0, dividing by 7,
if necessary, we may assume 7,=1. We note that 4(z) is contained in the
image of H, (X(z)=2z") because M(z)=qH,(f;,(2)). For any integer n,
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hou(2)=q(q+1)"Ua) " Ty(A(z~"){h(2) +q  T.((z)}
=0 for |z|>|z""|, =1 for |z]|=|z""|, = —(¢—1) for |z|]<|z*"|. Similarly

han-s(2)= —q*(q+1)"X(m) " To(A(z™"))
{g7'T.(Dh(2)+q ‘ZcE”Z_W T(C(e)h(2)}

=0 for |z|>|a"""!], =1 for |z|=|z"""|, =—(g—1) for |z|<|z**"!|.
Taking a suitable linear combination of /(z) and the A,(2)’s (—n<<i<n),
we see that there is a function 4, ,(2) in U, such that 4, (z)=e(z) for
|z|>|z""], =0 for |z "|>|z|>|z"|, and =—1 for |z|<|z"|. Then for
any ce L with |c|<|x "), b, (2)=TAC(—c)hy (2)=e(2) for |z|>|z""|,
=0 for |z *|>|z—c|>|n"|, and = —1 for |z—c|<]|z"|.

Let g(z) be a locally constant function in @,. Let n be a large
integer such that (i) ¢(z)=7(2) (7, € k) for |z|>|z""|, and (ii)) ¢(x)=¢(»)
for | x|, |¥|<|z~"| and |x—y|<|z"|. Then we can write

q(z)= Tsftyomiani @+ 25 Teferniani(@)
cepi=n/pn

with 7, e k. Since g(2) is contained in Q,, 7+ >,7.=0. Since 4, (2)=
Srcom1a01(Z) — S 0,12m(2) is contained in U, we see that g(z)=— 3, 7.h, .(2)
is contained in U,. Since

[@T)X "% o To(I) o T.(Dq(2)=(m—1)!2°q(2),

and since any element of Q,, can be written as > ;. 2'q,(z) with locally
constant functions ¢,(z) in Q,,, U, contains Q,. Note that we have also
proved im (H,)=0Q,, (i(z)=z™).

7-4. Irreducibility of P, and D™ Let X(z)=z", H,: D*"—Q,,
P, =ker (H,) be as in Proposition 6. Since H,o H;=0, im (H;) is con-
tained in P,,=ker (H,). Hence P,, contains the space P* of all polynomial
functions f: Lk of degree <{m. Let B, , and P, , be as in 4-2. Then
the restriction map

P33 f[@—>(f1B,,.)() € Po,a

is a k-linear g-isomorphism. It follows from Proposition 2 that P} is an
algebraically irreducible g-module.
Let f(z) be an element of D»™ which is not contained in P}%. We
claim U,=D;*™. Then we also have P, =P} because D;>*" 2P, DP}.
We repeat the argument in 7-2 and may assume that f(z) is a non-
constant locally constant function. Let n be the largest integer » such that
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f(x)== f(») holds for some x, y e L with |[x—y|=|z"]. Since T,(C(—x))f(2)
is also contained in U,, we may assume x=0. Then, replacing f(z) by

TDe( T THC@) TSR

for a sufficiently large integer N if necessary, we may assume that f(z) is
constant for |z|>|z"]. Let C be a representaive of p"\p"*! modulo p»*.
Then we have constants 7, 7, (c € C), 7., such that f(z)=7, for [z]<|z"|,
f@=7, for |z—c|<|z"| and f(z)=T., for |z|>>|z"|. By our assumptions,
7.7, at least for one ¢. Let 7=g '(To+ D . 70)-

If 7., 57, then put

ha=qa" 2, T(C()f(2).
Then h(z)=7., for |z|>>|="|, and =7 for |z|<|z"|. Since

i T (CE)h@)—a T (A(m~ Ph(D} =1 —q W7 e =) fo0,100-21(2)s
U, contains f; o zn-2/(2). It follows from the corollary to Lemma 2 that
U, contains D>™,

If 7..=7, replacing f(z) by T:(C(c))f(z) (c € C) if necessary, we may
assume 7,%#7. Then T.(I)f(z2)=7, for |z|>|z""], =7, for |z—(—c™H)|<
|z~"|, and =7,, for |z|<|z™*|. By our assumption,

To—q“(u+}; T)=q g+ DF,—T7.)

is not zero. Hence we repeat a similar argument as above and obtain
U,DDp>™, Therefore the claim is proved. Note that we have also
proved that H, and H, induce bijective G-homomorphisms D}>™/P,—Q,,
and Dype™/Q.—P,, respectively. It follows from the open mapping
theorem that these maps are topological isomorphisms.

7-5.  Irreducibility of D%™. We assume in 7-5 that &(z)’=N(z)’
and e(z)£N(z) as functions on L*. If ¢(z) is not trivial on o*, then put
1=1(%).

First we assume that 4/e(— )¢° is not contained in k. Let f(z) be a
non-zero element of D°*™. We want to show U,=D}*™ We repeat
the argument in 7-2 and may assume that f(z)=7.(2) (7, € k¥*) for |z|>
|z'=t|, =0 for |x*~*|>|z|>1, and =T, (7, € k) for |z|<1.

If I is an even integer, put 2i=7—2. Then

1.f@) =T "e(m) ™ T(A(zY)) o T(Df(D) =3 —q*e(— DI fy,0,11(2)-
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Since Ve(—1)g* ¢ k, 17—q*~e(—1)1?=0. Hence U + contains fy, .,(2),
and hence U,=D)>™,
If I is an odd integer, put 2i=/—1. Then

e g;% TACEONT:1(2)—T1m*"e(x) " To(A(x")) o T.(1)f(2)}
={—q" te(— D11+73} fo,0,11-1/(2).

Since Ve(—1)qt ¢ k, —q*le(—1)r?+712+0. Hence U, contains
Jo,0,1:1-1/(2), and hence U,=D>™,

Now we assume that (z) is not trivial on o*, and that / =/() satisfies
ve(—1)q* e k. Then, by Proposition 6, we have continuous G-endomor-
phisms H, , : D**™—D*>™ such that H? , =H, .0 and H,,, + H, _=id.
Let f(z) be any non-zero element of D'°%™=im (H,,.). We want to show
U,=Dry™

By repeating the argument in 7-2, we may assume that f(z)=7e(z)
(ry e k*) for |z|>|a'"*|, =0 for |z'~|>|z]|>1, and =7, (7, € k) for |z|<1.
Since f(z) is contained in D!°%™, 7,=++/e(—1)g'q""7,. Hence we can
write f(2)=7.Hy,.(fy,0,-1(2)). Since f,,,.,(z) generates DX>™ as an
algebraic (g, G)-module, f(z) generates H, .(Dy>™)=D%™ as an algebraic
(g, G)-module. Hence U,=D%™

If e(z)=1 for |z|=1 and e(z)= —g, then we can prove in the same
way that D°%™ is an algebraically irreducible (g, G)-module.

XE

§ 8. Proof of Theorem 2

In Section 8, we study Hom, (U, V) in the case where U is a closed
G-invariant subspace of D, and ¥V is a quotient space of D, by a G-
invariant subspace, and prove Theorem 2. Note that we have already
determined Hom,, (D,, D;) and Hom, (D*>™, D;).

8-1. Homg;(P,, D,) and Hom;(Q,, D,). Let X(z)=z", d(z)=
z"N(2)%, Hy: D*™—Q,,, H;: D>™—P, etc. be as in Proposition 6. Let
0: L*—k* be another locally analytic character. Then we have the
following exact sequences:

0——>Homy (@, Dy)—>Homg (D™, Dy)—>Homg (P, Dy);
0——‘)H0m0 (P'Iru Dﬁ)———)HomG (D}soc,m’ DO)——)HomG (Qm’ Dﬁ)'
If Homg (P, D,)+0, then Hom, (D)™, D,)#0. It follows from Pro-

position 6 that either (i) 8(z)=2(z) and Hom, (D\*>™, D,)=k id., or (ii)
6(z)=6(z) and Hom,, (D™, D,)=kH,. Therefore, if Hom, (P, D,)+0,
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then 6(z)=X(z) and Hom,, (P,,, D,)=k id. If Hom, (Q,,, D,)+#0, then we
repeat a similar argument and obtain that 8(z)=4(z) and Hom, (Q,,, D;)
=k id.

8-2. Hom, (D™, D,). Let U(z)=2z"e(2), «(z))=N(z)’, e(z)#£N(2),
Dyemr=Dr4™ @ D>™ etc. be as in Proposition 6. Let §: L*->k* be
another locally analytic character. Then we have the following split exact
sequence:

0——>Homg (D™, D;)—>Hom, (D™, D;)—>Homg (D>%™, Dy)—>0.

By Proposition 6, Homy (D™, D;)#0 iff 6(z)=2%(z). Further
Homg (D™, D))=kH,,, @ kH,,_

holds. Therefore Homg (D)%™, D;)=£0 iff d(z)=x(z), and in this case,
Hom, (D}%™, Dy)=k id.

8-3. Generalization. Let U be a closed G-invariant subspace of D,.
We have already determined Homg (U, V) in the case of V=D, If
V=D,/|Dy>" (a(6)=n € Z, n>0), then we have a G-isomorphism

S#¥: D,/Dion-25D,, (5%(2)=2"*"%3(2)).

Hence Homg, (U, D,/D'**"y~Hom, (U, D). Since a(6*)=—n—2< -2,
Hom, (U, D;) 0 iff (z)=6*(z), U=D,, and Hom, (U, D;;)=k id. There-
fore Homg, (U, D,;/D>™) =0 holds iff %(z)=z"*"%(z), U=D,, and
Homy, (U, Dy/D*>™)=k(S¥)~* holds in this case.

If V=D,/P, (5(z)=2z", ne Z, n>0), then put §*(z)=z"""% Then
we have a G-isomorphism S ¥: Dy/DY¥>"= D,,. Hence we have the follow-
ing exact sequence:

0——>Hom,, (U, D>/ P,)—>Homg (U, D;/P,)—>Hom, (U, D;,).

If Hom, (U, D,/P,)+#0, then either Hom,, (U, D;)+0 or Hom, (U, D'*>"*/P,)
#0. In the first case, we have X(z)=6*(z) and Hom, (U, D,)=kid. Since

S¥-1
U=—>D,——>D,/D'*>" is injective, it does not come from Hom, (U, D,/P,,).
Hence Homy,, (U, D;/P,)=Hom, (U, Dy*>"/P,)=0. Since

Hom, (U, Dy*"/P,)=Homg (U, Q,)=—>Homg (U, D,) (0(z)=2"N(z)),
it follows that either (i) X(z)=6(z) and Hom, (U, D;)=k id. or (ii) X(z)=

3(z), U c D" and Hom,, (U, D,)=kH,. In the first case, X(z)=z"N(z),
U=Q, and Hom,(Q,, D;/P,)=kH;'. In the second case, X(z)=0d(z),
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U=Dy>" and Hom, (D}°*", D,/P,)=kR, with the natural map R;: Dl°>"
—Dlen/p

Similarly, if V'=D;/Q, (6(z)=2z"N(z)*), then either (i) ¥(z)=2z",
U=P, and Hom, (P,, D,/Q,)=kH;", or (ii) X(z)=6&(z), U=DY>" and
Hom, (D>, D;/Q,)=kR; with the natural map R;: D*>"—sDle*/Q

If V= D,/D2" (6(2)=1z"3(2), 7(z)*=N(z)’, 5(z) #N(z)), then we have
the following exact sequence:

0——>Homy,, (U, Dy*¢™)—Hom, (U, D;/Dy>™)—>Hom, (U D,/ Do),

If Hom (U, D,/D;*3™)=0, then either Hom, (U, D,/D**")#0 or Hom,
(U, DP2™=0. In the first case, we have either (i) %(z)=46(z), U=D,,
Hom, (D,;, D,/D¥>™y=kR¥ with the natural map R}: D,—D,/ D", or
(i) X(z)=z"*"%(z), U=D, and Hom, (D,, D,/D¥>™=kS¥-*. In the
case (i), we have Hom, (D;, D;)=k id. and hence Hom, (D;, D}°%")=0.
Hence

Hom, (D;, D;/DP%™) =kR¥.

with the natural map R¥.: D,—D,/D;?%™ In the case (i), we also have
Hom, (D;, D%™)=0. Since S¥-' is injective, it does not come from
Homy, (D;, Da/D},‘ji ™). Hence this case does not occur. If Homg (U, Djo%™
#0, we have Hom, (U, D) =£0. Further we may also assume that
Homg, (U, D,/Dy>™)=0 holds because we have already studied the other
case. It follows from Proposition 6 that X(z)=6d(z), U=Dy?%" and
Homg (D%, DP%™y=k id. Since Dy%"=D;*"/D¥%"C D,/D¥%™, we have

9, F
Hom, (D;°%", D;/DPe™y=k id.

8-4. Proof of Theorem 2. Let U and V be two different topologically
irredicuble G-modules constructed in Theorem 1. Hence U and V are one
Of the Dx’ D;oc,m, DZ/D;oc,m’ Pma D;oc,m/Pm’ Qm’ Dioc,m/Qm, D;otim, Dlocm
(the corresponding X’s for U and ¥ may be different). Since S7F: D,C/Dloc ™
—D; (6(z)=z"""%(z)) is a topological G-isomorphism, we may omit
D,/D>»™ from the above list of candidates. Since Hy: D\Y>™/P,—Q,,
and H,: D*>™/Q,—>P, are topological G-isomorphisms, we may also
omit D*»™/P, and D*>™/Q,, from the above list. Then we may assume
that U is a closed G-invariant subspace of D, and V'is a closed G-invariant
subspace of D, for certain X and 6. Then Hom, (U, V)=—>Hom, (U, D).
Since we have already determined Hom, (U, D,), it is easy to check that
Theorem 2 holds.
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Added in proof. After this paper was submitted, the author and W. Schikhof have
succeeded to generalize the results of [9], § 3 to non maximally complete fields.
As a consequence, the results of this paper hold without assuming that & is maxi-
mally complete. A detailed proof will be published in a following paper.
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