On the Symmetric-Square Zeta Functions Attached to Hilbert Modular Forms

Shin-ichiro Mizumoto

In this note we present new proofs of properties of the "second" L-functions attached to modular forms without using the Rankin-Selberg method. Detailed proofs (for Hilbert modular cases) are contained in [7].

§ 1. Elliptic Modular Case

Let

$$
f(z)=\sum_{n=1}^{\infty} a(n) \boldsymbol{e}(n z)
$$

be a normalized eigen cusp form of weight k with respect to $\operatorname{SL}(2, Z)$. Here k is a positive integer, $e(x)=\exp (2 \pi i x)$, and z is a variable on the upper half plane \mathfrak{S}. The "second" L-function we consider here is defined by:

$$
L_{2}(s, f)=\prod_{p}\left(1-\alpha_{p}^{2} p^{-s}\right)^{-1}\left(1-\alpha_{p} \beta_{p} p^{-s}\right)^{-1}\left(1-\beta_{p}^{2} p^{-s}\right)^{-1}
$$

where p runs over all prime numbers, and $\alpha_{p}, \beta_{p} \in C$ are taken so that $\alpha_{p}+\beta_{p}=a(p), \alpha_{p} \beta_{p}=p^{k-1}$; this infinite product converges absolutely and uniformly for $\operatorname{Re}(s)>k$.

The following properties are known:
(i) (Shimura [9], Zagier [11], Gelbart-Jacquet [5])
$L_{2}(s, f)$ has a holomorphic continuation to the whole s-plane and satisfies a functional equation under $s \mapsto 2 k-1-s$.
(ii) (Zagier [11], Sturm [10]) For each even integer m with $k \leqq m$ $\leqq 2 k-2$, the value $L_{2}(m, f) / \pi^{2 m-k+1}(f, f)$ belongs to the totally real number field $\boldsymbol{Q}(f)=\boldsymbol{Q}(a(n) \mid n \geqq 1)$; here (,) is the Petersson inner product (cf. (2.2) below).

Most of the known proofs of (i) (ii) depend on the Rankin-Selberg method. The main purpose of this note is to give proofs of (i) (ii) not using the Rankin-Selberg method. Poincaré series and Kloosterman sums

[^0]play a fundamental role in our proofs; this method was suggested by a remark in Zagier [11, pp. 141-142].

Let

$$
G_{r}(z)=\frac{1}{2} \sum_{\substack{c, d) \in Z^{2} \\(c, d)=1}}(c z+d)^{-k} e\left(r \cdot \frac{a_{0} z+b_{0}}{c z+d}\right) \quad(z \in \mathscr{S})
$$

be the Poincaré series with $0<r \in Z$, which is a cusp form of weight k with respect to $S L(2, Z)$. For $\operatorname{Re}(s)>1$, we put

$$
\begin{equation*}
\Psi_{s}(z)=\sum_{n=1}^{\infty} n^{k-1-s} G_{n 2}(z) \tag{1.1}
\end{equation*}
$$

This series converges absolutely and uniformly on any compact subset of $\left\{(s, z) \mid \operatorname{Re}(s)>1, z \in \mathscr{S}_{c}\right\}$. By

$$
\left(G_{r}, f\right)=\frac{\Gamma(k-1)}{(4 \pi r)^{k-1}} a(r)
$$

we have

$$
\begin{equation*}
\zeta(2 s)\left(\Psi_{s}, f\right)=\frac{\Gamma(k-1)}{(4 \pi)^{k-1}} L_{2}(s+k-1, f) \tag{1.2}
\end{equation*}
$$

for $\operatorname{Re}(s)>1$, since

$$
L_{2}(s, f)=\zeta(2 s-2 k+2) \sum_{n=1}^{\infty} a\left(n^{2}\right) n^{-s} .
$$

Let

$$
\begin{equation*}
\Psi_{s}(z)=\sum_{m=1}^{\infty} b(m, s) e(m z) \tag{1.3}
\end{equation*}
$$

be the Fourier expansion of Ψ_{s}. To compute $b(m, s)$, we use the following Fourier expansion of G_{r} :

$$
\begin{align*}
G_{r}(z)=\sum_{m=1}^{\infty}\left\{\delta_{r, m}\right. & +2 \pi(-1)^{k / 2}\left(\frac{m}{r}\right)^{(k-1) / 2} \\
& \left.\times \sum_{c=1}^{\infty} \frac{1}{c} K_{c}(r, m) J_{k-1}\left(\frac{4 \pi}{c} \sqrt{r m}\right)\right\} \boldsymbol{e}(m z) . \tag{1.4}
\end{align*}
$$

Here $\delta_{r, m}$ is the Kronecker delta,

$$
K_{c}(r, m)=\sum_{\substack{x \text { mod } c \\(x, c)=1}} e\left(\frac{r x+m x^{-1}}{c}\right)
$$

(x^{-1} denotes an integer such that $x x^{-1} \equiv 1(\bmod c)$) the Kloosterman sum, and J_{k-1} the Bessel function of order $k-1$.

Zagier [11, pp. 141-142] asked whether it is possible to obtain an explicit formula of $b(m, s)$ (reflecting the properties of $L_{2}(s, f)$) by substituting directly (1.4) into (1.1). In Section 3, we shall show that this is possible.

§ 2. Statement of Results

Let F be a totally real number field of degree g over Q, with the class number one in the narrow sense. Let $\mathcal{O}, \mathfrak{D}, d(F)$ be the ring of integers in F, the different of F / Q, and the discriminant of F, respectively. Let

$$
\begin{equation*}
f(z)=\sum_{0<\nu \in \mathfrak{\emptyset}-1} a((\nu) \mathfrak{D}) e(\operatorname{tr}(\nu z)) \quad\left(z=\left(z_{1}, \cdots, z_{g}\right) \in \mathscr{S}_{\Sigma^{g}}^{g}\right) \tag{2.1}
\end{equation*}
$$

be a normalized eigen cusp form of weight $k(\in \boldsymbol{Z})$ with respect to $S L(2, \mathcal{O})$. For two modular forms g_{1}, g_{2} of weight k with respect to $S L(2, \mathcal{O})$ such that $g_{1} g_{2}$ is a cusp form, we put

$$
\begin{equation*}
\left(g_{1}, g_{2}\right)=\int_{S L(2,0) \backslash פ^{g}} g_{1}(z) \overline{g_{2}(z)} \operatorname{Im}(z)^{k} d \mu(z) \tag{2.2}
\end{equation*}
$$

where

$$
\operatorname{Im}(z)=\prod_{j=1}^{g} y_{j} \quad \text { and } \quad d \mu(z)=\prod_{j=1}^{g} y_{j}^{-2} d x_{j} d y_{j} \quad \text { if } z=\left(z_{1}, \cdots, z_{g}\right)
$$

and $z_{j}=x_{j}+i y_{j}(j=1, \cdots, g)$. For $\operatorname{Re}(s)>k+\frac{1}{2}$, we put

$$
L_{2}(s, f)=\prod_{\mathfrak{p}}\left(1-\alpha_{\mathfrak{p}}^{2} N(\mathfrak{p})^{-s}\right)^{-1}\left(1-\alpha_{p} \beta_{p} N(\mathfrak{p})^{-s}\right)^{-1}\left(1-\beta_{p}^{2} N(\mathfrak{p})^{-s}\right)^{-1}
$$

where the product is over all non-zero prime ideals in \mathcal{O} with $\alpha_{p}, \beta_{p} \in C$ satisfying $\alpha_{\mathfrak{p}}+\beta_{\mathfrak{p}}=a(\mathfrak{p})$ and $\alpha_{\mathfrak{p}} \beta_{\mathfrak{p}}=N(\mathfrak{p})^{k-1}$.

Theorem 1. The notation being as above, suppose f is a normalized eigen cusp form of even weight $k \geqq 4$ with respect to $S L(2, \mathcal{O})$. Put

$$
\begin{equation*}
\Lambda_{2}(s, f)=d(F)^{3 s / 2}\left(2^{-s} \pi^{-3 s / 2} \Gamma(s) \Gamma\left(\frac{s-k+2}{2}\right)\right)^{g} L_{2}(s, f) \tag{2.3}
\end{equation*}
$$

Then, $\Lambda_{2}(s, f)$ has a holomorphic continuation to the whole s-plane and satisfies the functional equation

$$
\Lambda_{2}(s, f)=\Lambda_{2}(2 k-1-s, f)
$$

Theorem 2. Let f be as in Theorem 1. Then, for each even integer m with $k \leqq m \leqq 2 k-2$, we have:

$$
\left[L_{2}(m, f) / \pi^{g(2 m-k+1)}(f, f)\right]^{\sigma}=L_{2}\left(m, f^{\sigma}\right) / \pi^{g(2 m-k+1)}\left(f^{\sigma}, f^{\sigma}\right)
$$

for all $\sigma \in \operatorname{Aut}(C)$. In particular, $L_{2}(m, f) / \pi^{g(2 m-k+1)}(f, f)$ belongs to $\boldsymbol{Q}(f)$.

Here $\operatorname{Aut}(\boldsymbol{C})$ denotes the group of all ring automorphisms of \boldsymbol{C}. Each $\sigma \in \operatorname{Aut}(C)$ acts on f with the Fourier expansion (2.1) by

$$
f^{\sigma}(z)=\sum_{0<\nu \in \mathfrak{D}-1} a((\nu) \mathfrak{D})^{\sigma} e(\operatorname{tr}(\nu z)) .
$$

We denote by $\boldsymbol{Q}(f)$ the totally real number field generated over \boldsymbol{Q} by the eigenvalues of all Hecke operators on f.

Remark 1. As in Zagier [11], our method yields also the trace formula for the Hecke operators acting on the space of cusp forms with respect to $S L(2, \mathcal{O})$, which is a special case of the formula of Shimizu [8].

Remark 2. Theorem 2 is used in Furusawa [4].

§3. Proofs

We sketch our method of proofs in the case $F=\boldsymbol{Q}$. We substitute (1.4) into (1.1) to obtain:

$$
b(m, s)=(-1)^{k / 2} \pi m^{(k-1) / 2} S+ \begin{cases}m^{(k-1-s) / 2} & \text { if } m \text { is a square }, \tag{3.1}\\ 0 & \text { otherwise }\end{cases}
$$

Here

$$
S=2 \sum_{c=1}^{\infty} \sum_{n=1}^{\infty} n^{-s} c^{-1} K_{c}\left(m, n^{2}\right) J_{k-1}\left(\frac{4 \pi n \sqrt{m}}{c}\right)
$$

Suppose $1<\operatorname{Re}(s)<k-1$ or $s=k-1$, and put

$$
A(x)=|x|^{-s} J_{k-1}\left(\frac{4 \pi \sqrt{m}|x|}{c}\right)
$$

So

$$
A(0)= \begin{cases}0 & \text { if } \operatorname{Re}(s)<k-1 \\ \frac{(2 \pi)^{k-1}}{\Gamma(k)}\left(\frac{\sqrt{m}}{c}\right)^{k-1} & \text { if } s=k-1\end{cases}
$$

and

$$
\begin{align*}
S= & \sum_{c=1}^{\infty} \sum_{n \in Z} c^{-1} K_{c}\left(m, n^{2}\right) A(n)-\sum_{c=1}^{\infty} c^{-1} K_{c}(m, 0) A(0) \\
= & \sum_{c=1}^{\infty} \sum_{r \bmod c} c^{-1} K_{c}\left(m, r^{2}\right) \sum_{\substack{n \equiv r(\bmod c) \\
n \in Z}} A(n) \tag{3.2}\\
& -\delta_{s, k-1} \frac{(2 \pi)^{k-1}}{\Gamma(k)} m^{(k-1) / 2} \sum_{c=1}^{\infty} c^{-k} K_{c}(m, 0)
\end{align*}
$$

Here it is easy to see:

$$
\begin{equation*}
\sum_{c=1}^{\infty} c^{-k} K_{c}(m, 0)=\frac{\sigma_{1-k}(m)}{\zeta(k)} \tag{3.3}
\end{equation*}
$$

where $\sigma_{s}(m)=\sum_{\substack{d \mid m \\ d>0}} d^{s}$. We compute

$$
\begin{equation*}
\sum_{\substack{n \equiv r(\bmod c) \\ n \in Z}} A(n)=c^{-s} \sum_{n \in Z}\left|n+\frac{r}{c}\right|^{-s} J_{k-1}\left(4 \pi \sqrt{m}\left|n+\frac{r}{c}\right|\right) \tag{3.4}
\end{equation*}
$$

with c, r fixed. If we put

$$
B(x)=\sum_{n \in Z}|n+x|^{-s} J_{k-1}(4 \pi \sqrt{m}|n+x|)
$$

(3.4) is equal to $c^{-s} B(r / c)$. Let $B(x)=\sum_{l \in Z} c_{l} e(l x)$ be the Fourier expansion of $B(x)$. By the Poisson summation formula, we have:

$$
\begin{equation*}
c_{l}=\int_{-\infty}^{+\infty} e(-l x)|x|^{-s} J_{k-1}(4 \pi \sqrt{m}|x|) d x \tag{3.5}
\end{equation*}
$$

(We denote this integral by $I(l, m, s)$.)
Thus

$$
\sum_{n \equiv r(\bmod c)} A(n)=c^{-s} \sum_{i \in Z} I(l, m, s) e\left(\frac{l r}{c}\right)
$$

We note that $I(l, m, s)$ is independent of c and r. Hence by (3.2),

$$
\begin{align*}
S= & \sum_{l \in Z}\left(\sum_{c=1}^{\infty} \sum_{r \bmod c} c^{-1-s} K_{c}\left(m, r^{2}\right) e\left(\frac{l r}{c}\right)\right) I(l, m, s) \\
& -\delta_{s, k-1} \frac{(2 \pi)^{k-1}}{\Gamma(k)} m^{(k-1) / 2} \frac{\sigma_{1-k}(m)}{\zeta(k)} \tag{3.6}
\end{align*}
$$

for $1<\operatorname{Re}(s)<k-1$ or $s=k-1$.

Proposition.

$$
\sum_{c=1}^{\infty} \sum_{r \bmod c} c^{-1-s} K_{c}\left(m, r^{2}\right) e\left(\frac{l r}{c}\right)=\frac{L\left(s, l^{2}-4 m\right)}{\zeta(2 s)}
$$

for each $l, m \in \boldsymbol{Z}$. Here

$$
L\left(s, l^{2}-4 m\right)= \begin{cases}\zeta(2 s-1) \quad \text { if } l^{2}=4 m \\ L\left(s,\left(\frac{D}{*}\right)\right) \sum_{\substack{d \mid \ddagger \\ d>0}} \mu(d)\left(\frac{D}{d}\right) d^{-s} \sigma_{1-2 s}\left(f d^{-1}\right) \quad \text { if } l^{2} \neq 4 m .\end{cases}
$$

In the latter case, we write $l^{2}-4 m=D \mathfrak{f}^{2}$ with $0<f \in Z$ and the discriminant D of the field $Q\left(\sqrt{l^{2}-4 m}\right) ;\left(\frac{D}{*}\right)$ denotes the Kronecker symbol, and μ the Möbius function.

Proof of Proposition. By the definition of the Kloosterman sums,

$$
\sum_{r \bmod c} e\left(\frac{l r}{c}\right) K_{c}\left(m, r^{2}\right)=\sum_{\substack{x \bmod c \\(x, c)=1}} \sum_{\bmod c} e\left(\frac{1}{c}\left(l r+r^{2} x^{-1}+m x\right)\right) .
$$

In the inner summation, we replace r by $r x$ to find that this is equal to

$$
\sum_{\substack{x \bmod c \\(x, c)=1}} \sum_{\bmod c} e\left(\frac{x}{c}\left(r^{2}+l r+m\right)\right)
$$

This value is calculated by counting the numbers of the solutions of quadratic congruences. We omit the details.

Proof of Theorem 1. For $1<\operatorname{Re}(s)<k-1$, we have

$$
\zeta(2 s) S=\sum_{l \in Z} I(l, m, s) L\left(s, l^{2}-4 m\right)
$$

by (3.6) and Proposition. So, in this region, by (3.1) we have

$$
\begin{equation*}
\zeta(2 s) b(m, s)=(-1)^{k / 2} m^{(k-1) / 2} \pi \sum_{\substack{l \neq 4 m \\ l \in Z}} I(l, m, s) L\left(s, l^{2}-4 m\right)+H(s) \tag{3.7}
\end{equation*}
$$

with

$$
\begin{align*}
& H(s)=0 \quad \text { if } m \text { is not a square } \\
& H(s)=(-1)^{k / 2} 2^{s} \pi^{s+(1 / 2)} m^{(k+s-2) / 2} \\
& \quad \times \frac{\Gamma\left(\frac{k-s}{2}\right) \Gamma\left(s-\frac{1}{2}\right)}{\Gamma\left(\frac{k+s}{2}\right) \Gamma\left(\frac{k+s-1}{2}\right) \Gamma\left(\frac{1-k+s}{2}\right)} \zeta(2 s-1)+m^{(k-1-s) / 2} \zeta(2 s), \tag{3.8}
\end{align*}
$$

By Erdélyi et al. [3, 1.12, (13)] [2, 2.1.4, (22)],

$$
I(l, m, s)=\left\{\begin{array}{l}
2^{k-1} m^{(k-1) / 2} \pi^{s-1}\left(4 m-l^{2}\right)^{(s-k) / 2} \Gamma\left(\frac{k-s}{2}\right) \Gamma\left(\frac{k+s}{2}\right)^{-1} \tag{3.9}\\
\quad \times F\left(\frac{k-s}{2}, \frac{k+s-1}{2} ; \frac{1}{2} ; \frac{l^{2}}{l^{2}-4 m}\right) \quad \text { if } 4 m>l^{2}, \\
2^{s} m^{(k-1) / 2} \pi^{s-1}\left(l^{2}-4 m\right)^{(s-k) / 2} \Gamma(k-s) \Gamma(k)^{-1} \cos \left(\frac{\pi}{2}(k-s)\right) \\
\quad \times F\left(\frac{k-s}{2}, \frac{k+s-1}{2} ; k ; \frac{4 m}{4 m-l^{2}}\right) \quad \text { if } 4 m<l^{2},
\end{array}\right.
$$

where $F(a, b ; c ; x)$ is the hypergeometric function.
Lemma. (1) Fix $0<m \in Z$. For each $l \in Z$ such that $l^{2} \neq 4 m$, put

$$
Z_{l}(s)=2^{-s} \pi^{-3 s / 2} \Gamma\left(\frac{s+1}{2}\right) \Gamma(s+k-1) I(l, m, s) L\left(s, l^{2}-4 m\right)
$$

which is a meromorphic function on C. Then,
(i) $Z_{l}(s)$ satisfies the functional equation: $Z_{l}(s)=Z_{l}(1-s)$,
(ii) $Z_{l}(s)$ is holomorphic in the strip $-\frac{1}{2}<\operatorname{Re}(s)<\frac{3}{2}$.
(2) Put

$$
H^{*}(s)=2^{-s} \pi^{-3 s / 2} \Gamma\left(\frac{s+1}{2}\right) \Gamma(s+k-1) H(s)
$$

Then,
(i) $H^{*}(s)$ satisfies the functional equation: $H^{*}(s)=H^{*}(1-s)$,
(ii) $H^{*}(s)$ is holomorphic in the strip $-\frac{1}{2}<\operatorname{Re}(s)<\frac{3}{2}$.

The assertion (1) follows from well-known properties of $L\left(s, l^{2}-4 m\right)$ and the fact that $F(a, b ; c ; x)$ with $x<0$ is holomorphic in a, b and $F(a, b ; c ; x)=F(b, a ; c ; x)$. The assertion (2) is a simple consequence of properties of the Riemann zeta function.

The infinite sum in (3.7) converges uniformly and absolutely in the strip $-\frac{1}{2}<\operatorname{Re}(s)<k-1$. So (3.7) and (1.2) imply that $\Lambda_{2}(s, f)$ (in the notation of (2.3) with $F=\boldsymbol{Q}$) is a meromorphic function on C satisfying

$$
\Lambda_{2}(s, f)=\Lambda_{2}(2 k-1-s, f)
$$

and holomorphic in $k-\frac{3}{2}<\operatorname{Re}(s)<2 k-2$. But by the Euler product expression of $L_{2}(s, f)$ which converges absolutely and uniformly for $\operatorname{Re}(s)>k$, we see that $\Lambda_{2}(s, f)$ is also holomorphic for $\operatorname{Re}(s)>k-\frac{3}{2}$. Hence $\Lambda_{2}(s, f)$ is an entire function with the above functional equation.

Proof of Theorem 2. If $l^{2}>4 m$, then by (3.9) we see: $I(l, m, r)=0$ for each odd integer with $3 \leqq r \leqq k-1$. Moreover each

$$
F\left(\frac{k-r}{2}, \frac{k+r-1}{2} ; \frac{1}{2} ; \frac{l^{2}}{l^{2}-4 m}\right) \quad\left(l^{2}<4 m\right)
$$

has an expression in terms of the Gegenbauer polynomials. So, for each r, by (3.6) and Proposition we have:

$$
\begin{equation*}
\Psi_{r}=-2^{2 r-2} \pi^{2 r} \frac{\Gamma(k-r)}{\Gamma(k+r-1)} \frac{1}{\zeta(2 r)} C_{k, r}-\delta_{r, k-1} \cdot \frac{1}{2} E_{k} \tag{3.10}
\end{equation*}
$$

Here

$$
E_{k}(z)=1+(-1)^{k / 2} \frac{(2 \pi)^{k}}{\Gamma(k) \zeta(k)} \sum_{m=1}^{\infty} \sigma_{k-1}(m) e(m z)
$$

is the Eisenstein series of weight k, and

$$
C_{k, r}(z)=\sum_{m=0}^{\infty}\left(\sum_{\substack{l \in Z \\ l^{2} \leqq 4 m}} p_{k, r}(l, m) L\left(1-r, l^{2}-4 m\right)\right) \boldsymbol{e}(m z)
$$

with

$$
p_{k, r}(l, m)=\text { coefficient of } x^{k-r-1} \text { in }\left(1-l x+m x^{2}\right)^{-r}
$$

(In particular we obtain: $C_{k, r}$ is a modular form of weight k with respect to $S L(2, Z)$; if $r<k-1$, it is a cusp form. This is a result of Cohen [1] and Zagier [11].) By (3.10), the Fourier coefficients of $\Psi_{r}(3 \leqq r \leqq k-1$, r odd) are rational numbers. So, by Shimura [9a, Lemma 4, p. 792], we obtain Theorem 2 by (1.2) for $k<m \leqq 2 k-2, m$ even. For $m=k$, $L_{2}(k, f)=2^{2 k-1} \pi^{k+1} \Gamma(k)^{-1}(f, f)$ is a classical result.

Remark. As in Zagier [11], we obtain the trace formula of Hecke operators by putting $s=1$ in (3.7).

References

[1] Cohen, H., Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann., 217 (1975), 271-285.
[2] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G., Higher Transcendental Functions, Vol. 1. New York-Toronto-London: McGraw-Hill 1953.
[3] -, Tables of Integral Transforms, Vol. 1. New York-Toronto-London: McGraw-Hill 1954.
[4] Furusawa, M., On Peterson norms for some liftings, Math. Ann., 267 (1984), 543-548.
[5] Gelbart, S., Jacquet, H., A relation between automorphic representations of GL(2) and GL(3), Ann. scient. Ec. Norm. Sup., 11 (1978), 471-542.
[6] Mizumoto, S., On integrality of certain algebraic numbers associated with modular forms, Math. Ann., 265 (1983), 119-135.
[7] - On the second L-functions attached to Hilbert modular forms, Math. Ann., 269 (1984), 191-216.
[8] Shimizu, H., On discontinuous groups operating on the product of the upper planes, Ann. of Math., 77 (1963), 33-71.
[9] Shimura, G., On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., 31 (1975), 79-98.
[9 a] The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29 (1976), 783-804.
[10] Sturm, J., Special values of zeta functions and Eisenstein series of half integral weight, Amer. J. Math., 102 (1980), 219-240.
[11] Zagier, D., Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, Lect. Notes in Math., 627, Berlin-Heidelberg-New York: Springer 1977, 105-169.

Department of Mathematics
Tokyo Institute of Technology
Oh-Okayama, Meguro-ku
Tokyo 152, Japan

[^0]: Received February 6, 1984.

