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Group Cohomology and Hecke Operators 2 
Hilhert Modular Surface Case 

Michio Kuga 

In the previous report [27], the authors developed the functorial 
behavior of Heeke operators operating on group cohomologies, and 
applied them to arithmetic Fuchsian groups to prove some congruence 
relations between eigenvalues of Heeke operators. There the authors 
promised to present similar congruence relations for Hilbert modular 
groups by the same principle. The author of the present report partly 
fulfills the promise. Namely, Theorem (3.4) in the last page of this 
report is a direct analogue for Hilbert-modular-surface case of Theorem 
(2.2.3) of the previous report [27]. 

The author would like to thank the following people: 
(1) Walter Parry and Chih-Han Sah were co-authors of the previous 

report. Occasional conversations with them were very helpful to prepare 
this report, especially in 1.6 and cohomology of Tab. 

(2) Salman Abdulali; Min Ho Lee, Troels Petersen and Monica Petri 
were note-takers and helpful critics of my lectures on this subject. Based 
on their notes, this report was made. 

§ 1. Notations and known facts 

1.1. Standard notations of Z, Q, R, C are used for the ring of 
integers, fields of rationals, reals, and complex numbers. In general, the 
notation K denotes a field of characteristic zero, usually K = Q, R or C. 
The finite field with q elements is denoted by F q • For an integer n, the 
cyclic group of order n is denoted by Zn or by Z/nZ; if n is a prime 
number .e it is also denoted by Ft. In general, for a module vIt and an 
integer n, the cokernel vIt/nvit of the n-multiplication x~nx is denoted by 
vltno and the kernel is denoted by nvlt={x E vIt; nx=O}. 

In this note, as a module vIt we consider vIt = C, R, Q, Z, Zn, in 
particular Fe, C/Z, R/Z, Q/Z, or a finite direct sum of them; so vltn and 
nvlt are always finite modules. 

For a group G, G/[G, G] is denoted by Gab; [G, G] is denoted by G(I). 
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[G(ll, G(1)] by G(zl, etc. 
If a group r is operating on a set Q, for a point x e Q, the isotropy 

subgroup {r e r; r(x) = x} of x is denoted by r:c. 
The direct product of two groups A, B is denoted by A X B here, but 

if A and B are both abelian groups, the notation AE£iB is also used. For 
an abelian group A, n-fold direct product (direct sum) is denoted either 
by An or by nA. 

For a locally compact abelian group A, the Pontrjagin dual of A is 
denoted by A. 

F or a real quadratic number filed K = Q( .vd), d denotes the discrim
inant, h the class number, eo a fundamental unit. 

The ring of integers in K is denoted by 0, the group of units by 
;Qx={± I} X {e~; n e Z}. 

For a prime number p, we denote by ep, Jp, gp the ramification 
index, the degree of p in ;Q, and the number of prime ideals of;Q contain
ing p respectively. Thus epJpg p=2; ep=2 iff p 1 d; (-I)gp= -( -1)fP= 
(djp) = the quadratic residue symbol, for odd p, p{d; and with )J= 
(dZ-l)j8,Jz=(1j2)(3-(-I») and gz=(lj2)(3+( _I») for odd d. 

The two embeddings of K into R are denoted by CPl and cpz; we rather 
consider K as already embedded in R, and we denote by CPl the identity 
embedding, and by cpz the conjugation. Thus cpl.vd) = .vd> 0, and 
CPz(.vd)= -.vd <0. 

N(a) denotes the norm CPl(a)· cp2(a) of an element a e K, tr (a) = 
cptCa) + cpz(a) denotes the trace. 

For an ideal n of;Q, N(n) denotes the norm [0: n] of n. 
The norm N«I-em of the principal ideal (1-e~) is particularly 

important in the later sections; we denote it by 

mo=N«(1-em= 12-tr (e~) I· 

For an ideal n of 0, the reduction O--+O/n mod n is denoted by )J •. 
The same notation is used for the reduction: M2(;Q)--+Mz(;Qjn). 

The image of the units-group ;Qx by the reduction )J. mod n is 
a subgroup of (;Q/nY; the subgroup will be denoted by K=K(n), the 
cokernel (;Q/nY/K is denoted by H =H(n). 

The order h(q)=1 H(q) 1 of the cokernel H(q), as a function of prime 
ideals q is a very unpredictable function. But it is easy to see 

Lemma (1.1.1). If q is oj degree 2 over Q, i.e. N(q)=qZ with a 
rational prime q, then IK(q) 1 must divide 2(q+l); thus, (q-l)/2Ih(q), if 
Jq=2. 

The upper half plane {z=x+r-Ty e C; y>O} is denoted by SJ or 
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by SJ+, on which SL(2, R) operates by the fractional linear transforma
tions: 

(~ ~): z----+(az+b)/(cz+d). 

For a Fuchsian group T l cSL(2, R) the quotient TI\SJ is denoted by 
U = U(TI)' Tl also operates on the lower half plane SJ- = {z=x+/=1y; 
y<O}. TI\SJ- is denoted by U- = U-(T l ). 

A "Hilbert modular" group T c SL(2, R)m operates on SJ" X SJ" 
x··· xSJ'm (s;=±). The quotient T\SJ"X'" xSJ'm is denoted by 
U"'2""m= U"'2""m(T). U+,···, + is denoted by U. 

1.2. Groups discussed here. Let K = Q( /d) be a real quaaratic 
field with class number h= 1, and such that N(so) = -1. The Hilbert 
modular group SL(2;0) is denoted by T(I);T(I)/±I by T(1). The 
ordered pair cP= (CPI' CPJ of embeddings CPI' and CP2 of K into R embeds 
T(1) into SL(2, R)XSL(2, R)=SL(2, R)2. Thus t(1) and T(1) act on 
the space SJ X SJ = SJ2. 

F or an ideal n of 0, we put 

to(n) = {(~ ~) E t(1); c=O (mod n)} 

and To(n)=to(n)/± 1. Also we put 

tto(n)= {(~ ~) E t(1); b=O (mod n)} 

and tToCn)= tto(n)/± 1. Also 

and 

t(n) = {(~ ~) E t(1); (~ ~)=(b ~)(mOd n)} 

T(n)=t(n) 

=t(n)/± 1 

if n $ 2, 

if n 3 2. 

In this note we consider as n a product: 

(1.2.1) 

of m distinct prime ideals q; (i = 1, .. " m), among which ql> ... , qn are 
of the degree 2 over Q, i.e. N(q;)=q~, and qn+l"", qm are of degree 1 
over Q, i.e. N(qj)=qj, where qi (i=I, ... , m) are rational primes. 
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We assume furthermore that (n, 6d)= 1, and that there exists a prime 
number t such that 

(1.2.2) (.e, 6dn) = 1, 

qi=1 (mod t) for i=l, ... , n, 

qi;El (mod t) for ;=n+l, ... , m, 

(.e, N(1-em=1. 

Once such an ideal n is chosen and fixed we denote i'oCn) by i', ro(n) 
by r. We assume that r has no elliptic element. This is true if one of 
qj (j =n+ 1, ... , m) satisfies (-ljqj)= -1, and one of qj (j=n+ 1, ... , m) 
satisfies (-3jqj)= -1, and d=l=5 (cf. [41], [42]). 

In 1.4, we shall see that Hl(r, C)=Hom (rab, C)={O} (Th. (1.4.4». 
This also comes from a result of Margulis [33]. 

Hence rab=r/[r, T] is a finite group, and by the congruence sub
group theorem of Bass-Milnor-Serre, there is an ideal m of £) such that 

[i', i']:Ji'(m), and [r, r]:Jr(m). 

Let us note here that t ;) -1, but [i', t] ~ -1 iff n ~ 2, ~,../ that 

rab=i'Rb/ ± 1 for n ~ 2. 

In our case of r=r(n), n=ql' ... , qm, qi=l=qj for i=l=j, and (n,6d) 
= 1, a standard calculation shows that we can take m == 6n, and that 

where 

and 

We put 

i'ab~(t/i'(m»ab 

if) _{Zs 
q- {I} 

~(i'(I)/t(6»abX IT (i'o(q)/i'(q»Rb 
qln 

iff Ia= 1 
for q13. 

iff 1a=2 

IT ql2 if) q = if)z, 

ITql3 if)q = if)s, 
if)z X if)s=if)e. 

which is ~Zf' or ~ {I}, 

which is ~Zf· or ~ {I}, 
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The proje.ction map Pq: I'~(Jjq of I'=I'oCn) to a factor (Jjq of I'ab= 
n (Jjq is given as follows: 

For a prime ideal q dividing n, 

Pq : I'o(n)I--~)(Jjq=F~q=(O/qy, 
w w 

i.e. Pq associates to a 2 X 2 matrix r = (~ . ~) the reduction mod q of its 

(1, I)-entry a. . 
If}; = 1, thus (Jj2= nqI2(Jjq~Zf', then for a prime ideal q dividing 2, 

the projection map Pq of I' to (J)q~Z2 is given as follows: for an element 
r apply the reduction l.Iq, which sends I' onto SL(2,Z2)' which is isomor
phic to the symmetric group I;3 of 3 letters, then consi4er the sign, 
sign (vir» of the permutation l.Ilr). The map sign 0 l.Iq : I' ~{ ± I} = Z2 is 
the projection: Pq = sign 0 l.Iq• . 

For an element r=(g ~-l) the formula: 

is observable easily. 
If}; = 1, thus (Jjs=Zfs, then for a prime ideal q dividing 3 the projec

tion map Pq: I'~(Jj=Z3 is given as follows: viI') is isomorphic to 
SL(2, Fg), which has a hOmomorphism onto A4, the alternating group of 
4 letters, which has a homomorphism onto As ~Zs' Pq is the combination 
of these 3 homomorphisms: 

Pq : I'~SL(2, Fs)~A4~A~=Zs. 

For an element r of the shape r = (g ~_} the formula 

is observable easily. 
We denote the order of cyclic groups (Jjq appearing in the decomposi

tion I'ab= n (Jjq by Pt (i = 1, ... ) in some ordering. Thus Pt are one of 
(qfq-I) or 2 or 3, and 

Thus 
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We denote [F, F] by F(I)=r(1). Note that F(I) 'fJ -1. Also denote 
[r(I), r(l)] by r(2). r(l) and r(2) are arithmetic subgroup, and we have 

r(I)={rEF; Pq{r)=I, ql6n} 

= {r E F; P6(r) = I, r=(6 n mod n}, 
PI) -::Jp2) -::Jr«6n)m), 

for a sufficiently large integer m. 
Thus r(1)ab = r(l) / r(2) is a finite abelian group whose order divides 

some power of 6n, and therefore, is coprime with t. Namely, 

Lemma (1.2.3). HI(r(l), Fe) = Hom (r(l)ab, Fe) = {O}. 

(R U (00)) X (R U (00 ))=(R U (00))2 is a part of the boundary a(&l) of 
&l in PI(C)2. This part is denoted by pt(R)2. A map SO=(SOI> S02) of 
K U (00) to P\R)2 is defined by 

{
SOCa)=(SOI(a), S02(a)) E R2 

soC 00 )=( 00, 00). 

for a E K, 

A point in the image 1m (SO) =SO(K U (00 ))Cpt(R)2 is called a cusp. 
1m (SO) is also denoted by PI(K), by identifying a E KU(oo)=PI(K) with 
the image so(a) = (SOI(a), S02(a)). 

SL(2, K) operates on PI(K), so does F(l) and r(l). In our case 
of h= 1, the action of F(I) on PI(K) is transitive. The isotropy group of 
00 = (00, 00), denoted by F 00(1), is 

Foo(l)={rEF(l); r(oo)=oo}={r=(~ ~) EF(1)} 

={r=(~ ~);ad=l,a,b,dEO,a,dEOx}. 

Similarly, roo(l)={r E r(l): r(oo) = oo}=Foo(l)/± 1 is defined. 
Thus the space PI(K) of cusps is identified with F(1)/F 00(1)= 

r(l)/ r 00(1). 
The isotropy subgroup FaCl)={r E r(1); r(a)=a} of an arbitrary 

cusp a=g(oo), (g E F(l)), is Fa(l)=gF oo(1)g-l. Similarly raCI) is defined, 
and ra(l)=gr oo(l)g-I with the obvious implication. 

For a subgroup rcr(l), a r-orbit of cusps is called aT-cusp or 
simply a cusp. A r-cusp containing a cusp a is denoted by [a] or [a]r. 
For an index finite subgroup r in r(l), the number f = fr of r -cusps is 
finite; and the set {c I , C2, "', cj } of r-cusps is identified with the double
coset-space r\r(I)/ r 00(1). 
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Choose a system {glo ... , gi} of representatives gi (i = 1, ... , f) of 
double-cosets: T(i)=U TgiT =(1), then ai=gloo) (i= 1, .. . ,f) repre
sent T-cusps ci=[ai]r (i=I, .. . J). 

For a cusp a E PI(K), the isotropy subgroup T,,={r E T: r(a)=a} 
in T is obviouslyTa=T n Ta(I). If a, p E PI(K) are T-equivalent, then 
T a, T~ are conjugate in T. 

In our case of T=ToCn), n=ql·· ·qm, qi*qj (for i*j), the number 
f=fr of T-cusps is fr=2m. The set {qlo ... , qm} of prime ideals qi is 
abbreviated as {I, 2, ... , m}. A map D of {ql' ... , qm}={I, 2, ... , m} 
to the set {+I, ~I} is called a "sign-distribution" on {I,02, .. . ,m}. 
There are altogether 2m sign-distributions; and the set of them we denote 
by!». 

For each sign-distribution DE!», take an element gD E T(1), such 
that 

={(6?) mod qi 
gD- ( 0 1) 

-1 0 modqi 

for all ;=1,2, ···,m. Then, the double-coset space t\t(1)/t =(1) is 
represented by {gD; DE!»}, and thus T-cusps are represented by aD= 
g D( 00) (D E Ei) (cf. [42]). 

For a sign-distribution DE Ei), the product of prime ideals qi with 
D(qi)= -1 is denoted by n(D) = IT D(i)=-l qt, which is an ideal containing 
n. Also put m(D) = ITD(t)=+lqi' so that n=n(D)·m(D). 

The isotropy subgroup T = of 00 in T is obviously T ==T ",(1), since 
T ",(1) cTo(n) =T. The isotropy subgroup Ta of a=g( 00), (g E T(I», is 
T"=Ta(l)nT=(gT,,,(1)g-l) nT=g(T",(1) ng-1Tg)g-l. Thus Ta is iso
morphic to T ",(1) ng-1Tg, which we will denote by T~. For a=an= 
gD( 00), TaD is isomorphic to 

T~D=T ",(1) ng;;ToCn)gaD= {r=(g ~) E T ",(1); b E neD)} 

=T ",(1) n t To(n(D». 

By the same inner automorphism: x~gi/XgD of T(I), which sends 
Ta to T~, T=To(n) is sent to the subgroup 

which we will denote by T' = T'n. 
As we can see easily, 
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is a semi-direct product of the "squares of units" (OX)2= {e2; e E OX} 
with the additive group 0 of integers; i.e. roo = r 00(1) ~ (ox)21>< 0-

Also 

is isomorphic to the semi-direct product: (ox)21>< neD). 
Also, it is easy to see that 

Thus 

(1.2.3') 

where 

(1.2.3/1) 

[roo, roo]={(6 t); bE (l-cDO}, 

[r~D' r~D]={(6 t); b E (1-e~)n(D)}. 

r!,b~(07 x (OJ(1-c~)O)=z x cg 00' 

r!~~(oX)2x (n(D)j(l-c~)n(D»=Zx 'Y,D, 

cg 00 = cg 0 = OJ(1-c~)O, 

cg D = egaD = cg a = cg n(D) = n(D)j(l- cDn(D), 

are finite abelian group of the order leg 00 I = I cg D I = I N (1- c~)I. 
We consider a direct-sum decomposition of the finite abelian groups 

cg 00 or ega into the direct sum: 

of cyclic group Zm's. Orders m of cyclic groups are divisors of N(1-eD. 
The injection ta: ra=---+r induces the homomorphism 

It is easy to see that for a prime ideal q dividing n, the image of 
Po 0 Lla is the subgroup K(q)=J.I.(:S:)X)c(Ojq)X spanned by units of 0 (see 
1.1.1), which has the order IK(q)1 coprime with e. 

Lemma (1.2.4). LlaCr!b)c e(rab), and LlaCr!b) has the order coprime 
with e. 
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From this, it is also easy to see that 

Lemma (1.2.5). The subgroup e(rab/2al1aCr~b» of t-torsion elements 
in r ab/(211a(r:b» is isomorphic to n, where n is the number of prime ideals 
q, in n with N(q,)=q~, q,=1 (mod t) (see 1.2.1,2). 

Comment. In this report, we restrict our attention to the Hilbert
modular group r, and keep off from quatemion-Hilbert-modular groups. 
Why? Because, for an arithmetic subgroup in the multiplicative group 
in a divison quatemion algebra, the congruence subgroup theorem (abbr. 
c. s. th) is not yet proven. Let B be a quatemion algebra over a totally 
real number field K. In B, we can construct arithmetic discontinuous 
groups r=ro(n), similar to our Hilbert-modular cases. They operate 
on ©2 and produce algebraic surfaces U = r\©2 if B splits at exactly 2 00-
places of K. While many of our results in this note are still valid for 
such r, the Lemma (1.2.3), which will play an essential role in a later 
section, is no longer valid because the lemma depends on the c. s. tho 
However if someday one could prove the C. S. tho for a r of this type, 
then total results of our note shall become valid for that r. 

1.3. Arrows discussed in this note. The notation GR denotes one 
of the groups discussed in 1.2, i.e. GR is either r or rab, or ra or r~b, 
or a finite abelian group. 

A short exact sequence: 

(SName) 
a I' 

O······~vltl······~vlt2···· .. ~vlt3······~O 

of GR-trivial modules vIt, is denoted by broken arrows···~; we call viti 
the 1st term, vlt2 the 2nd, vlts the 3rd. 

The long exact sequence caused by the short exact sequence (SName) 
is denoted by (LName), i.e., 

(LName) 

In (LName) arrows are also denoted by broken arrows. Notations 
for induced maps of a (or of [j) . are also denoted by the same symbol 
a (or [j). The connecting homomorphism Hr(GR, vlt3).··~HT+I(GR, vltJ 
is denoted by o. 

The following is a table of short exact sequences used in this note. 

i " (SC): O .. ····~Z······~C······~C/Z······~O 

j " (SR): O······~Z ...... ~R.···.·~R/Z······~O 
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i v 
(SQ): O ...... -+Z.·· ... -+Q·.····-+Q/Z······-+O 

C vt 
(Sve): O······-+Z······-+Z······-+Fr···-+O 

(Sl~): O ...... -+Fe .. ·~~·-+Q/z.··~·.".Q/z.·····-+O 
Corresponding long exact sequences are denoted by (LC), (LR), .. " 

etc. 
Combining long exact sequences (LQ), (be), (Lie), we have a com

mutative diagram: 

I I I 
I I I 

(DNA. 1.3.1) I I C I C 
I I I 

'" '" i5 '" ...... .".HI(GR, Q) ...... .".HI(GR, Q/Z)······.".H2(GR, Z) ....... . 
I I I 
I I I 
I I i5 I V t 
I I I 
.. .. id '" o ····················.".H2(GR, Fe)··········-+H2(GR, Fe)······-+O 
I I I 

. I I I 
I I i I i5 
I I I 
.. ,. i5 ,. 

.... ·.-+H2(GR, Q) ···.··.".H2(GR, Q/Z) .. ····.".H3(GR, Z) ....... . 
I I I 
I I I 
I I C I C 
I I I 

'" .. " ······.".H2(GR, Q) ······.".H2(GR, Q/Z)······.".H3(GR, Z) ....... . 
I I I 
I I I 
I I I 
I I I 
I I I 

We call this diagram a DNA (Q'-v-ie). Similarly, DNA (R-v-ie); 
DNA (C-v-it ) are defined. 

For a compact oriented manifold M with boundary aM the exact 
sequence of relative cohomologies with coefficient group vIt: 

i5 r 
(REL1.3.2) --+HP(M, aM, vIt)--+HP(M, .-It)--+HP(aM, .-It)-

is denoted by unbroken arrows. The arrow r: HP(M, .-It)-+HP(aM,.-It) 
is called the restriction. 

In our note, M is a manifold obtained from the Hilbert modular 
surface U = r\f.l, by chopping off neighbourhoods of r -cusps; and 

HP(M, vIt)~HP(U, vI!)~HP(r, vIt) 
and 

HP(aM, .-It) ~,EB Hp(r aD' .-It). 
D 
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Thus the restriction r combined with the projection ff)HP(raD, vii)......", 
HP(raD, vii)......", is denoted by raD, which is the restriction of HP(r,.,II) to 
the subgroup raD. 

The natural mapping r~rab, (or ra~r~b) induces homo
morphisms A: HP(rab, .,II)......",HP(r,.,II), (or Aa: HP(r~b, .,II)......",HP(ra, vii)). 
A and Aa are called lift of inflation; they are denoted by unbroken arrows. 

The inflation A: H2(rab, .,II)......",H2(r, .,II) is a part of the Hochschild
Serre exact sequence: 

where r(l)=[r, rl. 
In particular if H1(r(1), vii) =0, the inflation A: H 2(rab, .,II)......",H2(r,.,II) 

is injective. This, combined with the Lemma (1.2.3), gives 

Lemma (1.3.4). The inflation A: H 2(rab, Ft )......",H2(r, Fg) is injective. 

Lemma (1.3.5). The inflation A: H 2(rab, C/Z)......",H2(r, C/Z) is in
jective on the subgroup ,H2(rab, C/Z). 

Proof Since Hl(r(ll, C/Z) = r(l)ab has order coprime with .e. 
Lemma (1.3.6). The inflation A: H1(rab, vII)......",H1(r,.,II) is always 

injective. 

Proof Easy, or well known. 

Broken arrows···~ are maps caused by operations on coefficient 
modules, and unbroken arrows......", are maps caused by operations on mani
folds or groups; and thus broken arrows and unbroken arrows are com
mutative. 

The inclusion ia: ra......",r induces the homomorphism Lla: r:b......",rab, 
which makes the commutative diagram: 

(1.3.7) 

ia induces the restriction ra: H*(r, .,II)......",H*(ra,.,II); A induces the infla
tion A: H*(rab,.,II)......", H*(r,.,II). The homomorphism induced by 
Lla: r!b......",rab we denote by pa: H*(Fab, .,II)......",H*(r!b,.,II): this is also 
called a "restriction" .. The homomorphism induced by Aa: ra......",r!b is 
denoted by Aa: H*(r:b, .,II)......",H*(ra, .,11), and is called inflation. 
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Inflations and restrictions A, Aa, ra, and pa form the commutative 
diagram: 

H*(Pb, vII)~H*(r!b, vii) 

Al }a 
H*(r, vII)~H*(Fa, vii) 

(1.3.8) 

In later sections, the same symbol of arrows, '(say r), appears in 
several different locations. In order to distinguish them, we put labels to 
them like r[1], r[2], r[3], ... , A[I], A[2], A[3], ... etc. 

1.4. From works of HirzebruchJHarder. Cohomologies HT(U, C)= 
HT(r, C) of Hilbert modular varieties U = r\f!Jm are extensively investi
gated by Hirzebruch and Harder. Here r is an arithmetic subgroup of 
SL(2, K), and Kis a totally real number field with [K: Q]=m. Here we 
quote some results from Harder [28], for m = 2. 

Let (M, aM) be the 4-manifold M with boundary aM, obtained from 
the Hilbert modular surface U = r\fi by chopping off neighborhoods of 
cusps. (for details see Harder [28])., Then 

(1.4.1) 
HT(M, - )=HT(U, - )=HT(r, -), 

HT(aM, -) = EB HT(r a' -), 
a 

for a r-trivial module -. 
Since M is a 4-fold with boundary and aM is a compact 3-fold 

without boundary and withf connected components, we have 

HO(M, C)=C, HO(M, aM, C)=O, H4(M, C)=O, 

H4(M, aM, C)=C, HO(aM, C)=Cf, H 3(aM, C)=Cf. 
(1.4.2) 

Since ra~Ztxn(D), r!b=Z@J(§a for a=aD , (see § 1.2), we have with the 
Poincare duality: 

HI(aM, C)=EBH1(ra, C)=Cf, H 2(aM, C)=Cf. 
a 

Consider the exact sequence of relative cohomologies: 

{O} C Cf 

(1.4.3) 
II II ° II 

O~HO(M, aM, C)~HO(M, C)~HO(aM, C) 

Cf 

. rl II 
~HI(M, aM, C)~Hl(M, C)~HI(aM, C) 

II 

° 
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Cf 

,.2 II 
~HZ(M, aM, C)~HZ(M, C)~HZ(aM, C) 

Cf 

. ,.3 II 
~H3(M, aM, C)~HSCM, C)~H3(aM, C) 

C 
II 

~H4(M, aM, C)~O. 

In this diagram r i : Hi(M, C) = Hi(r, C)~ Hi(aM, C) = ffiHi(r a' C) 
are the sums ri=ffir~ of restrictions r~: Hi(r, C)~Hi(ra, C). For these 
ri, Harder showed that: rO is the diagonal map: C~Cf; rl is the zero 
map; rZ is surjective; and r3 has codimension 1 image. He denoted the 
kernel of ri by H}(U) = H}(M) = H}(T). 

Denote the "variable" in Sj2 by z=(ZI> zz), and write: za=xa+iYa 
(a= 1,2). Put Wa= (l/47ri)(dza/\dta/Y~), (a= 1,2). WI and Wz are 
SL(2, R)Z-invariant closed two forms on Sjz, so they determine de Rham 
cohomology classes on U; these cohomology classes we denote by the 
same symbols WI' Wz E H2(U, C). WI and W2 span a two dimensional 
subspace W=CwI+CwzcH2(U, C). 

The upper half plane Sj is also denoted by Sj+, and the lower half 
plane {z= x+ iy E C; y< O} is denoted by Sj-. The arithmetic discontin
uous group rcSL(2,RY also operates on Sj+XSj-, Sj-XSj+, Sj-XSj-; 
and the quotients rW+x1;)-, rW-x1;)+, r\1;)-x1;)- are denoted by 
U+-, U-+, U-- respectively. Uis also denoted by U++. The "partial
conjugation map" 

induces a diffeomorphism e + - of U + + to U + -. Similarly diffeomorphisms 
e-+: U++~U-+, e--: U++~U-- are defined. 

The space of r-cusp forms of weight 2 on 1;)2 is denoted by Sz(T). 
For an automorphic form ~(z)=~(zI> zz) E SzCT), the holomorphic 

2-form 

on 1;)z is r-invariant; and W induces a holomorphic 2-form W on U. The 
de Rham cohomology class defined by w=wl' is also denoted by w=wl" 

Then the map: 
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is injective. The image of the map 7F+ + is denoted by A + + or by S + +. 

The space of T-cusp forms on SJ+ XSJ- of weight 2 is denoted by 
S2(T, SJ+ XSJ-)· 

For an automorphic form cp e SlT, SJ+ XSJ-), the holomorphic 2-
form w=WI'=CP(Z2, zz}dzJ\dz2 defines a de Rham cohomology class wI' e 
H2(U+-). 

The image of 

O~S2(T, SJ+ XSJ-)~~2(U+-) 
III III 

cpl ) wI' 

in H2(U+-) is denoted by S+-. 
Furthermore, we put (e+-)*(S+-)=A+- CH2(U). 
Similarly, we define 

S2(T, SJ- XSJ+), S-+ CH2(U+-), A+- =(e-+)*(S-+)cH2(U); 

S2(T, SJ- XSJ-), S-- CH2(U--), A-- =(e--)*(S-"-)cH2(U). 

We put 

Now, results of Harder [28] include 

Theorem (1.4.4) (Harder). 

HI(T, C)=O, 

H}(T, C)=ker(r2; H2(U, C)~H2(aM, C))=AEBW. 

If the quadratic number field K has a unit eo with cpleo) >0, 

CP2(eO)<0, then put Eo=(~ ~). Then the map Eo: z=(zI> zz}!-----).E(z) = 
(CPI(eo)zl, CP2(eO)zz) sends SJ+ X SJ+ to SJ+ X SJ-, and· induces the bi-holomor
phic isomorphism of U to U + -, if 

(1.4.4') 

is satisfied. For our group T=To(n), and fc;>r T=tTo(n), T=T(n) the 
condition (1.4.4') is satisfied. 

The bi-holomorphic isomorphism 

Eo: U~U+-

induces the isomorphism: 
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Similarly 

E,_(-eol 0) 
0- 0 I 

gives the isomorphisms: E~: U =. U - +, E~*: S - + =. S + +. Also 

(-1 0) 
c= ° 1 

induces isomorphisms: c: U=.U--, C*: S--=.S++. So one has 

Lemma (1.4.5). If N(eo) = -1, then A=.4S2(r). 

1.5. Trivial information. Since (M, aM) in l.2 is an oriented 
connected compact 4-manifold M with boundary aM *0, we have 

(l.5.l') 

Ho(M, vif)=Jt, 

HO(M, vif)=Jt, 

HiM, vif)={0}, 

H4(M, Jt)={O}, 

Ho(M, aM, vif) = {OJ, 

HO(M, aM, vif)={0}, 

H4(M, aM, Jt)=Jt, 

H4(M, aM, Jt)=Jt, 

for arbitrary constant coefficient-module Jt. 
Since H';.cr, vif)=HHM, vif), we have 

(l.5.l) 
Ho(r, Jt) = Jt, 

Hir, vif)={0}, 

for an arbitrary r-trivial module Jt. 

HO(r, Jt)=Jt, 

H 4(r, vif)={0}, 

Since the cusp group r a is the fundamental group of a compact 
orientable 3-manifold ya=rxya, with contractible universal covering Ya 
without boundary, (1.4 and Harder [28]), we have 

(l.5.2) 
HoCra, vif)=Jt, 

HaCra, vif)=Jt, 

HO(ra, vif)=Jt, 

H 3(ra, vif)=Jt, 

for an arbitrary r a-trivial module Jt. Thus 

(l.5.2') 
Ho(aM, Jt)=Jtf, 

H3(aM, Jt)=Jtf, 

HO(aM, Jt) = Jtf, 

H 3{aM, Jt)=Jtf. 

Since Hl(ra,Z)=r~b, our knowledge of the structure of r~b=ZrttJ'§a 
=ZrttJ(rttJZma.,) and the universal-coefficients-theorem and Poincare
duality imply 
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Hlra , Z)=r:b=ZEB~a=ZEB(EBZm)' 

Hl(ra, Z)=Hom (r:b, Z)=Z, 

H 2(ra, Z)=H1(ra , Z)=r:b=ZEB(EBZm), 

H2(ra, Z)=Hl(ra, Z)=Z, 

H 1(ra, vii) = (H1(ra, Z)@vII)EBTor(Ho(ra, Z), vii) 

(1.5.3) =«ZEB~a)@vII)EBTor(Z, vII)=vU'EB(~a@vII)EB{O} 

=vU'EB(EBvU'm), 

Hl(ra, vii) = Hom (H1(ra, Z), vll)EBExt(Ho(ra, Z), vii) 

= Hom (ZEB~ a' vii) = vU'EBHom (~a, vii) = vU'EB(EBmvU'), 

H2(ra, vII)=Hl(ra, vII)=vU'EB(EBmvll), 

H2(ra, vII)=Hlra, vII)=vU'EB(EBvU'm). 

for a ra-trivial module vU'. 
In particular for a prime number .e, coprime to N(1-e~) 

(1.5.4) 

Our knowledge of pb= IT fPq=EBZp, implies 

(1.5.5) 

H 1(r, Z)=rab = IT fPq=EBZpi' 

Hl(r, Z)=Hom(rab, Z)={O}, 

Ha(M, aM, Z)=HkM, Z)=H1(r, Z)=Pb, 

Ha(M, aM, Z)=Hl(M, Z)=H1(r, Z)={O}. 

Thus the universal-coefficients-theorem gives 

(1.5.6) 

H 1(r, vii) = (H1(r, Z)@vII)EBTor(Ho(r,Z), vU'» 

=(pb@vII)EBTor(Z, vII)=rab@vU'=EBvU'Pi' 

Hl(r, vii) = Hom (rab, vll)EBExt(Ho(r, Z), vU') 

=Hom(rab, vII)=EB(p,vII). 

This information and Poincare duality imply 

(1.5.6') 

H 1(M, vII)=rab@vU'=vU'''i' 

Hl(M, vii) = Hom (rab, vII)=EB "ivU', 

Ha(M, aM, vII)=H1(M, vII)=EBvU'l'i' 

HsCM, aM, vU')=Hl(M, vII)=EB PivU'. 



Hecke Operators 129 

In order to estimate H3(T)~H3(M)~HlM, aM), we need to use 
the exact sequence of relative cohomology: 

(1.5.7) 

A Eer:b ___ ~)rab ZI 

,,~ ,,~ ,,~ ,,~ 
H2(aM, Z)---"'H3(M, aM, Z)---"'H3(M, Z)---",H3(aM, Z) 

Z 
,,~ 

---"'H'(M, aM, Z)---",o. 

Here the map LI: Eer:b~rab is the map LI = Ee(Lla 0 proj), described 
in 1.2. Thus 

(1.5.8) H 3(r, Z)=Zf-lEe(rab/EeLlar:b»=Zf-lffi(torsion part). 

This, combined with Lemma (1.2.5), implies that the t-torsions of 
H 3(r, Z) is isomorphic to n; thus: 

Lemma (1.5.9). 

By Lemma (1.2.4), we see also 

Lemma (1.5.10). The image of 0: H 2(aM, Z)~Ha(M, aM, Z) is a 
subgroup of H3(M, aM, Z) with the order coprime to t. 

Comment. For a quaternion-Hilbert-modular group r=ro(n)cBx. 
in a quaternion algebra B over a totally real number field, of which 
exactly two oo-places split B, formulas in this section should be changed 
to 

(1.5.1.1'-B) HO(r, vII)~HO(U, vII)~Hlr, vII)~H4(U, vii) 

~Ho(r, vII)=Ho(U, J()~H'(r, vII)~H4(U, vII)~J(. 

(1.5.5-B) HI(r, Z)~HI(U, Z)~Ha(r, Z)~Hs(U, Z)~{O}, 

(1.5.6-B) 

HI(r, Z)~HI(U, Z)~HS(r, Z)~HS(U, Z)~rab 

= a finite abelian group. 

HI(r, J()~HI(U, vII)~H3(r, vII)~H3(U, vII)~rab®J(. 

HI(r, vII)=HI(U, vII)=Ha(r, vII)=H3(U, vii) 

= Hom (rah, vII). 

However the Lemma (1.5.9) is no longer valid. We can only say that 
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1.6. Finite abelian groups. The multiplicative semi-group of Z is 
denoted by (Z, x). Let m be a space integer: me Z. On an abelian 
group A, the m-multiplication x~mx of A into A is denoted by (m) = (m)A. 

For an integer lJ>O, the module A with the "modified" action 
(m»: x~m>x of the multiplicative semi-group (Z, x) on A.is denoted by 
A(lJ). In particular, A(O) is a (Z, x)-trivial module. 

Let {~a}aeT be a finite collection of finite cyclic groups ~a=Zn(a), 
a e T, indexed by a finite set T={l, 2, ... , t}. The function defined by: 
T?J a~n(a)= I~al is denoted by n: T~Z+. We put ~T=EBaeT~a. For 
asubsetScT,weput~s=EBaes~ ... andweconsider it as a space sub
group of ~T. Also we put n(S)= the greatest common divisor of n(a), 
a e S. If S=ifJ, we put ~!I={O}, n(ifJ) = 1. 

Let .Q={O, 1,3,5,7, ... } be the set of positive odd integers and 
zero. A functionf of .Q to Z is defined by: f(O)=O, and f(r)=(r+ 1)/2, 
for odd r. 

A function D: T~.Q of T to .Q is called a "dimension-distribution". 
For a dimension-distribution D, we putf(D)=L..aeTf(D(a», deg(D)= 
L..aeT D(a), Supp (D)={a e T: D(a»O}, and Z[D]=Zn(SnPPD)(f(D». For 
a ~ T-trivial module vii and for a dimension-distribution D, we put 

vII[D] = Z[D] ® vii = vii n(Snpp D)(f(D», and 

vII<D)=Z[D] * vii = n(Snpp D).It(f(D», 

where A * B= Tor (A, B). 
For vII=Z, Z<D)=O, for vII=Q/Z, Q/Z[D]=O, and Q/Z<D)= 

Z[D]. For vII=F" Ft<D)=Ft[D]=F,(f(D» if tln(D), =0 if £,{'n(D). 
Then we have an obvious exact sequence: 

(1.6.1) 

If Dl, I!z are two dimension-distributions with Supp (Dl) n Supp (Dz) 
=ifJ, Dl Il Dz denotes the dimension distribution defined by Dl Il D2=: 
max (Dl' D z). Then for such Dl and D z, we have 

Z[Dl] * Z[Dz]= Z[Dl Il DJ, 
Z[Dl] ®Z[Dz]=Z[Dl Il Dz]. 

For a positive integer r, and for a non-zero dimension-distribution 
D: T~.Q, with s=ISupp(D)I, d=deg(D), we define an integer m(r,D) 
by 

(S-I) mer, D)= r-d 



where 

Then 
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(: Ht(b!(a-blJl if O:s:;,b:s:;,a, 

if O=b=a, 

otherwise. 

m(I, D)= {~ iff d=1, s=1, f(D)=1, 

otherwise, 

m(2, D)={~ iff d=2, s=2, f(D)=2, 

otherwise, 

m(3, Dl~r 
if d=3, s=3, f(D)=3, 

if d=3, s= 1, f(D)=2, 

if d=2, s=2, f(D)=2, 

otherwise, 

m(4, Dl~l~ 
if d=4, s=4, f(D)=4, 

if d=4, s=2, f(D)=3, 

if d=3, s=3, f(D)=3, 

otherwise. 
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The effect of m-multiplication: (m): '§r 3 x-+mx E '§r, (m E Z), 
on the homology group H*('§r, Jt), (or on the cohomology group 
H*(,§ r, Jt), is denoted by (m)* (or by (m)*, respectively). With (m)* 
(or with (m)*) H*('§r, Jt) (or H*('§r, Jt) is a (Z, x)-module. 

Theorem (1.6.2). For a positive integer r >0 

Hr('§r, Z)=EBm(r, D)Z[D], 
D 

where the summation extends over all the dimension-distributions D. 
Obviously, Ho('§r, Z)=Z. 

Theorem (1.6.3). For a '§r-trivial module Jt, we have 

Ho('§r, Jt)=Jt, 

H 1('§r, Jt)='§rtg)Jt= EB Jtn(a)(l), 
aer 

HrC'§r, Jt)=2m(r, D)Z[D]tg)JtEB2m(r-l, D)Z[D] *Jt 

=2m(r, D)Jt[D]EB2m(r-1, D)Jt<D). 

HO('§r, Jt)={O}. 
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Hl(~T' .4)=Hom (~T' v&')=EBn(a)v&'(I), 

Hr(~T' v&')=Sm(r, D)v&'<D>EBSm(r -1, D)v&'[D] for r>O. 

In particular, 

Corollary (1.6.4). For a field K of characteristic zero, 

Hr(@T' K)=O for r>O, 

lCQ/Z)(O) 

Hr(~T' Q/Z) = ~T(I) 

Sm(r, D)(Q/Z)<D> 

{
Z(O) 

Hr(~T' Z)= 0 

Sm(r -I, D)Z[D] 

{
FiO) 

Hr(~T' Fe)= t(£)FeCl) 

S(m(r, D)+m(r-l, D»FAD] 

for r=O 

for r=1 

for r>l, 

for r=O 

for r=1 

for r>l, 

for r=O 

for r=1 

for r >1. 

Here t (£) = I T(£) I is the number of elements of the set 

T(£)={a E T: £ I n(a)}, 

and the sum S extends over all the dimension-distributions D with Supp (D) 
cT(£). 

and 

In particular, 

Corollary (1.6.5). 

HO(~T' Z)=Z(O), 

Hl(~T' Z)={O}, 

H2C~T' Z)= I: Zn(a)(I)=~T(I), 
aeT 

HO(~T' F8)=F8(0), 

Hl(~T' Fe)=tFeCI), 

H2(~ T, F8)=(t(t -1)/2)Fi2)EBtFeCI), 
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H3«(1T' Ft)=(t(t -I)(t -2)/6)Fe(3)ffitFe(2), 

H4«(1 T, Fe) = (t(t -I)(t -2)(t -3)/24)FtC4) 

ffi(t(t -I)j2)Fe(3)ffi(t(t + I)j2)Fe(2), 

where t=tU)=IT(e)l. 

From these formulas, we have 
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Lemma (1.6.6). If a homomorphism Ll: .?If ~(1 T of a group .?If to the 
abelian group (1 T has the image Ll(.?If) in £(1 T, then the "restriction" 
p=Ll*: HT«(1T' Fe)~HT(.?If, Fe) is the zero map for r>O. 

Let us apply this lemma to our (1 T = rab, .?If = r~b, Ll = the natural 
homomorphism Lla: r!b~rab (see § 1.2). Since Pq 0 LlaCT!b)CK(q) for 
every q I n, we have Ll(r~b) c £(rab), (see 1.2.4). So: 

Lemma (1.6.7). The restriction map Pa: HT(rab, Fe)~HT(r!b, Fe) is 
the zero map for r >0. 

We put 

(1.6.8) 
H*«(1T' .~)+={x e H*«(1T' vIt): (-I)*x=x}, 

H*«(1T' vIt)- ={x e H*«(1T' vIt): (-l)*x= -x}, 

where (-l)*=the effect of the (-I)-multiplication: (1T ~ x~-x e (1T 
on the cohomology. 

For vIt=F, with odd £, we have the "eigenspace-decomposition" 

With the expression: 

H*«(1 T, F8)= L: (m(r, D)+m(r -1, D»F8[D], 
D 

we have 

H*«(1T' Fe) + = L: (m(r, D)+m(r-I, D»Fe[D], 
D:f(D) even 

H*«(1T' Fet= L: (m(r, D)+m(r-l, D»Fe[D]. 
D:f(D) odd 

Since H 1«(1T' Fe) = Hom «(1T' Fe) = Fe(I), so 

Hl«(1T' Fe) = «(1T' F8)-. 

Also 
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By the Kunneth theorem for ~ T = n Zn(a), we have 

H2(~T' Fe)={EB H 1(Zn(a), Fe)(i9H1(Zn(b)' Fe)}ffi{ffiH2(Zn(a), Fe)}; 
a,b 

and it is also observed easily: 

Lemma (1.6.8). 

H2(~T' Fe)+=EB Hl(~a> Fe)®Hl(~b' Fe), 
a,b 

H2(~ T, Fet = EB H2(~~, Fe). 
a 

Thus 

dim H2(~T' Fe) + =t(t -1)/2; dim H2(~T' Fe)-=t, 

with t=t(f). Also since H2(~T,Z)~~T(I), (1.6.5), 

H2(~T' Z)- =H2(~T' Z). 

e 1', . h 
The short exact sequence: O~Z~Z~Ft~O generates t e 

long exact sequence: 

(1.6.9) 

-~) H2(~ T, Z) ~ H2(~ T, Z) -~) H2(~ T' Fe) 

II II II 
ffim(l, D)Z[D] ffim(l, D)Z[D] {ffim(1, D)F,[D]} 

EB{ffim(2, D)F,[D]} 

-~) H3(~T' Z)~··· 

II 
ffim(2, D)Z[D] , i.e., 

(1.6.10) O~ffim(l, D)Fe[D]~ffim(l, D)Z[D]~ffim(1, D)Z[D] 

{
ffim(l, D)Fe[D] 

~ ffi ~ffim(2, D)Z[D]~ . . : 

EBm(2, D)Fe[D] 

This is just the "linking" of the exact sequences (1.6.1). In particular, 
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Lemma (1.6.11). The (LZ)-sequenceJor GR=<§T is 

O ...... -+Hl(<§ T, F,) ...... -+H2(<§ T, Z) ...... -+H2(<§ T, Z) 

... ~!.-+H2(<§ T, F,)- .. · .... ·-+0 

EB }=H2(<§T,F,) 

0 ...... -+H2(<§T' F,)+ ..... 'j.-+H3(<§T' Z) .. · .. ·-+ ,i.e., 

and 

o restricted on H 2(<§T' F,)+ is injective. 

We shall apply this lemma for <§T=rab in Section 2. 
The big diagram ofDNA(Q-lI-i,) for GR=<§T (see 1.3.1) is, noting 

that Hr(<§T' Q)=O for r>O; 

(1.6.12) 

Hereafter, we identify Hr(<§T' Q/Z) = Hr(<§T' R/Z) = Hr(<§T' C/Z) 
with Hr+l(<§T' Z) for r>O; this turns the ladder to a string . 

(1.6.13) ...... -+H1(<§T' Q/Z) = H 2(<§T' Z) ...... -+H2(<§T' F,) 

...... -+H2(<§T' Q/Z) = H 3(<§T' Z) ...... -+ 

(written horizontally). 
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§ 2. Less trivial information 

2.1. Combining exact sequences (LQ), (Lve), and (Lie), we construct 
the diagram DNA (Q-li-i,) for GR=r. (See 1.3.1). 

(DNA 2.1.1) 

In this diagram: 

Lemma (2.1.2). Since H 1(r, C)=O, 0[1] is injective. 

The DNA for GR='§T=rab, is (see 1.6.12): 

(DNA 2.1.3) 

Combining these two DNA's by inflations A: H*(rab, - )~H*(r, -), 
we have 
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(2.1.4) 

Or, identifying Hr(pb, CjZ) with HT+I(rab, Z), we have 

(2.1.5) O··············>-H'(r, CjZ} ....... ?~n .. >-H2(r, Z) 
\ I 

.<[l] \ '<[2] / 
\ I 

\ I 
\ / 

H1(rab, CjZ)=H2(Pb, Z) 0[2] \ / lJe[I] 
\ I 

i[2] = 0[6] 
I 
I 
I 
I 
t 

H 2(Ph, CjZ)=H3(rah, Z) 

\ I 
\ I 

'" I H2(T, Fe) 
I \ 

I \ 
I \ 

I ' I \ 

I \ 0[3] 
i[I]/ \ 

/ \ 
I \ 

I \ 
I \ 

I \ 
I \ 

, 0[4] '" 
H 2(r, CjZ} .. ·············>-H3(T, Z) 

137 
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In this diagram: 

Lemma (2.1.6). -<[I] is an isomorphism: 

Proof The inflation -<[I] is injective, (1.3.6). Since Hl(T, C/Z)= 
Hom(Tab, C/Z)=H1(Tab, C/Z)=Tab is a finite group, -<[1] must be 
surjective. 

Corollary (2.1.7). -<[2] is injective. 

Lemma (2.1.8). -<[3] is injective. 

Proof This is Lemma (1.3.4) restated. 

Comment. The Lemma (2.1.8), which is essential in a later section, 
is valid only for our T=To(n) of the Hilbert-modular case, and not valid 
for the similar T=To(n) of the quatemion case, since Lemma (2.1.8), 
which is same as Lemma (1.3.4), which depends on Lemma (2.1.3), whose 
proof used the congruence subgroup theorem. However "If we replace 
H(Tab, FI ) by adelically continuous cohomology group, then -<[3] become 
injective?" might be an approachable conjecture, which shall be also 
helpful for our purpose if it is true. 

Lemma (2.1.9). In Hl(T, FI ), 

1Ie[1](H2(T, Z)tor) n -<[3](H2(p.b, Fe)+) = {O}, 

where H 2(Tab, Ft )+ is the (+ I)-eigenspace oi( -1)*. (See 1.6.8). 

Proof Chasing the diagram (2.1.5), 

1ItCH2(T, Z)tor)= 1m (1Ie[1] 0 o[1])=Im (111[1] 0 0[1] 0 -<[I]) 

=Im (-<[3] 0 0[5]) =-<[3](H2(Tab, Fe)-), 

by the Lemma (1.6.11). Since -<[3] is injective (Lemma (2.1.8», and since 

H 2(Tab, F,)+ n H 2(Tab, Fe)- ={O}, 

we have (2.1.9). Q.E.D. 

Lemma (2.1.10). In H2(T, Fe), put 
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Then dim (E»n(n-3)f2. 
In particular if n>4, then E*{O}. Here, n=the number of prime 

ideals of order 2, q I n, with the properties described in (1.2.1, 2). 

Proof Since A[3] is injective, 

(apply 1.6.8' for ~T=rab, t=n). Also 1m (0[3]) = eH8(r, Z)=F~, (see 
1.5.9). So, dim (E»(n(n-l)f2)-n=n(n-3)f2. Q.E.D. 

We put 

(2.1.11) 

and the projection map of H2(r, Fe) to jj2(r, Fe) is denoted by p.. 
Also we put 

(2.1.12) 

Put 

(2.1.12') 

By Lemma (2.1.9). 

(2.1.12',) 

Put 

(2.1.12"') 

E=p.(E). 

E:i.E. 

Since A[3] is injective, 

(2.1.13) 

Furthermore, we combine restrictions 

and inflations 

ra: H*(r, -)~H*(ra, -), 

pa: H*(rab, -)~H*(r!b, -), 

to the diagram (2.1.4), and have a commutative diagram: 
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In this diagram: 

Lemma (2.1.15). ra[2](E)={0}, ra[2] 0 '<[3]=0. 

Proof. r[2](E)cr[2] o,<[3](H2(Tab, Fe» 

='<a 0 paCH2(Tab, Fe»=O since Pa=O, 

(see Lemma 1.6.7). 

Put 

H2(T, Z)=H2(M, Z)~(f;H2(Ta, Z)=H2(aM, Z), 

p=p[l]= E Pa[l]: 
a 

Lemma (2.1.16). E clJe(ker (r[1])). 

Q.E.D. 

Proof. Since o(E)=O, EClJtCH2(T, Z». For an arbitrary element 
x e E, take a representative y e H2(T, Z):x=lJtCy). Put za=ra[1](y) e 
H2(Ta, Z), z=(za)=r[1](y) e (f;H2(Ta, Z)=H2(aM, Z). Since lJe[2](z)= 
1J,[2] 0 r[l](y) = r[2] 0 lJe(Y) = r[2](x) =0, (see Lemma 2.1.15), hence 
z=r[l](y) e t(H2(aM, Z». Take an element u=(ua) e (f;H2(Ta, Z)= 
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H 2(aM, Z) such that z= r[1](y) = £u. The image o(u) E Ha(M, aM, Z) of 
u under 0: H 2(aM, Z)-+H3(M, aM, Z) is denoted by fl. 

By Lemma (1.5.10), the order k of fl is coprime with £: so take 
integers a, b E Z such that ak + £b = 1. Since o(ku) = ko(u) = kfl = 0, 
ku E ker (0)= 1m (r[I]). Take an element v E H2(T, Z) such that r[I] (v) 
=ku. Put w=ky-£v. Then r[I](w)=k(r[I](y»-£(r[I](v»=kz-£ku 
=k£u-£ku=O. 

Hence: WE ker(r[I]). Moreover veCw)=kveCy)-£vlv)=kx. Hence 
kx E Ve (ker (r[I])). 

SO, X= Ix=(ak+b£)x= akx + b.Cx = a(kx) E Ve (ker (r[ID. Q.E.D. 

In the following diagram (2.1.17), we put 

tf=ker(r[I]), 

tf' = ker (r [0] 0 i) = i-I (ker (r [0])). 

(2.1.17) 

Then, 

Lemma (2.1.18). motf' c tf c tf' c H2(T, Z), 

where mo=N(1-e~). 

Proof Take an element x E tf'. Then, 

O=r[O] 0 i[I](x) = i[2] 0 r[I](x), 

so r[I](x) E o(HI(aM, CjZ» = H 2(aM, Z)tor=EB~a (see 1.5.3). Since I~al 
=mo,O=mor[I](x)=r[I](mox). Hence maX E tf. Q.E.D. 

Corollary (2.1.19). In veH2(T, Z), vitf')=vitf). 

Proof vi tf')::J vitf)::J vimotf') = moveCtf') = vitf') because (£, mo) = 1. 

Comments. For a quaternion Hilbert modular group T=Ta<n) in a 
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quaternion algebra B, with B®R= M 2(R)2(£JHm-2, only statements up to 
2.1.7, are known to be true. Statements after 2.1.7, depending on 
Lemma (2.1.8), the injectivity of A[3], are not yet authorized. In order 
to prove the injectivity, we need not have the whole c.s.th., but it is 
sufficient to know that [[F, F], [F, Fn is a congruence subgroup. 

Or, for our purpose, a weaker conjecture: 

dimp ,(H1(F(I), Ft)Fab) < C1 dimp ,crab) + C2, 

shall support similar results. 

§ 3. Heeke operators 

3.1. For a definition of Hecke operators see [16], [24], [27]. For 
the action of Hecke operators on group-cohomologies see [16], [27]. 
Here, we use the same notations as in [27]. 

Hecke operators are also considered as algebraic correspondences of 
U, sending cusps to cusps. More precisely, for T=F~F, put Ue= 
(Fn~-IF~)\f!i, };=the natural covering map of U. to U, Ie = the mor-

11 
phism of Ue onto U induced from z--7~(z) e ~2; then U.~U is the 

I. 
algebraic correspondence. Maps}; and I. send cusps of Ue«F n ~-I F ~)
cusps) to cusps of U(F-cusps). Let (M, aM) be the manifold M with 
boundary aM = 11a Ya (Ya are connected components) obtained from U 
by chopping off neighborhoods of cusps, and let (Me, aM.) be a manifold 
M. with boundary aMe= 11 Ye,p (Ye,p are connected components) obtain
ed from U. in the same way. 

Then (};(Me), };(aM.» is homotopic to (M, aM) in U in a space 
canonical way. Also U.(Me),fe(aMe» is homotopic to (M, aM) in U in 
a similar way; and thus we have homomorphisms: 

It: l;l*(M, - )~H*(Me, -), 

It: H*(M, -)~H*(Me' -). 

Since iI, Ie are finite coverings, we can define "the trace map", or "the 
transfer" : 

I~: H*(Me, -)~H*(M, -), 

I~: H*(Me, -)~H*(M, -), 

which are defined as follows: a cochain Ce on M. is given. For a chain Z 

on M, put c(z)=ceUi(z». C defines a cocycle on M if ce is a cocycIe; 
and c.--7c induces a homomorphism I!: H*(Me, - )--7H*(M, -). The 
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homomorphism/: : H*(M., - )-')oH*(M, -) is defined similarly. 
The action T* of a Heeke operator T=(r~T) on H*(M, -) is 

defined by 

T*=f~oft: H*(M, -)~H*(M, -). 

The action coincides with the action of T=(rt;r) on H*(r, -) defined 
in [16], [24], [27]. Also, since j;, fe: aMg-+aM (with adjustment by the 
canonical homotopy: f(aMe)-+aM), are finite coverings, we can define 
the action: 

T*=/:oft: H*(aM, -)~H*(aM,-) 

of Hecke operator T=(r~T) on the cohomology of the boundary. 
Also actions T* of Hecke operator T on the relative cohomology 

H*(M, aM, -) are defined similarly, and we can observe that the exact 
sequence: 

(ReI) -')oH*(M, aM, - )-~H*(M, - )~H*(aM, -) 

of relative cohomology is compatible with the actions T* of T. 

3.2. For our r=ro(n), we take as J, 

J=Jo(n)= ~=; . { (
a b) det ~~O, c=:=O mod n } 

c d a=:=d mod 3, (ad, 6n)= 1 

The coset-space Jtr CI ) is a finite abelian group, which we denote by Jab. 
Jab is isomorphic to (j)s X n qln (j)!, and Jab! rab~ n qln (j)q. Thus, 

Lemma (3.2.1). The action T* of T E Pll(rab, Jab) on H*(rab, -) is 
the scalar-multiplication of deg (T), where - is a Jab-trivial module. (See 
[27], Theorem 1.5.2). 

In the diagram (2.1.17), we put 

Then 

!C" = i[I]-1 (ker (r[O])) = ker (r[O] 0 i[I]), 

!C'=ker (r[I]). 

and H 2(r, Z)!!C" has no torsion element. We put 
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H2(T, Z)rree=H2(T, Z)/H2(T, Z)tor> 

C;ree=C'/H2(T, Z)tor> 

Crree=C/H2(T, Z)tor' 

Then Crree, C;ree, H2(T, Z)rree are torsion free and 

Take a Z-basis (e!, e2, .. " ek ) of C;ree, then (eb e2, •• " ek ) is extendable 
to a Z-basis (e!, e2, .. " ek , ek +b •• " e,,) of H2(T, Z)rree, and (i(e!). i(e2), 
.. " i(ek» is a C-basis of ker (r[O]), and (i(e!), i(e2), .. " i(e,,» is a C-basis 
of H2(T, C). Since (eb e2, •• " ek ) is a Z-basis of the free Z-module 
C;ree, applying the reduction ii$=p0);$' (e!=iiie!), "', ek=ii$(ek» is an 
F$-basis of 

which we denoted by rff; and we know that 

rff~i!, ~Eo (see 2.1.13). 

Take a Hecke operator T e !!l(T, LI). The characteristic polynomial of 
T* on H2(T, C)=H2(U, C), (or on ker(l[O])=H}(T, C» is denoted by 
peT, u) (or by PiT, u». Let (ti,) be the matrix representing the action 
T* of T on C;ree with respect to the Z-basis (e!, e2, •• " ek ). (ti,) is a 
matrix with entries in Z. Since (i(e!), i(e2), .. " i(ek» is a C-basis of 
ker(r[O]), 

PiT, u)=det(uI-(ti'» e Z[u]. 

On the other hand, since (iil(e!), .. " ii$(et » is an F$-basis of rff, we 
have 

P}(T, u)=(the characteristic polynomial of T* on rff) e F,[u], 

where P'=the reduction modulo .e of P. 
Now, Eo, E, i!, are isomorphic as T-modules, and since the action of 

T on EoCH2(P·b, Fe) is scalar-multiplication by deg (T), (see Lemma 
(3.2.1», we have: 

T* IE = deg (T)IE~ 

Since i!, crff, as F,4inear subspace, we have 

(u-deg (T»" I P}(u), 
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where h=dim(E»n(n-3)/2. (see Lemma (2.1.10». Thus, 

Lemma (3.2.2). The characteristic polynomial PiT, U) of Hecke
operator T e f!ll(r, LJ) on H}(r, C) is in Z[u], and divisible by (u-deg(t»k 
in modulo £, where h=n(n-3)/2. 

Comments. For T= Tp = r(~ ~)r of a prime ideal 1:>= (rr), rr~O. 
of 0 such that (1:>, 6n)=I, deg (Tp) = N(1:» + 1. 

Lemma (3.2.2) implies that the eigenvalues A of T on H}(r, C) 
are algebraic integers, and there are at least h eigenvalues Ai such that 
Ai =deg (T) mod r for a prime divisor r of £ in the field Q(A, ... ) generated 
by eigenvalues of T. 

Also the lemma implies: dime H}(r, C)":?:.n(n-3)/2. Is this a trivial 
inequality? 

3.3. Hecke operators on Slr). Since 

H}(U, C)=A(T)EBW, 

and since 

(a= 1,2) 

is easily seen, we have: 

where PiT, u) is the characteristic polynomial of T* on the subspace A. 
So, 

P A(T, u) e Z[u], 

and if n(n-3)/2z.2, then with h'=n(n-3)/2-2=(n-4)(n+l)/2, 

(u-deg (t»h' I P~(T, u). 

The Hecke operator T=r~r= Jjt~lr~i operates on slr, SJaxSJp). 
(a, fi= +, -) by 

T(cp) = E cp(Uz» .n(det ~i)«C~l)Zl +d2» . (ciZ)zz+d?»)-Z, 
i 
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The map 1[raP: Sz(r, SJaxfJP)-+HZ(UaP) is commutative with actions of 
T*; so Sa,p is a Hecke-ring-stable subspace of H2(Ua,P). (For notations 
1[r, {} etc. see 1.4). 

Since the (partial) conjugation map: {}a, P: 9J + X SJ + -+SJa X 9JP com
mutes with the action of g E GL+(2, R)2, (}a,p: HZ(Ua,p)-+HZ(U) also 
commutes with Hecke operator actions T*. Thus Aa,p (cr, [3= +, -) 
are Hecke-ring-stable. 

Denote the characteristic polynomial of T* on Sz(r, SJa X fJP) by 
P sa,p(T, u). Then it is also the characteristic polynomial of T* on Sa,p 
and on Aa,p, and 

PiT, u)=Ps++(T, u)Ps+_(T, u)Ps-+(T, u)Ps--(T, u) 

=!Ps++(T, u)Ps+_(T, u)!z, 

since Ps++ =Ps--, and Ps+-=Ps-+' 
We assume that N(eo)=-I; let us assume that SOl(eO»O, SOz(eo)<O 

without loss of generality. Put 

then the map Eo: 9J+ x9J+-+SJ+ XSJ- etc defined in Section 1.4 gives an 
isomorphism E;}': S+-~S++, etc. For T=r~r E 8l(r, LI), define TEo 
by 

TEO=EorerEol=r(Eo~Eol)r, 

and extend T-+TEo to the automorphism.T-+TEo of the ring 8l(r, LI). 
Then for W E S+-, we have 

E;}'(T*(w» = TE~(E;}'(w». 
Thus 

Similarly define 

E' (e~ 0) 
0= 0 l' 

E~*(T*(w»= TEo'(E~*(w» for WE S- + 

and 

Also, define 



Hecke Operators 147 

(-1 0) 
C= 0 l' 

and TO=CTC-t, C*: S--~s++; then we have C*(T*(w))=To*(C*(w)) 
for w e S--; and 

Thus, 

PiT, u)=PiT, u)Ps(TEo, u)PiTEo, u)PiTO, u), 

where P seT, u) is the abbreviation of Ps++(T, u). In particular: 

Lemma (3.1.1). IfT=TEo=TEo=To, then 

PiT, u)4=Ps(T, U)4. 

The assumption T=TEo=TEo=To is true if T= Tt;r with ~= 

(g ~). In particular, it is true for T= Tp with a prime ideal lJ of () 

such that (lJ, 6n)= 1, such Tp is defined as 

Tp=r(~ ~)r 
with 

lJ=(tr), tr~O. 

These automorphisms Eo, E~, C =Eo 0 E~ of the Heeke-ring f3£(r, J) 
form an abelian group Ed={Eo, E~, C, 1}~Z2XZ2 with l=id. So T= 
TEo=TEo=To is true for T=T1+(T1)Eo+(T1)E0+(T1)O or for T=(T1Y 
with some Tl e f3£(r, J). 

3.4. The final result. Summarizing all of the above, we have 

Theorem (3.4). Under assumptions described below, the characteristic 
polynomial PiT, u) of the Hecke operator action Ton S2(r) is divisible by 
(u-deg(T))" modulo r where h=[(n-4)(n+ 1)/8]+ 1. 

Assumptions. 

(1) K=Q (.j d), d>O, with h= 1, N(eo) = -1, d=l=5. 
(2) r=ro(n) in the Hilbert modular group with n=ql" ·qm; 

qt=l=qj (i=l=j); Nqt=q~ for i=l, "', n; Nqj=qj for j=n+I,.··, m, 
where qJ are rational primes; (-I/qJ)= -1 for some qj (j =n+ I, .. " m) 
also (-3/qj) = -1 for one ofj=n+ I, .. " m; (n, 6)= 1. 

(3) There is a rational prime number .e such that: (.e, 6n)= I, qt= 1 
mod.e for i=l, "', n: qj:t=1 mod.e forj=n+l, "', m; (.e, N(l-em 
=1. 
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(4) T=r~r e PA(r, Ll) with ~=(g ~). 
In particular, T= Tp for a prime ideal !:J of 0 with (!:J, 6n)= 1. 
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