Advanced Studies in Pure Mathematics 7, 1985 Automorphic Forms and Number Theory pp. 1-6

On the Stark-Shintani Conjecture and Certain Relative Class Numbers

Tsuneo Arakawa

§1. Introduction

1.1. In [4], [5], H. M. Stark introduced certain ray class invariants of real quadratic fields with the use of special values at s=0 of the derivatives of some zeta functions, and presented a remarkable conjecture on the arithmetic of the ray class invariants (his treatment covers the cases of totally real fields). T. Shintani established the conjecture independently and solved it in a special but non-trivial significant case (see [3]). The solved case of the conjecture owing to Shintani might be of some importance in connection with certain Z_p -extensions of ray class fields over real quadratic fields (see J. Nakagawa [1], [2]). In this note we obtain a certain relative class number formula of the ray class fields under the assumption that the Stark-Shintani conjecture is valid. Such a class number formula will have some application in the study of Z_p -extensions of the ray class fields (cf. [1], [2]).

1.2. We summarize our results. Let F be a real quadratic field embedded in the real number field R. Let E(F) (resp. $E^+(F)$) be the group of units (resp. totally positive units) of F. For each $\alpha \in F$, α' denotes the conjugate of α in F. For an integral ideal f of F, let $H_F(f)$ denote the group of narrow ray classes modulo f of F. Take a totally positive integer ν of F such that $\nu + 1 \in f$, and denote by $\nu(f)$ the ray class of $H_F(f)$ represented by the principal ideal $[(\nu)$. For each class $c \in H_F(f)$, let $\zeta_F(s, c)$ be the partial zeta function defined by $\zeta_F(s, c) = \sum N(\alpha)^{-s}$, where α is taken over all integral ideals of F belonging to the class c. It is known that $\zeta_F(s, c)$ is holomorphic in the whole complex plane except for a simple pole at s=1. Let $\zeta'_F(s, c)$ denote the derivative of $\zeta_F(s, c)$. Set, for each $c \in H_F(f)$,

$$X_{f}(c) = \exp(\zeta'_{F}(0, c) - \zeta'_{F}(0, c\nu(f))).$$

The invariant $X_{f}(c)$ is intensively studied by Stark [4] and Shintani [3].

Received March 1, 1984.

T. Arakawa

From $X_{\mathfrak{f}}(c)$, another invariant $Y_{\mathfrak{f}}(c)$ ($c \in H_F(\mathfrak{f})$) is introduced in [3, § 2]: Let $\mathfrak{P}(\mathfrak{f})$ be the set of prime divisors of \mathfrak{f} . For each subset S of $\mathfrak{P}(\mathfrak{f})$, denote by $\mathfrak{f}(S)$ the intersection of all the divisors of \mathfrak{f} which are prime to any \mathfrak{p} of $\mathfrak{P}(\mathfrak{f})-S$. If we write $\mathfrak{f}=\prod_{\mathfrak{p}\in\mathfrak{P}(\mathfrak{f})}\mathfrak{p}^{e(\mathfrak{p})}$ ($e(\mathfrak{p})>0$), then, $\mathfrak{f}(S)=\prod_{\mathfrak{p}\in S}\mathfrak{p}^{e(\mathfrak{p})}$. Put $n(S)=|H_F(\mathfrak{f})|/|H_F(\mathfrak{f}(S))|$ (for any finite set A, |A| denotes the cardinality of A). Set, for each $c \in H_F(\mathfrak{f})$,

(1.1)
$$Y_{\mathfrak{f}}(c) = \prod_{S} X_{\mathfrak{f}(S)}(\tilde{c} \prod_{\mathfrak{p} \in \mathfrak{P}(\mathfrak{f}) - S} \mathfrak{p}^{-1})^{1/n(S)},$$

where S runs over all subsets of $\mathfrak{P}(\mathfrak{f})$, and for each S, \tilde{c} denotes the image of c under the natural homomorphism of $H_F(\mathfrak{f})$ onto $H_F(\mathfrak{f}(S))$.

We impose the following conditions (1.2), (1.3) on f:

(1.2) for any $u \in E^+(F)$, $u+1 \notin \mathfrak{f}$,

(1.3) no unit u of F satisfies
$$u > 0$$
, $u' < 0$ and $u - 1 \in f$.

Under the assumption (1.2), the ray class $\nu(f)$ is of order two in $H_F(f)$. Denote by $K_F(f)$ the maximal narrow ray class field over F defined modulo f and let σ be the Artin canonical isomorphism from $H_F(f)$ onto the Galois group Gal $(K_F(f)/F)$ of $K_F(f)$ over F. For any subgroup G of $H_F(f)$, let $K_F(f, G)$ be the subfield of $K_F(f)$ corresponding to $G: K_F(f, G) = \{\theta \in K_F(f) | \theta^{\sigma(g)} = \theta \text{ for all } g \in G\}$. Set

$$X_{\mathfrak{f}}(c, G) = \prod_{g \in G} X_{\mathfrak{f}}(cg), \quad Y_{\mathfrak{f}}(c, G) = \prod_{g \in G} Y_{\mathfrak{f}}(cg) \quad (c \in H_{F}(\mathfrak{f})).$$

Take an integer μ of F such that $\mu < 0$, $\mu' > 0$ and $\mu - 1 \in \mathfrak{f}$. Denote by $\mu(\mathfrak{f})$ the ray class of $H_F(\mathfrak{f})$ represented by the principal ideal (μ). Then $\mu(\mathfrak{f})$ is of order at most two. Let the subgroup G of $H_F(\mathfrak{f})$ satisfy the condition:

(1.4)
$$\mu(\mathfrak{f}) \in G \text{ and } \nu(\mathfrak{f}) \notin G.$$

Set $M = K_F(\mathfrak{f}, G)$ and $M^+ = K_F(\mathfrak{f}, \langle G, \nu(\mathfrak{f}) \rangle)$, where $\langle G, \nu(\mathfrak{f}) \rangle$ denotes the subgroup of $H_F(\mathfrak{f})$ generated by G and $\nu(\mathfrak{f})$. Then exactly one of the infinite primes of F which corresponds to the prescribed embedding of F into **R** splits in M over F, and M^+ is the maximal totally real subfield of M. Under the assumptions (1.2), (1.3) on \mathfrak{f} and (1.4) on G, the Stark-Shintani conjecture is formulated as follows (we follow [3]):

Conjecture. There exists a rational positive integer m which satisfies the following conditions:

- (i) $X_{\mathfrak{f}}(c, G)^m$ is a unit of M for each $c \in H_F(\mathfrak{f})$,
- (ii) $\{X_{f}(c, G)^{m}\}^{\sigma(c')} = X_{f}(cc', G)^{m}$ for any $c, c' \in G$.

Shintani proved the conjecture when M^+ is abelian over the rational number field Q ([3, Theorem 2]).

Let E(M) (resp. $E(M^+)$) be the unit group of M (resp. M^+). Denote by h(M) (resp. $h(M^+)$) the class number of M (resp. M^+). Then, h(M) is divided by $h(M^+)$ by class field theory. In view of the definition (1.1) of $Y_{\rm f}(c)$ and the conjecture, we may assume that, for some positive integer m, $Y_{\rm f}(c, G)$ satisfies

(1.5)
$$\begin{cases} Y_{\mathfrak{f}}(c, G)^m \in E(M) \text{ for any } c \in H_F(\mathfrak{f}), \\ \{Y_{\mathfrak{f}}(c, G)^m\}^{\sigma(c')} = Y_{\mathfrak{f}}(cc', G)^m \text{ for any } c, c' \in H_F(\mathfrak{f}). \end{cases}$$

Under the assumption (1.5), we shall get a certain formula which connects the relative class number of M/M^+ with the invariants $Y_i(c, G)$.

Theorem. Let f satisfy the conditions (1.2), (1.3) and let G be a subgroup of $H_F(f)$ with the condition (1.4). Assume that, for a suitable positive integer m, the invariants $Y_i(c, G)$ satisfy the relation (1.5). Denote by n the degree of the extension of M^+ over $F(n=[M^+:F])$. Then we have

$$h(M)/h(M^+) = 2^{1-2n}m^{-n}[E(M): E_{Y,m}(M)],$$

where $E_{Y,m}(M)$ is the subgroup of E(M) generated by $E(M^+)$ and $Y_{\mathfrak{f}}(c, G)^m$ $(c \in H_F(\mathfrak{f})/\langle G, \nu(\mathfrak{f}) \rangle)$, and $[E(M): E_{Y,m}(M)]$ denotes the group index of E(M) to $E_{Y,m}(M)$.

If M^+ is abelian over Q, then the relation (1.5) for a certain positive integer *m* has been verified by Shintani ([3, Proposition 5]). In this solved case the relative class number formula in Theorem actually holds. Recently, Nakagawa obtained a series of cyclotomic Z_p -extensions $\bigcup_{n=0} M_n$ such that, for each M_n , the Stark-Shintani conjecture is valid with the index m=1. Moreover, with respect to such Z_p -extensions, he obtained a more precise version of our Theorem (see [1], and [2, Theorem 1]).

§ 2. Proof of Theorem

We keep the notation used in the introduction. Let $\zeta_M(s)$, $\zeta_{M^+}(s)$ be the Dedekind zeta functions of M, M^+ , respectively. For each character χ of the group $H_F(f)$, we denote by f_{χ} the conductor of χ and by $\tilde{\chi}$ the primitive character of the group $H_F(f_{\chi})$ corresponding to χ in a natural manner. Let $L_F(s, \tilde{\chi})$ be the Hecke L-function associated with $\tilde{\chi}$. It is well-known by class field theory that

$$\zeta_{M}(s) = \prod_{\chi} L_{F}(s, \tilde{\chi}),$$

T. Arakawa

where χ runs over all characters of the group $H_F(\mathfrak{f})$ with the condition $\chi(G)=1$. A similar identity holds for $\zeta_{M+}(s)$. Therefore we get the expression for $\zeta_M(s)/\zeta_{M+}(s)$:

(2.1)
$$\zeta_M(s)/\zeta_{M+}(s) = \prod_{\chi}' L_F(s, \tilde{\chi}),$$

where the product \prod' means that χ is taken over all characters of the group $H_F(\mathfrak{f})$ with the conditions $\chi(G) = 1$, $\chi(\nu(\mathfrak{f})) = -1$. Denote by R(M), $R(M^+)$ the regulators of M, M^+ , respectively. It is easily derived from the well-known residue formula of $\zeta_M(s)$ at s=1 that

$$\lim_{s\to 0} \frac{\zeta_M(s)}{s^{3n-1}} = -\frac{h(M)R(M)}{2}.$$

Similarly we have

$$\lim_{s \to 0} \frac{\zeta_{M+}(s)}{s^{2n-1}} = -\frac{h(M^+)R(M^+)}{2}$$

Therefore we easily get

$$\frac{h(M)}{h(M^+)} = \frac{R(M^+)}{R(M)} \prod_{\chi}' \left\{ \frac{d}{ds} L_F(s, \tilde{\chi}) \right\}_{s=0}$$

where we note that $L_F(0, \tilde{\chi})=0$. It is known by Shintani [3, Proposition 3] that, for each character χ of the group $H_F(\mathfrak{f})$ with $\chi(\nu(\mathfrak{f}))=-1$, the value $\{(d/ds)L_F(s, \tilde{\chi})\}_{s=0}$ is expressed as follows:

$$\left\{\frac{d}{ds}L_F(s,\tilde{\lambda})\right\}_{s=0} = \sum_{c \in H_F(\mathfrak{f})/\langle G, \nu(\mathfrak{f}) \rangle} \chi(c) \log Y_{\mathfrak{f}}(c,G)$$

(we note that the definition (1.1) of $Y_{\mathfrak{f}}(c)$ coincides with that of Shintani [3, (18)], since $X^{\mathfrak{f}(S)}(\tilde{c})$ ($c \in H_F(\mathfrak{f})$) is trivially one unless $\mathfrak{f}(S)$ satisfies the condition (1.2)). Thus we get

(2.2)
$$\frac{h(M)}{h(M^+)} = \frac{R(M^+)}{m^n R(M)} \prod_{\chi}' \{ \sum_{c \in H_F(\mathfrak{f})/\langle G, \nu(\mathfrak{f}) \rangle} \chi(c) \log Y_{\mathfrak{f}}(c, G)^m \}.$$

Let $\{c_1, c_2, \dots, c_n\}$ be a complete set of representatives of $H_F(\mathfrak{f})/\langle G, \nu(\mathfrak{f}) \rangle$. Let τ be any embedding of M into the complex number field C which is an extension of the non-trivial automorphism ι of F. Then all mutually distinct embeddings of M into C are exhausted by

$$\begin{cases} \sigma(c_1), \cdots, \sigma(c_n), \sigma(c_1\nu), \cdots, \sigma(c_n\nu), \\ \sigma(c_1)\tau, \cdots, \sigma(c_n)\tau, \sigma(c_1\nu)\tau, \cdots, \sigma(c_n\nu)\tau, \end{cases}$$

Stark-Shintani conjecture

where we write ν instead of $\nu(f)$. Note that $\sigma(c_i\nu)\tau$ is the complex conjugate of $\sigma(c_i)\tau$ $(1 \le i \le n)$. Let $\{u_1, u_2, \dots, u_{2n-1}\}$ be a system of fundamental units of M^+ . For simplicity we write $Y(c_j) = Y_j(c_j, G)^m$ $(1 \le j \le n)$. Now we calculate the regulator $R[u_1, \dots, u_{2n-1}, Y(c_1), \dots, Y(c_n)]$ of the units $u_1, \dots, u_{2n-1}, Y(c_1), \dots, Y(c_n)$ of M. We define matrices Y, W, U and U' by putting

> $Y = (\log | Y(c_j)^{\sigma(c_i)} |)_{1 \le i, j \le n},$ $W = (\log | Y(c_j)^{\sigma(c_i)\tau} |)_{1 \le i \le n-1, 1 \le j \le n},$ $U = (\log | u_j^{\sigma(c_i)} |)_{1 \le i \le n, 1 \le j \le 2n-1},$ $U' = (\log | u_j^{\sigma(c_i)\tau} |)_{1 \le i \le n-1, 1 \le j \le 2n-1}.$

Immediately we have

$$Y(c_{j})^{\sigma(c_{i})} = Y(c_{i}c_{j}), \quad Y(c_{j})^{\sigma(c_{i}\nu)} = Y(c_{i}c_{j})^{-1}, \quad u_{j}^{\sigma(c_{i}\nu)} = u_{j}^{\sigma(c_{i})}.$$

It is easy to see from the definition of the regulator that

$$R[u_1, \dots, u_{2n-1}, Y(c_1), \dots, Y(c_n)] = \det \begin{bmatrix} Y & U \\ -Y & U \\ 2W & 2U' \end{bmatrix}$$
$$= \det \begin{bmatrix} 2Y & 0 \\ -Y & U \\ 2W & 2U' \end{bmatrix}$$
$$= 2^{2n-1} \det (Y) \det \begin{bmatrix} U \\ U' \end{bmatrix}$$

Thus we get

(2.3) $R[u_1, \dots, u_{2n-1}, Y(c_1), \dots, Y(c_n)] = \pm 2^{2n-1}R(M^+) \det(Y).$

We need a lemma which is only a modification of the Dedekind determinant relation.

Lemma 2.1. Let H be a finite abelian group and K a subgroup of H. Let h_1, h_2, \dots, h_r (r = |H/K|) be a complete set of representatives of the quotient H/K. Take a character ψ of K. Then, for any function f on H such that

$$f(kh) = \psi(k)f(h)$$
 for all $k \in K, h \in H$.

we have

$$\det (f(h_i h_j^{-1})) = \prod_{\chi} \left\{ \sum_{i=1}^r \chi(h_i) f(h_i^{-1}) \right\}$$

where χ runs over all characters of H such that the restriction of χ onto K coincides with ψ .

We omit the proof, which is quite similar for instance to that of Lemma 5.26 of [6].

Now let $H = H_F(\mathfrak{f})$ and $K = \langle G, \nu(\mathfrak{f}) \rangle$. Define a character ψ of K by putting $\psi(G) = 1$ and $\psi(\nu(\mathfrak{f})) = -1$. Applying Lemma 2.1 to our situation, we get

(2.4)
$$\det(\log Y(c_i c_j^{-1})) = \prod_{\chi}' \left\{ \sum_{i=1}^n \chi(c_i^{-1}) \log Y(c_i) \right\},$$

where \prod'_{i} means the same as in (2.1). We note that

 $\det (\log Y(c_i c_j^{-1})) = \pm \det (\log Y(c_i c_j)) = \pm \det (Y).$

Taking the relations (2.2), (2.3), (2.4) into account of, we get

$$\frac{h(M)}{h(M^{+})} = \pm \frac{R[u_1, \cdots, u_{2n-1}, Y(c_1), \cdots, Y(c_n)]}{2^{2n-1}m^n R(M)},$$

which implies the assertion of Theorem.

Remark. It seems better to obtain a relative class number formula in Theorem by using the original invariants $X_i(c, G)$ instead of $Y_i(c,G)$.

References

- [1] J. Nakagawa, On the Stark-Shintani conjecture and cyclotomic Z_p extensions of class fields over real quadratic fields, J. Math. Soc. Japan, 36 (1984), 577-588.
- [2] —, On the Stark-Shintani conjecture and cyclotomic Z_p -extensions of class fields over real quadratic fields II, Tôhoku Math. J., **36** (1984), 439–452.
- [3] T. Shintani, On certain ray class invariants of real quadratic fields, J. Math. Soc. Japan, 30 (1978), 139-167.
- [4] H. M. Stark, L-functions at s=1. III. Totally real fields and Hilbert's twelfth problem, Adv. in Math., 22 (1976), 64-84.
- [5] —, Class fields for real quadratic fields and L-series at s=1, Proc. Durham Conf., pp. 355-374, Academic press, New York, 1977.
- [6] L. C. Washington, Introduction to cyclotomic fields, Springer-Verlag, New York, 1982.

Department of Mathematics Rikkyo University Nishi-Ikebukuro, Tokyo 171 Japan

6

Q.E.D.