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On Unramified Extensions of Function Fields
over Finite Fields

Yasutaka Thara

Let k be an algebraic function field of one variable with genus g over
a finite constant field F,, and S be a given non-empty set of prime divisors
of k. Denote by k¥ the maximum unramified Galois extension of k in
which all prime divisors of k belonging to S decompose completely. Since
S is nonempty, the algebraic closure of F, in k¥ must be finite over F,.
In this report, we shall give a survey of our results on this type of exten-
sions k¥,

§ 1.  First, one expects that if k¥'/k is an infinite extension, then S
cannot be “too big”. What is the natural quantitative result along this
line? The Chebotarev density of S is of course 0, but we need a stronger
result. By studying the behaviour of zeta functions of intermediate fields
of k¥/k near s=1, using the Weil’s Riemann hypothesis for curves, we
obtained the following

Theorem 1. Suppose that M is an infinite unramified Galois extension
of k. For each prime divisor P of k, let deg P denote its degree over F,,
put N(P)=q%8%, and let f(P) (1< f(P)< o0) denote the residue extension
degree of P in Mlk. Let g>1. Then

deg P
1.1 -t _<Lg—1,
(L.1) ; N(P) P —1 =&
F(B)<en
the series on the left being convergent.
Corollary 1. If k¥'/k is infinite, then
(1.2) dgP o 1.

Pes N(P)”Zj_

In particular,

Received January 6, 1983.
*) The results of § 1 are obtained after the Symposium. Details will ap-
pear in [Ih 7].
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Corollary 2 If k¥/k is infinite, and S consists only of a finite number
of prime divisors of degree one, then

(1.3) IS|I<@Wq—Dg—-1).

We have a similar result for algebraic number fields assuming the
generalized Riemann hypothesis. In each case, the proof is based on the
studies of [K: k]~* (d/ds) log £ .(s), its inverse Mellin transform, and their
limit as K—M, where K runs over the finite subextensions of M/k (cf.
[Th 7)).

A basic open question related to Theorem 1 is: Does there exist M
with which the set {P; f(P)<oo} is infinite? On the other hand, we have
a family of examples of M/k for which the equality in (1.1) (and in fact,
Corollary 2 with the equality) holds. Such examples appear in connection
with liftings of the Frobenius-like correspondence “II4 11" of k to char-
acteristic 0, and with irreducible discrete subgroups of PSL,(R) X PGL,(F,)
(F,: a p-adic field, g=N(p)*). This will be discussed as one of the main
subjects in the next sections.

§ 2. We shall meet with the case where the Galois group of k%'/k is
isomorphic with the profinite completion of some topological fundamental
group. ([Th 4] [Th 5)).

Let g=p*, an even power of a prime p, and C/F, be a smooth com-
plete model of k. Let C’/F, be its conjugate over F,,, and let I7 (resp.
II") be the graphs on CX C’ of the p’/-th power morphisms C—C’ (resp.
C’—C). Consider II+1I'CCXC’ as a reduced closed subscheme.
Note that the set of singular points of I74-IT’ is:

INIT={(x,x)e CXC’; x* =x, x'? =x}
~the F -rational points x of C.

We shall be concerned with lifting of the triple (C, C’; Il +II’) to char-
acteristic 0 and its application to the Galois group of k¥/k (for some S
determined by the lifting). Let o, be the ring of integers of a p-adic field
with residue field F,, (e.g. 0,= W(F,,), the ring of Witt vectors), and o{»
be its unique unramified quadratic extension. By a lifting of (C, C’; II +1I")
over 0, we mean a triple (¥, ¥’; ), where ¥, ¥’ are smooth proper
o{®-schemes that lift C, C’ respectively, and 7 is an irreducible closed
subscheme of ¥ X %’, flat over o{®, that lifts [T+ 7I’. (When k has a
model C over F,;, we look for liftings of (C, C; II +II") over 0,, and this
is sometimes easier.) We say that (%, €’;.9") is symmetric, if € and €’ are
conjugate over o, and if *7" =" (¢: the transpose, ’: the o,-conjugation).
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Suppose that (¢, €’; J) is a lifting of (C, C’; [I+1I'). Take any
closed point P=(x, x’) e IINII’ and consider it as a point of I~ (via II
+ II'=—>7, the inclusion as the special fiber). When P is a normal point
on 7, we say that x e Cis a special point with respect to (¢, ¢’; ). Let
S be the set of all special points. By definition, S consists only of F,-
rational points of C. (The corresponding set of prime divisors of k of
degree one will also be called the set of special points and denoted by S.)
As for the cardinality of .S, we have

Proposition 1. (i) | S|>( g —1)(g—1), (ii) the equality holds if and
only if the normalization T * of I is unramified over € (resp. €') on the
general fiber.

Thus, we call (¥, ¢’; ) unramified when |S|=(v' ¢ —1)(g—1), and
ramified when | S|>(+ ¢ —1)(g —1). Leaving aside the question of lifta-
bility till Section 3, we first discuss the main consequences assuming the
existence of (&, €’; 9). .

Assume that there exists a lifting (¢, €’; ) of (C, C’; Il +-1I’) over
0. Let F, denote the quotient field of o,, and F, its algebraic closure.
Fix any isomorphism ¢: F,=C, C being the complex number field. Take
base changes ¥QC, ¢’'RC, 7 *QC with respect to ¢, and call R, K, R°
the corresponding compact Riemann surfaces. Let ¢: R°—R, ¢’ R'—-NR’
be the finite morphisms induced from the projections I *—%, I * %",
respectively. Then ¢, ¢’ have degree p/+1. Take any base point P° e R°,
and put P=¢(P°), P'=¢'(P°). Letx,(R), =,(R"), 7,(R°) be the topological
fundamental groups of R, N/, R° w.r.t. P, P/, P°, and let

D: ,(R)—>7,(R), @ 7 (R)—>m,(R)

be the group homomorphisms induced from ¢, ¢’. Let I’ be the free
product of z,(R), = ,(R’) with amalgamation defined by @ and @’;

I'=z,(R) = =,R).
x1(R9)

Then [" is a group defined by a finite number of generators and relations.
It is the fundamental group of the space obtained by amalgamating the
mapping cylinders of ¢ and of ¢’. When (¢, ¥’; ) is unramified, ¢, ¢’
are unramified; hence @, @' are injective and I is an infinite group. On
the other hand, when (%, ¢’; ) is ramified, both ¢, ¢’ are ramified, and
@ and @’ turn out to be surjective; hence I'=r,(R°)/N.N’, where N, N’
denote the kernels of @, @’ respectively. Denote by I the profinite com-
pletion of I'. ‘
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Theorem 2 [Ih 4] [Th 5]%. Suppose that (C, C’; I+ II') has a lifting
(%, €’; T) over 0, and let S be the set of special points with respect to
this lifting. Then

(i) the Galois group Gal (k¥/k) is isomorphic with I';

(ii) the isomorphic groups of (i) are infinite groups if and only if | S|=
& g—D(g—D.

The main point to be stressed here is that Gal (k¥/k) is strictly iso-
morphic with I, not excluding the pro-p-factors. The key lemma for this
is:

Lemma 1 (Thara-Miki [Th-Mi 1]). Let Q, be the p-adic number field.
Let & be a field containing Q,, which is complete with respect to a discrete
valuation | g extending the p-adic valuation of Q,. Suppose moreover
that & contains a prime element (for | |g) which is algebraic over Q,, and
that there is a value-preserving field-endomorphism o of & into & inducing the
p'-th power map of the residue field for some r e Z, r=1. Let IR be any
finite extension. Then the following two conditions (i) (i) on IN are equi-
valent:

(i) there exists a finite extension Q,/Q, such that INQ,/KQ,, is unra-
mified,

(ii) for some positive integer m, g™ extends to an endomorphism 5: M
—IN satisfying M? - K=IN.

In applying this lemma, § will be the completion of the function field
of % along its special fiber C, and ¢ is induced from the “II’ o [[-part”
of the algebraic correspondence !9 o I of ¥.

As for the assertion (ii) of Theorem 2, the “if” implication follows
from the fact that in the unramified case, I is infinite and residually finite
(i.e., '—I": injective; cf. [Th 5] Section 3). The converse, conjectured in
[Ih 5], is a direct consequence of Corollary 2 of Theorem 1.

~§3. In view of Theorem 2, our attention will be focused on the

following two problems.

(i) Give a method for deciding whether there exists a lifting (¥, ¢’;
T) of (C, C’; I +1I") having a prescribed set of special points.

(ii) When (¥, €’; 9) exists, give a method for calculating the group
I' explicitly. (The structure of I” itself may depend on the choice of ¢: F,
=C, although that of /" doesn’t.)

As for the first problem, we gave some answers in [Ih 3] [Th 6], using
deformation theory. They do not solve the problem completely, but give
some criteria for the existence (and/or) uniqueness of (¢, ¢’; ). Further

*) In [Ih 4] [Th 5], we used the letter g for +/ g =p’.
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results along this line (especially for the case g=2) were obtained by Y.
Furukawa [F 1]. Here, we shall review some results of [Th 6], taking f=1
(i.e., g=p°) and 0,= Z,=W(F,).

Let %, be an algebraic function field of one variable with exact con-
stant field F, and genus g >1, and put k=k,-F,.. Let S, be a prescribed
set of prime divisors of k, with degree<{2 over F,, and S be the set of all
prime divisors of k lying above S,. Let C be a proper smooth model of
k,. We consider the question of existence and/or uniqueness of those lift-
ings (¢, ¢’; 7) of (C, C; I+ II") over Z, whose special point set is con-
tained in S. Denote by H,(i=1, 2) the number of primes of S, with degree
i over F,, and put H={S|=H,+2H,. Let U denote the F,-vector space
of all holomorphic differential forms & of degree p+1 on C satisfying the
condition that &/7®”? is an exact differential, where 7 is a fixed differential
#+0 of degree one on C. Then U is independent of the choice of 7, and
is of dimension 2(p—1)(g—1). For each Q e S,, let £, denote its residue
field, #, be a local uniformization, and consider the linear map

B:U> ‘S—>(:gﬁ1: (S/(dtQ)®(p+l))Q)Q€So € Ff,“”’"’,

where (), denotes the residue class at Q.

Theorem 3A. (i) If B is injective, then there exists a symmetric lifting
of (C, C; I+ IT"y over Z, whose special points are contained in S; (ii) if p
is moreover bijective, such lifting is unique.

As an existence criterion, this applies only when H,4 H,>
2(p—1)(g —1); hence does not apply directly to the unramified situation
H=(p—1(g—1). As for unramified lifting, we have

Theorem 3B. There is at most one unramified lifting of (C, C; II +11")
over Z, having a prescribed set of special points. When it exists, it is sym-
metric.

Theorem 3C. Suppose that H=H,=(p—1)(g—1), p=£2, 8 is sur-
Jective, and that there is an involutive automorphism of C leaving each point
of S invariant. Then there exists a unigue unramified symmetric lifting of
(C, C; II+1I") over Z, having S as the set of special points.

This is a corollary of a more general result. The range of applica-
bility is small, but is useful for giving examples. There are also criteria
for nom-existence. In fact, the liftings of (C, C; I[I-II") to Z/p* are
completely classified in terms of some differentials of degree p—1 on C,
and hence the non-existence of such differentials would imply that of
liftings to Z/p?, and hence to Z, (cf. [Ih 3] Example 2).
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In each of the following three examples, there exists a unique symme-
tric lifting of (C, C; [+ 1I") over Z, having S as the set of special points.
For other examples of unique existence, non-existence, or non-unique ex-
istence, cf. [Th 3] [Th 6] [F 1].

Example 1 (p=2, g=2; ramified type).

k=Fy(x,»); V+E+x+Dy=x"+x+1
S:{(OO, 00)7 (OO, 0)} .

The unique liftability in this case follows from Theorem 3A. The
reason why the special point set coincides with S (instead of just contained
in ) is explained in [Th 6] Section 3.1 Example 1.

Example 2 (p=3, g=3; unramified type).

ky=Fy{x,y); x=X/Z, y=Y|Z;
XY—-XY*+XYZ*4+-2*=0,
S={(1:0:0), (0:1:0), (1:1:0), (1: —1:0)}.

This unique liftability is an application of Theorem 3C.
Example 3 (p=>5, g=2; unramified type).

ky=F{x,»);  y=x"+1
S= {(03 1)9 (09 - 1)’ (OO, OO), (OO, OO)} .

This unique liftability is an application of Corollary 2 of Theorem 3
of [Th 6], and is also obtained from a Shimura curve by reduction mod p.

By Theorem 2 for k=k,F,., we find that the extension k§/k is finite
for Example 1, and infinite for Examples 2, 3.

As for the second problem, it is left open. To illustrate the nature
of the problem, let C, S be as in Example 1, and (%, ¢’; ) be the unique
symmetric lifting of (C, C; II41II") over Z, with the special point set S.
Let R, R =R, KR° be the corresponding compact Riemann surfaces (w.r.t.
o), and ¢: R—R, ¢': RN’ be the projections. Let ¢ be the involutive
automorphism of R° induced from the symmetry of .. Then the group
I in question is

I'=n,R)/N.N",
where N is the kernel of @: 7, (R°)—n,(N), and the involution of =,(R’)

induced from z is also denoted by z. Now we can show (without knowing
the algebraic equations for (¢, €’; 7)) that:
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(a) N has genus 2, and R° has genus 5;

(b) ¢'=¢or, deg p=3, and ¢ is ramified at exactly two points of
R° with ramification index 2;

(c) the number of fixed points of z on R° is 4.

From these data, we can determine

(A) the group structure of 7,(R%);

(B) its normal subgroup N, up to automorphisms of w,(R°),

(C) the involutive automorphism ¢ of = (R°), up to conjugacy in the
full automorphism group of z,($1°).

But this still does not determine the pair {N, N°} up to automorphisms
of 7,(R°), because the double coset space

Centralizer(z)\Aut (z,(R"))/Normalizer(NV)

seems to be large and mysterious. The recent developments on the struc-
ture of the outer automorphism group of z, of compact Riemann surfaces
still do not seem to help much.

§ 4. The unramified liftings of (C, C’; IT + II") over o{? are in a close
connection with discrete co-compact subgroups I" of PSL(R) X PGL;(F),
where PGL;(F,) denotes the intermediate group of PSL,(F,)CPGLJF)
corresponding to o} F*/F* by the determinant. Put

V—PGLy0)), V'=<g (1)>_1PGL2(DP)<3 ‘1)) vo=vnv,

where = is a prime element of F,, and let Iy, etc. be the projection to
PSL,(R) of the intersection of I with PSL(R)X V, etc. Then I',, etc.
are discrete co-compact subgroups of PSL(R). Let R, R}, R} be the
compact Riemann surfaces corresponding to I"y, I',., I'y, respectively,
and ¢, : Re—R, o1 RE—R,. be the canonical morphisms.  Fix¢: F,=C,
as before.

Conjecture There is a categorical equivalence between

(A)  Unramified liftings (€, €'; T) of some (C, C’; I +11I') (not
specified) over 0@ such that the normalization T * of J is regular (as a
scheme);

(B) Torsion-free co-compact discrete subgroups I' of PSL,(R)X
PGL; (F,) for which the topological closure of the projection of I" to PSL{R)
(resp. PGL; (F,)) coincides with PSL,(R) (resp. contains PSL,(F));

such that if I' corresponds with (¢, %€’; T) then the system {R rffiﬁ"p"—o—i 7}
of Riemann surfaces obtained from I' in the above manner corresponds with
(T *=>%"}1Q.C.
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The functor (B)—(A) is established by the combination of results by
Shimura, Thara, Morita, Ohta and Margulis, except for the regularity of
T *, as follows.

(a) the arithmeticity of I" (Margulis [Ma 1]),

(b) ifI" corresponds with some (¥, €’; 7°) and I'*CI” (finite index),
then I"* corresponds with some (¢*, €’*; 7 *) (Ihara [Th 4])

(©) (b) with I'* DT (cf. Ohta [Oh 1] § 3.4)

(d) congruence relations for Shimura curves for almost all p (Shi-
mura [Sh 1]),

() (d) for individual p for congruence subgroups whose level is
coprime with p (not 9) (Morita [Mo 1]; cf. [Oh 1] § 3.4 for methods for
refinement to “p”).

It should be added that (b) is based on the earlier work of [Th-Mi 1]
mentioned before, and (¢) is based on the works of [Sh 1] and of [Ih 1].

For concrete description of arithmetically defined groups I', see
[Ih 1] (b) Ch. 4. Tt is not known whether each I" satisfies the congruence
subgroup properties. The regularity of * is proved only when F=Q,
[Ih 2]. When F=Q,, (¥, ¢’; ) is always symmetric (Theorem 4, [Ih 6]).

As for the functor (A)—(B), we constructed an infinite group I" (§ 2,
[Th 4]) which has a natural embedding into PSL,(R), but what we could
prove is only that I" is a torsion-free co-compact discrete subgroup of
PSL,(R) X Aut (Z), where ¥ is the tree of PGL;(F,).

The association ['—(%, ¢’; 9 )—I" is the identity, and (B)—(A)
makes (B) a full subcategory of “(A) without regularity of .7 *” (cf. [Ih 4]).

§5. Finally, let (%¢,%’;.9) be any unramified lifting of (C, C’; I
+1I") over of®. Then, as we have shown in [Ih 4] Section 5, the group
I' describes, not only the structure of the Galois group Gal (k%¥/k), but
also all the Frobenius elements in k%/k in terms of some I'-conjugacy
classes. Since each discrete subgroup I" of PSL,(R) X PGL;(F,) satisfying
the conditions of (B) determines (¢, ¢’; ) (and hence also k and S), it
describes the Galois group of k¥/k together with all Frobenius elements
as in [Ih 4] Section 5. Thus, the problem raised in [Th 1] as conjectures
((C1) ~(C5) in (c) § 1.3) have been solved affirmatively, although in a very
indirect way™.
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