Advanced Studies in Pure Mathematics 2, 1983 Galois Groups and their Representations pp. 63-68

On the Absolute Galois Groups of Local Fields II

Keiichi Komatsu

Introduction

Let p be an odd prime number, Q_p the p-adic number field, k a finite algebraic extension of Q_p and \bar{k} the algebraic closure of k. In [3], A. V. Jakovlev describes the absolute Galois group $G(\bar{k}/k)$ of k of even degree by using generators and relations (cf. [2]). However, this description is very complicated and not explicit. In [7], H. Koch says that a simple description of $G(\bar{k}/k)$ in terms of generators and relations seems impossible. Recently, in [5], Jannsen and Wingberg give a simple description of the absolute Galois group of k of any degree by using generators and relations. The purpose of this part is to give an account of the result of Jannsen and Wingberg [5]. This part is the sequel of Miki [8]. Readers are advised to recall the definition of Demuškin formation in [8].

Notation and terminology

Throughout this paper, Z and \hat{Z} denote the rational integer ring and the inverse limit of all finite cyclic groups, respectively. For a prime number p, we denote by Z_p the p-adic integer ring and by Q_p the p-adic number field. F_p denotes the prime field Z/pZ. For a profinite group G, we denote by \tilde{G} the maximal pro-p-factor group of G. For elements $x, y \in G$, we put $[x, y] = xyx^{-1}y^{-1}$ and $x^y = yxy^{-1}$. For closed subgroups H and S of G, we denote by [H, S] the closed subgroup of G generated by $\{[x, y] | x \in H, y \in S\}$. We denote by G^{ab} the factor group G/[G, G]. If G is commutative, we denote by G^* the dual group of G, by Tor (G) the torsion part of G and by G(p) the p-part of G. Let A and B be Gmodules. We denote by $A \oplus B$ the direct sum of A and B. We denote by $H^n(G, A)$ the *n*-th cohomology group of G with coefficients in A. Let s be a natural number and $(\mathbb{Z}/p^s\mathbb{Z})^{\times}$ the multiplicative group of the factor ring $Z/p^s Z$. Let α be a continuous homomorphism of G into $(Z/p^s Z)^{\times}$. For elements $x + p^s Z \in Z/p^s Z$ and $\sigma \in G$, we define $(x + p^s Z)^\sigma = \alpha(\sigma)(x + p^s Z)$. By this definition, we can regard $Z/p^s Z$ as G-module. We denote by $Z/p^s Z(\alpha)$ this G-module. From now on, p denotes an odd prime number.

Received November 30, 1982.

Keiichi Komatsu

1. Let F_{n+1} be a free profinite group with basis z_0, \dots, z_n . For an odd prime number p, we put $q = p^{f_0}$, where f_0 is a natural number. Let G be a profinite group with basis σ , τ such that $\sigma\tau\sigma^{-1} = \tau^q$. Let $F_{n+1}*G$ be the free profinite product of F_{n+1} and G (cf. [1], [9]). Let W be the normal closed subgroup of $F_{n+1}*G$ generated by $\{z_0, \dots, z_n\}$ and I the normal closed subgroup of W such that the factor group W/I is the maximal propractor group of W. Then I is a closed normal subgroup of $F_{n+1}*G$. Hence we put $F(n+1, G) = (F_{n+1}*G)/I$ and P = W/I. We denote by x_i the image of z_i in F(n+1, G). Then P is a normal closed subgroup generated by x_0, \dots, x_n and F(n+1, G) has topological minimal generators σ , τ , x_0, \dots, x_n . We have also the exact sequence

$$I \longrightarrow P \longrightarrow F(n+1, G) \longrightarrow G \longrightarrow I$$
 (splits). We put $G = \Psi(G)$.

Let s be a natural number. Let α be a continuous homomorphism of G into $(\mathbb{Z}/p^s\mathbb{Z})^{\times}$ and β a mapping of G into \mathbb{Z}_p^{\times} such that β is a lifting of α (not necessary a homomorphism). We suppose that $\alpha(\tau)^{(p-1)/2} \equiv -1 \mod p$ for odd integers n and f_0 . Let l be a prime number and $\{p_1, p_2, p_3, \cdots\}$ the set of prime numbers such that every p_i is prime to l. For every integer m, there exist integers a_m and b_m such that

$$I=a_ml^m+b_mp_1^mp_2^m\cdots p_m^m.$$

We put $\pi_1 = \lim b_m p_1^m p_2^m \cdots p_m^m \in \hat{Z}$. For an element $\rho \in G$, we put

$$(x, \rho) = (x^{\beta(1)} \rho x^{\beta(\rho)} \rho \cdots x^{\beta(\rho^{p-2})} \rho)^{\pi_{p}/(p-1)} \text{ and } \{x, \rho\} = (x^{\beta(1)} \rho^2 x^{\beta(\rho^2)} \rho^2 \cdots x^{\beta(\rho^{p-2})} \rho^2)^{\pi_{p}/(p-1)}.$$

For the even integer *n*, we put

$$r = x_0^{-\sigma}(x_0, \tau)^{\beta(\sigma)^{-1}}[x_1, x_2][x_3, x_4] \cdots [x_{n-1}, x_n].$$

We take $a, b \in \mathbb{Z}$ such that $-\alpha(\sigma\tau^a) \mod p \in (\mathbb{F}_p^{\times})^2$ and that $-\alpha(\sigma\tau^b) \mod p \notin (\mathbb{F}_p^{\times})^2$. We put

$$y_1 = x_1^{\tau_2^{p+1}} \{ x_1, \tau_2^{p+1} \}^{\sigma_2 \tau_2^a} \{ \{ x_1, \tau_2^{p+1} \}, \sigma_2 \tau_2^a \}^{\sigma_2 \tau_2^b} \{ \{ x_1, \tau_2^{p+1} \}, \sigma_2 \tau_2^a \}^{\tau_2^{(p+1)/2}}.$$

Here we put $\sigma_2 = \sigma^{\pi_2}$ and $\tau_2 = \tau^{\pi_2}$. For the odd integer *n*, we put

$$r = x_0^{-\sigma}(x_0, \tau)^{\beta(\sigma)^{-1}}[x_1, y_1][x_2, x_3] \cdots [x_{n-1}, x_n].$$

Then we put $X(G, n, s, \beta) = F(n+1, G)/(r)$, where (r) is the closed normal subgroup of F(n+1, G) generated by r. Then Jannsen and Wingberg have the following in [5]:

Theorem 1. The above profinite group $X(G, n, s, \beta)$ is a Demuškin formation over G with degree n, torsion p^s and character α .

We have the following in [7] or [10]:

Theorem 2. Let Y_1 and Y_2 be profinite groups such that they are Demuškin formations over G with degree n, torsion p^s and character α . Then Y_1 and Y_2 are isomorphic as topological groups.

Theorem 4 in [8], the above Theorem 1 and Theorem 2 show the following main theorem:

Theorem 3. (cf. [5]). Let p be an odd prime number, k a finite algebraic extension over Q_p of degree n, $q = p^{f_0}$ the cardinality of the residue field of k, \bar{k} the algebraic closure of k and T the maximal tamely ramified extension of k such that \bar{k} contains T. Let $\mu_T = (\zeta)$ the p-torsion part of the multiplicative group T^{\times} of T and p^s the order of μ_T . Let G be the Galois group of T over k, α a homomorphism of G into $(Z/p^sZ)^{\times}$ such that $\zeta^{\rho} = \zeta^{\alpha(\rho)}$ for any element $\rho \in G$ and β a mapping of G into Z_p^{\times} such that β is a lifting of α . Let σ, τ be generators of G such that $\sigma \tau \sigma^{-1} = \tau^{\alpha}$. Then the Galois group of \bar{k} over k is isomorphic to $X(G, n, s, \beta)$ as topological group.

2. Outline of proof of Theorem 1. We put $X = X(G, n, s, \beta)$ and N = (r). Since we can show $r \equiv \tau^{\pi_p \beta(\sigma)^{-1}} \equiv 1 \mod P$, we have $P \supset N$. We put V = P/N. Then we have the following commutative diagram:

Let *H* be an open normal subgroup in *G* such that the kernel of α contains *H*. Let *U* be the open subgroup of F(n+1, G) such that U/P = H. We put $X_H = \varphi^{-1}(H)$ and G' = G/H. For an element $x \in P$, we put $\bar{x} = x[P, U]$.

Keiichi Komatsu

Then we can show that P/[P, U] is a free $\mathbb{Z}_p[G']$ module with free basis \bar{x}_0 , \cdots , \bar{x}_n (cf. [9]). Since we have the exact sequence $I \rightarrow N \rightarrow P \rightarrow V \rightarrow I$, we have the exact sequence

$$0 \longrightarrow H^{1}(V, \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{U} \longrightarrow H^{1}(P, \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{U} \longrightarrow H^{1}(N, \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{U}.$$

Hence we have the exact sequence

$$(H^{1}(N, \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{U})^{*} \rightarrow (H^{1}(P, \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{U})^{*} \rightarrow (H^{1}(V, \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{U})^{*} \rightarrow 0.$$

Hence we have the exact sequence

$$N/[N, U] \longrightarrow P/[P, U] \longrightarrow V/[V, X_H] \longrightarrow 0.$$

Therefore we can prove that Tor $(V/[V, X_H])$ is isomorphic to $Z/p^s Z(\alpha^{-1})$ as G-module (cf. [4]).

Since we have $cd_{p}(H) = 1$, we have the exact sequence

$$0 \longrightarrow H^{1}(H, \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p}) \longrightarrow H^{1}(X_{H}, \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p}) \longrightarrow H^{1}(V, \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{X_{H}} \longrightarrow 0.$$

Here cd_p is a cohomological *p*-dimension. From the duality theorem, we have the exact sequence

$$0 \longrightarrow V/[V, X_H] \longrightarrow \widetilde{X}_H^{ab} \longrightarrow \widetilde{H}^{ab} \longrightarrow 0.$$

Hence we have $(\text{Tor } (X_H^{ab}))(p) \cong \text{Tor } (\tilde{X}_H^{ab}) \cong \text{Tor } (V/[V, X_H]) \cong Z/p^s Z(\alpha^{-1}).$ Here " \cong " means a *G*-module isomorphism. From calculations of cohomology groups, we have $H^2(X_H, \mathbf{Q}_p/\mathbf{Z}_p) = 0$ and $H^2(X_H, \mathbf{Z}/p^i \mathbf{Z})^* \cong \{a \in \text{Tor } (\tilde{X}_H^{ab}) \mid p^i a = 0\}$ for positive interger *i*. Hence we have dim $H^2(X_H, \mathbf{F}_p) = 1$ and $H^2(X_H, \mathbf{Z}/p^s \mathbf{Z}) \cong \mathbf{Z}/p^s \mathbf{Z}(\alpha).$

Let D be a pro-p-group. We put $D^0 = D$ and $D^i = (D^{i-1})^p [D^{i-1}, D]$.

Lemma. (cf. p. 71 in [6]) Let D be a pro-p-group such that dim $H^1(D, \mathbf{F}_p) = m$ and that dim $H^2(D, \mathbf{F}_p) = 1$. Let ρ_1, \dots, ρ_m be minimal generators of D such that $\prod_{i=1}^{m} \rho_i^{a_{ip}} \prod_{i < j} [\rho_i, \rho_j]^{a_{ij}} \equiv 1 \mod D^2$, where $a_i, a_{ij} \in \mathbf{Z}_p$. There exists some a_i such that $a_i \notin p\mathbf{Z}_p$ or there exists some a_{ij} such that $a_{ij} \notin p\mathbf{Z}_p$. Let $\chi_1, \dots, \chi_m (\in H^1(D, \mathbf{F}_p))$ be dual basis of $\rho_1 D^p[D, D], \dots, \rho_m D^p[D, D]$. Then there exists a generator ξ of $H^2(D, \mathbf{F}_p)$ such that $\chi_i \cup \chi_j$ $= -a_{ij}\xi$ for i < j. Here " \cup " is the cup product of $H^1(D, \mathbf{F}_p) \times H^1(\mathbf{D}, \mathbf{F}_p)$ into $H^2(D, \mathbf{F}_p)$.

Let *e* be the order of τH in G/H. Let $G = \bigcup_{i=1}^{m} \rho_i H$ be the disjoint union of the left cosets of *H* and *f* the order of $\sigma(H, \tau)$ in $G/(H, \tau)$. Let *u* be a non-negative integer such that $\sigma^f \equiv \tau^u \mod H$. For an element $x \in X_H$, we denote by \tilde{x} the image of x in \tilde{X}_H . Let $\{\chi_{\sigma}, \chi_0, \rho_i \chi_j\}_{\substack{i=1, \dots, m \\ i=1, \dots, m}}$ be dual

66

basis of $\{\sigma^{f}\tau^{-u}, \tilde{x}_{0}, \tilde{x}_{i}^{\rho_{f}}\}_{\substack{j=1,\dots,m\\j=1,\dots,m}}$. We should notice that $\{\sigma^{f}\tau^{-u}, \tilde{x}_{0}, \tilde{x}_{i}^{\rho_{f}}\}_{\substack{i=1,\dots,n\\j=1,\dots,m}}$ are minimal generators of \tilde{X}_{H} . We suppose that *n* is even. From calculations, we have

$$1 \equiv \widetilde{x}_0^{p^{s_a}} \widetilde{x}_1^{p^{s_{eH}\lambda_H e}} [\widetilde{x}_0, \widetilde{\sigma^t \tau^{-u}}]^{e_a(\sigma)^{-1}} ([\widetilde{x}_1, \widetilde{x}_2] \cdots [\widetilde{x}_{n-1}, \widetilde{x}_n])^{\epsilon_{H}\lambda_H e} \mod \widetilde{X}_H^2.$$

Here, $a \in \mathbb{Z}_p$, $\kappa_H \in \mathbb{Z}_p[[G]]$, $\lambda_H \in \mathbb{Z}_p[[G]]$ and $\kappa_H \lambda_H e \equiv \sum_{\rho \in G'} \alpha(\rho) \rho \mod p\mathbb{Z}_p[G']$. Hence, from Lemma, we have

$$\rho_{i}\chi_{j} \cup \rho_{i}\chi_{j+1} = -\alpha(\rho_{i})\xi \quad \text{for } j = 1, 3, 5, \dots, n-1, i = 1, 2, 3, \dots, m,$$

$$\chi_{0} \cup \chi_{\sigma} = -\alpha(\sigma)^{-1}e\xi$$

and the other cup-products of the above basis is 0. Here ξ is a generator of $H^2(\tilde{X}_H, F_p)$. This shows that the cup-product of $H^1(\tilde{X}_H, F_p)$ is a nondegenerate skew-symmetric bilinear form. Let Inf be the inflation mapping of $H^1(H, F_p)$ in $H^1(\tilde{X}_H, F_p)$ and $H^1(H, F_p)^{\perp}$ the orthogonal complement of Inf $(H^1(H, F_p))$ in $H^1(\tilde{X}_H, F_p)$. Then we have

$$H^{1}(H, \mathbf{F}_{p})^{\perp}/\mathrm{Inf}\left(H^{1}(H, \mathbf{F}_{p})\right) \cong \left(\bigoplus_{i=1}^{n/2} \mathbf{F}_{p}[G']\chi_{2i-1}\right) \oplus \left(\bigoplus_{i=1}^{n/2} \mathbf{F}_{p}[G']\chi_{2i}\right).$$

 $\bigoplus_{i=1}^{n/2} F_p[G'] \chi_{2i-1}$ and $\bigoplus_{i=1}^{n/2} F_p[G'] \chi_{2i}$ are total isotropy G'-module.

We suppose that *n* is odd. We have $\tilde{y}_1 \equiv \tilde{x}_1^{\delta} \mod \tilde{X}_H^1$ for some $\delta \in F_p[G']$. Hence we have

$$1 \equiv \tilde{x}_0^{p^s a} \tilde{x}_1^{p^s \kappa_H \lambda_H e} [\tilde{x}_0, \sigma^f \tau^{-u}]^{e_a(\sigma)^{-1}} [\tilde{x}_1, \tilde{x}_1^{s]^{\kappa_H \lambda_H e}} \\ \times ([\tilde{x}_2, \tilde{x}_3] \cdots [\tilde{x}_{n-1}, \tilde{x}_n])^{\kappa_H \lambda_H e} \mod \tilde{X}_H^2.$$

We put $C_0 = F_p \chi_\sigma \oplus F_p \chi_0$, $C_1 = F_p [G'] \chi_1$, $C_2 = \bigoplus_{i=1}^{(n-1)/2} F_p [G'] \chi_{2i}$ and $C_3 = \bigoplus_{i=1}^{(n-1)/2} F_p [G'] \chi_{2i+1}$. From Lemma, we have the following orthogonal decomposition of $H^1(\tilde{X}_H, F_p)$:

$$H^{1}(\tilde{X}_{H}, F) = C_{0} \perp C_{1} \perp C_{2} \perp C_{3}.$$

Then C_2 and C_3 are total isotropy *G*-modules and the cup-product \cup is a non-degenerate skew symmetric bilinear form in $C_2 \oplus C_3$. By using symplectic modules over $F_p[G']$, we can prove that $F_p[G']\chi_1$ is total isotropy *G'*-module.

References

[1] E. Binz, J. Neukirch, G. H. Wenzel, A subgroup theorem for free products of pro-finite groups, J. Algebra, **19** (1971), 104–109.

Keiichi Komatsu

- [2] A. V. Jakovlev, The galois groups of the algebraic closure of a local field, Math. USSR-Izv., 2 (1968), 1231-1269.
- [3] —, Remarks on my paper "The galois groups of the algebraic closure of a local field", Math. USSR-Izv., **12** (1978), 205–206.
- [4] U. Jannsen, Über Galoisgruppen lokaler Körper, Invent. Math., 70 (1982), 53-69.
- [5] U. Jannsen and K. Wingberg, Die Struktur der absoluten Galoisgruppe *p*-adischer Zahlkörper, Invent. Math., **70** (1982), 71–98.
- [6] H. Koch, Galoissche Theorie der p-Erweiterungen, Berlin 1970.
- [7] —, The Galois group of a *p*-closed extension of a local field, Soviet Math. Dokl., **19** (1978), 10-13.
- [8] H. Miki, On the absolute Galois groups of local fields I, this volume.
- [9] J. Neukirch, Freie Produkte pro-endlicher Gruppen und ihre Kohomologie, Arch. Math., 12 (1971), 337-357.
- [10] K. Wingberg, Der Eindeutigkeitssatz fur Demuškinformationen, Invent. Math., 70 (1982), 99-113.

Department of Mathematics

Tokyo University of Agriculture and Technology Fuchu, Tokyo 183 Japan