On the Absolute Galois Groups of Local Fields II

Keiichi Komatsu

Introduction

Let p be an odd prime number, \boldsymbol{Q}_{p} the p-adic number field, k a finite algebraic extension of \boldsymbol{Q}_{p} and \bar{k} the algebraic closure of k. In [3], A. V. Jakovlev describes the absolute Galois group $G(\bar{k} / k)$ of k of even degree by using generators and relations (cf. [2]). However, this description is very complicated and not explicit. In [7], H. Koch says that a simple description of $G(\bar{k} / k)$ in terms of generators and relations seems impossible. Recently, in [5], Jannsen and Wingberg give a simple description of the absolute Galois group of k of any degree by using generators and relations. The purpose of this part is to give an account of the result of Jannsen and Wingberg [5]. This part is the sequel of Miki [8]. Readers are advised to recall the definition of Demuškin formation in [8].

Notation and terminology

Throughout this paper, \boldsymbol{Z} and \hat{Z} denote the rational integer ring and the inverse limit of all finite cyclic groups, respectively. For a prime number p, we denote by \boldsymbol{Z}_{p} the p-adic integer ring and by \boldsymbol{Q}_{p} the p-adic number field. $\quad F_{p}$ denotes the prime field $\boldsymbol{Z} / p \boldsymbol{Z}$. For a profinite group G, we denote by \widetilde{G} the maximal pro-p-factor group of G. For elements $x, y \in G$, we put $[x, y]=x y x^{-1} y^{-1}$ and $x^{y}=y x y^{-1}$. For closed subgroups H and S of G, we denote by [H, S] the closed subgroup of G generated by $\{[x, y] \mid x \in H, y \in S\}$. We denote by $G^{a b}$ the factor group $G /[G, G]$. If G is commutative, we denote by G^{*} the dual group of G, by $\operatorname{Tor}(G)$ the torsion part of G and by $G(p)$ the p-part of G. Let A and B be G modules. We denote by $A \oplus B$ the direct sum of A and B. We denote by $H^{n}(G, A)$ the n-th cohomology group of G with coefficients in A. Let s be a natural number and $\left(\boldsymbol{Z} / p^{s} Z\right)^{\times}$the multiplicative group of the factor ring $\boldsymbol{Z} / p^{s} \boldsymbol{Z}$. Let α be a continuous homomorphism of G into $\left(\boldsymbol{Z} / p^{s} \boldsymbol{Z}\right)^{\times}$. For elements $x+p^{s} \boldsymbol{Z} \in \boldsymbol{Z} / p^{s} \boldsymbol{Z}$ and $\sigma \in G$, we define $\left(x+p^{s} \boldsymbol{Z}\right)^{\sigma}=\alpha(\sigma)\left(x+p^{s} \boldsymbol{Z}\right)$. By this definition, we can regard $\boldsymbol{Z} / p^{s} \boldsymbol{Z}$ as G-module. We denote by $\boldsymbol{Z} / p^{s} \boldsymbol{Z}(\alpha)$ this G-module. From now on, p denotes an odd prime number.

1. Let F_{n+1} be a free profinite group with basis z_{0}, \cdots, z_{n}. For an odd prime number p, we put $q=p^{f_{0}}$, where f_{0} is a natural number. Let G be a profinite group with basis σ, τ such that $\sigma \tau \sigma^{-1}=\tau^{q}$. Let $F_{n+1} * G$ be the free profinite product of F_{n+1} and G (cf. [1], [9]). Let W be the normal closed subgroup of $F_{n+1} * G$ generated by $\left\{z_{0}, \cdots, z_{n}\right\}$ and I the normal closed subgroup of W such that the factor group W / I is the maximal pro-p-factor group of W. Then I is a closed normal subgroup of $F_{n+1} * G$. Hence we put $F(n+1, G)=\left(F_{n+1} * G\right) / I$ and $P=W / I$. We denote by x_{i} the image of z_{i} in $F(n+1, G)$. Then P is a normal closed subgroup generated by x_{0}, \cdots, x_{n} and $F(n+1, G)$ has topological minimal generators $\sigma, \tau, x_{0}, \cdots, x_{n}$. We have also the exact sequence

$$
I \longrightarrow P \longrightarrow F(n+1, G) \underset{\Psi}{\longrightarrow} G \longrightarrow I \text { (splits). We put } G=\Psi(G) \text {. }
$$

Let s be a natural number. Let α be a continuous homomorphism of G into $\left(Z / p^{s} Z\right)^{\times}$and β a mapping of G into Z_{p}^{\times}such that β is a lifting of α (not necessary a homomorphism). We suppose that $\alpha(\tau)^{(p-1) / 2} \equiv-1$ $\bmod p$ for odd integers n and f_{0}. Let l be a prime number and $\left\{p_{1}, p_{2}\right.$, $\left.p_{3}, \cdots\right\}$ the set of prime numbers such that every p_{i} is prime to l. For every integer m, there exist integers a_{m} and b_{m} such that

$$
I=a_{m} l^{m}+b_{m} p_{1}^{m} p_{2}^{m} \cdots p_{m}^{m}
$$

We put $\pi_{l}=\lim b_{m} p_{1}^{m} p_{2}^{m} \cdots p_{m}^{m} \in \hat{Z}$. For an element $\rho \in G$, we put

$$
\begin{aligned}
& (x, \rho)=\left(x^{\beta(1)} \rho x^{\beta(\rho)} \rho \cdots x^{\beta\left(\rho^{p-2}\right)} \rho\right)^{\pi_{p} /(p-1)} \quad \text { and } \\
& \{x, \rho\}=\left(x^{\beta(1)} \rho^{2} x^{\beta\left(\rho^{2}\right)} \rho^{2} \cdots x^{\beta\left(\rho^{p-2)}\right.} \rho^{2}\right)^{\pi_{p} /(p-1)} .
\end{aligned}
$$

For the even integer n, we put

$$
r=x_{0}^{-\sigma}\left(x_{0}, \tau\right)^{\beta(\sigma)^{-1}}\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right] \cdots\left[x_{n-1}, x_{n}\right] .
$$

We take $a, b \in Z$ such that $-\alpha\left(\sigma \tau^{a}\right) \bmod p \in\left(\boldsymbol{F}_{p}^{\times}\right)^{2}$ and that $-\alpha\left(\sigma \tau^{b}\right) \bmod$ $p \notin\left(F_{p}^{\times}\right)^{2}$. We put

$$
y_{1}=x_{1}^{\tau_{2}^{p+1}}\left\{x_{1}, \tau_{2}^{p+1}\right\}^{\sigma_{2} \tau_{2}^{a}}\left\{\left\{x_{1}, \tau_{2}^{p+1}\right\}, \sigma_{2} \tau_{2}^{a}\right\}_{\sigma_{2}^{\tau}}^{\tau_{2}^{z}}\left\{\left\{x_{1}, \tau_{2}^{p+1}\right\}, \sigma_{2} \tau_{2}^{a}\right\}^{\tau_{2}^{(p+1) / 2}} .
$$

Here we put $\sigma_{2}=\sigma^{\pi_{2}}$ and $\tau_{2}=\tau^{\pi_{2}}$. For the odd integer n, we put

$$
r=x_{0}^{-\sigma}\left(x_{0}, \tau\right)^{\beta(\sigma)-1}\left[x_{1}, y_{1}\right]\left[x_{2}, x_{3}\right] \cdots\left[x_{n-1}, x_{n}\right] .
$$

Then we put $X(G, n, s, \beta)=F(n+1, G) /(r)$, where (r) is the closed normal subgroup of $F(n+1, G)$ generated by r. Then Jannsen and Wingberg have the following in [5]:

Theorem 1. The above profinite group $X(G, n, s, \beta)$ is a Demuškin formation over G with degree n, torsion p^{s} and character α.

We have the following in [7] or [10]:
Theorem 2. Let Y_{1} and Y_{2} be profinite groups such that they are Demuškin formations over G with degree n, torsion \dot{p}^{s} and character α. Then Y_{1} and Y_{2} are isomorphic as topological groups.

Theorem 4 in [8], the above Theorem 1 and Theorem 2 show the following main theorem:

Theorem 3. (cf. [5]). Let p be an odd prime number, k a finite algebraic extension over \boldsymbol{Q}_{p} of degree n, $q=p^{f_{0}}$ the cardinality of the residue field of k, \bar{k} the algebraic closure of k and T the maximal tamely ramified extension of k such that \bar{k} contains T. Let $\mu_{T}=(\zeta)$ the p-torsion part of the multiplicative group T^{\times}of T and p^{s} the order of μ_{T}. Let G be the Galois group of T over k, α a homomorphism of G into $\left(Z / p^{s} Z\right)^{\times}$such that $\zeta^{\rho}=\zeta^{\alpha(\rho)}$ for any element $\rho \in G$ and β a mapping of G into $\boldsymbol{Z}_{p}^{\times}$such that β is a lifting of α. Let σ, τ be generators of G such that $\sigma \tau \sigma^{-1}=\tau^{q}$. Then the Galois group of \bar{k} over k is isomorphic to $X(G, n, s, \beta)$ as topological group.
2. Outline of proof of Theorem 1. We put $X=X(G, n, s, \beta)$ and $N=$ (r). Since we can show $r \equiv \tau^{\pi_{p} \beta(\sigma)-1} \equiv 1 \bmod P$, we have $P \supset N$. We put $V=P / N$. Then we have the following commutative diagram:

Let H be an open normal subgroup in G such that the kernel of α contains H. Let U be the open subgroup of $F(n+1, G)$ such that $U / P=H$. We put $X_{H}=\varphi^{-1}(H)$ and $G^{\prime}=G / H$. For an element $x \in P$, we put $\bar{x}=x[P, U]$.

Then we can show that $P /[P, U]$ is a free $Z_{p}\left[G^{\prime}\right]$ module with free basis \bar{x}_{0}, \cdots, \bar{x}_{n} (cf. [9]). Since we have the exact sequence $I \rightarrow N \rightarrow P \rightarrow V \rightarrow I$, we have the exact sequence

$$
0 \longrightarrow H^{1}\left(V, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{U} \longrightarrow H^{1}\left(P, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{U} \longrightarrow H^{1}\left(N, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{U} .
$$

Hence we have the exact sequence

$$
\left(H^{1}\left(N, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{U}\right)^{*} \rightarrow\left(H^{1}\left(P, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{U}\right)^{*} \rightarrow\left(H^{1}\left(V, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{U}\right)^{*} \rightarrow 0
$$

Hence we have the exact sequence

$$
N /[N, U] \longrightarrow P /[P, U] \longrightarrow V /\left[V, X_{H}\right] \longrightarrow 0
$$

Therefore we can prove that $\operatorname{Tor}\left(V /\left[V, X_{H}\right]\right)$ is isomorphic to $\boldsymbol{Z} / p^{s} \boldsymbol{Z}\left(\alpha^{-1}\right)$ as G-module (cf. [4]).

Since we have $c d_{p}(H)=1$, we have the exact sequence

$$
0 \longrightarrow H^{1}\left(H, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \longrightarrow H^{1}\left(X_{H}, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \longrightarrow H^{1}\left(V, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{X_{H}} \longrightarrow 0 .
$$

Here $c d_{p}$ is a cohomological p-dimension. From the duality theorem, we have the exact sequence

$$
0 \longrightarrow V /\left[V, X_{H}\right] \longrightarrow \tilde{X}_{H}^{a b} \longrightarrow \tilde{H}^{a b} \longrightarrow 0 .
$$

Hence we have $\left(\operatorname{Tor}\left(X_{H}^{a b}\right)\right)(p) \cong \operatorname{Tor}\left(\widetilde{X}_{H}^{a b}\right) \cong \operatorname{Tor}\left(V /\left[V, X_{H}\right]\right) \cong Z / p^{s} Z\left(\alpha_{0}^{-1}\right)$. Here " \cong " means a G-module isomorphism. From calculations of cohomology groups, we have $H^{2}\left(X_{H}, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)=0$ and $H^{2}\left(X_{H}, \boldsymbol{Z} / p^{i} \boldsymbol{Z}\right)^{*} \cong$ $\left\{a \in \operatorname{Tor}\left(\tilde{X}_{H}^{a b}\right) \mid p^{i} a=0\right\}$ for positive interger i. Hence we have $\operatorname{dim} H^{2}\left(X_{H}, \boldsymbol{F}_{p}\right)=1$ and $H^{2}\left(X_{H}, \boldsymbol{Z} / p^{s} \boldsymbol{Z}\right) \cong \boldsymbol{Z} / p^{s} \boldsymbol{Z}(\alpha)$.

Let D be a pro-p-group. We put $D^{0}=D$ and $D^{i}=\left(D^{i-1}\right)^{p}\left[D^{i-1}, D\right]$.
Lemma. (cf. p. 71 in [6]) Let D be a pro-p-group such that $\operatorname{dim} H^{1}(D$, $\left.\boldsymbol{F}_{p}\right)=m$ and that $\operatorname{dim} H^{2}\left(D, \boldsymbol{F}_{p}\right)=1$. Let $\rho_{1}, \cdots, \rho_{m}$ be minimal generators of D such that $\prod_{i=1}^{m} \rho_{i}^{a_{i} p} \prod_{i<j}\left[\rho_{i}, \rho_{j}\right]^{a_{i j}} \equiv 1 \bmod D^{2}$, where $a_{i}, a_{i j} \in Z_{p}$. There exists some a_{i} such that $a_{i} \notin p Z_{p}$ or there exists some $a_{i j}$ such that $a_{i j} \notin p Z_{p} . \quad$ Let $\chi_{1}, \cdots, \chi_{m}\left(\in H^{1}\left(D, F_{p}\right)\right)$ be dual basis of $\rho_{1} D^{p}[D, D], \cdots$, $\rho_{m} D^{p}[D, D] . \quad$ Then there exists a generator ξ of $H^{2}\left(D, F_{p}\right)$ such that $\chi_{i} \cup \chi_{j}$ $=-a_{i j} \xi$ for $i<j$. Here " \cup " is the cup product of $H^{1}\left(D, \boldsymbol{F}_{p}\right) \times H^{1}\left(\boldsymbol{D}, \boldsymbol{F}_{p}\right)$ into $H^{2}\left(D, F_{p}\right)$.

Let e be the order of τH in G / H. Let $G=\bigcup_{i=1}^{m} \rho_{i} H$ be the disjoint union of the left cosets of H and f the order of $\sigma(H, \tau)$ in $G /(H, \tau)$. Let u be a non-negative integer such that $\sigma^{f} \equiv \tau^{u} \bmod H$. For an element $x \in$ X_{H}, we denote by \tilde{x} the image of x in \tilde{X}_{H}. Let $\left\{\chi_{\sigma}, \chi_{0}, \rho_{i} \chi_{j}\right\}_{\substack{i=1, \ldots, n \\ j=1, \ldots, m}}$ be dual
 are minimal generators of \tilde{X}_{H}. We suppose that n is even. From calculations, we have

$$
1 \equiv \tilde{x}_{0}^{p a} \tilde{x}_{1}^{p s_{H} \lambda_{H} e}\left[\tilde{x}_{0}, \widetilde{\sigma^{f} \tau^{-u}}\right]^{e \alpha(\sigma)-1}\left(\left[\tilde{x}_{1}, \tilde{x}_{2}\right] \cdots\left[\tilde{x}_{n-1}, \tilde{x}_{n}\right]\right)^{x_{H} \lambda_{H} e} \bmod \tilde{X}_{H}^{2} .
$$

Here, $a \in Z_{p}, \kappa_{H} \in Z_{p}[[G]], \lambda_{H} \in Z_{p}[[G]]$ and $\kappa_{H} \lambda_{H} e \equiv \sum_{\rho \in G^{\prime}} \alpha(\rho) \rho \bmod$ $p \boldsymbol{Z}_{p}\left[G^{\prime}\right]$. Hence, from Lemma, we have

$$
\begin{aligned}
& \rho_{i} \chi_{j} \cup \rho_{i} \chi_{j+1}=-\alpha\left(\rho_{i}\right) \xi \quad \text { for } j=1,3,5, \cdots, n-1, i=1,2,3, \cdots, m \\
& \chi_{0} \cup \chi_{\sigma}=-\alpha(\sigma)^{-1} e \xi
\end{aligned}
$$

and the other cup-products of the above basis is 0 . Here ξ is a generator of $H^{2}\left(\tilde{X}_{H}, \boldsymbol{F}_{p}\right)$. This shows that the cup-product of $H^{1}\left(\tilde{X}_{H}, \boldsymbol{F}_{p}\right)$ is a nondegenerate skew-symmetric bilinear form. Let Inf be the inflation mapping of $H^{1}\left(H, \boldsymbol{F}_{p}\right)$ in $H^{1}\left(\tilde{X}_{H}, \boldsymbol{F}_{p}\right)$ and $H^{1}\left(H, \boldsymbol{F}_{p}\right)^{\perp}$ the orthogonal complement of $\operatorname{Inf}\left(H^{1}\left(H, \boldsymbol{F}_{p}\right)\right)$ in $H^{1}\left(\widetilde{X}_{H}, \boldsymbol{F}_{p}\right)$. Then we have

$$
H^{1}\left(H, \boldsymbol{F}_{p}\right)^{\perp} / \operatorname{Inf}\left(H^{1}\left(H, \boldsymbol{F}_{p}\right)\right) \cong\left(\bigoplus_{i=1}^{n / 2} \boldsymbol{F}_{p}\left[G^{\prime}\right] \chi_{2 i-1}\right) \oplus\left(\bigoplus_{i=1}^{n / 2} \boldsymbol{F}_{p}\left[G^{\prime}\right] \chi_{2 i}\right)
$$

$\oplus_{i=1}^{n / 2} \boldsymbol{F}_{p}\left[G^{\prime}\right] \chi_{2 i-1}$ and $\oplus_{i=1}^{n / 2} \boldsymbol{F}_{p}\left[G^{\prime}\right] \chi_{2 i}$ are total isotropy G^{\prime}-module.
We suppose that n is odd. We have $\tilde{y}_{1} \equiv \tilde{x}_{1}^{\delta} \bmod \widetilde{X}_{H}^{1}$ for some $\delta \epsilon$ $\boldsymbol{F}_{p}\left[G^{\prime}\right]$. Hence we have

$$
\begin{aligned}
1 \equiv & \tilde{x}_{0}^{p^{s}} \tilde{x}_{1}^{p^{s_{E H} \lambda_{H} e}}\left[\tilde{x}_{0},{\left.\widetilde{\sigma^{f} \tau^{-u}}\right]^{e \alpha(\sigma)^{-1}}\left[\tilde{x}_{1}, \tilde{x}_{1}^{\delta}\right]^{k_{H} \lambda_{H e}}}\right. \\
& \times\left(\left[\tilde{x}_{2}, \tilde{x}_{3}\right] \cdots\left[\tilde{x}_{n-1}, \tilde{x}_{n}\right]\right)^{\kappa_{H} \lambda_{H} e} \bmod \widetilde{X}_{H}^{2}
\end{aligned}
$$

We put $C_{0}=\boldsymbol{F}_{p} \chi_{\sigma} \oplus \boldsymbol{F}_{p} \chi_{0}, \quad C_{1}=\boldsymbol{F}_{p}\left[G^{\prime}\right] \chi_{1}, \quad C_{2}=\oplus_{i=1}^{(n-1) / 2} \boldsymbol{F}_{p}\left[G^{\prime}\right] \chi_{2 i}$ and $C_{3}=$ $\oplus_{i=1}^{(n-1) / 2} \boldsymbol{F}_{p}\left[G^{\prime}\right] \chi_{2 i+1}$. From Lemma, we have the following orthogonal decomposition of $H^{1}\left(\tilde{X}_{H}, \boldsymbol{F}_{p}\right)$:

$$
H^{1}\left(\tilde{X}_{H}, F\right)=C_{0} \perp C_{1} \perp C_{2} \perp C_{3} .
$$

Then C_{2} and C_{3} are total isotropy G-modules and the cup-product U is a non-degenerate skew symmetric bilinear form in $C_{2} \oplus C_{3}$. By using symplectic modules over $\boldsymbol{F}_{p}\left[G^{\prime}\right]$, we can prove that $\boldsymbol{F}_{p}\left[G^{\prime}\right] \chi_{1}$ is total isotropy G^{\prime}-module.

References

[1] E. Binz, J. Neukirch, G. H. Wenzel, A subgroup theorem for free products of pro-finite groups, J. Algebra, 19 (1971), 104-109.
[2] A. V. Jakovlev, The galois groups of the algebraic closure of a local field, Math. USSR-Izv., 2 (1968), 1231-1269.
[3] - , Remarks on my paper "The galois groups of the algebraic closure of a local field", Math. USSR-Izv., 12 (1978), 205-206.
[4] U. Jannsen, Über Galoisgruppen lokaler Körper, Invent. Math., 70 (1982), 53-69.
[5] U. Jannsen and K. Wingberg, Die Struktur der absoluten Galoisgruppe p-adischer Zahlkörper, Invent. Math., 70 (1982), 71-98.
[6] H. Koch, Galoissche Theorie der p-Erweiterungen, Berlin 1970.
[7] -, The Galois group of a
[8] H . Miki, On the absolute Galois groups of local fields I, this volume.
[9] J. Neukirch, Freie Produkte pro-endlicher Gruppen und ihre Kohomologie, Arch. Math., 12 (1971), 337-357.
[10] K. Wingberg, Der Eindeutigkeitssatz fur Demuškinformationen, Invent. Math., 70 (1982), 99-113.

Department of Mathematics
Tokyo University of Agriculture and Technology
Fuchu, Tokyo 183
Japan

