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Abstract. Time series is the way of data analysis and modelling in which present
observation is retrieved based on past observations which is called ARIMA model
in case of linear dependency. If series is contaminated by an outlier, then it affects
both order and parameter(s). The present paper deals an autoregressive (AR)
model with an additive outlier under Bayesian prospective. For identification of an
outlier, posterior odds ratio has been derived under suitable prior assumptions.
An empirical analysis and realization is carried out to get applicability of proposed
testing methodology.

Résumé (French) Dans l’étude des séries temporelles, les données discrètes sont
modelisées par rapport aux observations passeés, et les modèles sont appelées
ARIMA dans le cas de dependances linéaires. Si la série est contaminée par un
outlier, les paramètres et les valeurs sont à lois affectées. Ce papier traite du
modèle autoregressif avec un outlier additionnel selon une perspective bayesienne.
Pour identifier un outlier, le rapports des odds a été obtenu après voir convenable-
ment choisi les distributions à prioiri. Une étude empirique et des études de cas
sont menées pour prouver l’applicabibilité de la méthodologie utilisée.
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1. Introduction

In practice, a time series may have abnormal observations due to various reasons
and not alike with the most of the observations. Such abnormal observations
are called outlier which affects both order and parameter(s). In such situation,
before the analysis starts it is important to handle outlier to get better under-
standing of data generation process and know the impacts also. One of the most
important purposes of time series modelling is to forecast the future observations.
The autoregressive model follows principle of dependency that the present ob-
servation linearly depends on previous observations (see, Box and Jenkins [1970]).

Outliers are classified into two categories as per the appearance in the model
of the series: first model incorporates the error in the form of addition, called
as additive outlier(s) and if the error is in the form of multiplication, called as
multiplicative outlier(s). The dealing of the outlier(s) is (are) done by researchers
in two directions first identification and second study of its affects. Outlier
identification in autoregressive model was first studied by Fox [1972] using the
likelihood criteria in case of known number of outlier(s). He also distinguished
between additive and multiplicative outlier and showed that additive outlier should
be taken more seriously than multiplicative outlier. Chang and Tiao [1983] and
Chang et al. [1988] discussed the identification of both types of outliers in an
autoregressive integrated moving average (ARIMA) using likelihood ratio criteria
and also estimated their parameters. Barnett and Lewis [1994] proposed a test
for detecting the outlier under certain conditions like type of outliers with known
distribution. Battaglia and Orfei [2005] discussed a method to identify position
of the outlier and then estimated magnitude of outlier in case of non-linear time
series. In Bayesian approach, Abraham and Box [1979] studied the charac-
terization of the outlier in autoregressive time series model and obtained the
posterior probability. Gordon [1986] and Gordon and Smith [1988] examined the
sensitivity of models for both the changes in prior and model misspecification.
Gordon and Smith [1990] developed a model based extension of linear dynamic
model and tested it for identification of discontinuous change in the series. Tsay
[1988] and Barnett et al. [1996] discussed additive and multiplicative outliers

under Bayesian framework and defined the testing procedure to identify it’s region
in a subset of a series (see, Siegmund et al. [2011] and Jeng et al. [2013]). Silva
and Pereira [2015] proposed Bayesian approach to detect additive outliers in
Poisson integer-valued AR(1) time series model. Kumar et al. [2014] proposed the
identification of additive outlier for a stationary AR(1) time series with intercept
term which was further extended for linear time trend (Kumar and Shukla [2015]).

The outlier is attracting the researchers because of its impact on various statis-
tical theories as well as in applications. Usually, there are very limited and less
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number of observations which may act as an outlier. In independent data set, the
exclusion of these observations do not affect the testing and estimation results.
However, this exclusion is not possible in dependent data like time series. Since
last two decades, handling of individual observations has become more popular
because of data availablity and comfort with the use of high performance compu-
tation system and software. Therefore, present paper deals with Bayesian analysis
of AR(p) time series model contaminated by an additive outlier. The posterior odds
ratio is derived for identification of outlier by using the prior assumptions (see,
Schotman and Van Dijk. [1991] and Kumar and Shukla [2015]). An empirical
analysis is carried out for the series recorded on patient of Haryana state, India.
In order to get more general idea, a simulation study has been considered by real-
izing the data, where data is generated using seed values of real data. The paper
is organized in five sections, present section gives the discussion on literature, fol-
lowed Section 2 which gives a brief overview of autoregressive time series model.
Section 3 dwells on prior assumptions and construction of posterior odds ratio.
Section 4 and Section 5 demonstrate the proposed testing methodology on real
and simulated time series respectively. The last Section concludes the importance
of the work and possible extension.

2. Model Specification

Outlier is the observation occurring in series due to some unavoidable causes and
affects the structure of the model. Let us consider that yt follows an autoregressive
model of order p (AR(p));

yt = θ + α1yt−1 + α2yt−2 + α3yt−3 + · · ·+ αpyt−p + ut, t = 1, 2, 3, · · · , T. (1)

We rewrite the Model (1) in matrix notation

yt = θ + αYt−1 + ut, (2)

where θ is the intercept term, α = (α1, α2, · · · , αp) are autoregressive coefficients,
ut is the error term and Yt−1 = (y0, y−1, y−2, · · · , yt−p)′ are initial observations.

If time series model is contaminated by additive outlier at time point T0, then error
(ut) is partitioned into two parts as follows: (i) error from standard error distribution
and (ii) error with outlier,

ut =

{
εt; if t 6= T0,
εt + λet; if t = T0 and λ > 0.

(3)

Here, it is noted that εt and et will be in the same direction as outlier deviates
more from the estimated observations. We may write Model (2) incorporating (3) as
follows

yt =

{
θ + αYt−1 + εt; if t 6= T0,
θ + αYt−1 + λet + εt; if t = T0 ;λ > 0 and εt ∼ N(0, τ−1).

(4)
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In the present study, we are interested to know that this large deviation at time T0
is due to outlier or not. Equivalent hypotheses are as follows:

Null hypothesis H0 : λ = 0.
Alternative hypothesis H1 : λ > 0.

(5)

Here null hypothesis says that series is not contaminated by an additive outlier
against the alternative that series is contaminated by an additive outlier.

3. Prior Distribution and Posterior Odds Ratio

Let us consider the following prior distribution of model parameters discussed by
Broemeling [1984]; Schotman and Van Dijk. [1991] and Kumar and Shukla
[2015].

λ ∼ N(λ0, τ
−1ω); −∞ > λ0 >∞, ω > 0,

θ ∼ N(y0, τ
−1); −∞ > y0 >∞,

P (τ) =
ba

Γa
τa−1e−τ b; a > 0; b > 0,

P (α |τ ) =
τ
p/2 |P |

1/2

(2π)
p/2

exp
{
−τ

2
(α− µ)

′
P (α− µ)

}
; P > 0, µ ∈ Rp,

Using the above priors, we obtain the joint prior distribution π(Θ).

π(Θ) = P (α/τ)P (λ)P (θ)P (τ)

=
τ

p
2+a ba |P |1/2

Γa (2π)
p+2
2 ω1/2

exp

[
−τ

2

{
(α− µ)′P (α− µ) +

(λ− λ0)2

ω

+(θ − y0)2 + 2b
}]

. (6)

Main interest of present study is to derive the posterior odds ratio for the iden-
tification of additive outlier. Bayesian techniques are used with the prior belief
for obtaining the posterior which is also a probability that combines samples and
prior information. So, the liking of alternative and null hypothesis is core behind
the testing methodology of under Bayesian setup. Therefore, posterior odds ratio
(POR) is used for testing the hypothesis by comparison of probabilities. If probabil-
ity of null hypothesis is more than alternative hypothesis under the assumed prior
probability, i.e., POR is more than one, then null hypothesis is accepted otherwise
rejected and vice versa (Bansal [2007]).

Theorem 1. An abnormal increase/decease in magnitude of error in an AR(p) model
at a time point T0 is due to additive outlier or not. This can be identified by testing
the hypothesis, i.e., {H0 : λ = 0 Vs H1 : λ > 0} by using the posterior odds ratio (β01)
with prior odds ratio P0

1−P0
.

β01 =
P0

1− P0

ω
1
2 I

1
2 η

1
2

H1
ξ

1
2

H1
[ΩH1

]
T
2 +α

η
1
2

H0
ξ

1
2

H0
[ΩH0

]
T
2 +α

, (7)
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where,

I =

(
T∑
t=1

e2t +
1

ω

)
,

ηH1 =

T + 1− 1

I
×

(
T∑
t=1

et

)2
 ,

Φ =

T∑
t=1

Yt−1 −
1

I

T∑
t=1

etYt−1

T∑
t=1

et,

ξH1 =

T∑
t=1

Y
′

t−1Yt−1 + P − 1

I

(
T∑
t=1

etYt−1

)′ (
T∑
t=1

etYt−1

)
− 1

ηH1

Φ′Φ,

Λ =

T∑
t=1

yt + y0 −
1

I

λ0
ω

T∑
t=1

et −
1

I

T∑
t=1

etYt−1

T∑
t=1

et,

α̂H1 =
1

ξH1

[
T∑
t=1

ytYt−1 + Pµ− 1

ηH1

Φ′Λ− 1

I

(
T∑
t=1

etYt−1

)(
λ0
ω

+

T∑
t=1

etyt

)]
,

ΩH1 =

T∑
t=1

y2t −
1

ηH1

Λ′Λ− α̂′H1
ξH1 α̂H1 + µ′Pµ+ y20 −

1

I

(
λ0
ω

+

T∑
t=1

etyt

)2

+
λ20
ω

+ 2b,

ηH0 = (T + 1) ,

ξH0
=

T∑
t=1

Y
′

t−1Yt−1 + P − 1

ηH0

(
T∑
t=1

Yt−1

)′ (
T∑
t=1

Yt−1

)
,

α̂H0
=

1

ξH0

(
T∑
t=1

ytYt−1 + Pµ− 1

ηH0

(
y0 +

T∑
t=1

yt

)(
T∑
t=1

Yt−1

))
,

and

ΩH0
=

T∑
t=1

y2t + µ′Pµ+ 2b+ y20 −
1

ηH0

(
y0 +

T∑
t=1

yt

)2

− α̂
′

H0
ξH0

α̂H0
. (8)

Proof. The Likelihood function under H1 is given by

L(θ, α, τ, λ |y ) = L(y1, y2, · · · , yT |θ, λ, α, τ)

=
τ

T
2

(2π)
T
2

exp
{
−τ

2

T∑
t=1

(yt − θ − αYt−1 − λet)2
}
, (9)

Similarly, likelihood function under H0 is given by

L(θ, α, τ |y ) = L(y1, y2, · · · , yT |θ, α, τ)

=
τ

T
2

(2π)
T
2

exp
{
−τ

2

T∑
t=1

(yt − θ − αYt−1)2

}
, (10)
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Case 1: Under the alternative hypothesis, model is contaminated by an additive
outlier, i.e, λ > 0. We get the posterior probability by combining the likelihood
function (9) and joint prior distribution (6).

P (y|H1) =

∫ ∞
0

∫
Rp

∫ ∞
−∞

∫ ∞
−∞

L(y |θ, α, τ, λ)P (λ)P (θ|τ)P (α|τ)P (τ) dλ dθ dα dτ

=

∫ ∞
0

∫
Rp

∫ ∞
−∞

∫ ∞
−∞

τ
T+p

2 +a ba |P | 12
Γa (2π)

T+p+2
2 ω

1
2

exp

[
−τ

2

{
T∑
t=1

(yt − θ − αYt−1 − λet)2

+(α− µ)′P (α− µ) +
(λ− λ0)2

ω
+ (θ − y0)2 + 2b

}]
dλ dθ dα dτ (11)

Let us consider λ̂H1
= 1

I

(
λ0

ω +
∑T
t=0 et (yt − θ − αYt−1)

)
and integrate Equation (11)

with respect to λ,

P (y|H1) =

∫ ∞
0

∫
Rp

∫ ∞
−∞

τ
T+p−1

2 +a ba |P | 12
Γa (2π)

T+p+1
2 ω

1
2 I

1
2

exp

[
−τ

2

{
T∑
t=1

(yt − θ − αYt−1)
2

+(α− µ)′P (α− µ) +
λ20
ω

+ (θ − y0)2 − λ̂2I + 2b

}]
dθ dα dτ

Considering θ̂H1
= 1

ηH1
(Λ− αΦ) and integrating the above equation with respect to

θ, α, and τ , we get

P (y|H1) =

∫ ∞
0

∫
Rp

τ
T+p

2 +a−1 ba |P | 12

Γa (2π)
T+p

2 ω
1
2 I

1
2 η

1
2
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[
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2

{
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ηH1
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ω
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I

(
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ω
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1
2 η

1
2
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ξ

1
2

H1

Γ
(
T
2 + a

)
[ΩH1

]
T
2 +a

(12)

Case 2: Under the null hypothesis, when model is not contaminated by an additive
outlier, i.e, λ = 0. The posterior probability under H0 is

P (y|H0) =

∫ ∞
0

∫
Rp

∫ ∞
−∞

τ
T+p+1

2 +a ba |P | 12
Γa (2π)

T+p+1
2

exp

[
−τ

2

{
T∑
t=1

(yt − αYt−1)2 − 2θ

T∑
t=1

(yt − αYt−1)

+(α− µ)′P (α− µ)− 2θy0 + (T + 1)θ2 + y20 + 2b
}]

dθ dα dτ.

Let us define θ̂H0 = 1
ηH0

(∑T
t=1(yt − αYt−1) + y0

)
and α̂H0 given by Equation (8) and

integrating with respect to θ, α and τ , we get
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P (y|H0) =

∫
Rp

∫ ∞
−∞

∫ ∞
0

τ
T+p−1

2 +a ba |P | 12
Γa (2π)

T+p+1
2

exp

[
−τ

2

{
T∑
t=1

(yt − αYt−1)2

−2θθ̂H0 + (α− µ)′P (α− µ) + ηH0θ
2 + y20 + 2b

}]
dθ dα dτ

=

∫ ∞
0

τ
T
2 +a−1 ba |P | 12

Γa (2π)
T
2 η

1
2

H0
ξ

1
2

H0

exp

[
−τ

2

{
T∑
t=1

y2t + µ′Pµ+ 2b+ y20

− 1

ηH0

(
y0 +

T∑
t=1

yt

)2

− α̂′H0
ξH0

α̂H0


 dτ

=
ba |P | 12

Γa (2π)
T
2 η

1
2

H0
ξ

1
2

H0

Γ(T2 + a)

[ΩH0
]
T
2 +a

(13)

By utilizing the posterior probability under H1 (Equation (12)) and H0 (Equation
(13)) with prior odds ratio P0

1−P0
, we get the posterior odds ratio β01 (7). �

4. Empirical Analysis

If time series data is contaminated by an additive outlier then there will be a sudden
jump from a particular point. For this reason, present study is exploring the testing
procedure under Bayesian framework to identify such type of observations and
examine whether this jump is due to outlier or not. For this, we have analyzed
monthly time series of recorded patient of communicable disease of Haryana State,
India. There are 20 communicable diseases recorded by Central Bureau of Health
Intelligence (CBHI), Ministry of Health, India during the period January 2012 to
December 2014, where we get a series namely Enteric fever series (as shown in Fig.
1) having a suspected major deviation in September 2012 which may be an outlier.
Enteric fever, commonly known as Typhoid fever is caused by Salmonella Typhoid
bacteria. Typhoid fever is rare in industrialised countries. Some of these occur
throughout the year and some especially in rainy and post-rainy season (see, Tyagi
et al. [2011]). During the study, it is noted that outlier has occurred in the month
of September 2012 which is the last month of the rainy seasons in Haryana state.
Model has been fitted for all possible AR processes using R-software and got AR(1)
as the best fitted model and recorded maximum ups at time point (T0 = 9 ), which
is shown in residual plot given in Fig. 1.
In practice, an observation which is lying beyond the 3σ limit may be considered
as an outlier. In such case, error is partitioned into two parts, such as error from
assumed distribution and magnitude of an outlier. The residual at extreme point is
4341.15 at T0 = 9 and it can be partitioned into two parts such as 3σ and λet values
which is given in Table 1 and value of coefficients for model (4) are also recorded in
Table 1. Here, we have combined error, i.e., εt+λet at T0 and considered maximum
permissible errors 3σ which may be extended for the values from error distribution
and then difference may be taken equal to λet.
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Fig. 1. Realization of the Enteric fever series

Table 1. Real data model fitting

Model Coefficient AIC ±3σ limit Position
of Outlier

λet

ARIMA(1,0,0)
θ

2571.3501

600.3401± 2823.5032 9 1517.6493
(-
264.881)

α1

0.4275
(-0.1503)

Present study is aims to test the presence of an outlier for the best-fitted model,
i.e., AR(1). In empirical study, it is noticed that at time point T0, an additional
variability came in the form of product of two values λ and et. Therefore, we have
taken various combinations of λ and et in such a way that product of these two
values must be equal to 1517.6493 and we have calculated β01 for different value
of λ = {20, 40, 60, 80} and corresponding value of et. β01 is shown in Fig. 2. Here, it is
observed that β01 is increased as value of et increases for fixed λ. We also observed
that β01 is almost constant with the increase of value of λ for fixed et as reported
in Fig. 2.
In Bayesian framework, decision of acceptance and rejection of hypothesis is
taken based on posterior probability through POR. Here, considering equal prior
probability, i.e., P0 = 0.5, if β01 is more than one, it means that there are more
chances to accept the null hypothesis. In all cases β01 is less than one, which
means there is no evidence to accept the null hypothesis and we conclude that
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Fig. 2. Posterior odds ratio of the Enteric fever series

series is contaminated by the outlier at T0 = 9.

It is also noticed that value of β01 is less than one for all value of λ and et because
the real series is having one outlier. The empirical study shows the significance
of Theorem 1, but value of β01 may be affected due to size of the series as well as
variation within series. So in this connection, we have explored a simulation study
in the next section.

5. Realization

Simulation is the realization of real world to explain the process for various studies.
We have taken coefficient values from real data and considered the models AR(p),
where p = 1, 2 and 3. The coefficient of pre-assumed model is calculated after fitting
the model on Enteric fever series and recorded in Table 1. We have generated a time
series of size T = {40, 60, 80 and 120} observations from AR(p) model. For simulation
purpose, value of error variance τ−1 is 1.25, ω = {0.001, 0.003, 0.005, 0.007, 0.009};λ0 =
{1, 5, 10, 15, 20} and {µ1, µ2, µ3, · · · , µp}. These are taken as same values as recorded
in empirical analysis. For AR(1), initial value y0 = 100, for AR(2) y0 = 100, y1 = 200
and for the AR(3) y0 = 100, y1 = 200, y2 = 300. The position of the outlier at T0 = 9 is
fixed for all the simulated series, i.e., additive outlier will occur at known positions
in all the simulated series.
Here, we have injected different values of an outlier at T0 that appear in the form
of λet. For the numerical purpose, we have taken fixed et = 10 and generated λ
considering various values of λ0 ranging from 1 to 20. The value of POR is calculated
with varying λ0 and T for different five values of ω and obtained β01 for AR(1) model.
For this, Jeffrey’s hypothesis testing criterion is used to calculate POR from the
following steps:

1. Simulate time series of size T for AR(1) and taking the seed values from the
estimated values of coefficient(s) of best model.

2. Inject an outlier (et) at T0.
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Table 2. Realization of Enteric fever series for Simulation

Model
Coefficient

AIC
θ α1 α2 α3

AR(1)
2571.3531 0.4321

600.3401(264.8805) (0.1502) - -

AR(2)
2576.0901 0.4702 -0.1101

601.9302(240.8312) (0.1602) (0.1605) -

AR(3)
2578.2312 0.4602 -0.0448 -0.1240

603.3431(215.2401) (0.1620) (0.1812) (0.1602)

3. Write the likelihood function under a particular hypothesis with appropriate
prior distribution.

4. Compute posterior probability under null and alternative hypothesis.
5. Reject H0 if POR is less than one, otherwise accept.

This procedure was also repeated for AR(2) and AR(3) models. A single series could
not interpret the model appropriately. Therefore, process is replicated 5000 times
and recorded average value of β01 for all three models with respective set of given
parameters. The β01 are represented for model AR(1), AR(2) and AR(3) in Fig. 3 and
value of β01 as also recorded in Appendix (Table A1, Table A2 and Table A3).

Fig. 3. Variation in POR with Size of the series (T), λ and ω for AR(1), AR(2) and AR(3)

The main motive of present section is to understand the behaviour of β01 in re-
spect to size of series and magnitude of outlier (et). If series is contaminated by an
outlier and the best model is correctly identified, then Theorem 1 detects outlier
properly. On the basis of Enteric fever series considered in the empirical analysis
shows that the best fitted model was AR(1). It is possible that an AR(1) process
may be miss-identified due to outlier. Therefore, we have investigated it through
our simulation for an autoregressive process of higher order, i.e., p=2 and p=3. We
found a similar pattern of β01 for model AR(2) and AR(3). The slope of β01 for AR(2)
process is more rather than with AR(1), but in case of AR(3) model, the slope of β01
is rapidly increasing and tends to one. This indicates that β01 values increase with
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the increase in size of the series (T). It is also observed that if value of ω increases
then impact of λ0 on the β01 is less. In these situations, no effect is coming from
the outlier either with the increase of size of series or with the variation within the
series. In the all cases, value of β01 tends to one or more than one. In case of AR
for large time series and less value of λ, null hypothesis is accepted which means
series is not contaminated by an outlier. This may be because of two reasons, one
large series may manage the impact of outlier and record due to small λ.

6. Conclusion

In this paper, we consider a Bayesian mechanism for an autoregressive time series
model contaminated with additive outlier (AO-AR(p)). A posterior odds ratio is de-
rived in the presence of additive outlier with the known prior assumptions. An em-
pirical analysis on monthly patient of Enteric fever series is considered to observe
the impact of the outlier and conclude that series have a suspected major devi-
ation due to outlier. With the help of simulation study, different magnitudes and
different size of the series are considered to know the significance of the studied
model and it is suitable to justify the mechanism. The work may also be extended
for panel AR(p) and vector autoregressive model.
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Appendex

Table A1. Average posterior odds ratio for different combination of λ0,T and ω AR(1) model

ω T λo = 1 λo = 5 λo = 10 λo = 15 λo = 18

0.001

40 7.87E-01 2.76E-01 1.05E-02 1.10E-04 5.31E-06
60 7.35E-01 1.48E-01 1.14E-03 1.28E-06 1.45E-08
80 6.94E-01 7.95E-02 1.22E-04 1.52E-08 3.99E-11

120 6.12E-01 2.25E-02 1.41E-06 2.13E-12 3.07E-16

0.003

40 8.50E-01 2.99E-01 1.15E-02 1.19E-04 5.79E-06
60 8.03E-01 1.62E-01 1.23E-03 1.40E-06 1.59E-08
80 7.54E-01 8.72E-02 1.32E-04 1.67E-08 4.35E-11

120 6.67E-01 2.45E-02 1.52E-06 2.32E-12 3.35E-16

0.005

40 9.09E-01 3.21E-01 1.23E-02 1.28E-04 6.21E-06
60 8.62E-01 1.74E-01 1.33E-03 1.51E-06 1.69E-08
80 8.10E-01 9.28E-02 1.42E-04 1.78E-08 4.69E-11

120 7.18E-01 2.65E-02 1.66E-06 2.50E-12 3.56E-16

0.007

40 9.82E-01 3.61E-01 1.30E-02 1.32E-04 6.31E-06
60 9.06E-01 1.96E-01 1.41E-03 1.54E-06 1.70E-08
80 8.48E-01 1.07E-01 1.53E-04 1.80E-08 4.55E-11

120 7.50E-01 3.19E-02 1.80E-06 2.50E-12 3.34E-16

0.009

40 1.03E+00 3.80E-01 1.38E-02 1.39E-04 6.66E-06
60 9.51E-01 2.08E-01 1.48E-03 1.62E-06 1.80E-08
80 9.06E-01 1.13E-01 1.61E-04 1.90E-08 4.80E-11

120 8.11E-01 3.37E-02 1.88E-06 2.62E-12 3.52E-16
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Table A2. Average posterior odds ratio for different combination of λ0,T and ω AR(2) model

ω T λo = 1 λo = 5 λo = 10 λo = 15 λo = 18

0.001

40 9.14E-01 5.43E-01 1.04E-01 8.67E-03 1.44E-03
60 8.33E-01 3.87E-01 3.38E-02 8.53E-04 6.08E-05
80 7.47E-01 2.75E-01 1.09E-02 8.42E-05 2.59E-06

120 6.00E-01 1.37E-01 1.12E-03 8.32E-07 4.65E-09

0.003

40 9.95E-01 5.90E-01 1.13E-01 9.27E-03 1.56E-03
60 8.99E-01 4.19E-01 3.68E-02 9.20E-04 6.60E-05
80 8.14E-01 2.97E-01 1.19E-02 9.22E-05 2.81E-06

120 6.49E-01 1.45E-01 1.25E-03 9.14E-07 5.11E-09

0.005

40 1.06E+00 6.32E-01 1.22E-01 9.97E-03 1.68E-03
60 9.70E-01 4.51E-01 3.93E-02 9.90E-04 7.06E-05
80 8.80E-01 3.18E-01 1.28E-02 9.88E-05 3.01E-06

120 7.05E-01 1.58E-01 1.33E-03 9.82E-07 5.52E-09

0.007

40 1.18E+00 7.24E-01 1.48E-01 1.32E-02 2.31E-03
60 1.12E+00 5.43E-01 5.11E-02 1.40E-03 1.07E-04
80 1.05E+00 4.05E-01 1.77E-02 1.50E-04 4.89E-06

120 9.03E-01 2.23E-01 2.10E-03 1.70E-06 1.04E-08

0.009

40 1.25E+00 7.65E-01 1.56E-01 1.39E-02 2.45E-03
60 1.18E+00 5.74E-01 5.40E-02 1.48E-03 1.13E-04
80 1.11E+00 4.27E-01 1.86E-02 1.58E-04 5.18E-06

120 9.64E-01 2.36E-01 2.22E-03 1.80E-06 1.10E-08

Table A3. Average posterior odds ratio for different combination of λ0,T and ω AR(3) model

ω T λo = 1 λo = 5 λo = 10 λo = 15 λo = 18

0.001

40 1.01E+00 8.92E-01 5.84E-01 2.94E-01 1.73E-01
60 9.82E-01 8.22E-01 4.39E-01 1.58E-01 7.22E-02
80 9.51E-01 7.53E-01 3.29E-01 8.50E-02 3.00E-02

120 8.84E-01 6.30E-01 1.84E-01 2.46E-02 5.19E-03

0.003

40 1.09E+00 9.68E-01 6.34E-01 3.19E-01 1.88E-01
60 1.07E+00 8.93E-01 4.77E-01 1.72E-01 7.83E-02
80 1.03E+00 8.18E-01 3.57E-01 9.25E-02 3.26E-02

120 9.57E-01 6.85E-01 2.00E-01 2.66E-02 5.62E-03

0.005

40 1.17E+00 1.04E+00 6.80E-01 3.42E-01 2.02E-01
60 1.14E+00 9.58E-01 5.12E-01 1.84E-01 8.40E-02
80 1.10E+00 8.79E-01 3.84E-01 9.91E-02 3.50E-02

120 1.03E+00 7.32E-01 2.15E-01 2.86E-02 6.06E-03

0.007

40 1.24E+00 1.11E+00 7.35E-01 3.73E-01 2.21E-01
60 1.21E+00 1.03E+00 5.58E-01 2.03E-01 9.34E-02
80 1.18E+00 9.58E-01 4.24E-01 1.11E-01 3.94E-02

120 1.12E+00 8.18E-01 2.43E-01 3.29E-02 7.02E-03

0.009

40 1.28E+00 1.15E+00 7.57E-01 3.84E-01 2.27E-01
60 1.25E+00 1.06E+00 5.74E-01 2.09E-01 9.60E-02
80 1.22E+00 9.85E-01 4.36E-01 1.14E-01 4.06E-02

120 1.15E+00 8.42E-01 2.50E-01 3.38E-02 7.22E-03

Journal home page: www.jafristat.net, www.projecteuclid.org/as


	Introduction
	Model Specification
	Prior Distribution and Posterior Odds Ratio
	Empirical Analysis
	Realization
	Conclusion

