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Abstract. The Progressive First-Failure (PFF) censoring scheme is considered in
the present article for the Empirical Bayes estimation. The approximate confidence
intervals and the Bayes estimation for the unknown parameters under the empir-
ical Bayesian technique are obtained for the Generalized Pareto distribution. The
improved approximate confidence intervals are discussed also. A simulation tech-
nique is applied here for illustrating the methods based on different censoring
plans, those are the special cases of PFF censoring scheme.

Résumé. Le schéma de censure du premier échec progressif (PFF) est considéré
dans le présent article pour l'estimation empirique de Bayes. Les intervalles de
confiance approximatifs et I'estimation de Bayes pour les parameétres inconnus
sous la méthode bayésienne empirique sont obtenus pour la distribution de Pareto
généralisée. Les intervalles de confiance approximatifs améliorés sont également
discutés. Une technique de simulation est appliquée ici pour illustrer les méthodes
basées sur différents plans de censure, qui sont les cas particuliers du schéma de
censure PFF.
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1. Introduction

The probability density function and cumulative density function of the considered
generalized Pareto distribution are given as

1 x\ 71
f(x,a,@)—ﬁ(l—;) 0<z<0,0>0, (1)
and
F(x;o,G):l—(l—f)e 1 0<r<o,0>0. (2)
o

Here, the parameters # and o are the shape parameter and scale parameter
respectively. See Castillo & Hadi (1977) for more details about the fundamental
properties of the underlying model. A little few literature are available for gener-
alized Pareto distribution. Grimshaw (1993) was obtained Maximum likelihood
estimator and studying their properties. Rezaei et al. (2010) discussed about the
estimation of P[Y < X]. Prakash (2012) obtained the central coverage Bayes
prediction bound length of the said distribution. Both known and unknown
cases of scale parameter have considered in the estimation of bound length. In
(2014), Azimi et al. (2014) obtained some Bayes estimator of life parameters for the
generalized Pareto distribution under Progressive censoring.

In the present article, PFF censoring scheme is considered for the inference.
The ACI and an improved ACI are obtained by using a log-transformation. The
log-transformation improved the performance of the ACI. The Bayes estimation
is obtained under two different asymmetric loss functions for both parameters of
the generalized Pareto distribution. The Empirical Bayesian approach have used
for improving the performances of the Bayes estimators. The performances of the
present procedures based on five different censoring techniques, those are the
special cases of the PFF censoring are illustrated by a simulation technique.

2. First-Failure Progressive Censoring Scheme

In life testing, a censoring is very common because of time limitation and other
restrictions on data collection. The censoring occurs when exact lifetimes are
available for a part of units under study. The most common censoring test criterion
is Type-II censoring and is beneficial for saving time and money.

The generalization of Type-II censoring is better known as the Progressive
censoring scheme and is useful in such cases when the live test units removed,
other than the final termination point. Last one decade Progressive censoring
scheme has received considerable interest among the researchers. A little few of
them Balakrishnan & Sandhu (1995), Balakrishnan & Aggarwala (2000), Kundu

(2008), Lee et al. (2009), Raqab et al. (2010), Fu et al. (2012), Al-Zahrani &
Al-Sobhi (2013), Prakash (2015) and Prakash (2016).

Following Johnson (1964), a life test in which experimenter might decide to
group the test units into several sets, each as an assembly of test units, and then
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run all the test units simultaneously until occurrence the First-Failure in each
group. Jun et al. (2006) was extended this plan for a bearing manufacturer and
time of first-failure were observed from each group.

In an experiment required to remove some sets of test units, before observing the
Sfirst-failures in the sets, the test plan is called PFF censoring scheme (Wu & Ku?
(2009). Following Wu & Ku? (2009) the progressive first-failure censoring scheme
is described as

Let us assume from (n x m) live test units, there are n independent groups
with m items within each group are putting on a life test. When the first-failures
XF is occurred, the R; units and the group in which the first-failures is observed
are randomly removed from the test. Similarly, when the second failure X£ is
observed, the R, units and the group in second failure was observed, are removed
from the test. The test will run until the k'"; (< n) failure X} is observed. Suppose,
X< X8 < .. < X are the progressively first-failure censored order statistics of
size k with pre assumed progressive censoring scheme R = (R1, Rs, ..., R;) follows
the relation

Rj:n—k‘.

=1

Let us assume (n x m) items in the life test are from the generalized Pareto dis-
tribution given in Eq. (1). Then the joint probability density function under PFF
censored order statistic is defined as

k
f0,0lz) = Cm* [ £ (2F:0,60) (1 - F (aF0,0))" 07 3)

i=1

where C), is a progressive normalizing constant. (See Prakash (2016) for more
details).

The First-Failure-censoring scheme has advantages in term of reducing test
time, in which more items are used but only £ of n x m items are failures. Some
special cases were included in the PFF censored scheme

1. The joint probability density function under PFF censored order statistic given
in Eq. (3), converted to the joint probability density function under First-Failure
censoring scheme when Ry = Ry = ... = R, = 0.

2. For m = 1, the Eq. (3) is represented the joint probability density function under
Progressive Type-II censored order statistic.

3. When m = 1,R; = Ry = ... = R;_1 = 0 and R; = n — k, the joint probability
density function under PFF censored order statistic is simply convert into the
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joint probability density function under the Type-II censored order statistic and,
is for complete sample case when m =1 and Ry = Ry = ... = R, = 0.

Remark: All these cases are considered in present article for the numerical
illustration.

Using Eq. (1) and Eq. (2) in Eq. (3), the joint probability density function
under PFF censoring scheme is obtained as:

Sy 2\ 5L gy b MERAHD -1
s 15 -2 Ho -2
=1

= f(0,0lz) x o ko7 e~ 0@ egp <Tl(g’a)> ; (4)

where Ty (z,0) = ZY Llog (=%) and T (z,0) =m Zle (Ri +1)log (=2 .

3. Parameter Estimation
3.1. Maximum Likelihood Estimation
The logarithm of the joint probability distribution given in Eq. (4) is

Tl (Q, 0) )

L (say) =log f(9,0lz) = ~klogo-klog b —To(z,0) + —,

(5)

Differentiating Eq. (5) with respect to the parameters ¢ and o respectively, and
equating it to zero. If ML estimation are denoted by 6,,;, and 6, of the parameters
6 and o respectively, then, one can be obtained as the solution of these equations

O = _hizo) %’ 7) (6)

and

Z(UML—xZ){éZL (1+Ri)1}k0. (7)

The Eq. (6) & Eq. (7) cannot be solved analytically; a numerical method (Newton-
Raphson method) must be employed to solve these two equations for numerical
finding of ML estimate 6,7, and 0,;y,.

3.2. Approximate Confidence Interval

The asymptotic variances and co-variances of the ML estimates of the parameters
are obtained by elements of the inverse of the Fisher information matrix. How-
ever, the exact mathematical expressions are very difficult to obtain. Hence, the
observed asymptotic variance-covariance matrix for the ML Estimation is obtained
as
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TR Vor(e) o (B
—3zLl  —5555 L ar \Vmr oV \UML,OML
= (8)
9 L lod L N A ~
~ 5258 — 557 (éMLﬁML) Cov (UML,QML> Var (O'ML)

The second order derivatives of the log-likelihood equation are

02 k T (z,0)
et e
L k+ixi(20—xi>{1_m(1+R,)}
9o -7 i=1 (0’—.%‘02 0 '

and i
02 H? 1 T; m
9090~ = doot = Z(Ux) {@<1+Rz-)}.

All the expressions of second derivative involve the unknown parameters. Hence,
the Fisher information matrix can be obtained by replacing its ML estimators. The
asymptotic normality of the ML estimation is used for the computation of ACI for
the unknown parameters 6 and ¢. Hence, (1 — ¢) 100% confidence intervals for the
parameters § and o are given respectively as

Onr F Zejay[var (éML) 9

and
oML F Zejav/var (Gur). (10)

Here, Z.; is the percentile of the standard normal distribution with right-tail prob-
ability ¢/2. The applicability of normal approximation of ML estimation is in small
sample size. Following Meeker & Escobar (1998), a log-transformation can be con-
sidered for improvements in the performance of the normal approximation. Thus,
(1 —€) 100% improved approximate confidence intervals for the parameters ¢ and o
are obtained as

Zej2y/Var (9ML) Zes2i|Var (QML)

(11)

001 exp

éML exrp | — ~ ~
HML eML

and

Z Vv O Z Vv o
{&ML cap (_ 2V ar (UML)> ars exp ( 2/ Var (UML)> } . (12)

oML oML
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3.3. Bayes Estimation When Both Parameter Is Unknown

In the present section, both parameters of the underlying model given in Eq. (1)
are considered as a random variable. Prakash (2012) considered the following joint
prior distribution for the parameters ¢ and o as

T(0,0) = (I‘B(:) 6> exp <_§>) <;> :0>0,a>0,>0,6>00<0c<¢. (13

Using Eq. (4) and Eq. (13), the joint posterior density and marginal posterior density
corresponding the parameters of the generalized Pareto distribution are obtained
as

Wzﬂa,g) = eh7F2"1 ep (_B—Z’;(m,o)) o~k e~ To(z.0) (14)
T
mp =07 eap (—5) / exp (—To (z,0) + 1(;50)> o % do (15)

and
o=k e=To (z,0)

»=¢T (K :
To g ( —‘r(l) (ﬂ—Tl (gjo_))lH»a

(16)

-1
where f = {F(k + a) fa U—ke—To(LU) (5 -T (£7 O_))fkrfa da}

The Bayes estimators of the unknown parameters are obtained in this sec-
tion under asymmetric loss function. Several authors have recognized that, the
use of squared error loss function in Bayesian analysis is inappropriate in case
when the overestimation is more serious than the underestimation and vice versa.
An asymmetric loss function which is the result of a minor modification in squared
error loss, named as invariant squared error loss function (ISELF) and is defined
as

L(0,0) = (670)" s 0=0-0. (17)

The Bayes estimator 0; corresponding to the parameter § under ISELF is obtained
as

5 Jy0 - db
Jp 0 2eap (—%) [, exp (—To (z,0) + %) o~ do df

B Jp 0 F—=3exp (—g) [, exp (—To (z,0)+ %) o~k do db
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= b, = I, exp (=To (z,0)) (B - T1 (z, o)) e ok 4o

- —k—a—2 : (18)
Dk+a+1) [ exp(—Ty (z,0)) (B —Ti(z,0)) o~k do

Similarly, the Bayes estimator 6; for parameter ¢ under ISELF is obtained as

5y Joerr (T (2,0)) (B =T (& o)) F gk do 19

[ exp (=Ty (z,0)) (B —T1 (z, o)) k2 gy

There are few situations where overestimation and underestimation can lead to
different values. For example, when we estimate the average reliable working life
of the components of a spaceship or an aircraft, overestimation is usually more
serious than underestimation. In such situation, the LINEX loss function (Varian

(1975)) may provide useful results. Following Singh et al. (2007), the modified
version of the LINEX loss function (LLF) is defined for any estimate  corresponding
to the parameter 6 as

L(0)=e" —ad—1; a:%.

See Singh et al. (2007) for more details. The Bayes estimation for the parameter ¢
under LLF is obtained by simplifying following equality

[oren (Tl e B) [ e (~To (w.0)) 0+ dordo =
9 ag

0
ea/gﬁfkfo‘”ea:p (Tl(x’;)_ﬁ) /Jexp(—To (z,0)) 0~ " do db.

Thus, the Bayes estimator 0, (say) is the solution of the following equality

o Fexp (=T (z,0)) o [0 Fexp(—Th (z,0))
do = e do. (20)
/” <6 —ab;, — Ty (z, a))k+a+1 /a (8—Ti(z, 0))k+a+l

Similarly, the Bayes estimator 6, (say) for the parameter o is the solution of the
following equality

/ o~ exp <_T0 (z,0)+ CL%L) do — ea/ o " Yexp(—Tp (z,0))

do. (21)
(BT (z,0)" " BT (o)

The Eq. (18) - Eq. (21) cannot be solved analytically; a numerical method employed
to solve these equations numerical.
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3.4. Bayes Estimation When Shape Parameter Is Known

When the shape parameter o is known, the inverted Gamma distribution is consid-
ered here as the conjugate prior for the parameter ¢, having the probability density
function

o < 07 Lexp (_§> ;0>0,aa>0,8>0. (22)

The posterior density corresponding to the prior 7y for the parameter 0 is

. k+a — o
(6 - FT(lk@: 3) g-batD) o, <5T19(f”)> . (23)

Tt =

The Bayes estimator for the scale parameter ¢ corresponding to ISELF and LLF
corresponding to posterior 7;* are obtained as

é’ :B_Tl(iag)
! k+a+1

0, = <ﬂT;(9“’)> {1 — eap (_k+3+1> } . (25)

4. Empirical Bayes Estimation

(24)

and

The ML estimate method is one of the best method for estimating the hyper-
parameter. Based on empirical Bayesian approach the unknown hyper-parameter
B (when « is known) is estimated. Hence, under the empirical Bayesian approach,
we begin with the Bayesian model:

Since,
|0~ f(z;50,0),i=1,2,..,n

and
Ola, B ~ Tg.

As all the units have identical generalized Pareto distribution, the marginal density
of x, say f(z), can be obtained as

f@) = /@ £ (0,0lz) - 7o db

f(z) = i U_ke_TU@’”)/Oe:cp (—B_TZ(QZ’O)> g—o-k=1 jp

_ BT(a+k) o ke To@o)

(@) (B-T(z,0)*F (26)

= f(z)
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The ML estimate of the hyper parameter $ based on f(z) is

By = —%T1 (z,0). (27)

The Empirical Bayes estimators corresponding to the parameters are obtained by
replacing the hyper-parameter g with its ML estimate (;,; given in Eq (27). Thus,
the Empirical Bayes estimators for the parameter § when ¢ unknown, are given as

»_( atk fg ok exp (=Tp (z,0)) (T} (z, 0))_k_a_1 do
ur = ( k ) CtotD) o teamp(Tyme) @ @me) "= 2doe
and
U_k exp (_TU (&7 U)) d a U_k €xp (_TO (&7 J)) d
rdo=e S do. (29)
o (akéEL + T (z,0) (a+ k)) Fret /a (Th (z,0) (e + k) +oF

Similarly, the empirical Bayes estimator for shape parameter ¢ when both param-
eter unknown, are given as

o Jyern(“To(@,0) (Ti (2,0) " 0™F M do a0
T eon (T (,0)) (Th (o) * " o2 do (50)

and

do. (31)

o " leap (~To (z,0) +a%) [ okl erp (=T, (z,0))
/a (Ty (0)" dr=c / (Ty (1,0)"

When shape parameter is assume to be known, the empirical Bayes estimator of
the parameter 6 are given as

- () (o)

= (1) o (e )L

5. Numerical Analysis Based on Simulation

and

In the present section, a simulation study has been performed for the analysis
of the proposed methods. The Monte Carlo simulation technique was used for
generating 10,000 PFF censored samples for each simulation (Based on algorithms
described in Balakrishnan & Sandhu (1995)).
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Table 1. Special Cases of PFF Censoring Scheme

Case | m | k | Ri;1,2,...k, Different Censoring Plans
1 5]05|12021 First-Failure Progressive Type-II Censoring
2 5105 |00000 Progressive Type-II Censoring
3 1 10512021 First-Failure Censoring
4 1|05|000025 Type-II Censoring
5 1|{05|00000 Complete Sample
1 5|10 | 1005001421 First-Failure Progressive Type-II Censoring
2 5|10 | 0000000000 | Progressive Type-II Censoring
3 1| 10| 1005001421 First-Failure Censoring
4 1 10| 00000000020 | Type-II Censoring
5 1 | 10| 0000000000 | Complete Sample

The samples were simulated for different values of n = 30,0 = 2,m = 5, hyper-
parametric values («, 3) = (2.10,0.34) , (3.60, 3.28) , (5.00, 6.90) with different k. In this
section, we also encounter different special cases of PFF censoring in empirical
Bayesian analysis. The different special cases of PFF censoring scheme along with
different values of k are given in Table (1).

The ML estimates 6 vr and 6, of the parameters 6 and o respectively are
computed from the solution of Eq. (6) and Eq. (7), by using Newton-Raphson
iteration method and presented in Table (2). It is observed from the table is that;
the value of ML estimate is increasing as the prior parameter « or the censoring
size increases and decreasing when prior parameter § increases.

Table 2. Maximum Likelihood Estimate

n=30| B — 0.34 [ 3.28 [ 6.90 0.34 [ 3.28 [ 6.90
m =15 al k=05 k=10

2.10 | 1.2607 | 0.9546 | 0.7893 | 1.2947 | 0.9893 | 0.8968
Onr 3.60 | 1.3446 | 0.9712 | 0.8219 | 1.3626 | 1.2359 | 1.0334
5.00 | 1.3801 | 1.0284 | 0.8567 | 1.4001 | 1.3171 | 1.0917
2.10 | 1.5617 | 1.1856 | 1.0903 | 1.6117 | 1.2803 | 1.1978
oML 3.60 | 1.6656 | 1.1942 | 1.1429 | 1.6856 | 1.5482 | 1.2665
5.00 | 1.7241 | 1.2714 | 1.2507 | 1.8701 | 1.6114 | 1.3357

An improved ACI based on log-transformation have obtained and presented in
Table (3) for selected set of parameters at significance levels € = 90%, 95%, 99%. It
has seen that the ACI for both parameters increases when censoring size increases
or the significance levels increase. An opposite trend have seen when set of prior
parameters increase.
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Table 3. Approximate Confidence Length

n =30 €— 90% [ 95% | 99% 90% | 95% | 99%
m=7>5 (o, B) k=05 k=10
(2.10,0.34) | 1.0786 | 1.1016 | 1.2218 | 1.0846 | 1.1046 | 1.2598
4 (3.60, 3.28) | 1.0315 | 1.0691 | 1.0717 | 1.0655 | 1.0706 | 1.1191

(5.00, 6.90) | 1.0107 | 1.0305 | 1.0299 | 1.0384 | 1.0435 | 1.0392
(2.10, 0.34) | 1.1956 | 1.2356 | 1.3508 | 1.2096 | 1.2396 | 1.3638
o (3.60, 3.28) | 1.1865 | 1.1996 | 1.2601 | 1.1925 | 1.2001 | 1.2707
(5.00, 6.90) | 1.1594 | 1.1645 | 1.1202 | 1.1607 | 1.1715 | 1.1409

The Bayes risks of the empirical Bayes estimators corresponding to the parameters
6 and o based on different censoring plans of PFF censoring scheme, as discussed
in Table (1), have been presented in the Table (4-6).

It is observed that, the empirical Bayes risk increases when parameter a or cen-
sored sample size k increases for all the considered values. Similar properties also
have seen when, the shape parameter of LLF 'a’ increase for LLF risk criterion. It
is observable that, the Bayes risk increase when censoring pattern changed. The
smaller risks magnitude has noted for PFF, then progressive censoring and large
risks in magnitude for a complete sample case. Further, there is no any clear trend
has observed between the Type-II and First-failure censoring. However, one may
prefer the PFF over the other censoring scheme for the selected parametric set of
values.

Table 4. Empirical Bayes Risk Under ISELF When ¢ Unknown

Different Censoring Plans
Meloet =T 2 1 3 | 4 | 5

Oer

2.10 | 0.8619 | 0.8905 | 0.9018 | 1.0116 | 1.0712
05 | 3.60 | 0.9306 | 0.9530 | 1.0479 | 1.0227 | 1.1487
5.00 | 0.9536 | 0.9876 | 1.1231 | 1.0667 | 1.1604
2.10 | 0.8705 | 0.9125 | 0.9539 | 1.0242 | 1.0756
10 | 3.60 | 0.9491 | 0.9758 | 1.0670 | 1.0371 | 1.1542
5.00 | 0.9684 | 0.9919 | 1.1312 | 1.0787 | 1.1631
OEI
2.10 | 0.9486 | 0.9801 | 1.0462 | 0.9925 | 1.1689
05 | 3.60 | 0.9596 | 1.0118 | 1.1103 | 1.0139 | 1.1842
5.00 | 0.9907 | 1.0309 | 1.1783 | 1.2236 | 1.2248
2.10 | 0.9598 | 1.0043 | 1.0108 | 1.0605 | 1.1838
10 | 3.60 | 0.9745 | 1.0139 | 1.0287 | 1.1252 | 1.1903
5.00 | 0.9958 | 1.0617 1.071 1.1735 | 1.2801
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Table 5. Empirical Bayes Risk Under LLF When ¢ Unknown

Different Censoring Plans

ki al |al 1 [ 2 3 1 5
0L

2.10 | 0.8319 | 0.8536 | 0.8846 | 0.9137 | 1.0189

0.50 | 3.60 | 0.8525 | 0.9143 | 0.9616 | 0.9711 | 1.0541

05 5.00 | 0.9218 | 0.9608 | 1.0148 | 0.9978 | 1.1022
2.10 | 0.8501 | 0.8783 | 0.8895 | 0.9597 | 1.0565

1.00 | 3.60 | 0.9178 | 0.9400 | 0.9678 | 0.9824 | 1.1123
5.00 | 0.9405 | 0.9741 | 1.0717 | 1.0602 | 1.1214

2.10 | 0.8543 | 0.8785 | 0.9014 | 0.9363 | 1.0432

0.50 | 3.60 | 0.9105 | 0.9364 | 0.9933 | 0.9805 | 1.0594

10 5.00 | 0.9492 | 0.9712 | 1.0182 | 1.0571 1.1218
2.10 | 0.8586 | 0.9007 | 0.9499 | 0.9766 | 1.0709

1.00 | 3.60 | 0.9361 | 0.9725 | 0.9967 | 1.0202 | 1.1384
5.00 | 0.9552 | 0.9783 | 1.0965 | 1.0786 | 1.1472

OEL

2.10 | 0.8606 | 0.8892 | 0.9004 | 0.9306 | 1.0296

0.50 | 3.60 | 0.8706 | 0.9179 | 0.9198 | 0.9707 | 1.0704

05 5.00 | 0.9043 | 0.9352 | 0.9492 | 0.9810 | 1.0884
2.10 | 0.8995 | 0.9219 | 1.0011 | 0.9889 | 1.0504

1.00 | 3.60 | 0.9018 | 0.9487 | 1.0148 | 1.0108 | 1.0844
5.00 | 0.9346 | 0.9566 | 1.0573 | 1.0346 | 1.1011

2.10 | 0.8708 | 0.9111 | 0.9170 | 0.9678 | 1.0740

0.50 | 3.60 | 0.8840 | 0.9198 | 0.9333 | 0.9846 | 1.0799

10 5.00 | 0.9094 | 0.9632 | 1.0535 | 1.0124 | 1.1013
2.10 | 0.9101 | 0.9417 | 1.0055 | 1.0073 | 1.0811

1.00 | 3.60 | 0.9337 | 0.9607 | 1.0203 | 1.0589 | 1.0961
5.00 | 0.9637 | 0.9855 | 1.0619 | 1.0901 | 1.1203
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Table 6. Empirical Bayes Risk When ¢ Known

Different Censoring Plans

ki al |al 1 [ 2 3 1 5
Orr

2.10 | 0.8819 | 0.9051 | 0.9812 | 0.9117 | 1.0213

05 3.60 | 0.8936 | 0.9233 | 1.0191 | 0.9453 | 1.0615
5.00 | 0.9365 | 0.9768 | 1.0301 | 0.9967 | 1.1041

2.10 | 0.9081 | 0.9358 | 1.0123 | 0.9513 | 1.0519

10 3.60 | 0.9386 | 0.9431 | 1.0271 | 0.9651 | 1.0817
5.00 | 0.9659 | 0.9861 | 1.0531 | 1.0007 | 1.1145

OeL

2.10 | 0.8171 | 0.8387 | 0.9091 | 0.8448 | 0.9463

0.50 | 3.60 | 0.8279 | 0.8555 | 0.9442 | 0.8759 | 0.9835

05 5.00 | 0.8677 | 0.9050 | 0.9545 | 0.9235 | 1.0230
2.10 | 0.8345 | 0.8568 | 0.9096 | 0.8731 | 0.9478

1.00 | 3.60 | 0.8657 | 0.8942 | 0.9459 | 0.9253 | 1.0265
5.00 | 0.8768 | 0.9204 | 0.9765 | 0.9645 | 1.0373

2.10 | 0.8414 | 0.8671 | 0.9379 | 0.8814 | 0.9746

0.50 | 3.60 | 0.8696 | 0.8739 | 0.9517 | 0.8942 | 1.0023

10 5.00 | 0.8950 | 0.9137 | 0.9758 | 0.9272 | 1.0327
2.10 | 0.8796 | 0.8962 | 0.9694 | 0.9101 | 1.0007

1.00 | 3.60 | 0.8908 | 0.9332 | 0.9736 | 0.9411 | 1.0159
5.00 | 0.9125 | 0.9401 | 1.0105 | 0.9603 | 1.0573
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