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Abstract. More attention has been given to regularization methods in the last two
decades as a result of exiting high-dimensional ill-posed data. This paper pro-
poses a new method of introducing the penalized term in regularized regression.
The proposed penalty is based on using the least squares estimator’s variances
of the regression parameters. The proposed method is applied to some penalized
estimators like ridge, lasso, and elastic net, which are used to overcome both the
multicollinearity problem and selecting variables. Good results are obtained using
the average mean squared error criterion (AMSE) for simulated data, also real data
are shown best results in the form of less average prediction errors (APE) of the
resulting estimators.
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Résumé (French) Une attention accrue est de plus en plus accordée aux méthodes
de régularisation au cours des deux dernières décennies à la suite de la la surve-
nance de données de haute dimension. Cet article propose une nouvelle méthode
d’introduction du terme pénalisé dans la régression régularisée. La pénalité pro-
posée est basée sur l’utilisation des variances des estimateurs des moindres carrés
des paramètres de régression. La méthode proposée est appliquée à certains esti-
mateurs pénalisés comme la méthode ridge, le lasso et le filet élastique, qui sont
utilisés pour surmonter à la fois le problème de la multicolinéarité et la sélection
des variables. De bons résultats obtenus en utilisant la le critère de l’erreur quadra-
tique moyenne (AMSE) pour les données simulées et également sur des données
réelles sont présentés. Les meilleurs résultats sont obtenus avec le critère des er-
reurs de prédiction moyennes (APE) sur les estimateurs concernés.

1. Introduction

Regularization methods have given more attention in the last two decades as a
result of exiting high-dimensional ill-posed data. More effort has gone to develop
the regression methods for simultaneous variable selection and coefficient es-
timation. A smaller subset from large number of predictors is desired to obtain
more important predictors. Also, a large number of predictors may cause highly
collinear regressors which lead to severe estimation problems. The ordinary
least squares estimator abbreviated OLS, will have undesired properties. Large
variance, incorrect signs, unstable, and long length of the OLS are examples of
the undesired properties. Regularized regressions are developed to overcome these
problems as alternative methods to OLS, such as ridge regression abbreviated
RR (Hoerl and Kennard (1970a,b)), bridge regression abbreviated BR (Frank,and
Friedman (1993)), Least absolute shrinkage, and selection operator, Lasso, (Tib-
shirani (1996)), least-angle regression, LARS (Efron et al. (2004), and the Elastic-
Net, abbreviated EN (Zou and Hastie (2005)). In combating the collinearity, RR
improves the variability of the regression estimators of OLS through shrinkage,
but cannot produce a model with relevant predictors. In both shrinkage estimates
and selecting variables Lasso is used, and the Elastic- Net is proposed as an
improved version of Lasso. (Zou and Hastie (2005)).

Consider the multiple linear regression model of the form:

Y = Xβ + ε, (1)

where Y is an (n× 1)-column vector of dependent variable, X is an (nxp) matrix of
regressors, β is a (p × 1)-vector of unknown parameters to be estimated, and ε is
an (n× 1)-vector of errors distributed as N

(
0, σ2I

)
.

The OLS estimator vector β̂OLS =
(
β̂1, ..., β̂p

)
is obtained by minimizing the residual

sum of squares criterion (RSS) as follows:
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RSS = ‖y − xβ‖22 , (2)

where ‖·‖2 denotes the square of the standard Euclidean norm, and thus β̂OLS can
be obtained as:

β̂OLS = (x′x)
−1
x′y. (3)

In spite that the OLS estimator is an unbiased estimator, it may still have a large
variance when there exist multicollinearity among regressors in the design matrix
X . This causes unstable solutions. The instability when minimizing the RSS
leads to different regularization penalty techniques. These techniques are based
on adding some penalty term to (2) to obtain a regularized form of RSS. The most
known regularization s are L2, L1, and hybrid of both L2 and L1, respectively.
(Wenjiang (1989); Fu (1998); and Vidaurre et al. (2013)).

In this paper, a new penalized form is proposed in (2) for some regularization
methods in linear models such as ridge regression, the Lasso, and the Elastic-
Net. However, the properties of the new regularization method are studied in this
paper; best results are obtained in the form of less mean squared errors and less
average prediction errors for both simulated and real data, respectively. Section 2
presents some regularized regression methods used in both combating collinearity
and selecting variables. Section 3 introduces the proposed new penalty term in
some regularized regression methods. The Mont Carlo simulation study, real-life
data, and the performance criteria of the new proposal are presented in section 4.
Conclusions and recommendations are considered in Section 5.

2. Regularized Regression Methods for Linear Models

To achieve both accuracy and parsimony of statistical modeling part or all of the
regression coefficients are penalized. Ridge regression, the Lasso, and the Elastic-
Net will be considered in this work as examples of achieving model prediction
accuracy, interpretability, or both in linear regression models.

2.1. Regularization Using Ridge Penalty (L2-Penalty)

To accept some bias in order to reduce the variance of OLS estimators, the penal-
ized estimators are used. Ridge regression, RR, (Hoerl and Kennard (1970a,b)),
shrinks the OLS estimators using the L2 norm of the coefficients. The loss
function of RR method can be shown as:

β̂RR = argmin
β
‖y − xβ‖22 + λ2 ‖β‖22 , (4)
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where

‖y − xβ‖22 =

n∑
i=1

(yi − x′iβ)
2

is the L2-norm quadratic loss function, ‖β‖22 =
p∑
j=1

β2
j is the L2-norm penalty on

β andλ2 is the ridge penalty parameter which controls the amount of shrinkage
of the coefficients towards zero. The larger is the value of λ2, the greater is the
amount of shrinkage. Equation (4) can be written as a restricted version of (2) as
follows:

β̂RR = argmin
β
‖y − xβ‖22 (5)

subject to: ‖β‖2 ≤ t2, where t2 is a tuning parameter. Equation (4) gives the con-
strained coefficient of RR estimator as:

β̂RR = (x′x+ λ2I)
−1
x′y, . (6)

The RR estimator shrinks the coefficient of correlated predictors equally towards
zero, but cannot select the most relevant subset of predictors.

2.2. Regularization Using Lasso Penalty (L1-Penalty)

Tibshirani (1996) introduced Lasso as a penalized method using the L1 penalty
rather than L2 penalty in RR as follows:

β̂Lasso = argmin
β
‖y − xβ‖22 + λ1 ‖β‖1 , (7)

where

‖β‖1 =

p∑
j=1

|βj |

is is the L1-norm penalty on β, and λ1 ≥ 0 is the Lasso penalty parameter
which penalizes the sum of the absolute values of the regression coefficients.
λ1 controls the strength of the penalty and work like ridge parameter, that is
OLS estimator is obtained when λ1 = 0 and zero estimator is obtained when λ1 =∞.

When λ1 increases, more coefficients are set to zero (less variables are selected) and
more shrinkage is employed. Equation (7) can be written in a constrained form as:

β̂Lasso = argmin
β
‖y − xβ‖22 , (8)

subject to:
‖β‖1 ≤ t1
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where t1 is a tuning parameter. Minimization of (7) is more complicated; there is
no closed form of lasso estimator as ridge estimator (Tibshirani (1996)). Van Der
Kooij (2007) showed that the Lasso estimator can be estimated by minimizing (7)
as follows:

β̂Lasso = (x′x)
−1
(
x′y − 1

2
λ1I

)
. (9)

The lasso estimator reduces the variability of the estimates by shrinking some
coefficients, and produces interpretable models by shrinking some other coeffi-
cients to exactly zero. These properties make the Lasso a highly popular method
in variable selection. Thus the Lasso combines the two features of RR and subset
selection. However, Lasso has the following shortcomings:

(a) It is unstable with high dimensional data.

(b) It cannot select more variable than the sample size when p > n.

These shortcomings mean that Lasso outperforms RR and subset selection with a
small to moderate number of moderated correlations, subset selection outperforms
Lasso for a small number of large correlations, and RR is the best estimator in the
case of a large number of small correlations. (Tibshirani (1996);

2.3. Regularization Using Elastic-Net Penalty

To circumvent the instability of the Lasso estimator when predictors are highly cor-
related, the Elastic-Net was proposed. Zou and Hastie (2005) proposed the Elastic-
Net as a regularized estimator by combining the L1 (Lasso) and L2 (RR) penalties
which can be obtained by the following optimization problem:

β̂Elastic = argmin
β
‖y − xβ‖22 + λ1 ‖β‖1 + λ2 ‖β‖22 , (10)

The optimization problem in (10) can be presented as a penalized least squares
method as follows:

β̂Elastic = argmin
β
‖y − xβ‖22

Subject to:

α ‖β‖1 +
1

2
(1− α) ‖β‖21 ≤ t, (11)

where the function α ‖β‖1 + 1
2 (1− α) ‖β‖21 is the Elastic-net penalty. When α = 0,

the elastic-net becomes simple ridge regression, and when α=1, Lasso estimator is
obtained. The Elastic-Net penalty is a convex combination of both lasso and ridge
penalty. The penalty is convex when α=0, and strictly convex when α > 0. The used
values of α in Elastic-Net is α ∈ [0, 1]. This form of penalty is useful when there are
many correlated predictors in the model. (Friedman et al. (2010)). Minimization of
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Equation (10) gives the Elastic-Net estimator. Van Der Kooij (2007) showed that
the Elastic-Net explicitly estimator can be estimated as:

β̂Elastic−Net = (x′x+ λ2I)
−1
(
x′y − 1

2
λ1I

)
. (12)

The Elastic-Net estimator selects variables like Lasso, and shrinking the coeffi-
cients of correlated predictors like RR. It is found that this estimator is an extension
of the Lasso and is robust to extreme correlations among the predictors. (Fried-
man et al. (2010)). The Elastic-Net estimator unlike the Lasso when p > n, the The
Elastic-Net estimator can select more than n variables.(Zou and Hastie (2005)).

Theorem 1. Given,q ≥ 1, λ> 0, r = 1, 2, and

Q = min
β

[RSS + J (β)] ,

where,
J (β) = λ. ‖β‖qr ,

which implies that :

β̂ = argmin
β

Q(β, x, y, λ, q),

d [J (β)] = d (βj , λ, q) = q.λ. ‖β‖q−12 sign (βj) , (13)

and let:
∂Q

∂βj
= Cj (β, x, y) + d (βj , λ, q) = 0.

Then

C1 (β, x, y) + d (β1, λ, q) = 0,

C2 (β, x, y) + d (β2, λ, q) = 0,

...
Cp (β, x, y) + d (βp, λ, q) = 0.

(14)

If the function C is continuously differentiable with respect to β, and the Jacobian

∂C

∂β

is positive semi-definite (p.s.d.), then :

(1) The equations in (14) have a unique solution β̂ (λ, q) which is continuous in (λ, q).
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(2) The limit of β̂ (λ, q) exists as follows:

(2a) lim
q→1

β̂ (λ, q) = β̂Lasso

(2b) lim
q→2

β̂ (λ, q) = β̂RR

(2c) lim
q→1

β̂ (λ, q) + lim
q→2

β̂ (λ, q) = β̂EN .
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The proof of Theorem (1) is in Appendix (A-1).

2.4. Measuring the effective number of parameters

The degrees of freedom of an estimator describes it effective number of parameters.
Generally, the effective number of parameters is measured using the degrees of
freedom of the estimator. One of the usage of the degrees of freedom is to put
two different estimators on an equal footing. The estimators can be compared with
different tuning parameters using degrees of freedom of the estimator .Precisely,
given the data y ∈ Rn from the model (1) and suppose that y is estimated by ŷ. The
degrees of freedom (df) of the estimate ŷ is defined as:

df (ŷ) =
1

σ2

n∑
i=1

cov (ŷi, yi) (15)

The higher the correlation between the ith fitted value and the ith data point, the
higher its degrees of freedom. The degrees of freedom can be measured for the
fitted model using the previously three regularized estimators as indicated in the
following Lemma. (See Meyer, and Woodroofe (2000); Zou et al. (2007); and Kato
(2009)).

Lemma 1. (Stein’s Lemma, Stein (1981)) Suppose that ŷi : Rn → R is absolutely
continuous in ith coordinate for i = 1, 2, · · · , n. If E

(∣∣∣∂ŷi∂yi

∣∣∣) ≺ ∞for each i, then:

1

σ2

n∑
i=1

cov (ŷi, yi) = E (divŷi)

,
where divŷi =

n∑
i=1

∂ŷi
∂yi

.

Therefore, an unbiased estimator of the degrees of freedom is given by: df̂ (ŷ) = divŷ.

The degrees of freedom of a fitting procedure describe the effective number of
parameters used by this procedure as follows:

(1) For the linear regression, ŷ = xβ̂OLS, df (ŷ) = 1
σ2

n∑
i=1

cov (ŷi, yi) =p.

(2) For the ridge regression, ŷ = xβ̂RR, df (ŷ) =
p∑
j=1

γj
γj+λ2

(3) For the Lasso, ŷ = xβ̂Lasso, df (ŷ) = q =

E
[
number of nonzero coefficients inβ̂Lasso

]
.

(4) For the Elastic-net,ŷ = xβ̂Elastic−Net,df (ŷ) =
q∑
j=1

γj
γj+λ2

,
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where γj is the jth eigenvalue of the matrix (x′x ), λ2 is the ridge parameter (penalized
parameter), and q is the number of nonzero coefficients.

The proof of Lemma (1) is in Appendix (A-2).

3. The Proposed Regularized Regression Estimator

Large efforts have done to develop the penalized regression methods to get higher
prediction accuracy in linear regression models. In this paper new estimators of
RR, Lasso, and elastic net are proposed, which are based on penalizing each coef-
ficient with different penalty factor in the penalty term in of the loss function. The
proposed estimators for RR, Lasso, and elastic net are obtained by minimizing the
loss functions, as follows:

β̂New = argmin
β

n∑
i=1

(yi − x′iβ)
2

+ λ

p∑
j=1

ωj

1

2
(1− α)

p∑
j=1

β2
j + α

p∑
j=1

|βj |

 (16)

where ωj is the jth penalty factor of the jth coefficient, the default is one for each
coefficient. Equation(16) can be written in matrix form as follows:

β̂New = argmin
β
‖y − xβ‖22 + λW

[
1

2
(1− α) ‖β‖22 + α ‖β‖1

]
(17)

where, λ is the penalized parameter, w = diag(ωj , j = 1, 2, · · · ), and

ωj =
var(β̂j)∑p
j=1 var(β̂j)

,

where β̂j is jth OLS estimator of the parameter vector β,
p∑
j=1

ωj = trace (W ) = 1.

The larger values of ωj ’s corresponds to more penalty on the coefficients. Lasso
estimator is obtained when α = 1, RR estimator is obtained when α = 0, and
Elastic-Net estimator is obtained when α ∈ [0, 1].

Different contributions have been proposed to select the penalized parameter, λ.
In this work, a 10-fold cross validation method is used to estimate the parameter
Λ. (See Stone (1974), Picard and Cook (1984), Yi and Yang (2013)). Practically,
It is found that the new proposed penalized estimators, in (16), or in (17), enjoy
good properties, which lead to near optimal estimators.
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4. The Numerical Studies

A simulation study is conducted to evaluate the new penalty for the three estima-
tion methods: RR, Lasso, and Elastic-net. The average mean square error (AMSE)
criterion is used to compare between these methods, with the OLS estimator,
and with the old versions of these methods. Also, data examples are used to
illustrate the effect of the new penalty on the performance of the estimators using
multicollinear real data. The results are obtained using the glmnet package in R.
(Friedman et al. (2010)).

4.1. A Simulation Study

The model used to generate data in this study is based on the true linear regres-
sion model in (1). Three scenarios of simulated data are used, and in each one
the data are split into two sets, train (0.66 ∗ n) and test (0.34 ∗ n) sets. The design
matrix X in all examples is generated from a multivariate normal distribution with
mean equal zero and variance equal one. The pairwise correlation between any
two predictors(xi,xj) =0.5|i−j| is used in each scenario. The computed results are
based on 200 replications. The penalizing parameter λ is estimated using 10- fold
cross validation method.

4.1.1. Scenario 1:

Contains 20 observations and 5 predictors with β = (1, 1, 1, 0, 0). Table 1 and Figure
1 present the performance of the three estimators RR, Lasso, and Elastic-Net
before and after applying the new penalty factor on each coefficient. Best results
are obtained in the form of less AMSE after applying the new penalty factor. The
Elastic-Net gave less AMSE before and after when α = 0.1.

Fig. 1. The AMSE before and after applying the new Penalty factor with values of
α ∈ [0, 1] .(Scenario 1)
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Table 1. MSE for different values of α before and after applying the penalty factor
ωj using generated data containing 20 observations and 5 predictors with β =
(1, 1, 1, 0, 0), repeated 200 times. (Scenario 1)

alpha MSE before applying the penalty factor MSE after applying the penalty factor Estimator
0 2.107787 1.561581 Ridge

0.1 1.474640 1.517871 Elastic-Net
0.2 2.151780 1.679560 Elastic-Net
0.3 1.801405 1.672152 Elastic-Net
0.4 1.876715 1.723631 Elastic-Net
0.5 2.529010 1.742830 Elastic-Net
0.6 1.681621 1.595544 Elastic-Net
0.7 1.840667 1.827098 Elastic-Net
0.8 1.828950 1.802149 Elastic-Net
0.9 2.276149 1.659560 Elastic-Net
1.0 1.894034 1.664934 Lasso

Table 2. MSE for different values of alpha before and after applying the penalty
factor ωj using generated data containing 50 observations and 10 predictors with
β = (1, ..., 1, 0, ..., 0), i.e, components 1:5 of β are ones, components 6:20 of β are
zeros, repeated 200 times. (Scenario 2)

alpha MSE before applying the penalty factor MSE after applying the penalty factor Estimator
0 1.825720 1.695605 Ridge

0.1 1.701138 1.637425 Elastic-Net
0.2 1.761129 1.577093 Elastic-Net
0.3 1.837497 1.539042 Elastic-Net
0.4 1.464788 1.514519 Elastic-Net
0.5 1.592516 1.556252 Elastic-Net
0.6 1.711804 1.441806 Elastic-Net
0.7 1.497739 1.580121 Elastic-Net
0.8 1.542156 1.509018 Elastic-Net
0.9 1.598749 1.518723 Elastic-Net
1.0 1.668408 1.571212 Lasso

4.1.2. Scenario 2:

Contains 50 observations and 10 predictors with β= (1,...1, 0,..., 0), i.e, components
1:5 of beta are ones, components 6:10 of beta are zeros. Table 2 and Figure 2 present
the performance of the three estimators RR, Lasso, and Elastic-Net before and after
applying the new penalty factor on each coefficient. Best results are obtained in
the form of less AMSE after applying the new penalty factor. The Elastic-Net gave
less AMSE before when α = 0.7 and after when α = 0.6.

4.1.3. Scenario 3:

Contains 100 observations and 20 predictors with β= (1,...1, 0,..., 0), i.e, compo-
nents 1:5 of beta are ones, components 6:20 of beta are zeros. Table 3 and Figure
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Fig. 2. The AMSE before and after applying the new Penalty factor with values of
α ∈ [0, 1] .(Scenario 2)

Table 3. MSE for different values of α before and after applying the penalty fac-
tor ωj using generated data containing 100 observations and 10 predictors β =
(1, · · · , 1, 0, · · · , 0), i.e, components 1 : 5 of β are ones, components 6 : 20 of are
zeros, repeated 200 times. (Scenario 3)

alpha MSE before applying the penalty factor MSE after applying the penalty factor Estimator
0 2.330777 1.721222 Ridge

0.1 2.014475 1.622198 Elastic-Net
0.2 1.777090 1.479394 Elastic-Net
0.3 1.829031 1.538008 Elastic-Net
0.4 1.784186 1.515190 Elastic-Net
0.5 1.890124 1.587232 Elastic-Net
0.6 1.814542 1.541322 Elastic-Net
0.7 1.864542 1.575007 Elastic-Net
0.8 1.820104 1.548710 Elastic-Net
0.9 1.894814 1.597167 Elastic-Net
1.0 1.759220 1.513971 Lasso

3 present the performance of the three estimators RR, Lasso, and Elastic-Net be-
fore and after applying the new penalty factor on each coefficient. Best results
are obtained in the form of less AMSE after applying the new penalty factor. The
Lasso and Elastic-Net gave less AMSE before when α = 1.0 (Lasso)and after when
α = 0.2 (Elastic-Net). Figure 4 shows the cross-validation curve (the dotted line),
and upper and lower standard deviation curves along the lambda sequence (error
bars). The two dotted vertical lines indicate two selected λ′s in which give mini-
mum mean cross-validated error. It is clear that the cross-validated errors (error
bars) are less after applying the new penalty factor compared with before apply-
ing this factor. The value of λ which gives minimum mean cross-validated error
is λ = 0.1021699, 0.2415797, and0.1696465 for Lasso, RR, and Elastic-Net, respectively.
Table 3 : MSE for different values of alpha before and after applying the penalty
factor ωj using generated data containing 100 observations and 10 predictors with
β = (1, ..., 1, 0, ..., 0), i.e, components 1:5 of β are ones, components 6:20 of β are
zeros, repeated 200 times. (Scenario 3)
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Fig. 3. The AMSE before and after applying the new Penalty factor with the cross-
validation curve and upper and lower standard deviation curves along the lambd
sequence. (Scenario 3)

Fig. 4. The AMSE before and after applying the new Penalty factor with the cross-
validation curve and upper and lower standard deviation curves along the lambda
sequence. (Scenario 3)

4.2. Numerical Example ( Prostate data)

.
For the prostate data, the interest is in the level of prostate-specific antigen (lpsa)
in men who have prostate cancer. The sample size n=97 men with prostate cancer,
and predictors p=8 clinical measures defined as follows:
Age: in years
Gleason:a numeric vector
Lbph: log of the amount of bengin prostatic hyperplasia
Lcavol: log cancer volume
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Lcp: log of capsular penetration
Lweight: log prostate weight
Pgg45: percent of gleason score 4 or 5
Svi: seminal vesicle invasion
Data source: Stamey et al., 1989.

The three regularized regression methods, RR, Lasso, and Elastic-Net are applied
to these data before and after applying the new penalty factor. The prostate data are
divided into two parts, the first part is a training set contains 65 observations and
the second part is a test set contains 32 observations. The three estimation meth-
ods are compared using the average prediction error (APE) applied on the test data.

Figure 5 presents the correlations between the predictors and the response. The
correlation coefficient is between 0 and 0.8.

Fig. 5. Correlations of Prostate Data

Table 4 and Figure 6 shows the average prediction error (APE) of the prostate data
before and after applying the new penalty factor. Best results are obtained in the
form of less values of APE after applying the new penalty factor. Elastic-Net (RR)
gave less APE compared to Lasso and Ridge.
Figure 7 presents the prediction error when using subset regression, the graph
indicates that the best subset contains 7 predictors with less PE. Figure 8 shows
the ridge coefficient paths for all the 8 predictors, since RR shrink the estimators
but cannot select variables. Figure 9 and Figure 10 present the Lasso and Elastic-
Net coefficient paths for the selected 7 predictors, respectively.
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Table 4. Average Prediction Errors (APE) of the Prostate test data before and after
applying the new penalty factor (BAPF means before applying the penalty, and
AAPF stands for after applying the penalty factor )

Penalized Method APE BAPF APE AAPF Degrees of Freedom(D.f.)
Ridge 6.012190 5.759386 All the predictors
Lasso 5.922336 5.718610 7 (all except gleason)

Elastic-Net 5.920947 5.717075 7 (all except gleason)

Fig. 6. Average prediction error (APE) for Prostate data before and after applying
the new penalty factor

Fig. 7. Prediction Error of the Best Subset Model for the Prostate Data

5. Conclusion

This paper proposes a new penalty term for the regularized regression methods
used in shrinkage and variable selection. A Regularization method is based on
adding a penalized term to the residual sum of squares to improve the OLS esti-
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Fig. 8. Ridge Coefficients Paths for the Prostate Data (as a function of lambda)

Fig. 9. Coefficient Paths when α = 1 (Lasso Regression)

mator. Two penalties are introduced in the literature L2 for ridge regression (shrink-
age), and L1 for Lasso regression (shrinkage and selection of variables). Hybrid of
both L2 and L1 is presented through the Elastic-Net . The proposed penalty is
based on adding a new factor to the penalized term. This factor uses the ratio of
the variance of each OLS estimator to the total variances, such that large penalty
is devoted to the estimator with large variance and vice versa. Simulations and
data examples are used in this work to evaluate the proposed procedure. Best re-
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Fig. 10. Coefficient Paths when α = 0.5 (Elastic Regression)

sults are obtained in the form of less AMSE and APE of the proposed penalty for
RR, Lasso, and Elastic-Net. The results support the Elastic-Net penalty, and more
work is needed to improve this penalty and using it in statistical modeling.
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Appendix (A).

(A-1) Proof of Theorem (1). If the Jacobian ∂RSS
∂β is p.s.d, then Sj (β, x, y) + d (βj , λ, q)

is also p.s.d where βj 6= 0∀j = 1, 2,...,p.

By mathematical induction, it can be proved that there exists a unique solution of
equations (14). Therefore, there exists a unique solution β̂ (λ, q) of equations (2.11)
and β̂ (λ, q) is continuous in (λ, q).

Proof of the second part: The existence of the limit of β̂ (λ, q) when q = 1, 2 can be
proved also by mathematical induction as follows :

(a) p = 1 : If there is an intersection of the continuous functions C(β, x, y) and
d(β, λ, 1), then by continuity of these functions, the limit of β̂ (λ, q) asq → 1 exist,
and equal to the coordinate of the intersection. But, if there is no intersection
between the two functions C(β, x, y) and d(β, λ, 1), then the limit of β̂ (λ, q) asq → 1
will equal to zero. These results can also hold for q = 2 and q = {1, 2}. Therefore,
the results are true when p=1.

(b) For p � 1: Assume that the result is true for all dimensions 1, 2, · · · , p−1, then it
can be proved that is also hold for dimension p as follows: The limit of the unique
solution

[
β̂1 (βp, λ, q) , ..., β̂p−1 (βp, λ, q)

]
exists when q → 1, q → 2, andq → {1, 2} for

any fixed βp. By plugging this solution into the last equation of equations (14), the
following result will be obtained:
Cp

[
β̂1 (βp, λ, q) , ..., β̂p−1 (βp, λ, q) , βp, x, y

]
+ d (βp, λ, q) = 0 (A-1)

Equation (A.1) can be proved that it has a unique solution and its limit exists
when q→ 1, q→ 2, andq→ {1, 2} as follows:

Denote the first term of the left hand side function of (A.1) by L (βp, λ, q), then by
chain rule it can be proved that ∂L

∂βp
≥ 0. Since the partial derivatives: ∂β̂1

∂βp
, ...,

∂β̂p−1

∂βp

satisfy:

∂Cj

∂β̂1
.
∂β̂1
∂βp

+ ...+
∂Cj

∂β̂p−1
.
∂β̂p−1
∂βp

+
∂Cj
∂βp

= 0 (A− 2)

Equation (A.2) implies the existence of the unique solution of β̂p (λ, q), when q ≥ 1.

(A-2) Proof of Lemma (1)

For linear regression,ŷ = xβ̂OLS, and
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df̂ (ŷ) = divŷ

=

n∑
i=1

∂ŷi
∂yi

=

n∑
i=1

∂
(
x′iβ̂OLS

)
∂yi

=
∂
(
xβ̂OLS

)
∂y

= tr
[
x′ (x′x)

−1
x
]

= tr
[
x′x (x′x)

−1
]

= tr [Ip] = p.

Also, the degrees of freedom For linear regression, ŷ = xβ̂OLS can be obtained
directly as:

df (ŷ) =
1

σ2

n∑
i=1

cov (ŷi, yi)

=
1

σ2
tr
[
cov

(
x (x′x)

−1
x′y, y

)]
=

1

σ2
tr
(
x (x′x)

−1
x′cov (y, y)

)
= tr

[
x (x′x)

−1
x′
]

= tr
[
x′x (x′x)

−1
]

= tr [Ip] = p.

For ridge regression,ŷ = xβ̂RR:
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df̂ (ŷ) = divŷ

=

n∑
i=1

∂ŷi
∂yi

=

n∑
i=1

∂
(
x′iβ̂RR

)
∂yi

=
∂
(
xβ̂RR

)
∂y

= tr
[
x (x′x+ λ2I)

−1
x′
]

= tr
[
x′x (x′x+ λ2I)

−1
]

=

p∑
j=1

γj
γj + λ2

.

Also, the degrees of freedom For linear regression, ŷ = xβ̂RR can be obtained directly
as:

df (ŷ) = 1
σ2

n∑
i=1

cov (ŷi, yi) = 1
σ2 tr

[
cov

(
x (x′x+ λ2I)

−1
x′y, y

)]
= 1

σ2 tr
(
x (x′x+ λ2I)

−1
x′cov (y, y)

)
= tr

[
x (x′x+ λ2I)

−1
x′
]

= tr
[
x′x (x′x+ λ2I)

−1
]

=
p∑
j=1

λj

λj+λ2

Where λj is the eigenvalue of the matrix x’x.

For the Lasso,ŷ = xβ̂Lasso:

df̂ (ŷ) = divŷ

=

n∑
i=1

∂ŷi
∂yi

=

n∑
i=1

∂
(
x′iβ̂Lasso

)
∂yi

=
∂
(
xβ̂Lasso

)
∂y

= tr
[
x′ (x′x)

−1
x
]

= tr
[
x′x (x′x)

−1
]

= q ≺ p
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where q is the number of nonzero elements in β̂Lasso.

Or:

df (ŷ) =
1

σ2

n∑
i=1

cov (ŷi, yi)

=
1

σ2
tr

[
cov

(
x (x′x)

−1
(
x′y − 1

2
k1`

)
, y

)]
=

1

σ2
tr
(
x (x′x)

−1
x′ cov (y, y)

)
= tr

[
x (x′x)

−1
x′
]

= tr
[
x′x (x′x)

−1
]

= tr [Iq] = q ≺ p,

where q is the number of nonzero elements in β̂Lasso.

For Elastic-net, ŷ = xβ̂Elastic−Net

df (ŷ) =

q∑
j=1

λj
λj + λ2

,

which gives

df (ŷ) =
1

σ2

n∑
i=1

cov (ŷi, yi)

=
1

σ2
tr

[
cov

(
x (x′x+ λ2I)

−
(
x′y − 1

2
λ1`

)
, y

)]
=

1

σ2
tr
(
x (x′x+ λ2I)

−
x′cov (y, y)

)
= tr

[
x′x (x′x+ λ2I)

−
]

=

q∑
j=1

γj
γj + λ2

≈ q for small values of λ2,

where q is the number of nonzero elements in β̂Lasso and (.)−is the generalized
inverse.
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