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Abstract. Microarray technologies and related methods coupled with appropriate mathe-
matical and statistical models have made it possible to identify dynamic regulatory networks
by measuring time course expression levels of many genes simultaneously. However one of the
challenges is the high-dimensional nature of such data coupled with the fact that these gene
expression data are known not to include various biological process. As genomic interactions
are highly structured, the aim was to derive a method for inferring a sparse dynamic net-
work in a high dimensional data setting. The paper assumes that the observations are noisy
measurements of gene expression in the form of mRNAs, whose dynamics can be described
by some partially observed process.
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1. Introduction

Modelling differential gene expression as a function of time is providing new insights for
biological research. Technology is now available to track the expression pattern of thousands
of genes in a cell in a regulated fashion and to trace the interactions of many of the products
of these genes (Bower et al., 2001). However, the sheer dimensionality of all possible
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networks combined with the noisy nature of the observations and the complex structure of
genomic regulation and signaling have meant that simply reading off a network from the
data turned out to be somewhat optimistic. Instead, only statistical models of sufficient
biological relevance are capable of discovering direct and indirect interactions between
genes, proteins and metabolites. The last decade has seen an explosion of techniques to infer
network structure from microarray data. Models have now been developed to capture how
information is stored in DNA, transcribed to mRNA, translated to proteins and then from
protein structure to function. These models include Boolean networks based on Boolean
logic (Kauffman, 1993) and (Dhaeseleer et al., 2000), where each gene is assumed to be in
one of two states “expressed” or “not expressed”, Graphical Gaussian models (Schafer et
al., 2005; Abegaz et al., 2013), Dynamic Bayesian Networks (Perrin et al., 2003), vector
autoregressive models (Fujita et al., 2007), ordinary differential equation models (Quach
et al., 2007; Cao et al., 2008) or (Khanin et al., 2006, 2007) in which the state is a list
of the concentrations of each chemical species and the concentrations are assumed to be
continuous, stochastic differential equation model (Chen et al., 2005; Purutcuoglu et al.,
2008) and finally state space models (Rangel et al., 2004; Beal et al., 2005).

Integrating these models in mainstream statistics is an exciting challenge from a theoretical,
computational, and applied perspective. Among the above mentioned network modelling
techniques, ordinary differential equations have been established in recent years to model
gene regulatory, or, more generally biochemical-networks, since they provide a detailed
quantitative description of transcription regulatory network. On the downside, they contain
a large number of model parameters and are not well suited to deal with noisy data. Current
methods for estimating parameters in ODEs from noisy data are very computationally
intensive (Ramsay et al., 2007).

In our work, we consider a penalized state space model (SSM) framework which consists of
two different spaces, i.e a latent “protein” space and an observed “mRNA” space. SSM’s
are special cases of dynamic Bayesian networks (DBNs) and include hidden factors into
the model, eg. genes whose protein expression values are not measured. The standard SSM
(Fahrmeir et al., 2009, 1997), in the context of time-series gene expression, assumes that the
observed time series expression data, yt, represent a p-dimensional vector of gene expression
observations of p genes at time t. The yt are assumed to have come from an underlying
sequence of k unobserved (hidden) state variables θt that evolve according to Markovian
dynamics across successive time points. In a essence the model consists of a linear observation
equation in states and is supplemented by a linear transition equation. A linear SSM as in
(Koopman et al., 2001) can be written :

θt = Fθt−1 + ηt

yt = Z θt + ξt (1)

,
where F and Z represent the model coefficients of dimensions k × k and p× k respectively.
The two terms ηt and ξt are zero-mean independent system noise and measurement noise,
respectively with
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E(ηtη
′

t) = Q, E(ξtξ
′

t) = R. (2)

Choosing SSMs to model network kinetics has a number of advantages. Most importantly,
it allows the inclusion of hidden regulators which can either be unobserved gene expression
values or transcription factor protein levels. The assumption of having incomplete data
is quite realistic in the sense that in a microarray experiment, we usually do not observe
protein concentrations together with mRNA concentrations due to the technical difficulty
involved in performing such experiments. Thus we see the data as noisy measurements of
mRNA concentrations, whose dynamics can be described by some hidden process which
involves protein transcriptions factors and mRNA concentrations.

Several authors have exploited Kalman filtering (Shumway et al., 2005; Meinhold et al.,
1983) in the context of a SSM for gene expression modelling and have used them to
reverse engineer transcriptional networks. To this effect, Wu et al. (2004), in modelling
gene regulatory networks, used a two step approach. In the first step, factor analysis is
employed to estimate the state vector θ and the design matrix Z; the optimum dimension
of the state vector k was determined by minimizing the Bayesian information criterion
(BIC). In the second step, the state dynamic matrix F is estimated using least squares
regression. Rangel et al. (2004) applied SSM to t-cell activation data in which a bootstrap
procedure was used to derive a classical confidence interval for parameters representing
gene-gene interaction through a re-sampling technique. Beal et al. (2005) approached the
problem of inferring the model structure of the SSM using variational approximations in
the Bayesian context. Recently, Bremer et al. (2009) used SSM to rank observed genes
in gene expression time series experiments according to their degree of regulation in a
biological process. Their technique is based on Kalman smoothing and maximum likeli-
hood estimation techniques to derive optimal estimates of the model parameters; however,
in their work, little attention has been paid to determining the dimension of the hidden state.

In microarray analysis, the number of predictors usually in the form of genes far exceed the
number of observations (p >> n). Faced with such explosion of predictors, regularization
has become an important ingredient and is fundamental to high-dimensional statistical
modelling. The Lasso of Tibshirani et al. (1996) is one of the methods for shrinkage
and selection in regression analysis that incorporates an L1 regularization constraint
to yield a sparse solution. A considerable amount of literature has been published on
regularization methods in areas with large data sets such as genomics. These studies
include, the regularization paths for the support-vector machine (Hastie et al., 2004),
the elastic net (Zou et al., 2005) for applications with unknown groups of predictors
and useful for situations where variables operate in correlated groups, L1 regularization
paths for generalized linear models (Park et al., 2007) and the graphical lasso (Fried-
man et al., 2008) for sparse covariance estimation and undirected graphs to mention but few.

Gene regulatory networks are usually sparse. For that reason, we will expect many of the
gene interaction parameters to be zero leading to a sparse solution. It is in this context
that we employ an L1 regularization approach for the estimation of the parameters. The
proposed method in the maximization step of the EM-algorithm is the L1 penalty through
a simple modification of the Least Angle Regression (LARS) algorithm by Efron et al.
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(2004). LARS is an efficient algorithm for computing the entire regularization path for the
Lasso.

State space models are robust candidates to represent interactions between biological
components in the form of mRNA concentrations and protein transcriptions factors. We
present a statistical method that infers the complexity, the dependence structure of the
network topology and the functional relationships between the genes, and deduce the
kinetic structure of the network. We estimate all network interaction parameters in order
to clarify and describe the complex transcriptional response of a biological system and
to clarify interactions between components. By so doing, we are able to add some useful
interpretations to the model. We use the minimum Akaike information criterion (AIC) to
determine the optimum level of sparsity.

The rest of this article is organized as follows. In section 2, we introduce the model, and
give it a precise mathematical and biological interpretation. Section 3 describes the inference
method and the model selection technique. We perform a simulation study and an in silico
validation experiment in order to evaluate the performance of our method in section 4.
Section 5 contains the application of our model to a real t-cell experiment. We conclude
with a discussion of the method used, possible extensions, and a summary of related work
in section 6.

2. GENOMIC STATE SPACE MODEL

We extend the SSM model in equation 1 by considering an input dependent SSM for
gene expression times series data, as in (Beal et al., 2005). The framework captures
the stochastic nature of our biological process and its dynamics. To define the model,
we start with the definition of the state variables θt represented as hidden process and
the observation measurements are assumed to be produced by these hidden processes.
The model assumes that the evolution of the hidden variables θt is governed by the
state dynamics which follow an input dependent first-order Markov process. The hidden
variables θt are classically used to represent genes that have not been included in the
microarray experiment such as unmeasured protein regulators or transcription factors.
The hidden variables are further corrupted by Gaussian intrinsic biological noise ηt. The
hidden variables are not directly accessible but their presence can be induced through
the observed data vector, yt, namely the quantity of mRNA produced by the gene at
time t. In essence we build a dynamic model that connects the observed variables yt
(RNA transcripts) to the k-dimensional real valued unobserved quantities θt such as un-
measured typically protein regulators. Our model is defined through the following dynamics:

First the state dynamics or the state of the network satisfies an input dependent first-order
Markov process

θtr = Fθt−1,r +Ayt−1,r + ηtr, (3)

where F is a regulatory matrix that quantifies the effect of the latent variables at
consecutive time points and is of dimension k × k. The quantity A represents the
input-to-state matrix whose dimension is k× p. The quantity r = {1, 2, ..., nR} denotes bio-
logical replicates and ηtr is the Gaussian noise with mean 0 and variance-covariance matrix
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Q. The initial state θ0 is Gaussian distributed with mean a0 = 0 and variance-covariance Q0.

Second, the p dimensional-observation yt is a possibly time-dependent linear transformation
of the k dimensional real-valued θt with observational Gaussian noise ξt and is given by

ytr = Zθt,r +Byt−1,r + ξtr, (4)

where Z describes how the latent variables regulate the transcription of p genes and is of
dimension k × p. The matrix B represents either degradation or interaction of mRNAs also
known as input-to-observation matrix whose dimension is p× p and ξtr is the measurement
Gaussian noise with mean 0 and variance-covariance matrix R.

Fig. 1. Biological interpretation of the input SSM.

The input dependent state space model defined by equations 3 and 4 is an extension
of the central SSM defined in equation 1 and has been exploited in reverse-engineering
transcriptional network (Beal et al., 2005; Rangel et al., 2004).

The model indicates two networks, one in the protein space and another in the mRNAs
space, across consecutive time points. It assumes RNA-protein translation at two consecutive
time points through the matrix A, and instantaneous protein-RNA transcription through
Z. A biological interpretation of the model network is also represented in Figure 1, which
describes two fundamental stages in gene regulation which are in conformity with the central
dogma which states that DNA does not code for protein directly but rather acts through
2 stages, namely, transcription and translation. The observation-to-state matrix A models
the influence or the effects of the gene expression values from previous time steps on the
hidden states. The matrix B indicates the direct gene-gene interactions. The state dynamic
matrix F describes the temporal development of the regulators or the evolution of the hidden
variables from previous time step t−1 on the current time step t. It provides key information
on the influences of the hidden regulators on each other. The observation dynamics matrix
Z relates the latent variables to the RNAs at a given time point. We now collect the model

interaction parameters into a single vector ϕ i.e ϕ = {G,Q,R,Q0} where G =

[
B Z
A F

]
is

interpreted as a directed and weighted adjacency matrix of the graph of interactions.
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3. LEARNING STATES AND PARAMETERS

3.1. Identifiability issues

Briefly speaking, a parameter of a dynamic system is said to be identifiable given some data
if only one value of this parameter maximizes the observed likelihood. The identifiability
property is important because it guarantees that the model parameter can be determined
uniquely from the available data. Identifiability issues of the SSM stems from the fact that
given the original model equations 3 and 4, and with the linear transformation of the state
vector θ∗t = Tθt, where T is a non-singular square matrix, we can find a different set of
parameter vector say,

ϕ̂∗ =
{
Ĝ∗, Q̂∗, R̂∗

}
(5)

that gives rise to the same observation sequence {yt, t = 1, 2, ..., T} having the same likeli-
hood as the one generated by the parameter vector ϕ. Hence, if we place no constraints on
F , A, Z, B and possibly Q and R, there exists an infinite space of equivalent solutions ϕ̂ all
with the same likelihood value. To minimize such identifiability issues, further restrictions
have to be imposed on the model. In our work, we assume Q and Q0 to be identity matrices
and R is set to be diagonal matrix. Assuming Q to be identity only affects the scale of θ and
matrices A and Z. On the individual parameters Z, A, B and F , Wild et al. (2004) showed
that only the matrix ZA + B is identifiable. However our L1 constraint on the likelihood
identifies the individual parameters. We further assume that the errors {ηt; t = 1, ..., T} and
{ξt; t = 1, ..., T} are uncorrelated.

3.2. The likelihood function

The model interaction parameters are now restricted to ϕ = {Z,B, F,A} which is equivalent
to our graph of interactions G. As can be seen from the model, the observations at time t, ytr
are conditioned on the past observations, y(t−1)r and on the regulators θtr and also to infer
for instance θtr, we need θ(t−1)r and y(t−1)r. To that effect, under the Gaussian assumption
we have the following:

θ0r ∼ Nk(0, I)

θtr|θ(t−1)r, y(t−1)r ∼ Nk(θ̃tr, I)

ytr|θtr, y(t−1)r ∼ Np(ỹtr, R),

where

θ̃tr = Fθ(t−1)r +Ay(t−1)r,

ỹtr = Zθtr +By(t−1)r,

and N (µ,Σ) is the normal density with mean µ and variance covariance matrix Σ.

We now write the marginal likelihood function lmy (ϕ) of the data y. This is given by
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lmy (ϕ) =

∫ T∏
t=1

P (θt|F,A, θt−1, yt−1)P (yt|B,Z, θt, yt−1)dθ

=

∫ T∏
t=1

Nk(θt|θ̃t, σ2
ηI)Np(yt|ỹt, σ2

ξI)dθ. (6)

Learning the parameters of a state space model including the hidden variable can be tackled
from different approaches. Beal et al. (2005) inferred the parameters in the SSM using a
Bayesian approach through a Variational Bayes Method (VBM) that approximates the
posterior quantities required for Bayesian learning. As a probabilistic model, Wild et al.
(2004) estimated the parameters trough a frequentist approach using maximum likelihood
inference in the context of EM algorithm.

In our context, the number of parameters to be estimated P = k2 + 2kp+p2 far exceeds the
number of observations. Thus we want to shrink unnecessary coefficients to zero. This will
make interpretation of results easier and probably reflects the true underlying situation by
introducing some level of sparsity. The formulation of our problem becomes

ϕ̂ = arg max
ϕ

(lmy ) (7)

subject to the constraints

||Z||1 ≤ s1, ||B||1 ≤ s2, ||A||1 ≤ s3, ||F ||1 ≤ s4, (8)

where si represents the regularization parameters or penalty parameters and we allow
different penalty parameters for different coefficients. equations (7) and (8) are called a
constrained regression problem also called a penalized state space models. Our L1 constraint
not only promotes sparsity but also minimizes identifiability problems.

To find the solution to the above problem, many well developed procedures can be used. For
example, quadratic programming (Tibshirani et al., 1996), the shooting algorithm (Fu et al. ,
1998), local quadratic approximation (Fan et al., 2001) and most recently, the LARS method
by Efron et al. (2004) can all be employed. Our proposed method adapt the later procedure,
optimization under L1 constraint, where a penalty term is added to the likelihood function
giving rise to a penalized likelihood criterion. LARS or optimization with L1-regularization
constraint turns out to be helpful and computationally feasible approach for finding sparse
solutions in high dimension and by so rendering model interpretation easier.

3.3. The EM algorithm

It is important to realize that the integration in equation 6 involves the hidden component θ,
thus making the integration difficult.The Expectation-Maximization (EM) algorithm stems
from the fact that if we did have the complete data (yt, θt) it will be straight forward to ob-
tain maximum likelihood estimators (MLEs) of ϕ using multivariate normal theory. In this
case, we do not have the complete data. Therefore we use the EM algorithm. The latter is an
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iterative method for finding the MLEs of ϕ using the observed data yt, by successively maxi-
mizing the conditional expectation of the complete data likelihood given the observed values.

The EM algorithm for SSM was formulated by Stoffer et al. (1982) and Shumway (2000). To
this effect the algorithm requires the computation of the log-likelihood of the complete data
lθ,y(ϕ) and compute the conditional expectation of the log-likelihood given the data. The
algorithm is a two-stage procedure in which we begin with a set of trial initial values for
the model parameter to calculate the Kalman smoother E(θr) and E(θrθ

′

r). The Kalman
output are then input into the M-step to update parameter estimates subject to the
constraints in equation 8, giving rise to the EM for penalized likelihood estimation (Green
et al., 1990). The algorithm alternates recursively between an expectation step followed by
a maximization step.

The full log-likelihood function of the complete data (ytr, θtr) denoted by ly,θ(ϕ) is for
simplicity given by

ly,θ(F,A,Z,B) =

nR∑
r=1

lryrθr (F,A,Z,B), (9)

where lryrθr (F,A,Z,B) is the complete log-likelihood of the rth replicate and is given by

lryrθr (F,A,Z,B) =

T∑
t=1

lyt|θt,y(t−1)
(Z,B) +

T∑
t=1

lθt|θ(t−1),y(t−1)
(F,A). (10)

From now onwards for a given replicate and for simplicity, we will write the unpenalized
complete log-likelihood as:

ly,θ(F,A,Z,B) =

nR∑
r=1

lryrθr (F,A) +

nR∑
r=1

lryrθr (Z,B) (11)

3.3.1. The expected log-likelihood function: The E-step.

The E-step of the EM algorithm involves the calculation of the first two moments of θ of
the hidden states i.e E(θ) and E(θ

′
θ). Let Q denote the expected log-likelihood. Then from
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equation 11, dropping the replicate index, Q becomes

Q(ϕ|ϕ∗) = Eθ,ϕ∗ [lyt,θt(ϕ)|ϕ∗y]

=

T∑
t=1

Eθ,ϕ∗ [lyt,θt(ϕ)|ϕ∗y]

=

T∑
t=1

Eθ,ϕ∗ [lyt(Z,B)|y] +

T∑
t=1

Eθ,ϕ∗ [lθt(F,A)|y]

= Q1(Z,B) + Q2(F,A), (12)

where ϕ∗ = (Z∗, B∗, F ∗, A∗) is the estimate obtained from the previous M-step,

Q1(Z,B) = C1 + 2

T∑
t=1

E(θ
′

t)Zyt + 2

T∑
t=1

y
′

t−1B
′
yt

−
∑

Z
′
E(θ

′

tθt)Z − 2

T∑
t=1

E(θ
′

t)ZByt−1

−
T∑
t=1

B
′
y
′

t−1yt−1B (13)

and

Q2(F,A) = C2 + 2

T∑
t=1

y
′

t−1A
′
E(θt) + 2

T∑
t−1

E(θ
′

t)FE(θt−1)

−
T∑
t=1

F
′
E(θ

′

t−1θt−1)F − 2

T∑
t=1

y
′

t−1A
′
FE(θt−1)

−
T∑
t=1

A
′
y
′

t−1yt−1A (14)

C1 and C2 are known constants and assuming that the prime denotes transposition.

The first two moments needed in the E-step are supplied by the Kalman smoothing
algorithm through a forward filtering pass and a backward smoothing pass as in (Briers
et al. , 2010). The above implies that for each replicate we run the Kalman smoothing
algorithm to find the expected hidden states and their variance-covariance components and
these are joined together to get Q(ϕ|ϕ∗).

Now equation 12 is the sum of two quadratic functions Q1 and Q2 that does not depend
on θ but rather depend on the parameters and the data y in a quadratic way. We maximize
these two functions during the maximization step.
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3.3.2. The update equations: The M-step.

At this stage we solve for

ϕ̂ = arg max
ϕ

[Q(ϕ|ϕ∗)] (15)

subject to the constraints defined in equation 8. In essence we maximize the quadratic
function Q given in equation 12 across ϕ using LARS algorithm, where each coefficient is
assigned a tuning parameter s. This breaks down to two maximization problems, one for
Q1 across (Z,B) and the other for Q2 across (F,A). The iterative maximization process is
similar in both cases.

We now show the maximization process for Q1. To do that, the following lemma is needed.
The proof is found in the appendix.

Lemma 1. The solution that maximizes the quadratic function

Q(X) = 2d
′
X −X

′
SX subject to ||X||1 ≤ s (16)

is given by the lasso solution

(y −Cβ)
′
(y −Cβ) subject to ||X||1 ≤ s (17)

where

C
′
C = S, β = V ec(X), y = CS−1d. (18)

and the LARS solution of (17) is a function of S and d.

Now from equation 13, given B we carry the maximization process of Q1 across Z. Therefore,
we can write Q1(Z,B) as

Q1(Z) = c1 + 2b
′

1Z − Z
′
S1Z (19)

subject to
kp∑
j=1

|zj | ≤ s2 (20)

where S1 = E(θ
′

tθt), b1 is just a function of (y,B, θ), and c1 is a constant.

Applying lemma 1, the update maximum likelihood estimators Ẑ from equation 19 are just
a function of S1 and b1. We therefore obtained the updates estimates Ẑ by supplying the
LARS function, the quantities S1 and b1 with a given tuning parameter where b1 becomes
the new data and S1 the data matrix.

Next, given Ẑ, we maximize the quadratic function
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Q1(B) = c2 + 2b
′

2B −B
′
S2B (21)

subject to

p2∑
j=1

|bj | ≤ s1, (22)

where S2 =
∑T
t=1 y

′

t−1yt−1, b2 = f(y, Z, θ), c2 is a constant. With the same analysis, the

updates estimates B̂ are obtained by supplying the LARS function, the quantities S2 and
b2 with a given tuning parameter. Similar analysis is conducted for the estimation of (F,A).

The advantage of this approach is that we see the LARS update as functions not of the
raw data, but instead as functions of S and b. This enables us to avoid first, the Cholesky
decomposition of S and second, computing S−1 which are both time consuming and com-
putationally inefficient.

1. Iterate across penalty parameters s ∈ S
a. Start with initial values of ϕ

i. Do the E-step by calculating the Kalman smoother
ii. Perform the M-step via LARS algorithm

b. Repeat (i) and (ii) until convergence
2. Across S select model with minimum AICc

Table 1. Summary of the EM for Penalized Likelihood inference method

3.4. Model selection: Choice of regularization parameter s.

Determining the optimal SSM tuning parameter s is an important issue. Popular model se-
lection criteria include the Mallow’s Cp (Mallows , 1973), the Akaike’s Information Criterion
(AIC) (Akaike , 1974) and the Bayesian Information Criterion (BIC) (Schwarz , 1978). We
apply Akaike’s Information Criterion (AIC) method for our model selection. We generate a
vector of values for the tuning parameters si(i = 1, ..., 4). For each combination of the values
of the tuning parameters we run the EM algorithm and obtain

ϕ̂(s) = arg max
ϕ

[Q(ϕ)]

subject to constraints in equation 8. AIC is aimed at finding the best approximating model to
the unknown data generating process via minimizing the estimated expected K-L divergence,
i.e. AIC’s try to find the best approximation among the models we actually look at. As
recommended by Burnham et al. (2002), we have applied AICc (AIC with a correction for

Journal home page: www.jafristat.net, www.projecteuclid.org/as



A. Lotsi and E. Wit, Afrika Statistika, Vol. 12 (2), 2017, 1253 – 1273. Network estimation in State
Space Models with L1-regularization constraint. 1264

Fig. 2. The full true network G (left) and the full recovered network Ĝ (right)

Fig. 3. Gene-gene interactions ZA + B. The true network(left) and the estimated net-
work(right)

finite sample size) for our model selection procedure. The reason being that AICc estimates
the expected discrepancy with less bias than AIC. 1 The AICc is given by

AICc(ϕ̂(s)) = −2l(yt) + 2P

[
N

N − P − 1

]
, (23)

where N = pTnR represents total number of observations and P = p2 + 2kp + k2 is the
total number of estimated parameters. Then for each model, the AICc is computed and the
model with the minimum AICc is selected. In essence, minimizing AICc, we obtained the
optimal tuning parameters which is given by

ŝ = arg min
s

[AICc(ϕ̂(s))]

and the selected model parameters are given by ϕ̂(ŝ). Table 1 summarizes the general for-
mulation of the EM-L1 penalized inference method:

1 In the framework of normal linear regression models (both univariate and multivariate), the
penalty term of AICc provides an exact expression for the bias adjustment.
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p 10 20 30 40
TPR 0.41 0.45 0.25 0.52

(0.14) (0.04) (0.12) (0.00)
FPR 0.03 0.04 0.09 0.01

(0.01) (0.00) (0.03) (0.00)
F1-score 0.47 0.39 0.10 0.49

(0.10) (0.03) (0.16) (0.04)

Table 2. Simulation results showing the average scores for true positive rates (TPR), false
positive rates, (FPR) and F1-scores as p, the number of nodes increase. For each p, we
performed 50 different simulations and TPR, FPR and F1 are the average scores. The
numbers in parenthesis represent the standard deviations. We fixed T , the number of time
points to be 10, and the number of replicates is chosen to be 50. The number of hidden
states is assumed to be 2.

Fig. 4. The Arabidopsis thaliana clock network.

4. Validation of Method

4.1. Simulation

In this section we evaluate our method on a simulated data based on the model described
in equations 3 and 4 with 10 different time points, p = 3 as number of genes and k = 2 as
the number of hidden variables. In applying our algorithm, parameters were initialized as
follows: Z and F are assumed to be identity matrices whiles we initialize A to be zero. For
B we perform a simple linear regression where we regress current genes on its previous ones
and R assumes the usual variance estimate from the regression.
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Fig. 5. Reverse genetic appraoch on Arabidopsis thaliana clock. Nodes refers to genes ex-
pression whiles empty nodes indicates latent variables in the form TFs.

The true (left) and the recovered (right) networks are depicted in Figure 2. The efficiency
of our method is seen from the number of true links recovered. We obtained 71% as true
positive rate and 27% as false positive rate with an F1 score of about 58%. We also reported
the gene-gene interaction matrix ẐÂ + B̂ in Figure 3. The matrix ẐÂ + B̂ captures all
information related to gene-gene interaction for consecutive time points. It relevance stems
from the fact it is identifiable.

Table 2 depicts the performance of our method as the network increases. For a fixed k,
we increase p and monitor how best the network is recovered through true positive rates,
(TPR), false positive rates, (FPR), and F1 scores. We experience a relatively stable F1

score and TPR but a decrease in FPR as the number of nodes increase. To this, our method
performs quite well even on a large network.

4.2. In silico experiment: Arabidopsis thaliana clock

The question we address here is to check whether the links recovered by our method are
actually reproducible. To do that we want to validate the model of the Arabidopsis thaliana
oscillator by Salome et al. (2004). The Arabidopsis is a model plant system that results from
a combination of forward and reverse genetic approaches together with transcriptome-scale
gene expression analyses. We consider a simple model of Arabidopsis clock made up of 9
genes namely CCA1, LHY, TOC1, ELF4, ELF3, GI, PRR9, PRR5, PRR3 with 3 replicates.
Most importantly Salome et al. (2004) focus on the interaction between 4 out the 9 genes,
namely LHY, CCA1, TOC1, GI. The gene CCA1 has its corresponding protein named
CIRCADIAN CLOCK ASSOCIATED 1. The gene LHY encodes a single Myb domain
protein and is closely related to CCA1, both are important for proper clock function. Figure
4 depicts the genomic interaction in the Arabidopsis thaliana clock recovered by Salome et
al. (2004). It reveals a regulation activities between CCA1 and LHY, this link came about
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True network
Links No Links Total

Estimated network
Links 6 2 8

No Links 2 2 4
Total 8 4 12

Table 3. Comparison of a model of the Arabidopsis thaliana oscillator network (True net-
work) and the network recovered by our method (Estimated network). The true network
comprises of 8 links out of which our method recovered 6 correctly.

with the analysis of the TOC1 promoter and closed the loop of the Arabidopsis clock. The
model from Salome et al. (2004) reveals that TOC1 acts as a positive regulator of the
expression levels of CCA1 and LHY. The model also posits the repressive activity of CCA1
and LHY on TOC1. The gene GI is also necessary for high-level expression from the CCA1
and LHY.
In an attempt to recover the model of Arabidopsis thaliana clock by Salome et al. (2004),
we applied our method to the data with 2 hidden or latent variables in the form of
transcription factors. Our recovered network is shown in Figure 5.

For easy comparison purpose, we also focus on the interaction between two subnetworks
representing the interaction between CCA1, TOC1, GI, LHY. The two subnetworks are
subnetworks from Figure 4 and Figure 5. Both subnetworks support the hypothesis that
TOC1 is a positive regulator of the expression level of CCA1. Our result also confirms the
interaction between CCA1 and LHY. However our method has failed to recover the negative
regulatory activity of CCA1 and LHY on TOC1. Table 3 compares the two networks in
terms of how many correct links we have recovered.

5. Application

To demonstrate the application of our reverse engineering method, we used publicly
available data, the results of two experiments used to investigate the expression response of
human T-cells to PMA and ionomicin treatment. The data is a combination of two data
set namely tcell.34 and tcell.10. The first data set tcell.34 contains the temporal expression
levels of 58 genes for 10 unequally spaced time points. At each time point there are 34
separate measurements. The second data set tcell.10 comes from a related experiment
considering the same genes and identical time points, and contains 10 further measurements
per time point.

After pre-processing the data, genes found to have few interactions were eliminated leaving
us a total of 45 genes. At each time point there are 44 separate measurements or replicates.
It was assumed that the 44 replicates have a similar underlying distribution. See Rangel et
al. (2004) for more details. Given that the t-cell is a time course gene expression data with
technical replicates we expect more reliable estimation and inference results by applying our
method. Corresponding to each gene expression ytr, we also generated technical replicates
for the hidden variables θtr. In essence, we treated the data as a time series measurement
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TRAF5

CD69

IL4RCASP8

CCNA2

GATA3

FYB

IL2RG MAP3K8

IL3RA

Fig. 6. Subnetwork found representing the topology of gene FYB in connection with some
selected genes

ytr , t = 1, 2, ..., 10 and r = 1, 2, ..., 44. Based on our previous work Lotsi et al. (2016) and
that of Rau et al. (2010), we assumed the dimension of the hidden state k, to be 4. For
each replicate, yt and θt consist of 45 genes and 4 transcriptions factors respectively, each,
measured at 10 different time points, i.e for each replicate r, yt and θt are of dimension
(45× 10), (4× 10) respectively. Some of these genes include RB1, CCNG1, TRAF5, CLU....
We applied our L1 penalized inference method to the time course gene expression data
and estimated a total number of 2401 parameters consisting of B, A, Z and F . To do
that, we iterate across the penalty parameters namely 4 different tuning parameters sB ,
sA, sZ and sF . While LARS produces the entire path of solutions, we make prediction
or extract coefficients from the fitted LARS model using the predict function in LARS.
The predict function allows one to extract a prediction at a particular point along the
path. This procedure is repeated until convergence. We then have different set of estimated
model parameters corresponding to each set of tuning parameters. At this stage, we applied
model selection technique via minimum AICc described in section 3.4 to select the optimum
parameters. At the end, we obtained the connectivity matrix of the directed genomic graph.
The optimum estimated tuning parameters has given rise to fairly sparse networks.

The output are graphs showing connections from one gene expression variable at a given
time point t to another gene expression variable whose expression it influences at the next
time point, t+ 1. The output depicted in Figure 6 is a sub-network that shows the topology
of gene FYB. We found that the genes such as CCNA2, FYB, and CASP8 are mostly
activation genes. Specifically, FYB activates the expression level of genes such as GATA3,
CCNA2, CD69, IL3RA while CASP8 activates genes such as: JUND, CDC2, CD69. Figure
7 recovers the interactions between the Jun proteins family and other genes. It identifies
JUND to have significant number of connections in the form of activation and inhibitions.
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The structure of the network is visualized using the R package for Network analysis and
visualization igraph.

 Subnetwork of the Jun proteins family and apotostic genes 

JUND

SMN1

CASP8

CDC2

CASP4

CASP7

MAP3K8

JUNB

Fig. 7. Subnetwork found representing the interactions between Jun proteins family and
other genes

Our method has resulted in relatively sparse networks as compared to Lotsi et al.
(2016). In all, the following genes were found to have the highest number of interactions
in terms of inwards directed connections: TRAF5, C3X1, CASP4, CDK4 and IL3RA.
In addition, from a topological point of view genes such as JUND, AKT1, FYB, and
CCNA2 occupy a crucial position in the recovered networks. We recommend these genes
to be object of further study by biologist. These results supports the works of Rangel
et al. (2004) and Wild et al. (2004). Both found gene FYB to occupy an important
position in their respective graphs. At the optimum turning parameter, we found JUNB
interacting directly with CASP4 through JUND; a result also supported by Beal et al.
(2005). The unpenalized inference of Lotsi et al. (2016) approach has indicated that
JUNB activates directly CDC2. This work also supports the same interaction. A portion
of the subnetwork found by Beal et al. (2005) and Rau et al. (2010) representing the
interactions between CASP4 and JUND is also found in our network through Figure
7. Another interesting interactions that were supported by previous literature were
interactions between JUND and CASP7 on one hand and interactions between JUND
and CDC2 both in the form of inhibitions. JUND is predicted to repress the expression
level of the cell cycle regulator CDC2. This clearly supports the hypothesis that JUND
negatively regulates cell growth and acts as anti-proliferative and anti-apoptotic signal gene.

Our work reveals that genes such as AKT1 and MLC1 also occupy a crucial position. AKT1
is found to influence the expression level of many genes. Of these, include the JUN pro-
teins JUNB , one interleukin receptor gene, IL3RA, one apoptosis-related cysteine protease,
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CASP4, the cell division cycle, CDC2. AKT1 is also seen to activate the expression level
of a transcription factor. In our model, MLC1 is found to regulate positively the expres-
sion level of one of the transcription factors. Also MLC1 represses several genes including
CASP7, CDK4, C3X1 to mention but few. Rau et al. (2010) found that CAPS4 inhibits the
expression level of CAPS8. This interaction was supported by our work. Beal et al. (2005)
did not recover such interaction. Also some findings, Figure 7 of our current study do not
support the work of Beal et al. (2005) in the sense that we found no interactions between
JUND and Caspase-7 and also between JUNB and MAPK8. Thus, the results based on
our methodology suggest some findings that are supported by the current literature and
are biologically interpretable, while some other findings have not been documented yet in
biological literature and we hope these new findings will be confirmed in the near future.
A comparison of our proposed model and method to alternative models and methods for
dynamic network construction would be desirable, but is beyond the scope of this article.

6. Conclusion

In this paper, we have inferred a sparse dynamic network by using an input dependent linear
state space model. We have assumed that the true biological process is not fully observed
and the hidden variables were first calculated using a Kalman filtering and smoothing
algorithm via an E-step. We then proceed to update the model parameters through an L1

regularization constraint via LARS algorithm in the maximization step. We used AICc to
determine the optimum combination of tuning parameters and hence the model parameters.
The proposed method offers significant advantages over other methods that have recently
appeared in the literature. For example, Beal et al. (2005) inferred regulatory interactions
from expression data by maximizing the marginal likelihood with a modification of the
EM algorithm. His approach was based on variational Bayesian methodology which is an
approximation of the posterior distribution of the parameters while we did exact inference
of the parameters. Rangel et al. (2004) used cross validation as model selection technique
which is quite slow as compared to AIC. Also our model allows for dynamic correlation over
time, as each observation and hidden state depend explicitly on some function of previous
observations as opposed to the models described by Perrin et al. (2003); Wu et al. (2004).
Their models do not allow for RNA-protein translation and RNA-RNA interactions through
the matrix A and B respectively in our model. Most importantly, the LARS algorithm
adopted guarantees us interpretable model, and accurate predictors.

One fundamental assumption in our proposed model is the first-order linear dynamics in the
state and observation equations of the SSM. The advantages of using linear SSM stems from
the fact that the linearity assumption has resulted in a more stable network and has enabled
us to recover the dynamics of the network easily as compared to the nonlinear relationships.
The inference method via LARS is potentially revolutionary, offering interpretable models,
relative stability, accurate predictions, unbiased inferences, and a nice graphical display
of coefficient paths that indicates the key tradeoff in model complexity. We used the R
package for Network analysis and visualization igraph to display simple, and easy to un-
derstand graph through which the whole system under study can be ascertained quite easily.
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Future works will encompass extending the linear SSM into a Non Linear State Space Model
(NLSSM) (Quach et al., 2007) whose hidden process will be defined through an integration
of an Ordinary Differential Equation (ODE) and estimate both parameters and hidden vari-
ables through the same inference technique. We also plan to overcome the ODE limitations
namely ability to handle noisy data and the high number of model parameters by integrat-
ing a sparse ODE model into a graphical model framework, thus taking noisy measurement
into account, and the resulting model will then be embedded into a penalized maximum
likelihood learning set-up.

7. Appendix

We outline here the proof of lemma 1

Proof. Properties of Gaussian distribution and Gaussian processes suggest that the
quadratic Q(X) corresponds to a Gaussian N(S−1d, S−1). Therefore

Q(β) = (β − S−1d)
′
Σ−1(β − S−1d)

= (β − S−1d)
′
S(β − S−1d)

= (β − S−1d)
′
C
′
C(β − S−1d)

= (CS−1d−Cβ)
′
(CS−1d−Cβ)

= (y −Cβ)
′
(y −Cβ). (24)

Suppose we have a set of linearly independent covariates (c1, ..., ck) and we define the matrix

C = (..., sici, ...)A, (25)

where A is the subset of the indices {1, ..., k} of the active set and si is the signs and equals
±1. Suppose

GA = (C
′

ACA)−1 and AA =
[
1
′

AGA1A

]− 1
2

(26)

where 1A is a vector of 1’s of length equals the size of A.

The unit vector making equal angles, less than 900, with the active columns of CA is given
by

wA = AAGA (27)

Let

γ̂ = min+

i∈Ac

{
(Qmax − q̂i)
AA − ai

,
(Qmax + q̂i)

AA + ai

}
, (28)

where q = C
′
y, representing vector of current correlations, Qmax is the maximum absolute

value from the set q, a = (CAc)
′
CAwA.

Now the next step of LARS algorithm updates the coefficient β̂k−1, say to
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β̂k = β̂k−1 + γ̂wA (29)

We need to show that β̂k is a function of C
′
C and C

′
y.

The above definitions of q and a indicate that γ̂ is a function of C
′
C and C

′
y. Therefore

β̂k is also a function of C
′
C and C

′
y
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Rau, Andrea., Foulley, Jean-Louis., Jaffrézic, Florence., and Doerge, Rebecca, W. (2010). An Empirical Bayesian

Method for Estimating Biological Networks from Temporal Microarray Data. Statistical Applications in Ge-

netics and Molecular Biology. 9, Issue 1 2010.

Fu, Wenjiang. J. (1998). Penalized Regressions: The Bridge versus the Lasso. Journal of Computational and

Graphical Statistics. 7, 3, p.397-416.

Journal home page: www.jafristat.net, www.projecteuclid.org/as


	Introduction
	GENOMIC STATE SPACE MODEL
	 LEARNING STATES AND PARAMETERS
	Identifiability issues
	The likelihood function
	The EM algorithm
	The expected log-likelihood function: The E-step.
	The update equations: The M-step.

	Model selection: Choice of regularization parameter s.

	Validation of Method
	Simulation
	In silico experiment: Arabidopsis thaliana clock

	Application
	Conclusion
	Appendix

