
Afrika Statistika

Vol. 12 (2), 2017, pages 1235–1250.
DOI: http://dx.doi.org/10.16929/as/2017.1235.102

Afrika Statistika

ISSN 2316-090X

Influence of the density pole on the
performances of its gamma-kernel estimator

Mouloud Cherfaoui1,2, Mohamed Boualem2, Djamil Aı̈ssani2, and Smäıl Adjabi2
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Abstract. In this paper, we aim at highlighting the influence of the density pole on the
performances of its gamma-kernel estimator. To do this, we performed a comparative study
for the performances of the gamma-kernel estimators with those provided by other bias ef-
fect correction techniques at the bounds, using the simulation technique. In conclusion, the
results obtained confirm those provided in the literature and show that in some cases the nor-
malization of the gamma estimators can considerably improve local and global performances
of the gamma-kernel estimators.

Résumé. Dans ce papier, afin de mettre en évidence l’influence du pôle d’une densité sur les
performances de son estimateur à noyau gamma, nous avons réalisé une étude comparative
des performances des estimateurs à noyau gamma avec ceux fournis par d’autres techniques
de correction du biais aux bornes, en utilisant la technique de simulation. Les résultats
obtenus montrent que, dans certains cas, la normalisation des noyaux gamma peut améliorer
considérablement les performances locales et globales des estimateurs à noyau gamma.
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1. Introduction

Let X1, X2, ..., Xn be a random sample from a distribution with an unknown prob-
ability density function f defined on [0, ∞[ and it is twice continuously differentiable
(f ∈ C2([0,∞[)). It is well known that the using of the standard (symmetric) kernel in the
nonparametric estimation of the density f , may lead to non-consistency estimators at the
boundary. One of the old techniques introduced to remedy the problem of non-consistency
is called the kernel method ”cut-and-normalized” (see Gasser and Müller (1979)). Never-
theless, the bias of the cut-and-normalized kernel density estimator still converges to zero
at the slower rate O(h) compared to the usual rate O(h2) and there is still more bias at
the boundary compared to the interior of the support. For this reason, numerous other
techniques are proposed in the literature, with the aim at obtaining the same bias order
over the whole support. We can cite, for instance, the data reflection methods Karunamuni
and Zhang (2008); Schuster (1985), the generalized Jackknife Kyung-Joon and Schucany
(1998); Jones (1993); Jones and Foster (1996); Jones et al. (1999), the data transformation
Hall and Park (2002) and the using of the asymmetric kernels (constructed from gamma
distribution) Chen (2000).

Moreover, Chen (2000) proposed to replace the standard kernel estimator given by Parzen-
Rosenblatt (see Parzen (1962) and Rosenblatt (1956)) by:

f̂(x) =
1

n

n∑
i=1

K(ρh(x),h)(Xi), (1)

where, h = h(n) is the smoothing parameter satisfying h → 0 and nh → ∞ as n → ∞
and K(ρh(x),h) is the density function of the gamma distribution with parameters (ρh(x), h),
given by the following formula:

K(ρh(x),h)(t) =
tρh(x)−1e−t/h

hρh(x)Γ(ρh(x))
, (2)

with,

Γ(p) =

∫ ∞
0

xp−1e−xdx, p > 0.

The first version of the gamma kernel density estimator, denoted f̂1(x), is obtained by
replacing ρh(x) by x/h + 1, in formula (1). Because of the undesired involvement of f ′

(the first derivative of f) in the bias of f̂1(x), a second version of f̂1(x), called a modified

gamma kernel estimator (denoted f̂2(x)), is proposed by Chen (2000). Indeed, this version
is obtained by replacing ρh(x), in formula (1), by the following quantity:

ρh(x) = (x/h)I{x≥2h} +

(
1

4
(x/h)2 + 1

)
I{x∈[0,2h[}

=

{
x/h, si x ≥ 2h,
1
4 (x/h)2 + 1, si x ∈ [0, 2h[.

(3)

The crucial difference between the standard kernel and the gamma kernel is that the
form and the amount of smoothing, of the latter kernel, vary according to the position
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where the density is estimated (an adaptive density estimator). The gamma kernel density
estimator is easy to implement, free of boundary bias, always non-negative and achieves
the optimal rate of convergence for the mean integrated squared error. Furthermore,
it reduces the variance when the position (in smoothing case) moves away from the
boundary. Numerous other proprieties of the gamma kernel estimators are well documented
in the literature. Bouezmarni and Scaillet (2003) state the uniform weak consistency
for the gamma kernel estimator on [0,+∞[ as well as the weak convergence in MIAE
sense (Mean Integer Absolute Error). For the unbounded densities at the origin (in the
neighborhood of zero), the same authors examined the performance of this estimator
by simulation studies and proved the convergence in probability. Fernandez and Mon-
teiro (2005) established the central limit theorem for the functional gamma kernel estimator.

However, a drawback is that the gamma kernels may be inefficient in some situations. For
example, in the work of Zhang (2010), the author has studied the performances of the
gamma kernel estimators at the boundary and have shown that, in the boundary region,
the gamma kernel estimator even outperforms some widely used boundary corrected density
estimators such as the boundary kernel estimator when the estimated density has a shoulder.
For densities not satisfying the shoulder condition, the author has shown that the gamma
kernel estimator has a severe boundary problem and its performance is inferior to that of
the boundary kernel estimator. Recently, Cherfaoui et al. (2015) were interested in the
properties of gamma kernel estimators for finite samples. By simulation studies, the authors
analyzed some proprieties of the gamma kernel density estimators for the different variants
of the gamma kernel. In particular, they showed the nonunit mass of the gamma (gamma

and modified gamma) kernel estimator for the finite samples (i,e.
∫
f̂i(x)dx 6= 1, i = 1, 2.).

To correct the problem the authors propose two ways to normalize the estimators f̂1(x) and

f̂2(x), that is: a Macro-normalization, which consist to divide the estimators on its integral,
and a Micro-Normalization which consist to divide, for any x, the estimators on its integral:

• Macro-normalization

f̂M1(x) =
f̂1(x)∫∞

0
f̂1(x)dx

, (4)

and

f̂M2(x) =
f̂2(x)∫∞

0
f̂2(x)dx

. (5)

• Micro-Normalization

f̂m1(x) =
1

n

n∑
i=1

K(x/b+1,b)(Xi)∫∞
0
K(x/b+1,b)(Xi)dx

, (6)

and

f̂m2(x) =
1

n

n∑
i=1

K(ρh(x),h)(Xi)∫∞
0
K(ρh(x),h)(Xi)dx

. (7)

Moreover, in order to predict the behavior of the two proposed normalization methods,
Cherfaoui et al. (2015) carried out a comparative study on finite artificial samples having
different size and they illustrated the necessity of the normalization through an application
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example using Markov chains.

In the present work, we propose to study the effect and the performances of the normalization
techniques, given in Cherfaoui et al. (2015), on the quality of the gamma kernel estimators
at the boundary (at the point x = 0), according to the type of the density to estimate (with
or without pole), compared to other existing boundary corrected kernel estimators. Indeed,
we give, in first time, some local proprieties of the gamma kernel estimators at the point
x = 0. In a second time a numerical comparative study, which is similar to that presented
in Zhang (2010), is carried out where we compare the local and the global performances of
the considered kernel estimators. Moreover, the obtained results (numerical and graphical)
show that the normalized gamma kernel estimators works significantly better than the others
estimators (the standard gamma kernel estimators, the boundary kernel estimators, the cut-
and-normalized kernel estimator and Jone-Foster estimators) and this, independently of the
type of the target density.

The rest of the document is organized as follows: in the second section we present the bound-
ary characteristics of the gamma kernel estimators. A detailed analysis of these characteris-
tics is presented in the third section. In the fourth section, we focalize on the presentation of
the simulation study realized with the aim at comparing the boundary performances of the
normalized gamma kernel estimators with those obtained via others boundary corrected ker-
nel techniques. Discussions and concluding remarks on the obtained results will be presented
in the last Section.

2. The boundary proprieties of the gamma kernel estimators

Let X1, X2, ..., Xn be a random sample from a distribution with an unknown probability
density function f defined on the positive support [0, ∞[ and twice twice-continuously
differentiable function (f ∈ C2([0,∞[)). By definition, the gamma kernel estimation of the
f at the boundary (x = 0) is given by:

f̂1(0) = f̂2(0) = f̂G(0) =
1

nh

n∑
i=1

e−Xi/h, (8)

where h is the smoothing parameter.

The aim of this section, is to provide the locals properties of the estimators f̂G(x) at the
point x = 0 for some target densities. To do this, we take the same examples treated in
Zhang (2010), which are summarized in the choice of the following densities:

• PDF1: f(x) = e−x (the exponential density),

• PDF2: f(x) = 2√
(2π)

e
−
(

x2

2

)
(the half normal density),

• PDF3: f(x) =
(

1
10 + 9

10x
)
e−x (the mixture exponential density).

The choice of the previous density is motivated by the fact that it represents the three
possible situations of the pole (see Figure 1).
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Fig. 1. Curves of the three target distributions PDFi, i = 1, 3

Now, we give the locals proprieties (mean and variance) of the estimator f̂G(0) for an
arbitrarily density.

E(f̂G(0)) = E

(
1

nh

n∑
i=1

e−xi/h

)
=

1

nh

n∑
i=1

E
(
e−Xi/h

)
=

1

nh

n∑
i=1

E
(
e−X/h

)
=

1

h
E
(
e−X/h

)
. (9)

V ar(f̂G(0)) = V ar

(
1

nh

n∑
i=1

e−Xi/h

)
=

1

(nh)2

n∑
i=1

V ar
(
e−Xi/h

)
=

1

(nh)2

n∑
i=1

V ar
(
e−X/h

)
=

1

nh2
V ar

(
e−X/h

)
=

1

nh2

[
E
(
e−2X/h

)
− E

(
e−X/h

)2]
. (10)

In the following, we are interested in the local proprieties of the estimator f̂G(0) for
the chosen densities (PDFi, i = 1, 3). To do this, it will be enough to compute the two
quantities E

(
e−X/h

)
and E

(
e−2X/h

)
for the considered densities and to replace them them

in the formulas (9) and (10) by the found expressions.

2.1. The exponential distribution

Let f be an exponential density with parameter λ, defined by:

f(x) =
1

λ
e−x/λ, x ≥ 0, λ > 0.
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We gave:

E(e−X/h) =

∫ +∞

0

e−x/hf(x)dx

=
1

λ

∫ +∞

0

e−((1/h)+(1/λ))xdx

=
h

λ+ h
.

By the same way as the above, we obtain:

E(e−2X/h) =
h

2λ+ h
.

From the formulas (9) and (10), we deduce the following:

E(f̂G(0)) =
1

λ+ h
, (11)

V ar(f̂G(0)) =
λ2

nh(h+ 2λ)(h+ λ)2
, (12)

Bias(f̂G(0)) = E(f̂G(0))− f(0) =
−h

λ(λ+ h)
, (13)

MSE(f̂(0), f(0)) = Biais(f̂G(0))2 + V ar(f̂G(0)) =
nh4 + 2nh3λ+ λ4

nhλ2(h+ 2λ)(h+ λ)2
. (14)

2.2. The half normal distribution

Suppose that f is a half normal distribution, defined as follows:

f(x) =
2√
2π
e
−
(

x2

2

)
, x ≥ 0,

so, we can show that:

E(e−(X/h)) = e
1

(2h2)

(
1− erf

(√
2

2h

))
,

E(e−2X/h) = e
2
h2

(
1− erf

(√
2

h

))
,

which leads to
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E(f̂G(0)) =
e

1
(2h2)

(
1− erf

(√
2

2h

))
h

, (15)

V ar(f̂G(0)) =
1

h2n

e 2
h2

(
1− erf

(√
2

h

))
− e

1
h2

(
1− erf

(√
2

2h

))2
 , (16)

Bias(f̂G(0)) =
e

1
(2h2)

(
1− erf

(√
2

2h

))
h

−
√

2

π
, (17)

MSE(f̂G(0), f(0)) = Bias(f̂G(0))2 + V ar(f̂G(0)), (18)

where, erf(x) = 2√
π

∫ x
0
e−t

2

dt = 2Φ(
√

2x)− 1, with Φ(.) is the standard normal probability

distribution.

2.3. The mixture exponential density

Suppose now that f is a density function obtained by the mixing of two exponential densities,
defined by:

f(x) =

(
1

10
+

9

10
x

)
e−x, x ≥ 0.

We have

E(e−(X/h)) =
h(10h+ 1)

10(h+ 1)2
,

E(e−2X/h) =
h(10h+ 2)

10(h+ 2)2
,

and deduce the following characteristics:

E(f̂G(0)) =
(10h+ 1)

10(h+ 1)2
, (19)

V ar(f̂G(0)) = (199h3 + 436h2 + 176h+ 20)/(100nh(h+ 1)4(h+ 2)2), (20)

Bias(f̂G(0)) =
−h(h− 8)

10(h+ 1)2
, (21)

MSE =
20 + 176h+ 436h2 + (199 + 256n)h3 + 192nh4 + 4nh5 − 12nh6 + nh7

100nh(h+ 2)2(h+ 1)4
. (22)

3. Impact of the density pole on the local proprieties

In this section, we are interested in the analysis of the pole effect on the performances
of gamma kernel estimators. We begin firstly to give an idea on the exponential density
estimator characteristic, at the point x = 0 versus the parameters λ and h. Note that, the
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parameter λ indicates the type of the density pole in question (see Figure 2). After that, we
present a comparative discussion of the local characteristics of the estimators associate to
the above densities.
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Fig. 2. Variation of the exponential pole-density versus the parameter λ

From Figure 3 and the formulas (12)–(14), we see that:

(a) The bias of f is strongly related to the density pole. Indeed, as the gradient of the pole
(−1λ < 0) decreases, its bias increases and vice versa.

(b) For a finite smoothing parameter (finite sample), one can see that the variance tends
to zero when λ tends to zero. In the contrary case, the bias tends to −∞ considerably
compared with the diminution of the variance. This remark can be explained by the
fact that the MSE increases when the value of λ decreases.

(c) Finally, if λ tends to +∞ (without the pole), then the three quantities (Bias, variance
and MSE) simultaneously tend to zero.
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Fig. 3. Variation of the Bias of the exponential density estimator versus the parameters
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From the obtained results (theoretical and graphical) on the boundary characteristics of the
gamma kernel estimators for the three targets densities, according the smoothing parameter
h and the sample size n, we can underline the following facts

1. From the formulas (12)–(14), (16)–(18) and (20)–(22), it easy to verify that the three
quantities Bias, variance and MSE, converge under the same usual conditions on the
smoothing parameter h. Indeed, the bias tends to zero for h→ 0, the variance converges
to zero for nh → +∞ and the MSE converges to zero for h → 0 and nh → +∞ (see
Figures 4–6).

2. The worst estimator is obtained in the case of the exponential density and this for the
three criteria considered (the case of a distribution having a negative pole equals to -1).
The best one is obtained in the case of the PDF3 where the gradient of its pole equals
to + 4

5 (the density presents a shoulder). Whereas, the medium situation is obtained in
the case of the truncated and normalized Gaussian distribution i.e. the case where the
density satisfies the shoulder condition f ′(0) = 0 (see Figures 4–6).

3. The degradation of the estimator quality generated by the pole can be compensated by
a large number of observations (which is not obvious in practice). On the one hand, this
remark proves the convergence of the estimator towards the true value sought (f(0)),
and on the other hand, it confirms the convergence conditions cited in the first point.
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Fig. 4. Variation of the Bias versus the smoothing parameter h

4. Comparative study between the boundary correction methods

The aim of this part is to carry out a comparison study of the performances of the normalized
gamma kernel estimators, proposed in the paper of Cherfaoui et al. (2015), with those
obtained with other boundary correction approaches. To do this, we consider the same
examples, the same approaches and the same steps simulation treated in Zhang (2010),
namely:

– Compare the performances of the following estimators: gamma kernels (f̂1 and f̂2), nor-

malized gamma kernels (f̂M1, f̂m1, f̂M2 and f̂m2), cut-and-normalized (f̂cn), boundary

kernel (f̂b) and Jone-Foster (f̂JF ).
– For each density (PDF1, PDF2, PDF3), we generate 1000 samples of size n = 100.
– The bandwidths will be chosen by minimizing the average of the integrated squared

errors (ISE).
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PDF1

PDF2

PDF3

Fig. 5. Variation of the variance versus the parameters h and n

PDF1
PDF2

PDF3

Fig. 6. Variation of the MSE versus the parameters h and n

We first, designed a simulator under the Matlab environment. The latter allows us to
have two types of results: numerical results (local and global performance measures) and
graphical results.

The execution of our program provides numerical and graphical results associated with the
local and global proprieties of each estimator for the different target densities. Tables 1 and
2 summarize the local proprieties at the point x = 0. For other values of x, these proprieties
are presented in Figures 7–15. However, Table 3 reports the global performances of each
estimator.
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Proprieties Density f̂1 f̂M1 f̂m1 f̂2 f̂M2 f̂m2

PDF1 -0.1580 -0.0673 -0.4361 -0.1039 -0.1575 -0.0010
Bias PDF2 -0.0386 0.0093 0.2098 -0.0566 -0.0923 -0.1226

PDF3 0.0840 0.0888 0.0131 0.0988 0.0909 0.0579
PDF1 0.0161 0.0245 0.0022 0.0238 0.0194 0.0458

Variance PDF2 0.0247 0.0170 0.0126 0.0132 0.0144 0.0271
PDF3 0.0038 0.0039 0.0026 0.0038 0.0039 0.0030
PDF1 0.0410 0.0290 0.1924 0.0346 0.0442 0.0458

MSE PDF2 0.0262 0.0171 0.0565 0.0164 0.0229 0.0419
PDF3 0.0109 0.0118 0.0028 0.0136 0.0122 0.0064

Table 1: Bias, variance and MSE of the different gamma kernel
estimators at the boundary x = 0 for n = 100

Proprieties Density f̂cn f̂b f̂JF
PDF1 -0.1671 -0.0903 -0.1217

Bias PDF2 -0.0454 0.0121 -0.1149
PDF3 0.1495 0.1401 0.1492
PDF1 0.0176 0.0259 0.0126

Variance PDF2 0.0346 0.0171 0.1124
PDF3 0.0205 0.0124 0.0105
PDF1 0.0455 0.0260 0.0274

MSE PDF2 0.0367 0.0172 0.1256
PDF3 0.0429 0.0320 0.0328

Table 2: Bias, variance and MSE of the others estimators at the
point x = 0 for n = 100

PDF1 PDF2 PDF3

Estimators h∗ ISE∗ h∗ ISE∗ h∗ ISE∗

f̂1 0.1200 0.0110 0.1188 0.0090 0.1559 0.0059

f̂M1 0.2208 0.0079 0.7896 0.0190 0.1113 0.0077

f̂m1 0.7408 0.0048 0.1658 0.0089 0.1736 0.0056

f̂2 0.1660 0.0111 0.1962 0.0065 0.1623 0.0058

f̂M2 0.1483 0.0107 0.1379 0.0097 0.1648 0.0056

f̂m2 0.0985 0.0142 0.1165 0.0132 0.1463 0.0057

f̂cn 0.6229 0.0054 0.4774 0.0134 0.7926 0.0090

f̂b 1.0628 0.0024 0.8252 0.0076 0.6937 0.0092

f̂JF 0.6648 0.0050 0.7198 0.0111 0.7842 0.0091
Table 3: The smoothing parameters and the optimal mean ISE of
the three target densities

Journal home page: www.jafristat.net, www.projecteuclid.org/as



M. Cherfaoui, M. Boualem, D. Aı̈ssani and S. Adjabi, Afrika Statistika, Vol. 12 (2), 2017, pages
1235 - 1251. Influence of the density pole on the performances of its gamma-kernel estimator.1246

5. Discussion of the results and concluding remarks

According of the ranked results in Tables 1–3, we conclude that:

– The macro-normalization of the estimator f̂1 reduces the bias and increases the variance.
Although, the reduction of the bias is more considerable than the growth of the variance,
this can be justified by the reduction of MSE in this situation.

– The micro-normalization of the estimator f̂1 reduces the variance, but it increases the
bias. Moreover, the increasing of latter it more considerable than the reduction of the
variance this can be justified by the increasing of the MSE.

– The micro-normalization of the estimator f̂2 behaves in the same way as the macro-
normalization of the estimator f̂1. However, unlike the macro-normalization of the esti-
mator f̂1, the macro-normalization of the estimator f̂2 reduces the variance and increases
the bias. As a result, the increase in bias is more significant than the reduction in variance
(see the MSE of this situation).

From the results reported in Figures 7–15, we see, for the three target densities, that:

A. The case PDF1:
− Contrary to the estimators f̂M1, the estimator f̂m1 has local bias with a non-regular

variation (see Figure 7 (a)).

− The estimators f̂1, f̂M1 and f̂m1 have a local variance with a regular variation (see
Figure 10 (a)).

− By comparing the MSE of the estimators f̂1, f̂M1 and f̂m1 at the boundary (see

Figure 13 (a)), it can be clearly seen that f̂m1 is the most efficient estimator while

f̂1 is the least efficient one.
− The estimators f̂1, f̂M1 and f̂m1 have a local proprieties (bias, variances and MSE)

of non-regular variation (see Figures 7 (b), 10 (b) and 13 (b)). By comparing their

MSE in the neighborhood of zero, we see that f̂1 is the most efficient estimator, but
beyond x = 2h it becomes the least efficient one.

− Looking at the MSE of the three estimators f̂1, f̂M1 and f̂m1 in the neighborhood of
zero (see Figure 13 (b)), we deduce that f̂m1 is the best one one while f̂1 is the least
efficient one.

B. The case PDF2:
− The estimators f̂1, f̂M1, f̂m1, f̂2, f̂M2 and f̂m2, have local variances that vary in

regular way (see Figure 11). But, their bias vary according to x in a non-regular way
(see Figure 8). These bias lead to the non-regularity of the variation of their MSE
(see Figure 14).

− By comparing the MSE of the estimators f̂1, f̂M1 and f̂m1 (see Figure 14 (a)),

we conclude that f̂M1 is the best estimator. Besides, comparing the MSE of the
estimators f̂2, f̂M2 and f̂m2 (see Figure 14 (b)), we see that f̂2 is the best one in the
neighborhood of zero but moving away from the point x = 2h it becomes the least
efficient of these estimators.

C. The case PDF3:
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− The estimators f̂1, f̂M1 and f̂m1, have local properties (bias, variances and MSE),
which vary in regular way (see Figures 9 (a), 12 (a) and 15 (a)).

− By comparing the MSE of the estimators f̂1, f̂M1 and f̂m1 (see Figure 15 (a)), we

see that f̂M1 and f̂1 are equivalent and the best one is the estimator f̂m1.
− The estimators f̂2, f̂M2 and f̂m2, have local properties (bias, variances and MSE),

which vary in non-regular way, according to the position x (see Figures 9 (b), 12 (b)
and 15 (b)).

− By looking at MSE’s of the estimators f̂2, f̂M2 and f̂m2 in the neighborhood of zero
(see Figure 15 (b)), we conclude that f̂2 is the best but beyond the position x = h it
quickly loses this quality.

Finally, this work permits us to conclude that the macro-normalization of the gamma kernel
estimator provides us, generally, a new efficient estimator in the neighborhood of zero (in
the neighborhood of the boundary) regardless of the target density choice (with or without
pole). However, in the worst-case scenario, its performances are equivalent to those of the
standard gamma kernel. Whereas, for the modified gamma kernel estimator, it is preferable
to avoid normalization, since generally the standard modified gamma kernel estimator works
significantly better than the normalized one.
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Fig. 7. Bias variation of gamma kernel estimators, case PDF1
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Fig. 8. Bias variation of gamma kernel estimators, case PDF2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

x

B
ia

s(
x)

 

 

f̂ 1

f̂ M 1

f̂ m 1

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x

B
ia

s
(x

)

 

 

f̂ 2

f̂ M 2

f̂ m 2

(b)

Fig. 9. Bias variation of gamma kernel estimators, case PDF3
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Fig. 10. Variance variation of gamma kernel estimators, case PDF1
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Fig. 11. Variance variation of gamma kernel estimators, case PDF2
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Fig. 12. Variance variation of gamma kernel estimators, case PDF3

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

x

M
S

E
(x

)

 

 

f̂ 1

f̂ M 1

f̂ m1

(a)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x

M
S

E
(x

)

 

 

f̂ 2

f̂ M 2

f̂ m2

(b)

Fig. 13. MSE variation of gamma kernel estimators, case PDF1
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Fig. 14. MSE variation of gamma kernel estimators, case PDF2
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Fig. 15. MSE variation of gamma kernel estimators, case PDF3
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