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Abstract. In this paper, we are concerned with the stochastic process

βn(qt, t) = βn(t) =
1√
n

n∑
j=1

{Gt,n(Y (t))−Gt(Yj(t))} qt(Yj(t)), (A)

where for n ≥ 1 and T > 0, the sequences {Y1(t), Y2(t), ..., Yn(t), t ∈ [0, T ]} are independent observations of some real
stochastic process Y (t), t ∈ [0, T ], for each t ∈ [0, T ], Gt is the distribution function of Y (t) and Gt,n is the empirical
distribution function based on Y1(t), Y2(t), ..., Yn(t), and finally qt is a bounded real function defined on R. This process
appears when investigating some time-dependent L-Statistics which are expressed as a function of some functional
empirical process and the process (A). Since the functional empirical process is widely investigated in the literature,
the process reveals itself as an important key for L-Statistics laws. In this paper, we state an extended study of this
process, give complete calculations of the first moments, the covariance function and find conditions for asymptotic
tightness.

Résumé. Nous nous intéressons dans ce papier au processus stochastique suivant

βn(qt, t) = βn(t) =
1√
n

n∑
j=1

{Gt,n(Y (t))−Gt(Yj(t))} qt(Yj(t)), (A)

où n ≥ 1, T > 0, {Y1(t), Y2(t), ..., Yn(t), t ∈ [0, T ]} sont des observations indépendantes d’un certain processus réel
{Y (t), t ∈ [0, T ]}, pour tout t ∈ [0, T ], Gt est la fonction de répartition de Y (t), Gt,n est la fonction de répartition em-
pirique basée sur l’échantillon Y1(t), Y2(t), ..., Yn(t), et enfin qt est une fonction réelle bornée définie sur R. Ce processus
apparâıt lors de l’investigation de L-Statistiques dépendant du temps, que l’on peut exprimer comme une somme d’un
processus empirique fonctionnel et d’un processus de type (A). Puisque les processus empiriques fonctionnels sont
largement étudiés, l’étude du processus (A) devient incontournable pour décrire le comportement asymptotique de
L-Statistiques. Dans ce papier, nous menons une étude complète du processus (A), calculons ses premiers moments,
sa fonction de covariance limite ainsi que les conditions de tension asymptotique. De même la somme d’un processus
empirique et d’un processus de type (A) et la somme de deux processus de même type (A), lorsqu’ils tous basés sur
le même échantillon temporel, sont largement décrites.

Key words: Empirical processes; Order Statistics; L-statistics.
AMS 2000 Mathematics Subject Classification : 62E20, 62F12, 62G20, G2G05.

1. Introduction

In this paper, we are concerned with the uniform weak laws of a special process occurring in some research areas
like Actuarial Sciences when measuring heavy losses, Welfare Sciences when measuring inequality coefficients and

Gane Samb Lô: ganesamblo@ufrsat.org, ganesamblo@yahoo.com

Journal Afrika Statistika

ISSN 2316-090X
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poverty indices. As well, it may be applied for general L-statistics. In order to define it, let n ≥ 1 be a positive
integer and Y1, Y2, ..., Yn independent and identically distributed random variables with values in ℓ∞([0, T ]), the space
of real bounded functions defined on time space [0, T ], where T is a fixed positive real number. This means that the
observations depend on the time t ∈ [0, T ], so that we may also write them in the form

{Y1(t), Y2(t), ..., Yn(t), t ∈ [0, T ]}

and we represent the order statistics, when needed, by Y1,n(t) ≤ Y2,n(t) ≤ ... ≤ Yn,n(t). Now let k ≥ 1 and 0 <
t1 < t2 < ... < tk ≤ T, Gt1,t2,...,tk will stand for the distribution function of (Yj(t1), Yj(t2), ..., Yj(tk))

t. Also, for each
t ∈ [0, T ], we denote by Gt,n the empirical distribution function based on the sample Y1(t), Y2(t), ..., Yn(t), that is, for
each x ∈ R,

nGt,n(x) =
n∑

j=1

1(Yj(t)≤x).

From now, we suppose that all the random variables used here are defined on the same probability space (Ω, A, P ).
We are now able to introduce the process

βn(qt, t) = βn(t) =
1√
n

n∑
j=1

{Gt,n(Yj(t))−Gt(Yj(t))} qt(Yj(t)), (1)

where for each t ∈ [0, 1], qt : R 7−→ R is a measurable bounded function. For q ≡ 1, we write it B∗
n(t) = βn(1, t)

and called it as the simple process. This process {βn(t), t ∈ [0, T ]} may appear when dealing with time-dependant
L-Statistics of the form

Jn(t) =
1

n

Qn(t)∑
j=1

c(j/n)q0(Yj,n(t)), (2)

where c(·) (resp. q0(·)) is a function defined on [0, 1] (resp. R) and where for each fixed t ∈ [0, T ], Z(t) > 0 is some
threshold such that YQn,n(t) ≤ Z(t) < YQn+1,n(t). By denoting Rj,n(t) the rank statistics of Yj(t), (2) may be written,
when the distribution functions Gt are continuous, as

Jn(t) =
1

n

n∑
j=1

c(Rj,n(t)/n)q(Yj(t))I(Yj(t) ≤ Z(t))

=
1

n

n∑
j=1

c(Gt,n(Yj(t))q1(Yj(t)),

where q1(Y (t)) = q0(Y (t))I(Y (t) ≤ Z(t)). Under some conditions (see Lo [5]), (2) may be uniformly approximated by
the representation, as n → ∞,

Jn(t) =
1

n

n∑
j=1

c(Gt(Yj(t)))q1(Yj(t))

+
1

n

n∑
j=1

{Gt,n(Yj(t))−Gt(Yj(t))} c′(Gt(Yj(t)))q1(Yj(t)) + o∗P (n
−1/2),

where c′ is the derivative function of c, and u∗
n = o∗P (1) stands for the convergence to zero in outer-probability, that

is there exists a sequence of random variables un converging to zero in probability as n → +∞ and ∥u∗
n∥ ≤ ∥un∥ for

n ≥ 1. Putting

J(t) = Ec(Gt(Yj(t))q1(Yj(t)) =

∫
R
c(Gt(y))q1(y)dGt(y),

we have, for qt(·) = c′(Gt(·)q1(·), as n → ∞,

√
n(Jn(t)− J(t)) = αn(t) + βn(qt, t) + oP (1), (3)

where

αn(t) =
1√
n

n∑
j=1

{c(Gt(Yj(t))q1(Yj(t))− Ec(Gt(Yj(t))q1(Yj(t))} ,
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G.S. Lô, Journal Afrika Statistika, Vol. 5, N◦7, 2010, page 245-251.
A simple note on some empirical stochastic process as a tool in uniform L-statistics weak laws 247

and this is nothing else but the functional empirical process Gn so that

αn(t) = Gn(gt) =
1√
n

n∑
j=1

{gt(Yj)− Egt(Yj)} ,

where gt is the real function defined on ℓ∞([0, T ]) satisfying

gt(x) = c(Gt(x(t))q1(x(t)), x ∈ ℓ∞([0, T ]).

Statistics like (2) thus are present in many situations in connection with L-Statistics (see Helmers and Ruymgaart
[1], Helmers et al. [2, 3]) and naturally occur is Actuarial Sciences and in inequality measures (see Puri et al. [4]),
and more recently in poverty measures (see Lo [5], Lo et al. [8]). In all these fields, we may be faced not to find
simple asymptotic normality results, but to derive uniform asymptotic laws for the time-dependant statistics (with the
parameter t ∈ [0, T ]) and functional asymptotic laws with respect to the class of functions F = {(gt, qt), t ∈ [0, T ]}.

This motivated us to undertake a special study of βn and its connection with the empirical process as general key tools.
This study needs much calculations that may be superfluous in each particular application. We thus aim to characterize
this process here and present our results as general tools to be used further in statistical works as packages. In all the
paper, we suppose that the distribution functions Gt are continuous and increasing.

Since the calculations related to this study are tremendous, we are going to give here the characteristics of the process.
Examples of computations that lead to the results stated here are given in the beginning of the proof of the first
theorem while the full paper are given in Lo and Sall [6].

The paper is organized as follows. We entirely describe the weak law the process in Section 2. In Section 3, the weak
law of the sum of a process of type (1) with a functional empirical process is given while Section 3 is devoted to the
weak law of a couple of statistics of type (1). The paper is finished by a conclusion.

2. Law of the general process

We now consider the process

β∗
n(t) =

√
nβn(t) =

n∑
j=1

{Gt,n(Yj(t))−Gt(Yj(t))} qt(Yj(t)).

Before we present our main result, define

g(q, t, s) =

∫ (∫
x≥u

qt(x)dGt(x)

)(∫
y≥v

qs(y)dGt(y)

)
dGt,s(u, v),

c2(t) =

∫ (∫
x≥u

qt(x)dGt(x)

)2

dGt(u)

and this convention, for a function h,

Eth =

∫
h(u)dGt(u)

Theorem 1. If there is a universal constant K0, such that there exists δ > 0,

|s− t| ≤ δ =⇒ |2(c2(t)− g(q, t, s))

+
{
(EtGtqt)(EsGsqs)− (EtGtqt)

2
}∣∣ ≤ 3

2
K0 |s− t|1+r

, (4)

then {βn(t), 0 ≤ t ≤ T} converges to a ℓ∞([0, T ])−Gaussian process with covariance function

Γ1(qt, qs, s, t) = g(q, t, s)− (EtGtqt)(EsGsqs).

Remark 1. As announced, we will give in the beginning of the proof of this theorem examples of computations needed
in proving the results of these paper. Full, detailed and complete ones are stated in Lo and Sall [6].
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Proof. Let

β∗
n(t) =

√
nβn(t).

We begin to calculate the two first moments and the covariance function.

Mean calculation. One has

Eβ∗
n(t) = E

n∑
j=1

Gt,n(Yj(t))qt(Yj(t))− n(Eqt(Y (t))(Gt(Y (t)).

But

nGt,n(Yj(t))qt(Yj(t)) = qt(Yj(t)) +
∑
h ̸=j

1(Yh(t)≤Yj(t))qt(Yj(t))

and

EnGt,n(Yj(t))qt(Yj(t)) = Eqt(Y (t)) + (n− 1)

∫
qt(u)dGt(u)

∫
x≥u

dGt(x)

= Etqt + (n− 1)

∫
Gt(u)qt(u)dGt(u).

Recall the convention Etb = E(b(Y (t))). We get

EGt,n(Yj(t))qt(Yj(t)) =
Etqt − EtqtGt

n
+ EtqtGt.

This gives

Eβ∗
n(t) = Etqt − EtqtGt

and

Eβn(t) = (Etqt − EtqtGt) /
√
n → 0.

Variance calculation. Direct calculations like the previous give :

Eβn(t)
2 = c2(t)− (EtGtqt)

2 +
K1(t, s)

n
,

where K1(t, s) is uniformly bounded. Before we arrive at the covariance function. We should observe that for qt = 1,
then c2 = 1/3, (EtGtq)

2 = 1/4 and

c2(t)− (EtGtqt)
2 = 1/12.

Covariance calculations. We also have

Eβn(t)βn(s) = g(q, t, s)− (EtGtqt)(EsGsqs) +
K2(n, t, s)

n
.

= Γ1(qt, qs, t, s) +
K2(n, t, s)

n
,

where K2(n, t, s) is uniformly bounded in (n, t, s). We finish to remark that for s = t, we get

Eβn(t)
2 ∼ c2(t)− (EtGtq)

2.

We now consider the increments of βn(t).

Increments calculations.
Recall that

Eβn(t)
2 = c2(t)− (EtGtq)

2 +
K1(n, t)

n
.

This gives

E (βn(t)− βn(s))
2
= 2(c2(t)− g(q, t, s)) +

{
(EtGtq)(EsGsq)− (EtGtq)

2
}
+

K3(n, t, s)

n
. (5)

Proofs of the weak convergence.
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We always begin to show the weak convergence of the finite-distribution of βn(·) that is

βn(t1, ..., tk, a) =
k∑

j=1

αjβn(tj) =
1√
n

k∑
s=1

as

n∑
j=1

{Gts,n(Yj(ts))−G(Yts)} qts(Yj(ts)).

0 < t0 < t1 < ... < tk ≤ T, a = (a1, ..., ak)
t ∈ Rk. We have

βn(t) =

∫ 1

0

√
n(s− Vt,n(s))qt(G

−1
t (s))ds+OP (1/

√
n) = N∗

n(qt, t) +OP (1/
√
n). (6)

The finite distribution is established by using Lemma 1 below and its application in section 5. The covariance function
of the limiting process is

Γ1(qti , qtj , ti, tj) = lim
n→∞

Cov(N∗
n(qti , ti), N

∗
n(qtj , tj))

which, by (6), is
Γ1(qti , qtj , ti, tj) = lim

n→∞
Cov(βn(t), βn(s))

Finally (4), (5) together prove the asymptotic tightness of βn via Lemma 1 in Sall and Lo [11] and Example 2.2.12 in
van der Vaart and Wellner [10].

3. Addition of the processes and an empirical process

In many situations, the asymptotic law of the studied statistics is achieved in a sum of our process and an empirical
process of the form

γn = αn + βn

where

γn(t) =
1√
n

∑
j

(gt(Y (t))− η(t)) +
1√
n

∑
j

{Gt,n(Yj(t))−Gt(Yj(t))} qt(Yj(t)).

In such cases, what is the covariance structure of the limiting process? We have this

Proposition 1. If each of the processes γn, αn and βn converges in finite-distributions and is asymptotically tight,
then covariance function of the limiting Gaussian process of γn is

Γ(t, s) = Γ1(qt, qs, t, s) + Γ2(t, s) + γ(t, s),

with

Γ2(t, s) =

∫
(gt(x)− η(t))(gs(y)− η(s))dGt,s(x, y),

Γ2(qt, qs, t, s) = g(q, t, s)− (EtGtqt)(EsGsqs),

g(qt, qs, t, s) =

∫ (∫
x≥u

qt(u)dGt(u)

)(∫
y≥v

qt(v)dGt(v)

)
dGt,s(x, y)

and
γ(t, s) = γ1(t, s) + γ1(s, t),

with

γ1(t, s) =

∫
gt(u)

(∫
x≥v

qs(v)dGs(u)

)
dGt,s(u, v).

Remark 2. We are not interesting here by complete results. We only intend to show how the process intervenes in
general L-Statistics and to give the covariance function. In each particular,we will have to prove the finite-distribution
convergence and the tightness of the components of such processes.

Proof. If the hypotheses of the proposition hold, the limiting covariance function is performed through the formula

γn(t)γn(s) = (αn(t) + βn(t)) (αn(s) + βn(s))

= αn(t)αn(s) + αn(t)βn(s) + βn(t) (αn(s) + βn(t)βn(s))).

By computing the expectation of each of them, we arrive at

γ1(t, s) =

∫
gt(u)

(∫
x≥u

q(x)dGs(u)

)
dGt,s(u, v), γ(t, s) = γ1(t, s) + γ1(s, t).
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4. Covariance function of two processus

In some applications, we may be led to simultaneously consider two or several processes of the kind (1). In this case,
their covariance function may be useful. Consider

βn,2(t) =
1√
n

∑
j

{Gt,n(Yj(t))−Gt(Yj(t))} q1,t(Yj(t))

and

βn,1(t) =
1√
n

∑
j

{Gt,n(Yj(t))−Gt(Yj(t))} q2,t(Yj(t)).

We will have the result

Proposition 2. If the two processes are both asymptotically tight and converge in finite-distribution, then their limiting
Gaussian processes have the following covariance

Γ3(t, s) = g(q1,t, q2,s, t, s)− ((EtGtq1)(EsGsq2) + (EtGtq1)(EsGsq2)),

and
g(q1,t, q2,s, t, s) = g1(q1,t, q2,s, t, s) + g1(q1,s, q2,t, s, t)

with

g1(q1,t, q2,s, t, s) =

∫ (∫
x≥u

q1,t(u)dGt(u)

)(∫
x≥v

q2,s(v)dGs(v)

)
dGt,s(u, v).

5. A useful tool

We give here a useful lemma on which, is be based the asymptotic finite-distribution normality of the processes
involved here. It will be enough to describe it in the two dimensional case. A generalization to the k-dimensional case
is straightforward. We have

Lemma 1. Let (Xi, Yi) , i = 1, 2, ..., be independent observations of a random vector (X,Y) with joint distribution
function G(x, y) = P (X ≤ x, Y ≤ y), and margins G1(x) = G(x,+∞) and G2(y) = G(+∞, y). Let, for each n ≥ 1, ε1,n
and ε2,n be the quantile processes based respectively on G1(X1), G1(X2), ..., G1(Xn), and on G2(Y1), G2(Y2), ..., G2(Yn).
Then εn = (ε1,n, ε2,n) converges in distribution to a Gaussian process ε = (ε1, ε2) in (ℓ∞([0, 1]))2 such that each εi is
a standard Brownian bridge.

Proof. Let for each n ≥ 1, α1,n and α2,n be the empirical processes based respectively on G1(X1), G1(X2), ..., G1(Xn)
and on G2(Y1), G2(Y2), ..., G2(Yn). We have (see [9], p.584) that αi,n(s) = −εi,n(s) + oP (1) uniformly in s ∈ (0, 1),
which gives

εn(s, t) = (ε1,n(s), ε2,n(t)) = −(α1,n(s), α2,n(t)) = oP (1),

uniformly in (s, t) ∈ (0, 1)2. Now let us consider the functional empirical process αn based on the Zi = (G1(Xi), G2(Yi)),
that is

αn(f) =
1√
n

n∑
j=1

f(Zi)− Ef(Zi),

for a real function defined on (0, 1)2 such that Ef(Zi)
2 < ∞. We have by the classical results of empirical process that

{αn(f), f ∈ F} converges to a Gaussian process {G(f), f ∈ F} whenever F is a donsker class. It follows that {αn(1C),
C ∈ C} converges to a Gaussian process {G(1C), C ∈ C} whenever C is a Vapnik-Cervonenkis class (V P -class). But
C = {1[0,s]×[0,t], (t, s) ∈ (0, 1)2} is a V P -class of index not greater of 2. (see [10] for V P -classes use to empirical
processes). Thus, putting fs,t = 1[0,s]×[0,t],, we have

αn(s, t) ≡ αn(fs,t) G(fs,t) ≡ G(s, t)

in (ℓ∞([0, 1]))2, where stands for the weak convergence. Now, by using the Skorohod-Wichura-Dudley Theorem, we
are entitled to suppose that we are on a probability space such that

sup
(s,t)∈(0,1)2

|αn(fs,t)−G(fs,t)| →P 0.
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Now, put f1,s = 1[0,s]×[0,1], f2,t = 1[0,1]×[0,t], G1(s) = G1(f1,s) and G2(t) = G1(f2,t). We have

αn(fi,s) = α1,n(s) = G1(s) + oP (1),

uniformly in s ∈ (0, 1). We finally have

αn(s, t) = (G1(s),G2(t)) + oP (1),

uniformly in (s, t) ∈ (0, 1)2. Clearly, (G1(s), G2(t)) is a Gaussian process and each Gi is the standard Brownian bridge.

Application 1. Let us consider the two-dimensional distribution βn(t1, t2, a) like in (6), which is

1√
n

a1

n∑
j=1

{Gt1,n(Yj(t1))−G(Yt2)} qt1(Yj(t1)) + a2

n∑
j=1

{Gt2,n(Yj(t2))−G(Yt2)} qt2(Yj(t2))

 .

Using the notations around (6), we have

βn(t1, t2, a) = a1N1(qt1,t1) + a2N1(qt2,t2) + oP (1)

=

∫ 1

0

{a1G1(s)qt1(s) + a2G2(s)qt2(s)} ds+ oP (1),

→ N(a1, a2) =

∫ 1

0

{a1G1(s)qt1(s) + a2G2(s)qt2(s)} ds,

which is a Gaussian random variable.

6. Conclusion

We have entirely described the weak law of empirical stochastic processes like (1) as well that of such processes and
a functional emprical processes. Such results have potential powerful applications in deriving uniform time-dependent
L-statistics as done in Lo and Sall [7], where the time-dependant general poverty index is studied. Applications of our
results in Actuarial Sciences are under way.

References

[1] Helmers, R. and Ruymgaart, F.H., 1988. Asymptotic normality of generalized L-statistics with unbounded Scores. J. statist.
Plann. Inference 19, 43-53.

[2] Helmers, R., Janssen, P. and Serfling, R., 1988. Glivenko- Cantelli Properties of some generalized empirical df’s and strong
convergence of generalized L-Statistics. Probab. Theory Related Fields., 79, 75-93.
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