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We introduce the iterated commutator for the Riesz transforms in the multiparameter flag setting, and prove
the upper bound of this commutator with respect to the symbol b in the flag BMO space. Our methods
require the techniques of semigroups, harmonic functions and multiparameter flag Littlewood–Paley
analysis. We also introduce the big commutator in this multiparameter flag setting and prove the upper
bound with symbol b in the flag little bmo space by establishing the “exponential-logarithmic” bridge
between this flag little bmo space and the Muckenhoupt Ap weights with flag structure. As an application,
we establish the div-curl lemmas with respect to the appropriate Hardy spaces in the multiparameter
flag setting.

1. Introduction and statement of main results

The Calderón–Zygmund theory of singular integrals has been central to the success and applicability of
modern harmonic analysis in the last fifty years. This theory has had extensive applications to other fields
of mathematics such as complex analysis, geometric measure theory and partial differential equations. In
the setting of Euclidean spaces Rn, a notable property of standard Calderón–Zygmund singular integrals,
shared with the Hardy–Littlewood maximal operator, is that these operators commute with the classical
one-parameter family of dilations on Rn, δ · x = (δx1, . . . , δxn) for δ > 0. See for example [Stein 1993].

The product Calderón–Zygmund theory in harmonic analysis was introduced in the 1970s and has been
studied extensively since then. The model case is a tensor product of classical singular integral operators;
such operators arise in the context of questions about summation of multiple variable Fourier series. Early
key work in this field includes that of Chang and R. Fefferman [1980; 1982; 1985], R. Fefferman [1986;
1987; 1999], R. Fefferman and Stein [1982], C. Fefferman and Stein [1972], Gundy and Stein [1979],
Journé [1985], and Pipher [1986]. Included in these works are the identification of appropriate notions of
product BMO space and product Hardy space H p(Rn

×Rm).
More recently, the theory of (iterated) commutators has been developed in connection with the Chang–

Fefferman BMO space, including paraproducts and multiparameter div-curl lemmas; see, for example,
[Dalenc and Ou 2016; Ferguson and Lacey 2002; Ferguson and Sadosky 2000; Lacey et al. 2009; 2010;
2012; Lacey and Terwilleger 2009]. In contrast with the classical Euclidean setting, the product Calderón–
Zygmund singular integrals and the strong maximal function operator commute with the multiparameter
dilations on Rn, δ · x = (δ1x1, . . . , δnxn) for δ = (δ1, . . . , δn) ∈ (0,∞)n.
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A new type of multiparameter structure, which lies in between one-parameter and tensor product, was
introduced by Müller, Ricci and Stein in [Müller et al. 1995; 1996], where they studied the L p boundedness
of Marcinkiewicz multipliers m(L, iT ) on the Heisenberg group, where L is the sub-Laplacian and T is
the central invariant vector field, with m being a multiplier of Marcinkiewicz-type. They showed that
such Marcinkiewicz multipliers can be characterized by a convolution operator f ∗ K, where K is a
so-called flag convolution kernel. This multiparameter flag structure is not explicit, but only implicit in
the sense that one cannot formulate it in terms of an explicit dilation δ acting on x . Later, the notion of
flag kernels (having singularities on appropriate flag varieties) and the properties of the corresponding
singular integrals were then extended to the higher-step case by Nagel, Ricci and Stein [Nagel et al. 2001]
on Euclidean space and their applications on certain quadratic CR submanifolds of Cn. Recently, Nagel,
Ricci, Stein and Wainger [Nagel et al. 2012; 2018] established the theory of singular integrals with flag
kernels in a more general setting of homogeneous groups. They proved that, on a homogeneous group,
singular integral operators with flag kernels are bounded on L p, 1< p <∞, and form an algebra. (See
also [Głowacki 2010] for related work.) Associated to this implicit multiparameter flag structure, the
Hardy space H 1

F (R
n
×Rm) and BMO space BMOF (R

n
×Rm) were introduced by Han, Lu and Sawyer

[Han and Lu 2008; Han et al. 2014] through their creation of a flag-type Littlewood–Paley theory. More
recently, Han, Lee, and the second and fifth authors [Han et al. 2016a] established a full characterization
of H 1

F (R
n
×Rm) via appropriate flag-type nontangential, radial maximal functions, Littlewood–Paley

theory via Poisson integrals, the flag-type Riesz transforms, as well as flag atomic decompositions.

In the multiparameter setting, the dilation structure δ · x = (δ1x1, . . . , δnxn) for δ := (δ1, . . . , δn) ∈

(0,∞)n determines a geometry that is reflected by axes-parallel rectangles of arbitrary side-lengths.
Indeed, the strong maximal function is defined as the supremum of averages over such rectangles, and the
Chang–Fefferman product BMO space can also be characterized using such rectangles. When it comes to
the flag setting, the lack of an explicit dilation structure makes its geometry much more obscure. However,
from the study of properties of the flag singular integrals, such as the flag Riesz transforms that will be
introduced below, one realizes that the flag geometry can be reflected by axes-parallel rectangles with
certain restriction on the side-lengths. For example, the flag rectangles in Rn

×Rm are the ones of the
form R = I × J ⊂ Rn

×Rm with `(I )≤ `(J ). Compared to the multiparameter setting, the restriction
`(I ) ≤ `(J ) gives rise to new difficulties. For instance, a very useful trick in the study of problems in
the multiparameter setting is to take a sequence of rectangles {I × Ji } and let Ji shrink to a point y0 as
i→∞. This can usually effectively reduce the problem to one-parameter. However, in the flag setting,
such an operation is not allowed anymore. Other intrinsic difficulties of the flag setting can be better
described from the analytic perspective, which will be discussed below.

A commutator of a classical Calderón–Zygmund singular integral with a BMO function is a bounded
operator on L p with norm equivalent to the BMO norm of the symbol [Coifman et al. 1976]. Modern
methods of proving the upper bound of these commutators in the multiparameter product setting rely
upon the existence of a wavelet basis for L2(Rn), such as the Meyer wavelets or Haar wavelets; see for
example [Lacey et al. 2009; Dalenc and Ou 2016]. It turns out that the behavior of the commutator is
straightforward to analyze in terms of the wavelet basis. One method of proof shows that the commutator
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can be written as a linear combination of paraproducts and simple wavelet analogs of the Calderón–
Zygmund operator in question. The other approach uses the wavelet basis to dominate the commutator by
a composition of sparse operators. In the flag setting, we lack a suitable wavelet basis and this approach
is not available. Essentially, the wavelet basis requires the construction of a suitable multiresolution
analysis, which we do not have in this flag setting. Hence, instead of the wavelet basis, we resort to using
a method based on heat semigroups and flag-type Littlewood–Paley theory, exploiting the connection
between the Reisz transforms and the Laplacian.

We now recall the flag Riesz transforms as studied in [Han et al. 2016a]. We use R(1)j to denote the
j-th Riesz transform on Rn+m, j = 1, 2, . . . , n+m, and we use R(2)k to denote the k-th Riesz transform
on Rm, k = 1, 2, . . . ,m. Namely, we have that for g(1) ∈ L2(Rn+m),

R(1)j g(1)(x)= p.v. cn+m

∫
Rn+m

x j − yj

|x − y|n+m+1 g(1)(y) dy, x ∈ Rn+m,

and for g(2) ∈ L2(Rm),

R(2)k g(2)(z)= p.v. cm

∫
Rm

wj − z j

|w− z|m+1 g(2)(w) dw, z ∈ Rm .

For f ∈ L2(Rn+m), we set
Rj,k( f )= R(1)j ∗ R(2)k ∗2 f ; (1-1)

that is, Rj,k is the composition of R(1)j and R(2)k . Note that the flag structure appears in Rj,k .
Given two functions b, f ∈ L2(Rn+m), we first recall the usual definition of commutator

[b, R(1)j ]( f )(x1, x2) := b(x1, x2)R
(1)
j ∗ f (x1, x2)− R(1)j ∗ (b f )(x1, x2). (1-2)

The commutator can also act only on the second variable:

[b, R(2)k ]2( f )(x1, x2) := b(x1, x2)R
(2)
k ∗2 f (x1, x2)− R(2)k ∗2 (b f )(x1, x2). (1-3)

Iterated commutators arise in the study of commutators of multiparameter singular integral operators
which are tensor products. In the flag setting, our iterated commutator takes the following form:

Definition 1.1. Given two functions b, f ∈ L2(Rn+m), the iterated commutator in the flag setting of
Rn
×Rm is

[[b, R(1)j ], R(2)k ]2( f ) := b(x1, x2)R
(1)
j ∗ R(2)k ∗2 f (x1, x2)− R(1)j ∗ (b · R

(2)
k ∗2 f )(x1, x2)

− R(2)k ∗2 (b · R
(1)
j ∗ f )(x1, x2)+ R(2)k ∗2 R(1)j ∗ (b · f )(x1, x2).

We point out that another possible definition via [[b, R(2)k ]2, R(1)j ]( f ) turns out to be equivalent; see
Proposition 2.5 in Section 2.

We also introduce the big commutator in the flag setting as follows.

Definition 1.2. Given two functions b, f ∈ L2(Rn+m), the big commutator in the flag setting of Rn
×Rm is

[b, Rj,k]( f )(x) := b(x)Rj,k( f )(x)− Rj,k(b f )(x). (1-4)
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The main results, below, of this paper relate iterated and big commutator bounds to flag BMO spaces.
As the definition of the space BMOF (R

n
× Rm) is very technical, we refer the reader to Section 2,

Definition 2.4 for details.

Theorem 1.3. Suppose b ∈ BMOF (R
n
× Rm) and 1 < p < ∞. Then for every j = 1, . . . , n + m,

k = 1, . . . ,m, f ∈ L p(Rn+m),

‖[[b, R(1)j ], R(2)k ]2( f )‖L p(Rn+m) . ‖b‖BMOF (Rn×Rm)‖ f ‖L p(Rn+m). (1-5)

Lacking methods related to analyticity ([Ferguson and Sadosky 2000] for the Hilbert transform) or
wavelets [Lacey et al. 2009; 2010; Dalenc and Ou 2016], we instead obtain this upper bound using
the duality argument and the tools of semigroups, harmonic function extensions and techniques from
multiparameter analysis.

Next, we introduce the little flag BMO space. The flag structure has a geometry which is reflected by
the axes-parallel rectangles R = I × J ⊂ Rn+m satisfying `(I )≤ `(J ), the collection of which is referred
to as flag rectangles, denoted by RF . One can then define the little flag BMO space and the flag-type
Muckenhoupt weights AF,p with respect to RF .

Definition 1.4. A locally integrable function b is in little flag BMO space, denoted by bmoF (R
n
×Rm), if

‖b‖bmoF (Rn×Rm) := sup
R∈RF

1
|R|

∫
R
|b(x, y)−〈b〉R| dx dy <∞, (1-6)

where 〈b〉R = (1/|R|)
∫

R b(x1, x2) dx1 dx2.

Theorem 1.5. Suppose TF is a flag singular integral operator on Rn
×Rm, b ∈ bmoF (R

n
×Rm) and

1< p <∞. Then for f ∈ L p(Rn+m),

‖[b, TF ]( f )‖L p(Rn+m) . ‖b‖bmoF (Rn×Rm)‖ f ‖L p(Rn+m). (1-7)

In the above, the flag singular integral TF can be taken as the Riesz transform Rj,k . The class of
flag singular integral operators TF naturally generalize the Riesz transforms Rj,k and are assumed to be
associated to kernels having a standard flag structure. We refer the reader to Definition 4.4 in Section 4
for its precise definition. To obtain this upper bound, we study the little flag BMO space bmoF (R

n
×Rm)

and find the connection with the John–Nirenberg BMO space on Rn+m and on Rm. We also establish the
bridge between functions in bmoF (R

n
×Rm) and weights in AF,p. These structures lead to the upper

bound for [b, Rj,k]( f ).
As application, the commutator estimates obtained above imply certain versions of div-curl lemmas,

which seem to be first of their kind in the flag setting. Roughly speaking, a div-curl lemma says that if
vector fields E and B initially in L2 have some cancellation (e.g., divergence or curl zero) then one can
expect their dot product E · B to belong to a better space of functions instead of just L1 (as provided for
by Cauchy–Schwarz). The cancellation conditions allow one to deduce some type of cancellation, e.g.,∫

E · B = 0, suggesting that the function should belong to a suitable Hardy space since it is integrable and
has mean zero. The algebraic structure of E · B coupled with the duality between Hardy spaces and BMO
spaces then points to the use of the commutator theorem to arrive at the membership of E · B in the Hardy
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space; different commutator results suggest different div-curl lemmas that can be explored. In the classical
one-parameter setting, the div-curl lemma says that given two vector fields, one with divergence zero
and the other with curl zero, their dot product belongs to a Hardy space [Coifman et al. 1993]. Later on,
Lacey, Petermichl, and the fourth and the fifth authors proved multiple versions of div-curl lemmas in the
multiparameter setting [Lacey et al. 2012], which are expected since the multiparameter setting offers
several different interpretations of the Hardy and BMO spaces. Thus, it is natural that our Theorems 1.3
and 1.5 lead to two versions of flag-type div-curl lemmas.

First, consider vector fields on Rn
×Rm that take values in Mn+m,m and are associated with the flag

structure (see Section 5 for the precise definitions and details). We establish the div-curl lemma in the
flag setting with respect to the flag Hardy space below, which is a consequence of Theorem 1.3.

Theorem 1.6. Let 1< p, q <∞ with 1/p+ 1/q = 1. Suppose that E, B are vector fields on Rn
×Rm

taking the values in Mn+m,m , associated with the flag structure. Moreover, suppose E = E (1) ∗2 E (2) ∈
L p
F (R

n
×Rm

;Mn+m,m) and B = B(1) ∗2 B(2) ∈ Lq
F (R

n
×Rm

;Mn+m,m) satisfy

div(x,y) E (1)j (x, y)= 0 and curl(x,y) B(1)j (x, y)= 0 for all k

and

divy E (2)k (x, y)= 0 and curly B(2)k (x, y)= 0 for all x ∈ Rn, for all j.

Then E · B belongs to the flag Hardy space H 1
F (R

n
×Rm) with

‖E · B‖H1
F (R

n×Rm) . ‖E‖L p(Rn×Rm;Mn+m,m)‖B‖Lq (Rn×Rm;Mn+m,m). (1-8)

We also prove another version of the div-curl lemma in the flag setting, which is with respect to the
Hardy spaces on Rn+m and on Rm, respectively. This version relies on the intermediate result in the proof
of Theorem 1.5, namely, the structure of the flag little bmo space.

Theorem 1.7. Let 1< p, q <∞ with 1/p+ 1/q = 1. Suppose that E, B are vector fields on Rn
×Rm

taking the values in Rn+m. Moreover, suppose E ∈ L p(Rn
×Rm

;Rn+m) and B ∈ Lq(Rn
×Rm

;Rn+m)

satisfy

div(x,y) E(x, y)= 0 and curl(x,y) B(x, y)= 0

and

divy E(x, y)= 0 and curly B(x, y)= 0 for all x ∈ Rn.

Then we have

‖E · B‖H1(Rn+m) . ‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m), (1-9)

and ∫
Rm
‖E( · , y) ·2 B( · , y)‖H1(Rm) dy . ‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m), (1-10)

where

E(x, y) ·2 B(x, y) :=
m∑

k=1

En+k(x, y)Bk(x, y).
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It is known that the div-curl lemma in the classical setting has many applications in PDE and com-
pensated compactness [Coifman et al. 1993]. Similarly, we expect that the flag-type div-curl lemmas
described above would have interesting implications in these directions as well. For instance, following
the ideas in [Coifman et al. 1993], one can study weak convergence problems in the flag Hardy space.
And it would be interesting to know whether one can use the flag-type regularity (implied by our div-curl
lemmas) of certain nonlinear quantities to obtain improved regularity results for certain nonlinear PDE.

This paper is organized as follows. In Section 2 we provide necessary preliminaries with respect to
the flag structures. In Section 3 we study the flag iterated commutators as in Definition 1.1 and prove
Theorem 1.3. In Section 4 we give a complete treatment of the flag little bmo spaces and flag-type
Muckenhoupt Ap weights, toward the proof of Theorem 1.5. In the last section, we apply the boundedness
of flag commutators from Theorems 1.3 and 1.5 to establish the flag div-curl results, Theorems 1.6 and 1.7.

2. Preliminaries in the flag setting

Recall the classical Poisson kernel on Rn:

P(x) :=
cn

(1+ |x |2)(n+1)/2 .

And we define

Pt(x) :=
1
tn P

(
x
t

)
.

For f ∈ L1(Rn), let F(x, t) := Pt ∗ f (x). Then we have the following standard pointwise estimates for
the Poisson integral; see in particular [Stein 1993].

Proposition 2.1. Suppose f ∈ L1(Rn). Then

sup
(x,t)∈Rn+1

+

tn+k
|∇

k
x,t F(x, t)| ≤ C‖ f ‖L1(Rn). (2-1)

We now recall the flag Poisson kernel given by

P(x, y)= P (1) ∗Rm P (2)(x, y)=
∫

Rm
P (1)(x, y− z)P (2)(z) dz,

where
P (1)(x, y)=

cn+m

(1+ |x |2+ |y|2)(n+m+1)/2 and P (2)(z)=
cm

(1+ |z|2)(m+1)/2

are the classical Poisson kernels on Rn+m and Rm, respectively. Then we have

Pt1,t2(x, y)= P (1)t1 ∗Rm P (2)t2 (x, y).

We define the Lusin area function with respect to u = Pt1,t2 ∗ f as follows.

Definition 2.2. For f ∈ L1(Rn
×Rm) and u(x1, x2, t1, t2)= Pt1,t2 ∗ f (x1, x2), the Lusin area integral of

u(x1, x2, t1, t2), denoted by SF (u), is defined by

SF (u)(x1, x2)=

{∫
Rn+1
+

∫
Rm+1
+

χt,s(x1−w1, x2−w2)|t1∇(1)t2∇(2)u(w1, w2, t1, t2)|2
dw1 dt1
tn+m+1
1

dw2 dt2
tm+1
2

}1
2

,
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where ∇(1) = (∂t1, ∂w1,1 · · · ∂w1,n , ∂w2,1 · · · ∂w2,m ) is the standard gradient on Rn+m+1, and ∇(2) = (∂t2,

∂w2,1 · · · ∂w2,m ) is the standard gradient on Rm+1, and

χt1,t2(x1, x2) := χ
(1)
t1 ∗Rm χ

(2)
t2 (x1, x2), (2-2)

χ
(1)
t1 (x1, x2) := t1−(n+m)χ (1)(x1/t1, x2/t1), χ

(2)
t2 (z) := t2−mχ (2)(z/t2), and χ (1)(x, y) and χ (2)(z) are the

indicator functions of the unit balls of Rn+m and Rm, respectively.

Definition 2.3. The flag Hardy space H 1
F (R

n
×Rm) is defined to be the collection of f ∈ L1(Rn

×Rm)

such that SF (u) ∈ L1(Rn
×Rm). The norm of H 1

F (R
n
×Rm) is defined by

‖ f ‖H1
F (R

n×Rm) = ‖SF (u)‖L1(Rn×Rm). (2-3)

We now recall the definition of the flag BMO space.

Definition 2.4. The flag BMO space BMOF (R
n
×Rm) is defined to be the collection of b∈ L1

loc(R
n
×Rm)

such that

‖b‖BMOF (Rn×Rm) := sup
�

(
1
|�|

∫
T (�)
|t1∇(1)t2∇(2)u(w1, w2, t1, t2)|2

dw1 dt1dw2 dt2
t1t2

)1
2

<∞, (2-4)

where the supremum is taken over all open sets in Rn
×Rm with finite measures, and T (�)=

⋃
R⊂� T (R)

with R = I × J , `(I )≤ `(I ) and T (R)= I ×
( 1

2`(I ), `(I )
]
× J ×

( 1
2`(J ), `(J )

]
.

Proposition 2.5. Given two functions b, f ∈ L2(Rn+m), we have

[[b, R(1)j ], R(2)k ]2( f )= [[b, R(2)k ]2, R(1)j ]( f ). (2-5)

Proof. By definition, we see that

[[b, R(1)j ], R(2)k ]2( f )(x1, x2)= [b, R(1)j ]R
(2)
k ∗2 f (x1, x2)− R(2)k ∗2 ([b, R(1)j ]( f ))(x1, x2)

= b(x1, x2)R
(1)
j ∗ R(2)k ∗2 f (x1, x2)− R(1)j ∗ (b · R

(2)
k ∗2 f )(x1, x2)

− R(2)k ∗2 (b · R
(1)
j ∗ f − R(1)j ∗ (b · f ))(x1, x2)

= b(x1, x2)R
(1)
j ∗ R(2)k ∗2 f (x1, x2)− R(1)j ∗ (b · R

(2)
k ∗2 f )(x1, x2)

− R(2)k ∗2 (b · R
(1)
j ∗ f )(x1, x2)+ R(2)k ∗2 R(1)j ∗ (b · f )(x1, x2).

And we also have

[[b, R(2)k ]2, R(1)j ]( f )(x1, x2)= [b, R(2)k ]2 R(1)j ∗ f (x1, x2)− R(1)j ∗ ([b, R(2)k ]2( f ))(x1, x2)

= b(x1, x2)R
(2)
k ∗2 Rj ∗ f (x1, x2)− R(2)k ∗2 (b · R

(1)
j ∗ f )(x1, x2)

− R(1)j ∗ (b · R
(2)
k ∗2 f − R(2)k ∗2 (b · f ))(x1, x2)

= b(x1, x2)R
(2)
k ∗2 R(1)j ∗ f (x1, x2)− R(2)k ∗2 (b · R

(1)
j ∗ f )(x1, x2)

− R(1)j ∗ (b · R
(2)
k ∗2 f )(x1, x2)+ R(1)j ∗ R(2)k ∗2 (b · f )(x1, x2).
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It is direct to see that, by changing of variables,

R(2)k ∗2 R(1)j ∗ f (x1, x2)=

∫
R(2)k (x2− z)R(1)j (x1− y1, z− y2) f (y1, y2) dz dy1 dy2

=

∫
R(2)k (z̃− y2)R

(1)
j (x1− y1, x2− z̃) f (y1, y2) dz̃ dy1 dy2

=

∫
R(1)j (x1− y1, x2− z̃)R(2)k (z̃− y2) f (y1, y2) dz̃ dy1 dy2

= R(1)j ∗ R(2)k ∗2 f (x1, x2),

which implies that (2-5) holds. �

3. Upper bound of the iterated commutator [[b, R(1)
i ], R(2)

j ]2

In this section, we prove Theorem 1.3, i.e., the upper bound of the iterated commutator [[b, R(1)i ], R(2)j ]2.
As we pointed out earlier, in the flag setting, there is lack of a suitable wavelet basis or Haar basis
and hence the approaches in [Lacey et al. 2009; Dalenc and Ou 2016] are not available. We establish
a fundamental duality argument (Lemma 3.3) with respect to general flag-type area integrals and flag
Carleson measures, and then apply the technique of harmonic expansion to obtain the full versions
of flag-type Carleson measure inequalities (Proposition 3.5), which plays the role of “paraproducts”.
Then, by considering the bilinear form associated with the iterated commutator [[b, R(1)i ], R(2)j ]2 and
by integration by parts, we can decompose the bilinear form into a summation of different versions of
“paraproducts”. Then the upper bound of the iterated commutator [[b, R(1)i ], R(2)j ]2 follows from applying
Proposition 3.5 to each “paraproducts”.

Extension via flag Poisson operator. For any f ∈ L1(Rn
× Rm), we define the flag Poisson integral

of f by
F(x1, x2, t1, t2) := Pt1,t2 ∗ f (x1, y2), (3-1)

where
Pt1,t2(x1, x2)= P (1)t1 ∗Rm P (2)t2 (x1, x2). (3-2)

Since P(x1, x2) ∈ L1(Rn
×Rm), it easy to see that F(x1, x2, t1, t2) is well-defined. Moreover, for any

fixed t1 and t2, we know Pt1,t2 ∗ f (x1, x2) is a bounded C∞ function and the function F(x1, x2, t1, t2) is
harmonic in (x1, x2, t1) and (x2, t2), respectively. F(x1, x2, t1, t2) is the flag harmonic extension of f to
Rn+1
+ ×Rm+1

+ . More precisely,

1Rn+m+1 F(x1, x2, t1, t2)= (∂2
t1 +1x1,x2)F(x1, x2, t1, t2)= 0 in Rn+m+1

+
,

1Rm+1 F(x1, x2, t1, t2)= (∂2
t2 +1x2)F(x1, x2, t1, t2)= 0 in Rm+1

+
,

(3-3)

and

lim
t1→0

∂t1 F(x1, x2, t1, t2)=−(1x1,x2)
1
2 P (2) ∗Rm f (x1, x2) on Rn+m,

lim
t2→0

∂t2 F(x1, x2, t1, t2)=−(1x2)
1
2 P (1) ∗ f (x1, x2) on Rn+m,
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lim
t1→0

F(x1, x2, t1, t2)= P (2) ∗Rm f (x1, x2) on Rn+m,

lim
t2→0

F(x1, x2, t1, t2)= P (1) ∗ f (x1, x2) on Rn+m,

lim
t1→0, t2→0

F(x1, x2, t1, t2)= f (x1, x2) on Rn+m,

lim
|(x1,x2,t1)|→∞

F(x1, x2, t1, t2)= 0,

lim
|(x2,t2)|→∞

F(x1, x2, t1, t2)= 0.

We then have the following lemma providing a connection between the boundary values f and the flag
harmonic extension F. This follows from the decay of the flag harmonic extensions of f and repeated
applications of integration by parts in the variables t1 and t2.

Lemma 3.1. For f ∈ L1(Rn
×Rm), let F be the same as in (3-1). Then we have∫

Rn×Rm
f (x1, x2) dx1 dx2 =

∫
Rn+1
+ ×Rm+1

+

t1∂2
t1 t2∂2

t2 F(x1, x2, t1, t2) dx1 dx2 dt1 dt2. (3-4)

Proof. We start from the right-hand side of (3-4). We write∫
Rn+1
+ ×Rm+1

+

t1∂2
t1 t2∂2

t2 F(x1, x2, t1, t2) dx1 dx2 dt1 dt2

=

∫
Rm+1
+

t2 ∂2
t2 P (2)t2 ∗Rm

(∫
Rn+1
+

t1 ∂2
t1 P (1)t1 ∗ f (x1, x2) dx1 dt1

)
dx2 dt2

=

∫
Rm

(∫
Rn+1
+

t1 ∂2
t1 P (1)t1 ∗ f (x1, x2) dx1 dt1

)
dx2,

where the last equality follows from decay of the flag harmonic extensions of f and using integration by
parts in the variable t2. To continue, we write the right-hand side of the last equality above as∫

Rn+m+1
+

t1 ∂2
t1 P (1)t1 ∗ f (x1, x2) dx1 dx2 dt1 =

∫
Rn+m

f (x1, x2) dx1 dx2,

which yields (3-4). Again, the last equality follows from decay of the flag harmonic extensions of f and
using integration by parts in the variable t1. �

Flag area functions and estimates. We also have a more general version of the area function.

Definition 3.2. For a function G(x1, x2, t1, t2) defined on Rn+1
+ ×Rm+1

+ , the general flag-type Lusin area
integral of G is defined by

SF,L(G)(x1, x2) :=

{∫
Rn+1
+

∫
Rm+1
+

χt,s(x1−w1, x2−w2)|G(w1, w2, t1, t2)|2
dw1 dt1
tn+m+1
1

dw2 dt2
tm+1
2

}1
2

. (3-5)
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Lemma 3.3. Suppose F(x1, x2, t1, t2) and G(x1, x2, t1, t2) are defined on Rn+1
+ ×Rm+1

+ . Then the follow-
ing estimate holds:∫

Rn+1
+

∫
Rm+1
+

F(x1, x2, t1, t2)G(x1, x2, t1, t2) dx1 dx2 dt1 dt2

≤ C sup
�⊂Rn×Rm

(
1
|�|

∫
T (�)

t1 t2 |F(y1, y2, t1, t2)|2 dy1 dy2 dt1 dt2

)1/2

×

∫
Rn

∫
Rm

(∫
Rn+1
+

∫
Rm+1
+

χt1,t2(x1− y1, x2− y2)|G(y1, y2, t1, t2)|2
dy1 dy2 dt1 dt2

tn+m+1
1 tm+1

2

)1/2

dx1 dx2. (3-6)

Proof. Suppose both factors on the right-hand side above are finite, since otherwise there is nothing to
prove. We also note that the second factor is actually ‖SF (G)‖L1(Rn×Rm).

We now let
�k := {(x1, x2) ∈ Rn

×Rm
: SF,L(G)(x1, x2) > 2k

}

and define

Bk :=
{

R = I1× I2 : |(I1× I2)∩�k |>
1
2 |I1× I2|, |(I1× I2)∩�k+1| ≤

1
2 |I1× I2|

}
,

where I1 and I2 are dyadic cubes in Rn and Rm with side-lengths `(I ) and `(J ) satisfying `(I )≤ `(J ).
Moreover, we define

�k =
⋃

R∈Bk

R and �̃k =
{
(x1, x2) ∈ Rn

×Rm
: Mflag(χ�k )(x1, x2) >

1
2

}
.

Next, we have∫
Rn+1
+

∫
Rm+1
+

F(x1, x2, t1, t2)G(x1, x2, t1, t2) dx1 dx2 dt1 dt2

=

∑
k

∑
R∈Bk

∫
T (R)

√
t1t2 F(x1, x2, t1, t2)

G(x1, x2, t1, t2)
√

t1t2
dx1 dx2 dt1 dt2

≤

∑
k

(∑
R∈Bk

∫
T (R)

t1t2|F(x1, x2, t1, t2)|2 dx1 dx2 dt1 dt2

)1/2

×

(∑
R∈Bk

∫
T (R)
|G(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2

=

∑
k

(
1
|�k |

∑
R∈Bk

∫
T (R)

t1t2|F(x1, x2, t1, t2)|2 dx1 dx2 dt1 dt2

)1/2

×

(
|�k |

∑
R∈Bk

∫
T (R)
|G(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2

≤

∑
k

(
1
|�k |

∫
T (�k)

t1t2|F(x1, x2, t1, t2)|2 dx1 dx2 dt1 dt2

)1/2

×

(
|�̃k |

∑
R∈Bk

∫
T (R)
|G(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2
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≤ sup
�⊂Rn×Rm

(
1
|�|

∫
T (�)

t1t2|F(x1, x2, t1, t2)|2 dx1 dx2 dt1 dt2

)1/2

×

∑
k

(
|�̃k |

∑
R∈Bk

∫
T (R)
|G(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2

.

As for the second factor in the last inequality above, note that

22k
|�̃k\�k | ≥

∫
�̃k\�k

SF,L(G)(x1, x2)
2 dx1 dx2

=

∫
�̃k\�k

∫
Rn+1
+

∫
Rm+1
+

χt1,t2(x1− y1, x2− y2)|G(y1, y2, t1, t2)|2
dy1 dy2 dt1 dt2

tn+m+1
1 tm+1

2

dx1 dx2

=

∫
Rn+1
+

∫
Rm+1
+

∫
�̃k\�k

χt1,t2(x1− y1, x2− y2) dx1 dx2 |G(y1, y2, t1, t2)|2
dy1 dy2 dt1 dt2

tn+m+1
1 tm+1

2

≈

∫
Rn+1
+

∫
Rm+1
+

|G(y1, y2, t1, t2)|2
dy1 dy2 dt1 dt2

t1t2

≥

∑
R∈Bk

∫
T (R)
|G(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

.

Thus, we have∫
Rn+1
+

∫
Rm+1
+

F(x1, x2, t1, t2)G(x1, x2, t1, t2) dx1 dx2 dt1 dt2

≤ sup
�⊂Rn×Rm

(
1
|�|

∫
T (�)

t1t2|F(x1, x2, t1, t2)|2 dx1 dx2 dt1 dt2

)1/2∑
k

(|�̃k |22k
|�̃k\�k |)

1/2

≤ sup
�⊂Rn×Rm

(
1
|�|

∫
T (�)
|t1t2 F(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2∑
k

|�k |2k

≤ sup
�⊂Rn×Rm

(
1
|�|

∫
T (�)
|t1t2 F(x1, x2, t1, t2)|2

dx1 dx2 dt1 dt2
t1t2

)1/2

‖SF,L(G)‖L1(Rn×Rm),

which gives (3-6). �

From Lemma 3.3 above and the definition of BMOF (R
n
×Rm), we can obtain the following corollary

immediately.

Corollary 3.4. Suppose G(x1, x2, t1, t2) is defined on Rn+1
+ × Rm+1

+ , and F(x1, x2, t1, t2) := Pt1,t2 ∗

f (x1, x2), where f ∈ BMOF (R
n
×Rm). Then we have∫

Rn+1
+

∫
Rm+1
+

|∇
(1)
∇
(2)F(x1, x2, t1, t2)||G(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖ f ‖BMOF (Rn×Rm)‖SF,L(G)‖L1(Rn×Rm). (3-7)

Moreover, based on Lemma 3.3, we can also establish the following estimates.
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Proposition 3.5. Suppose F(x1, x2, t1, t2) = Pt1,t2 ∗ f (x1, x2), G(x1, x2, t1, t2) = Pt1,t2 ∗ g(x1, x2), and
B(x1, x2, t1, t2)= Pt1,t2 ∗ b(x1, x2). Then we have∫

Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)
∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 (−1x2)

1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 (−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-8)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 (−1x2)

1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 f ‖L p′ (Rn×Rm), (3-9)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 (−1x2)

1
2 g‖L p(Rn×Rm)‖(−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-10)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm), (3-11)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)
∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 (−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-12)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 f ‖L p′ (Rn×Rm), (3-13)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 g‖L p(Rn×Rm)‖(−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-14)
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Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm), (3-15)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)
∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x2)
1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 (−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-16)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(1)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x2)
1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 f ‖L p′ (Rn×Rm), (3-17)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x2)
1
2 g‖L p(Rn×Rm)‖(−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-18)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

× |F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖(−1x2)
1
2 g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm), (3-19)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇(1)∇(2)G(x1, x2, t1, t2)|

× |∇
(1)
∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖(−1x1,x2)
1
2 (−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-20)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇(1)∇(2)G(x1, x2, t1, t2)|

× |∇
(1)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖(−1x1,x2)
1
2 f ‖L p′ (Rn×Rm), (3-21)
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Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇(1)∇(2)G(x1, x2, t1, t2)|

× |∇
(2)F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖(−1x2)
1
2 f ‖L p′ (Rn×Rm), (3-22)

∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇(1)∇(2)G(x1, x2, t1, t2)|

× |F(x1, x2, t1, t2)| dx1 dx2 dt1 dt2

≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm). (3-23)

Proof. We first point out that for f ∈ C∞0 (R
n+m), F(x1, x2, t1, t2)= Pt1,t2 ∗ f (x1, x2),

sup
(y1,y2,t1,t2)

χt1,t2 (x1−y1,x2−y2) 6=0

|F(y1, y2, t1, t2)| ≤ sup
(y1,y2,t1,t2)

|x1−y1|<t1+t2,|x2−y2|<t2

|Pt1,t2 ∗ f (y1, y2)|

≤ M1(M2( f ( ·1 , · ))( ·2 ))(x1, x2),

where M1 and M2 are the Hardy–Littlewood maximal functions on Rn+m and Rm, respectively.
Next, based on the estimate above and from the property of the Poisson semigroup, we have

sup
(y1,y2,t1,t2)

χt1,t2 (x1−y1,x2−y2) 6=0

|∂t1∂t2 F(y1, y2, t1, t2)| ≤ sup
(y1,y2,t1,t2)

|x1−y1|<t1+t2,|x2−y2|<t2

|Pt1,t2 ∗((−1(1))
1
2 (−1(2))

1
2 f )(y1, y2)|

≤ M1
(
M2(((−1x1,x2)

1
2 (−1x2)

1
2 f )( ·1 , · ))( ·2 )

)
(x1, x2).

Also, we have
sup

(y1,y2,t1,t2)
χt1,t2 (x1−y1,x2−y2) 6=0

|∇y1,y2∇y2 F(y1, y2, t1, t2)| ≤ sup
(y1,y2,t1,t2)

|x1−y1|<t1+t2,|x2−y2|<t2

|Pt1,t2 ∗ (∇·1,·2∇·2 f )(y1, y2)|

≤ M1
(
M2((∇·1,·2∇·2 f )( ·1 , · ))( ·2 )

)
(x1, x2).

Then, we first consider (3-8). Based on the estimates above and Corollary 3.4, we have∫
Rn+1
+ ×Rm+1

+

t1t2|∇(1)∇(2)B(x1, x2, t1, t2)||∇x1,x2∇x2∇
(1)
∇
(2)G(x1, x2, t1, t2)|

×|∇
(1)
∇
(2)F(x1, x2, t1, t2)|dx1 dx2 dt1 dt2

≤C‖b‖BMOF (Rn×Rm)

∫
Rn×Rm

SF,L(t1t2∇x1,x2∇x2∇
(1)
∇
(2)G)(x1, x2)

×

(
M1
(
M2(((−1x1,x2)

1
2 (−1x2)

1
2 f )( ·1 , ·))( ·2 )

)
(x1, x2)

+M1
(
M2((∇·1,·2∇·2 f )( ·1 , ·))( ·2 )

)
(x1, x2)

)
dx1 dx2

≤C‖b‖BMOF (Rn×Rm)∫
Rn×Rm

SF
(
∇x1,x2∇x2(−1x1,x2)

−
1
2 (−1x2)

−
1
2 (−1x1,x2)

1
2 (−1x2)

1
2 G
)
(x1, x2)

×

(
M1
(
M2(((−1x1,x2)

1
2 (−1x2)

1
2 f )( ·1 , ·))( ·2 )

)
(x1, x2)

+M1
(
M2((∇·1,·2∇·2(−1·1,·2)

−
1
2 (−1·2)

−
1
2 (−1·1,·2)

1
2 (−1·2)

1
2 f )( ·1 , ·))( ·2 )

)
(x1, x2)

)
dx1 dx2

≤C‖b‖BMOF (Rn×Rm)‖(−1x1,x2)
1
2 (−1x2)

1
2 g‖L p(Rn×Rm)‖(−1x1,x2)

1
2 (−1x2)

1
2 f ‖L p′ (Rn×Rm), (3-24)
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where in the second inequality the area function SF is defined as in Definition 2.2, and the last inequality
follows from Hölder’s inequality and boundedness of the maximal functions as well as the boundedness
of the flag Riesz transforms. Hence we see that (3-8) holds.

By using an estimate similar to that above, we can obtain the estimates in (3-9)–(3-23). We omit the
details here since they are straightforward. �

Upper bound for iterated commutators.

Theorem 3.6. For every b ∈ BMOF (R
n
× Rm), g ∈ C∞c (R

n
× Rm) and for any i = 1, 2, . . . ,m + n,

j = 1, . . . , n, there exits a positive constant C depending only on p, n and m such that

‖[[b, R(1)i ], R(2)j ]2(g)‖L p(Rn×Rm) ≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm). (3-25)

Proof. Recall that

[[b, R(1)i ], R(2)j ]2(g)(x1, x2)= b(x1, x2)R
(1)
i ∗ R(2)j ∗2 g(x1, x2)− R(1)i ∗ (b · R

(2)
j ∗2 g)(x1, x2)

− R(2)j ∗2 (b · R
(1)
i ∗ g)(x1, x2)+ R(2)j ∗2 R(1)i ∗ (b · g)(x1, x2).

Hence, for every f ∈ C∞c (R
n
×Rm), we have

〈 f, [[b, R(1)i ], R(2)j ]2(g)〉 = 〈 f · b, R(1)i ∗ R(2)j ∗2 g〉+ 〈R(1)i ∗ f, b · R(2)j ∗2 g〉

+ 〈R(2)j ∗2 f, b · R(1)i ∗ g〉+ 〈R(2)j ∗2 R(1)i ∗ f, b · g〉.

Denote by B, F, G the flag harmonic extensions of the functions b, f, g, respectively, as defined
in (3-1). And for each fixed i, j , denote by (R(1)i ∗ f )∼, (R(2)j ∗2 f )∼ and (R(1)i ∗ R(2)j ∗2 f )∼ the flag
harmonic extensions of R(1)i ∗ f , R(2)j ∗2 f and R(1)i ∗ R(2)j ∗2 f .

Then we write

〈 f, [[b, R(1)i ], R(2)j ]2(g)〉

=

∫
Rn+1
+ ×Rm+1

+

t1∂2
t1 t2∂2

t2

(
F ·B·(R(1)i ∗R(2)j ∗2g)∼+(R(1)i ∗ f )∼·B·(R(2)j ∗2g)∼

+(R(2)j ∗2 f )∼ ·B·(R(1)i ∗g)
∼
+(R(2)j ∗2 R(1)i ∗ f )∼·B·G

)
dx1 dx2 dt1 dt2. (3-26)

We now claim that the right-hand side of (3-26) is bounded by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm). (3-27)

To see this, we compute the derivatives t1∂2
t1 t2∂2

t2 for the integrand in the right-hand side of (3-26).
Then we have the following terms:

C1 =

∫
Rn+1
+ ×Rm+1

+

(
t1∂2

t1 t2∂2
t2 B · F · (R(1)i ∗ R(2)j ∗2 g)∼+ t1∂2

t1 t2∂2
t2 B · (R(1)i ∗ f )∼ · (R(2)j ∗2 g)∼

+ t1∂2
t1 t2∂2

t2 B · (R(2)j ∗2 f )∼ · (R(1)i ∗ g)∼

+ t1∂2
t1 t2∂2

t2 B · (R(2)j ∗2 R(1)i ∗ f )∼ ·G
)

dx1 dx2 dt1 dt2; (3-28)
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C2=

∫
Rn+1
+ ×Rm+1

+

t1∂2
t1 t2∂t2 B ·∂t2(F ·(R

(1)
i ∗R(2)j ∗2 g)∼)+t1∂2

t1 t2∂t2 B ·∂t2((R
(1)
i ∗ f )∼ ·(R(2)j ∗2 g)∼)

+ t1∂2
t1 t2∂t2 B · ∂t2((R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1∂2
t1 t2∂t2 B · ∂t2((R

(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-29)

C3=

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2 ∂2
t2 B ·∂t1(F ·(R

(1)
i ∗R(2)j ∗2 g)∼)+t1 ∂t1 t2 ∂2

t2 B ·∂t1((R
(1)
i ∗ f )∼ ·(R(2)j ∗2 g)∼)

+ t1 ∂t1 t2 ∂2
t2 B · ∂t1((R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1 ∂t1 t2 ∂2
t2 B · ∂t1((R

(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-30)

C4=

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2 ∂t2 B·∂t1∂t2(F ·(R
(1)
i ∗R(2)j ∗2g)∼)+t1 ∂t1 t2 ∂t2 B·∂t1∂t2((R

(1)
i ∗ f )∼·(R(2)j ∗2g)∼)

+t1 ∂t1 t2 ∂t2 B·∂t1∂t2((R
(2)
j ∗2 f )∼·(R(1)i ∗g)

∼)

+t1 ∂t1 t2 ∂t2 B·∂t1∂t2((R
(2)
j ∗2 R(1)i ∗ f )∼·G)dx1 dx2 dt1 dt2; (3-31)

C5=

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2 B ·∂t1∂
2
t2(F ·(R

(1)
i ∗R(2)j ∗2 g)∼)+t1 ∂t1 t2 B ·∂t1∂

2
t2((R

(1)
i ∗ f )∼ ·(R(2)j ∗2 g)∼)

+ t1 ∂t1 t2 B · ∂t1∂
2
t2((R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1 ∂t1 t2 B · ∂t1∂
2
t2((R

(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-32)

C6=

∫
Rn+1
+ ×Rm+1

+

t1t2 ∂t2 B ·∂2
t1∂t2(F ·(R

(1)
i ∗R(2)j ∗2 g)∼)+t1t2∂t2 B ·∂2

t1∂t2((R
(1)
i ∗ f )∼ ·(R(2)j ∗2 g)∼)

+ t1t2 ∂t2 B · ∂2
t1∂t2((R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2 ∂t2 B · ∂2
t1∂t2((R

(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-33)

C7 =

∫
Rn+1
+ ×Rm+1

+

t1t2 ∂2
t2 B · ∂2

t1(F · (R
(1)
i ∗ R(2)j ∗2 g)∼)+ t1t2 ∂2

t2 B · ∂2
t1((R

(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼)

+ t1t2 ∂2
t2 B · ∂2

t1((R
(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2 ∂2
t2 B · ∂2

t1((R
(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-34)

C8 =

∫
Rn+1
+ ×Rm+1

+

t1t2 ∂2
t1 B · ∂2

t2(F · (R
(1)
i ∗ R(2)j ∗2 g)∼)+ t1t2 ∂2

t1 B · ∂2
t2((R

(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼)

+ t1t2 ∂2
t1 B · ∂2

t2((R
(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2 ∂2
t1 B · ∂2

t2((R
(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2; (3-35)

C9 =

∫
Rn+1
+ ×Rm+1

+

t1t2 B · ∂2
t1∂

2
t2(F · (R

(1)
i ∗ R(2)j ∗2 g)∼)+ t1t2 B · ∂2

t1∂
2
t2((R

(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼)

+ t1t2 B · ∂2
t1∂

2
t2((R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2 B · ∂2
t1∂

2
t2((R

(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2. (3-36)



COMMUTATORS OF MULTIPARAMETER FLAG SINGULAR INTEGRALS AND APPLICATIONS 1341

We first consider C1. Note that ∂2
t2 B =−1x2 B =−∇x2 · ∇x2 B and that ∂2

t1 B =−1x1,x2 B =−∇x1,x2 ·

∇x1,x2 B. So, integration by parts gives

C1 =

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · ∇x1,x2∇x2(F · (R
(1)
i ∗ R(2)j ∗2 g)∼)

+ t1t2∇x1,x2∇x2 B · ∇x1,x2∇x2((R
(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼)

+ t1t2∇x1,x2∇x2 B · ∇x1,x2∇x2((R
(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2∇x1,x2∇x2 B · ∇x1,x2∇x2((R
(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2

=: C1,1+ C1,2+ C1,3+ C1,4.

For the first term, it is clear that

C1,1 =

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · ∇x1,x2∇x2 F · (R(1)i ∗ R(2)j ∗2 g)∼ dx1 dx2 dt1 dt2

=

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · ∇x1,x2 F · ∇x2(R
(1)
i ∗ R(2)j ∗2 g)∼ dx1 dx2 dt1 dt2

=

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · ∇x2 F · ∇x1,x2(R
(1)
i ∗ R(2)j ∗2 g)∼ dx1 dx2 dt1 dt2

=

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · F · ∇x1,x2∇x2(R
(1)
i ∗ R(2)j ∗2 g)∼ dx1 dx2 dt1 dt2

=: C1,1,1+ C1,1,2+ C1,1,3+ C1,1,4.

It is direct that C1,1,1 and C1,1,4 can be handled by using (3-9), and C1,1,2 and C1,1,3 can be handled by
using (3-10), which gives

C1,1 ≤ C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm).

Symmetrically we obtain the estimate for C1,4, and using similar estimates we can handle C1,2 and C1,3.
All these three terms are have the same upper as C1,1 above.

Next, for C2, note that ∂2
t1 B=−1x1,x2 B=−∇x1,x2 ·∇x1,x2 B. Thus, similar to the term C1, by integration

by parts, we have

C2 =−

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2 ∂t2 B · ∇x1,x2 ∂t2(F · (R
(1)
i ∗ R(2)j ∗2 g)∼)

+ t1t2∇x1,x2 ∂t2 B · ∇x1,x2 ∂t2((R
(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼)

+ t1t2∇x1,x2 ∂t2 B · ∇x1,x2 ∂t2((R
(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ t1t2∇x1,x2 ∂t2 B · ∇x1,x2 ∂t2((R
(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2

=: C2,1+ C2,2+ C2,3+ C2,4.

Again, the upper bounds from the four terms above can be obtained by applying Proposition 3.5, and they
are all controlled by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm).

The term C3 can be handled symmetrically to C2 and we obtain the same upper bounds.
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For the term C4, by noting that |∂t1∂t2 B(x1, x2, t1, t2)| is bounded by |∇(1)∇(2)B(x1, x2, t1, t2)|, we
obtain that C4 is bounded by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm),

where we apply again the upper bounds in Proposition 3.5.
We now turn to the term C9. We first point out the following equalities:

∂t1(R
(1)
i ∗ R(2)j ∗2 g)∼(x1, x2)=−c ∂(x1,x2),i (R

(2)
j ∗2 g)∼(x1, x2),

∂2
t1(R

(1)
i ∗ R(2)j ∗2 g)∼(x1, x2)=−c ∂t1∂(x1,x2),i (R

(2)
j ∗2 g)∼(x1, x2),

∂t2(R
(1)
i ∗ R(2)j ∗2 g)∼(x1, x2)=−c ∂x2, j (R

(1)
i ∗ g)∼(x1, x2),

∂2
t2(R

(1)
i ∗ R(2)j ∗2 g)∼(x1, x2)=−c ∂t2∂x2, j (R

(1)
i ∗ g)∼(x1, x2),

∂t1(R
(1)
i ∗ f )∼ =−c ∂(x1,x2),i ( f )∼,

∂2
t1(R

(1)
i ∗ f )∼ =−c ∂t1∂(x1,x2),i ( f )∼,

∂t2(R
(2)
j ∗2 g)∼ =−c ∂x2, j (g)

∼,

∂2
t2(R

(2)
j ∗2 g)∼ =−c ∂t2∂x2, j (g)

∼.

Then for the term C9, we get

∂2
t1∂

2
t2(F ·(R

(1)
i ∗R(2)j ∗2 g)∼+(R(1)i ∗ f )∼ ·(R(2)j ∗2 g)∼+(R(2)j ∗2 f )∼ ·(R(1)i ∗g)∼+(R(2)j ∗2 R(1)i ∗ f )∼ ·G)

= 4 ∂(x1,x2),i∂t1∂x2, j ∂t2(FG)

−2∇x1,x2 ∂x2, j ∂t2(∇x1,x2(R
(1)
i ∗ f )∼ ·G)−2∇x1,x2 ∂x2, j ∂t2(F ·∇x1,x2(R

(1)
i ∗g)∼)

+2∇x1,x2 ∂x2, j ∂t2(∇x1,x2 F ·(R(1)i ∗g)∼)+2∇x1,x2 ∂x2, j ∂t2((R
(1)
i ∗ f )∼ ·∇x1,x2 G)

−2 ∂(x1,x2),i∂t1∇x2(∇x2(R
(2)
j ∗ f )∼ ·G)

+∇x1,x2∇x2(∇x1,x2∇x2(R
(2)
j ∗2 R(1)i ∗ f )∼ ·G)+∇x1,x2∇x2(∇x2(R

(2)
j ∗2 f )∼ ·∇x1,x2(R

(1)
i ∗g)∼)

−∇x1,x2∇x2(∇x1,x2∇x2(R
(2)
j ∗2 f )∼ ·(R(1)i ∗g)∼)−∇x1,x2∇x2(∇x2(R

(2)
j ∗2 R(1)i ∗ f )∼ ·∇x1,x2 G)

−2 ∂(x1,x2),i∂t1∇x2(F ·∇x2(R
(2)
j ∗g)∼)

+∇x1,x2∇x2(∇x1,x2(R
(1)
i ∗ f )∼ ·∇x2(R

(2)
j ∗2 g)∼)+∇x1,x2∇x2(F ·∇x1,x2∇x2(R

(1)
i ∗R(2)j ∗2 g)∼)

−∇x1,x2∇x2(∇x1,x2∇x2(R
(2)
j ∗2 f )∼ ·(R(1)i ∗g)∼)−∇x1,x2∇x2(∇x2(R

(2)
j ∗2 R(1)i ∗ f )∼ ·∇x1,x2 G)

+2 ∂(x1,x2),i∂t1∇x2(∇x2 F ·(R(2)j ∗g)∼)

−∇x1,x2∇x2(∇x1,x2∇x2(R
(1)
i ∗ f )∼ ·(R(2)j ∗2 g)∼)−∇x1,x2∇x2(∇x2 F ·∇x1,x2(R

(1)
i ∗R(2)j ∗2 g)∼)

+∇x1,x2∇x2(∇x1,x2∇x2 F ·(R(1)i ∗R(2)j ∗2 g)∼)+∇x1,x2∇x2(∇x2(R
(1)
i ∗ f )∼ ·∇x1,x2(R

(2)
j ∗2 g)∼)

+2 ∂(x1,x2),i∂t1∇x2((R
(2)
j ∗ f )∼ ·∇x2 G)

−∇x1,x2∇x2(∇x1,x2(R
(1)
i ∗R(2)j ∗2 f )∼ ·∇x2 G)−∇x1,x2∇x2((R

(2)
j ∗2 f )∼ ·∇x1,x2∇x2(R

(1)
i ∗g)∼)

+∇x1,x2∇x2(∇x1,x2(R
(2)
j ∗2 f )∼ ·∇x2(R

(1)
i ∗g)∼)+∇x1,x2∇x2((R

(1)
i ∗R(2)j ∗2 f )∼ ·∇x1,x2∇x2 G).
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Thus, we input the above 25 terms back into the right-hand side of C9 and obtain the terms as follows:

C9 =

∫
Rn+1
+ ×Rm+1

+

t1t2 B · ∂2
t1∂

2
t2

(
F · (R(1)i ∗ R(2)j ∗2 g)∼+ (R(1)i ∗ f )∼ · (R(2)j ∗2 g)∼

+ (R(2)j ∗2 f )∼ · (R(1)i ∗ g)∼+ (R(2)j ∗2 R(1)i ∗ f )∼ ·G
)

dx1 dx2 dt1 dt2

= 4
∫

Rn+1
+ ×Rm+1

+

t1t2 ∂(x1,x2),i∂x2, j B · ∂t1∂t2(FG) dx1 dx2 dt1 dt2

− 2
∫

Rn+1
+ ×Rm+1

+

t1t2∇x1,x2 ∂x2, j B · ∂t2(∇x1,x2(R
(1)
i ∗ f )∼ ·G) dx1 dx2 dt1 dt2

· · · +

∫
Rn+1
+ ×Rm+1

+

t1t2∇x1,x2∇x2 B · ((R(1)i ∗ R(2)j ∗2 f )∼ · ∇x1,x2∇x2 G) dx1 dx2 dt1 dt2

= C9,1+ C9,2+ · · ·+ C9,25,

where we get all these terms from the equality ∂2
t1∂

2
t2(· · · ) by integration by parts and taking all the

gradients or partial derivatives with respect to x1, x2 to the function B. By applying Proposition 3.5 to all
these terms, we obtain that they are all controlled by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm).

Next we consider the term C5, which can be considered as a cross term in between C1 and C9. To
continue, we write

∂2
t2(F ·(R

(1)
i ∗ R(2)j ∗2 g)∼+(R(1)i ∗ f )∼ ·(R(2)j ∗2 g)∼+(R(2)j ∗2 f )∼ ·(R(1)i ∗g)∼+(R(2)j ∗2 R(1)i ∗ f )∼ ·G)

= ∂2
t2(F · (R

(2)
j ∗2 (R

(1)
i ∗ g))∼+ (R(2)j ∗2 f )∼ · (R(1)i ∗ g)∼)

+ ∂2
t2((R

(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼+ (R(2)j ∗2 (R

(1)
i ∗ f ))∼ ·G)

= E1+ E2.

For the term E1, we write

E1 =−2 ∂x2, j ∂t2(F · (R
(1)
i ∗ g)∼)+∇x2

(
∇x2(R

(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼+ F · ∇x2(R

(2)
j ∗2 R(1)i ∗ g)∼

−∇x2 F · (R(2)j ∗2 R(1)i ∗ g)∼− (R(2)j ∗2 f )∼ · ∇x2(R
(1)
i ∗ g)∼

)
.

For the term E2, we write

E2 =−2 ∂x2, j ∂t2((R
(1)
i ∗ f )∼ ·G)+∇x2

(
∇x2(R

(2)
j ∗2 R(1)i ∗ f )∼ ·G+ (R(1)i ∗ f )∼ · ∇x2(R

(2)
j ∗2 g)∼

−∇x2(R
(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼− (R(2)j ∗2 f )∼ · ∇x2 G

)
.

As a consequence, by substituting the above 10 terms in the right-hand side of the equalities E1 and E2

back into the term C5, we have

C5 = 2
∫

Rn+1
+ ×Rm+1

+

t1 ∂t1 t2 ∂x2, j B · ∂t1∂t2(F · (R
(1)
i ∗ g)∼) dx1 dx2 dt1 dt2

−

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1(∇x2(R
(2)
j ∗2 f )∼ · (R(1)i ∗ g)∼) dx1 dx2 dt1 dt2
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−

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1(F · ∇x2(R
(2)
j ∗2 R(1)i ∗ g)∼) dx1 dx2 dt1 dt2

+

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1(∇x2 F · (R(2)j ∗2 R(1)i ∗ g)∼) dx1 dx2 dt1 dt2

+

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1((R
(2)
j ∗2 f )∼ · ∇x2(R

(1)
i ∗ g)∼) dx1 dx2 dt1 dt2

+ 2
∫

Rn+1
+ ×Rm+1

+

t1 ∂t1 t2 ∂x2, j B · ∂t1∂t2((R
(1)
i ∗ f )∼ ·G) dx1 dx2 dt1 dt2

−

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1(∇x2(R
(2)
j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2

−

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1((R
(1)
i ∗ f )∼ · ∇x2(R

(2)
j ∗2 g)∼) dx1 dx2 dt1 dt2

+

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1(∇x2(R
(1)
i ∗ f )∼ · (R(2)j ∗2 g)∼) dx1 dx2 dt1 dt2

+

∫
Rn+1
+ ×Rm+1

+

t1 ∂t1 t2∇x2 B · ∂t1((R
(2)
j ∗2 f )∼ · ∇x2 G) dx1 dx2 dt1 dt2

=: C5,1+ · · ·+ C5,10.

By applying Proposition 3.5 to these terms, we obtain that they are all controlled by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm).

The estimates for the term C6 can be handled symmetrically, and we get the same upper bound for C6 as
that for C5 above.

For the term C7, first note that ∂2
t2 B =−1x2 B =−∇x2 · ∇x2 B. Hence we can write

C7 =−

∫
Rn+1
+ ×Rm+1

+

t1t2∇x2 B · ∇x2 ∂
2
t1(F · (R

(1)
i ∗ R(2)j ∗2 g)∼+ (R(1)i ∗ f )∼ · (R(2)j ∗2 g)∼

+ (R(2)j ∗2 f )∼ · (R(1)i ∗ g)∼+ (R(2)j ∗2 R(1)i ∗ f )∼ ·G) dx1 dx2 dt1 dt2.

Similar to the calculation in the terms E1 and E2 in the estimate of C5, we can now decompose

∂2
t1(F ·(R

(1)
i ∗ R(2)j ∗2 g)∼+(R(1)i ∗ f )∼ ·(R(2)j ∗2 g)∼+(R(2)j ∗2 f )∼ ·(R(1)i ∗g)∼+(R(2)j ∗2 R(1)i ∗ f )∼ ·G)

into 10 terms, which further gives

C7 = C7,1+ · · ·+ C7,10.

Then by applying Proposition 3.5 to these terms, we obtain that they are all controlled by

C‖b‖BMOF (Rn×Rm)‖g‖L p(Rn×Rm)‖ f ‖L p′ (Rn×Rm).

The estimates for the term C8 can be handled symmetrically, and we get the same upper bound for C7

above. �
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4. Upper bound of the big commutator [b, R j,k]

We derive a general upper bound result for commutators of any flag singular integral. The proof is
based on the AF,p weighted estimate of flag singular integral operators and a Cauchy integral trick that
goes back to the work of Coifman, Rochberg, and Weiss [Coifman et al. 1976]. Roughly speaking, this
technique allows one to bootstrap the weighted estimate for an arbitrary linear operator to that of its
commutators of any order. This is the first time this idea is explored in the multiparameter flag setting.
In fact, although not needed for our upper bound proof, we demonstrate the bootstrapping result in the
general higher-order, two-weight setting.

A p weight and little bmo in the flag setting. To begin with, we define the Muckenhoupt Ap weights in
the flag setting, which consists of positive, locally integrable functions w satisfying

[w]AF,p := sup
R∈RF

(
1
|R|

∫
R
w(x, y) dx dy

)(
1
|R|

∫
R
w(x, y)1−p′ dx dy

)p−1

<∞, 1< p <∞, (4-1)

where p′ denotes the Hölder conjugate of p. The following result of [Wu 2014] provides a way of
approaching the AF,p weights via the classical weights:

AF,p = Ap ∩ A(2)p for all 1< p <∞, (4-2)

where Ap is the classical Muckenhoupt Ap class of weights on Rn+m, and A(2)p consists of weights w(x, y)
such that w(x, · ) ∈ Ap with uniformly bounded characteristics for a.e. fixed x ∈ Rn.

We first show that a similar relation holds true for bmoF , which will be a useful tool for us in the study
of this space.

Lemma 4.1. Let BMO(Rn+m)denote the classical John–Nirenberg BMO space on Rn+m, and BMO(2)(Rm)

be the space consisting of functions f (x, y) such that f (x, · ) ∈ BMO(Rm) for a.e. fixed x ∈ Rn with
uniformly bounded norm. There holds

bmoF (R
n+m)= BMO(Rn+m)∩BMO(2)(Rm)

with comparable norms.

Proof. The inclusion

bmoF (R
n+m)⊂ BMO(Rn+m)∩BMO(2)(Rm)

can be easily verified. Indeed, the inclusion bmoF (R
n+m)⊂ BMO(Rn+m) is obvious from the definition.

Now fix x ∈ Rn. For any cube J ⊂ Rm, one can find a sequence of cubes Ik ⊂ Rn such that `(Ik)≤ `(J )
and Ik shrinks to the point {x} as k→∞. The containment thus follows from the Lebesgue differentiation
theorem.

The other inclusion (“⊃”) of the lemma follows from Proposition 4.2 below, which establishes the
exp-log connection between AF,p weights and bmoF (R

n+m), much as in the one-parameter and the
product settings. �
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Proposition 4.2. Suppose w is a weight and 1< p <∞. We have

(i) if w ∈ AF,p, then logw ∈ bmoF (R
n+m);

(ii) if logw ∈ bmoF (R
n+m), then wη ∈ AF,p for sufficiently small η > 0.

Proof. One observes directly from the definition that

AF,p ⊂ AF,q for all 1< p ≤ q <∞,

and

w ∈ AF,p⇐⇒ w1−p′
∈ AF,p′ for all 1< p <∞.

Therefore, it suffices to prove the case p = 2.
We first prove (i). Suppose w ∈ AF,2 and let γ = logw. Then, for any R ∈ RF the AF,2 condition

implies (
1
|R|

∫
R

eγ (x,y)−〈γ 〉R dx dy
)(

1
|R|

∫
R

e〈γ 〉R−γ (x,y) dx dy
)
≤ [w]AF,2 <∞.

By Jensen’s inequality we have each of the factors above is at least 1 and at most [w]AF,2 . Therefore, the
inequality

1
|R|

∫
R

e|γ (x,y)−〈γ 〉R | dx dy ≤ 2[w]AF,2

holds, which, using the trivial estimate t ≤ et , implies

1
|R|

∫
R
|γ (x, y)−〈γ 〉R| dx dy ≤ 2[w]AF,2 .

Hence, γ ∈ bmoF (R
n+m).

We now prove (ii). Let γ = logw ∈ bmoF (R
n+m); it follows from Lemma 4.1 that γ ∈ BMO(Rn+m)

and γ ∈ BMO(2)(Rm). According to the classical exp-log connection between BMO and A2, there hold
for sufficiently small η > 0

eηγ ( · ,· ) ∈ A2(R
n+m),

eηγ (x,· ) ∈ A2(R
m) uniformly in x ∈ Rn.

Hence, (4-2) implies eηγ ∈ AF,2 for sufficiently small η > 0, which completes the proof. �

Upper bound of the commutator. Given an operator T, define its k-th order commutator as

Ck
Eb
(T ) := [bk, [bk−1, . . . , [b1, T ] · · · ]],

where each bj is a function on Rn
×Rm for all 1≤ j ≤ k.

Theorem 4.3. Let ν be a fixed weight on Rn
×Rm, 1< p <∞, and T be a linear operator satisfying

‖T ‖L p(µ)→L p(λ) ≤ Cn,m,p,T ([µ]AF,p , [λ]AF,p),
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where Cn,m,p,T ( · , · ) is an increasing function of both components, with µ, λ ∈ AF,p and µ/λ= ν p. For
k ≥ 1, let bj ∈ bmoF (R

n
×Rm), 1≤ j ≤ k; then there holds

‖Ck
Eb
(T )‖L p(µ)→L p(λ) ≤ Cn,m,p,k,T ([µ]AF,p , [λ]AF,p)

k∏
j=1

‖bj‖bmoF .

Assuming Theorem 4.3, in order to derive an (even unweighted) upper estimate for commutator of
operator T, it suffices to know the corresponding weighted estimate for T itself. When T is a flag singular
integral operator (which includes the flag Riesz transform Rj,k), such a result was obtained by Han, Lin
and Wu [Han et al. 2016b].

Definition 4.4. A flag singular integral TF : f 7→ K ∗ f is defined via a flag kernel K on Rn
× Rm,

which is a distribution on Rn+m that coincides with a C∞ function away from the coordinate subspace
{(0, y)} ⊂ Rn+m and satisfies:

(i) (differential inequalities) For each α = (α1, . . . , αn), β = (β1, . . . , βn)

|∂αx ∂
β
y K(x, y)|. |x |−n−|α|(|x | + |y|)−m−|β|

for all (x, y) ∈ Rn+m with |x | 6= 0.

(ii) (cancellation conditions) ∣∣∣∣∫
Rm
∂αx K(x, y)ψ1(δy) dy

∣∣∣∣≤ Cα|x |−n−|α|

for every multi-index α and for every normalized bump function ψ1 on Rm and every δ > 0;∣∣∣∣∫
Rn
∂βy K(x, y)ψ2(δy) dy

∣∣∣∣≤ Cβ |y|−m−|β|

for every multi-index β and for every normalized bump function ψ2 on Rn and every δ > 0;∣∣∣∣∫
Rn+m

K(x, y)ψ3(δ1x, δ2 y) dx dy
∣∣∣∣≤ C

for every normalized bump function ψ3 on Rn+m and every δ1, δ2 > 0.

Theorem 4.5 [Han et al. 2016b, Remark 1.4]. Let 1< p <∞ and w ∈ AF,p(R
n+m); there holds

‖TF ( f )‖L p
w(Rn+m) ≤ C p‖ f ‖L p

w(Rn+m) for all f ∈ L p
w(R

n+m).

Applying Theorem 4.3 (with the choice µ=λ=w) together with Theorem 4.5, one obtains immediately
the following.

Corollary 4.6. Let w ∈ AF,p, 1< p <∞, and T be a flag singular integral operator as defined above.
For any k ≥ 1, Eb = (b1, . . . , bk) where bj ∈ bmoF (R

n
×Rm), j = 1, . . . , k, there holds

‖Ck
Eb
(T )‖L p(w)→L p(w) ≤ Cn,m,p,k,w,T

k∏
j=1

‖bj‖bmoF .
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Obviously, the result above in the first-order unweighted case is precisely the desired upper bound
estimate in Theorem 1.5.

The core of the proof of Theorem 4.3 lies in a complex function representation of the commutators
and the Cauchy integral formula. This method has been widely used to obtain upper estimates for linear
and multilinear commutators in various settings; see [Chung et al. 2012; Coifman et al. 1976; Hytönen
2016; Bényi et al. 2017; Kunwar and Ou 2017] for examples. The main new challenge in our problem is
the unique structure of the little flag BMO space and flag weights, which for instance doesn’t seem to fall
into the category of spaces recently studied in [Bényi et al. 2017].

Proof of Theorem 4.3. Observe that

Ck
Eb
(T )= ∂z1 · · · ∂zk F(E0), F(Ez) := e

∑k
j=1 b1z1 T e−

∑k
j=1 bj z j ,

which generalizes a classical formula representing higher-order commutators. We remark that when all
the symbol functions bj are the same, one can work instead with a simpler formula using single variable
complex functions and their k-th order derivatives. According to the Cauchy integral formula on polydiscs,

Ck
Eb
(T )=

1
(2π i)k

∮
· · ·

∮
F(Ez) dz1 · · · dzk

z2
1 · · · z

2
k

,

where each integral is over any closed path around the origin in the corresponding variable. For fixed
(δ1, . . . , δk) which will be determined later, there holds by the Minkowski inequality

‖Ck
Eb
(T )‖L p(µ)→L p(λ)

≤
1

(2π)k

∮
|z1|=δ1

· · ·

∮
|zk |=δk

‖T ‖
L p(e

p Re(
∑k

j=1 bj zj )µ)→L p(e
p Re(

∑k
j=1 bj zj )λ)

|dz1| · · · |dzk |

δ2
1 · · · δ

2
k

≤
1

(2π)k

∮
|z1|=δ1

· · ·

∮
|zk |=δk

Cn,m,p,T ([ep Re (
∑k

j=1 bj z j)µ]AF,p , [e
p Re (

∑k
j=1 bj z j)λ]AF,p)

|dz1| · · · |dzk |

δ2
1 · · · δ

2
k

,

where we have used the fact that (ep Re (
∑k

j=1 bj z j)µ, ep Re (
∑k

j=1 bj z j)λ) is a pair of weights satisfying

ep Re (
∑k

j=1 bj z j)µ

ep Re (
∑k

j=1 bj z j)λ
=
µ

λ
= ν p.

Now we choose {δj } according to Lemma 4.7 below, which is the key ingredient of the proof concerning
the relation between AF,p weights and little flag BMO functions. Let

δ1 :=
εn,m,p

max((µ)AF,p , (λ)AF,p)‖b1‖bmoF
,

where for any w ∈ AF,p

(w)AF,p :=max([w]AF,p , [σ ]AF,p′ ). (4-3)

Here we have used the notation σ := w1−p′ to denote the dual weight of w, and the relevant property of
(w)AF,p to us is that

(w)AF,p =max([w]AF,p , [w]
p′−1
AF,p

)= [w]
max(1,p′−1)
AF,p

.
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Recursively, for any j ≥ 2, choose

δj :=
εn,m,p

sup{zt }: |z1|=δ1,...,|z j−1|=δj−1
max((ep Re (

∑ j−1
t=1 bt zt)µ)AF,p , (e

p Re (
∑ j−1

t=1 bt zt)λ)AF,p)‖bj‖bmoF

.

Then applying Lemma 4.7 iteratively shows that

[ep Re (
∑k

j=1 bj z j)µ]AF,p ≤ Cn,m,p[ep Re (
∑k−1

j=1 bj z j)µ]AF,p ≤ · · · ≤ Ck
n,m,p[µ]AF,p ,

and similarly
[ep Re (

∑k
j=1 bj z j)λ]AF,p ≤ Ck

n,m,p[λ]AF,p ,

which in turn via the monotonicity of Cn,m,p,T ( · , · ) leads to

Cn,m,p,T ([ep Re (
∑k

j=1 bj z j)µ]AF,p , [e
p Re (

∑k
j=1 bj z j)λ]AF,p)≤ C ′n,m,p,k,T ([µ]AF,p , [λ]AF,p).

Therefore,

‖Ck
Eb
(T )‖L p(µ)→L p(λ) ≤

1
δ1 · · · δk

C ′n,m,p,k,T ([µ]AF,p , [λ]AF,p)

≤ Cn,m,p,k,T ([µ]AF,p , [λ]AF,p)

k∏
j=1

‖bj‖bmoF . �

Lemma 4.7. Let w ∈ AF,p, 1< p<∞, and b ∈ bmoF (R
n
×Rm). There are constants εn,m,p,Cn,m,p > 0

such that
[eRe(bz)w]AF,p ≤ Cn,m,p[w]AF,p

whenever z ∈ C satisfies
|z| ≤

εn,m,p

‖b‖bmoF (w)AF,p

,

where (w)AF,p is defined as in (4-3).

Proof. This estimate is a consequence of (4-2), Lemma 4.1 and a one-parameter version proven by
Hytönen [2016], which states that for any w ∈ Ap, the classical Muckenhoupt Ap class on Rd, 1< p<∞,
there exist εd,p,Cd,p > 0 such that

[eRe(bz)w]Ap ≤ Cd,p[w]Ap

for all z ∈ C with
|z| ≤

εn,p

‖b‖BMO(w)Ap

.

To see this, by (4-2) and Lemma 4.1, given w ∈ AF,p and b ∈ bmoF , there hold w ∈ Ap ∩ A(2)p and
b ∈ BMO(Rn+m)∩BMO(2)(Rm). Hence, taking εn,m,p > 0 sufficiently small, for all z ∈ C satisfying

|z| ≤
εn,m,p

‖b‖bmoF (w)AF,p

,

one has
[eRe(bz)w]Ap ≤ Cn+m,p[w]Ap ≤ Cn,m,p[w]AF,p
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and
[eRe(b(x,· )z)w(x, · )]Ap ≤ Cm,p[w(x, · )]Ap ≤ Cn,m,p[w]AF,p a.e. x ∈ Rn,

by observing that
‖b‖bmoF &max

(
‖b‖BMO(Rn+m), sup

x∈Rn
‖b(x, · )‖BMO(2)(Rm)

)
and that

(w)AF,p &max([w]Ap , sup
x∈Rn
[w(x, · )]Ap). �

5. Applications: div-curl lemmas in the flag setting

Let E (1) be a vector field on Rn+m taking the values in Rn+m, and let E (2) be a vector field on Rm taking
the values in Rm. Now let Mn+m,m denote the set of all (n +m)×m matrices. We now consider the
following version of vector fields on Rn

×Rm taking the values in Mn+m,m , associated with the flag
structure:

E = E (1) ∗2 E (2) :=

 E (1)1 ∗2 E (2)1 . . . E (1)1 ∗2 E (2)m
... . . . ...

E (1)n+m ∗2 E (2)1 . . . E (1)n+m ∗2 E (2)m

 , (5-1)

where

E (1)j ∗2 E (2)k (x, y)=
∫

Rm
E (1)j (x, y− z)E (2)k (z) dz.

Next we consider the following L p space via projections. Suppose 1< p<∞. We define L p
F (R

n
×Rm
;

Mn+m,m) to be the set of vector fields E in L p(Rn
×Rm

;Mn+m,m) such that there exist r1, r2 ∈ (1,∞)
with 1/r1+ 1/r2 = 1/p+ 1, E (1) ∈ Lr1(Rn+m

;Rn+m), E (2) ∈ Lr2(Rm
;Rm) and that E = E (1) ∗2 E (2);

moreover,
‖E‖L p

F (R
n×Rm;Mn+m,m)

:= inf ‖E (1)‖Lr1 (Rn+m;Rn+m)‖E (2)‖Lr2 (Rm;Rm),

where the infimum is taken over all possible r1, r2 ∈ (1,∞), E (1) ∈ Lr1(Rn+m
;Rn+m), E (2) ∈ Lr2(Rm

;Rm).
Given two matrices A, B ∈Mn+m,m , we define the “dot product” between A and B by

A · B =
n+m∑
j=1

m∑
k=1

Aj,k Bj,k .

We point out that this is the Hilbert–Schmidt inner product for two matrices and more generally this is
referred to as the Schur product of two matrices.

Proof of Theorem 1.6. Note that B is a vector field on Rn
×Rm taking the values in Mn+m,m , associated

with the flag structure (5-1). Then there exist certain vector fields B(1) on Rn+m taking the values in Rn+m

and B(2) on Rm taking the values in Rm such that B = B(1) ∗2 B(2) and that

‖B‖Lq
F (R

n×Rm;Mn+m,m)
≈ inf ‖B(1)‖Lq1 (Rn+m;Rn+m)‖B(2)‖Lq2 (Rm;Rm)

with 1/q1+ 1/q2 = 1/q + 1.
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Thus, curl(x,y) B(1) = 0 implies that there exists φ(1) ∈ Lq(Rn+m) such that

B(1) = (R(1)1 φ(1), . . . , R(1)n+mφ
(1))

with ‖B(1)‖Lq1 (Rn+m;Rn+m) ≈ ‖φ
(1)
‖Lq1 (Rn+m). Again, curly B(2) = 0 implies that there exists φ(2) ∈

Lq2(Rn+m) such that

B(2) = (R(2)1 φ(2), . . . , R(2)m φ(2))

with ‖B(2)‖Lq2 (Rm;Rm) ≈ ‖φ
(2)
‖Lq2 (Rm). As a consequence we get that the matrix B has elements

Bj,k = Rj,k ∗φ, j = 1, . . . , n+m, k = 1, . . . ,m,

where φ = φ(1) ∗2 φ
(2) and ‖B‖Lq

F (R
n×Rm;Mn+m,m)

≈ ‖φ‖Lq (Rn+m).
Similarly, note that E is a vector field on Rn

×Rm taking the values in Mn+m,m , associated with the
flag structure (5-1). Then there exist certain vector fields E (1) on Rn+m taking the values in Rn+m and
E (2) on Rm taking the values in Rm such that E = E (1) ∗2 E (2) and that

‖E‖L p
F (R

n×Rm;Mn+m,m)
≈ inf ‖E (1)‖L p1 (Rn+m;Rn+m)‖E (2)‖L p2 (Rm;Rm)

with 1/p1+ 1/p2 = 1/p+ 1.
Thus, the conditions div(x,y) E (1) = 0 and divy E (2) = 0 imply

n+m∑
j=1

R(1)j ∗ E (1)j (x, y)= 0 and
m∑

k=1

R(2)k ∗2 E (2)k (y)= 0.

Hence, we get
n+m∑
j=1

R(1)j ∗ E j,k(x, y)= 0 and
m∑

k=1

R(2)k ∗2 E j,k(x, y)= 0.

With these facts, we have

E(x, y) · B(x, y)=
n+m∑
j=1

m∑
k=1

E j,k(x, y)Bj,k(x, y)=
n+m∑
j=1

m∑
k=1

E j,k(x, y)Rj,k ∗φ(x, y)

=

n+m∑
j=1

m∑
k=1

{
E j,k(x, y)Rj,k ∗φ(x, y)+ R(1)j ∗ E j,k(x, y)R(2)k ∗2 φ(x, y)

+ R(2)k ∗2 E j,k(x, y)R(1)j ∗φ(x, y)+ Rj,k ∗ E j,k(x, y)φ(x, y)
}
.

Now testing this equality over all functions in the flag BMO space, i.e., for every b ∈ BMOF (R
n
×Rm),

and then unravelling the expression with the Riesz transforms we see that∫
Rn×Rm

E(x, y) · B(x, y) b(x, y) dx dy =
n+m∑
j=1

m∑
k=1

∫
Rn×Rm

[[b, R(1)j ], R(2)k ]2(E j,k)(x, y)φ(x, y) dx dy.

Then based on Theorem 1.3, since b ∈ BMOF (R
n
×Rm) we have that each of the above commutators is

a bounded operator on L p(Rn
×Rm) with norm controlled by the norm of b, i.e., ‖b‖BMOF (Rn×Rm).
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As a consequence, we get∣∣∣∣∫
Rn×Rm

E(x, y)·B(x, y) b(x, y) dx dy
∣∣∣∣. ‖b‖BMOF (Rn×Rm)‖E‖L p

F (R
n×Rm;Mn+m,m)

‖φ‖Lq (Rn+m)

. ‖b‖BMOF (Rn×Rm)‖E‖L p
F (R

n×Rm;Mn+m,m)
‖B‖Lq

F (R
n×Rm;Mn+m,m)

.

Then from the duality of H 1
F (R

n
×Rm) with BMOF (R

n
×Rm), we obtain

‖E · B‖H1
F (R

n×Rm) . ‖b‖BMOF (Rn×Rm)‖E‖L p
F (R

n×Rm;Mn+m,m)
‖B‖Lq

F (R
n×Rm;Mn+m,m)

. �

Proof of Theorem 1.7. Suppose that E, B are vector fields on Rn
×Rm taking values in Rn+m. Moreover,

suppose E ∈ L p(Rn
×Rm

;Rn+m) and B ∈ Lq(Rn
×Rm

;Rn+m) satisfy

div(x,y) E(x, y)= 0 and curl(x,y) B(x, y)= 0

and
divy E(x, y)= 0 and curly B(x, y)= 0 for all x ∈ Rn.

We now define the projection operator P as

PE =
(

E1+ R(1)1

(n+m∑
k=1

R(1)k Ek

)
, . . . , En+m + R(1)n+m

(n+m∑
k=1

R(1)k Ek

))
.

Then by definition, it is direct that
div(x,y) PE = 0

since
n+m∑
j=1

R(1)j

(
E j + R(1)j

(n+m∑
k=1

R(1)k Ek

))
= 0. (5-2)

Moreover, we also have P ◦PE = PE . Next, we point out that applying [b,P] to the vector field E ,
we can get that the j-th component is given by

n+m∑
k=1

[b, R(1)j R(1)k ](Ek).

Suppose now b ∈ bmoF (R
n
×Rm). Then from Lemma 4.1 we know

bmoF (R
n+m)= BMO(Rn+m)∩BMO(2)(Rm)

with comparable norms. Hence, we have b ∈ BMO(Rn+m) with

‖b‖BMO(Rn+m) . ‖b‖bmoF (Rn×Rm).

With all these observations, an application of the Coifman, Rochberg and Weiss theorem demonstrates
that [b,P](E) is bounded on L p(Rn

×Rm
;Rn+m) with

‖[b,P](E)‖L p(Rn×Rm;Rn+m) . ‖b‖BMO(Rn+m)‖E‖L p(Rn×Rm;Rn+m)

. ‖b‖bmoF (Rn×Rm)‖E‖L p(Rn×Rm;Rn+m).
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As a consequence, from the definition of [b, P] and (5-2) we get∣∣∣∣∫
Rn+m

E(x, y) · B(x, y) b(x, y) dx dy
∣∣∣∣= ∣∣∣∣∫

Rn+m
[b, P]E(x, y) · B(x, y) dx dy

∣∣∣∣
. ‖b‖BMO(Rn+m)‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m)

. ‖b‖bmoF (Rn×Rm)‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m).

Thus we get that E · B is in H 1(Rn+m) with

‖E · B‖H1(Rn+m) . ‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m).

To show the second result, we now define the projection operator P(2) as

P(2)E =
(

En+1+ R(2)1

( m∑
k=1

R(2)k En+k

)
, . . . , En+m + R(1)n+m

( m∑
k=1

R(1)k En+k

))
.

Then, again, by definition, we have
divy P(2)E = 0

since m∑
j=1

R(2)j

(
En+ j + R(2)j

( m∑
k=1

R(2)k En+k

))
= 0. (5-3)

Now fix x ∈ Rn; by using the definition of P(2) and the fact (5-3), we get that for b ∈ bmoF (R
n
×Rm),∫

Rm
E(x, y) ·2 B(x, y)b(x, y) dy =

∫
Rm
[b(x, · ),P(2)]E(x, y)ψ(x, y) dy.

Integrating the above equality over Rn, we have∣∣∣∣∫
Rn

∫
Rm

E(x, y) ·2 B(x, y)b(x, y) dy dx
∣∣∣∣= ∣∣∣∣∫

Rn

∫
Rm
[b(x, · ),P(2)]E(x, y) ·2 B(x, y) dy dx

∣∣∣∣
.
∫

Rn
‖b(x, · )‖BMO(Rn)‖E(x, · )‖L p(Rm)‖B(x, · )‖Lq (Rm) dx

. ‖b‖bmoF (Rn×Rm)

∫
Rn
‖E(x, · )‖L p(Rm)‖B(x, · )‖Lq (Rm) dx

. ‖b‖bmoF (Rn×Rm)‖E‖L p(Rm×Rn;Rn+m)‖B‖L p(Rm×Rn;Rn+m).

Here we use again Lemma 4.1 and Hölder’s inequality. Taking the supremum over all b∈ bmoF (R
n
×Rm)

we obtain that∫
Rm
‖E( · , y) ·2 B( · , y)‖H1(Rm) dy . ‖E‖L p(Rn×Rm;Rn+m)‖B‖Lq (Rn×Rm;Rn+m). �
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