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STEADY THREE-DIMENSIONAL ROTATIONAL FLOWS: AN APPROACH VIA
TWO STREAM FUNCTIONS AND NASH–MOSER ITERATION

BORIS BUFFONI AND ERIK WAHLÉN

We consider the stationary flow of an inviscid and incompressible fluid of constant density in the region
D = (0, L)×R2. We are concerned with flows that are periodic in the second and third variables and
that have prescribed flux through each point of the boundary ∂D. The Bernoulli equation states that the
“Bernoulli function” H := 1

2 |v|
2
+ p (where v is the velocity field and p the pressure) is constant along

stream lines, that is, each particle is associated with a particular value of H. We also prescribe the value of
H on ∂D. The aim of this work is to develop an existence theory near a given constant solution. It relies on
writing the velocity field in the form v =∇ f ×∇g and deriving a degenerate nonlinear elliptic system for
f and g. This system is solved using the Nash–Moser method, as developed for the problem of isometric
embeddings of Riemannian manifolds; see, e.g., the book by Q. Han and J.-X. Hong (2006). Since we can
allow H to be nonconstant on ∂D, our theory includes three-dimensional flows with nonvanishing vorticity.

1. Introduction

The Euler equation for an inviscid and incompressible fluid of constant density is given by

(v · ∇)v =−∇ p, div v = 0,

if in addition the velocity field v is independent of time. As we are concerned with stationary flows on
D = (0, L)×R2 that are periodic in the second and third variables, it is useful to introduce the cell of the
periodic lattice

P = (0, L)× (0, P1)× (0, P2),

where L > 0 and the periods P1, P2 > 0 are given; in particular integrations will mainly be over P
and maxima of continuous functions considered on P . Any constant vector field v̄ is a solution on D
with constant pressure p̄. Such a field can always be written in the form v̄ =∇ f̄ ×∇ ḡ for some linear
functions f̄ , ḡ. If the real-valued functions

(x, y, z) 7→ f0(x, y, z), (x, y, z) 7→ g0(x, y, z), (x, y, z) ∈ D,

are near 0 and (P1, P2)-periodic in (y, z), one may try looking for a velocity field of the form

v∗ =∇( f̄ + f0+ f ∗)×∇(ḡ+ g0+ g∗)

for unknown functions f ∗ and g∗ that vanish at the boundaries x = 0 and x = L . The functions f0 and g0

can be interpreted as encoding a perturbation of the boundary conditions at x = 0 and x = L given by f̄
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and ḡ. If f0 and g0 vanish at x = 0 and x = L , then nothing is gained with respect to the case f0 = g0 = 0
on D.

In the following theorem, the Sobolev spaces W n,p
loc (D) and H n

loc(D) consist of functions defined on D
such that, when restricted to every bounded open subset Db ⊂ D, they belong to W n,p(Db) and H n(Db).
Note that, in contrast with the usual definition, Db is not required to be included in D. Moreover, Q is
the parallelogram in R2 spanned by R P1e1 and R P2 e2, where

R =
(
∂2 f̄ ∂3 f̄
∂2ḡ ∂3ḡ

)
is the Jacobian matrix of ( f̄ , ḡ) with respect to (y, z) and N0 = {0, 1, 2, . . .}.

Theorem 1.1. Let j ∈N0 and assume that the first component of v̄ does not vanish. Then it is possible to
choose ε̄ > 0 such that if

• H0 ∈ C11+ j (R2) is periodic with respect to the lattice in R2 generated by R P1e1 and R P2 e2 (not
necessarily the fundamental periods, this remark holding generally throughout),

• c1, c2 ∈ R,

• f0, g0 ∈ H 13+ j
loc (D)=W 13+ j,2

loc (D), P1-periodic in y and P2-periodic in z,

• ‖( f0, g0)‖
2
H13+ j (P)+‖H0‖

2
C11+ j (Q)+ |c|

2 < ε̄2,

then there exists ( f ∗, g∗) ∈ H 6+ j
loc (D) satisfying

• f ∗, g∗ are P1-periodic in y and P2-periodic in z,

• f ∗, g∗ vanish when x ∈ {0, L}, (1)

• v∗ := ∇( f̄ + f0+ f ∗)×∇(ḡ+ g0+ g∗) is a solution to the Euler equation

(v∗ · ∇)v∗ =−∇ p∗, div v∗ = 0 on D,

with

p∗=− 1
2 |v
∗
|
2
+H( f̄+ f0+ f ∗, ḡ+g0+g∗) and H( f,g)=c1 f+c2g+H0( f,g) for all f,g∈R. (2)

Moreover, there exists a constant C > 0 (independent of ( f0, g0), H0 and c) such that

‖( f ∗, g∗)‖H6+ j (P) ≤ C ε̄.

The solution is locally unique in the following sense. Let H be as above (but H0 can be assumed of class
C2 only), f , g, f̃ , g̃ ∈ C3(D) with ( f − f̄ , g− ḡ), ( f̃ − f̄ , g̃− ḡ) both (P1, P2)-periodic in y and z, and

( f (x, y, z), g(x, y, z))= ( f̃ (x, y, z), g̃(x, y, z)) for all (x, y, z) ∈ {0, L}×R2.

Assume that v = ∇ f ×∇g and ṽ = ∇ f̃ ×∇ g̃ are both solutions to the Euler equation with pressures
−

1
2 |v|

2
+ H( f, g) and −1

2 |ṽ|
2
+ H( f̃ , g̃), respectively. If (∇ f,∇g) and (∇ f̃ ,∇ g̃) are in a sufficiently

small open convex neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) and ‖H0‖C2(Q) is sufficiently small, then ( f, g)=
( f̃ , g̃) on [0, L]×R2.
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Remarks. • Observe that ∇( f,g)H( f̄ + f0+ f ∗, ḡ+ g0+ g∗) is P1-periodic in y and P2-periodic in z.
In general the choice ( f ∗, g∗) = −( f0, g0) is not allowed, as ( f ∗, g∗) is required to vanish at x = 0
and x = L , but not ( f0, g0). When H is constant, the choice ( f ∗, g∗)=−( f0, g0) leads to the constant
solution v∗ = v̄, provided that f0 and g0 vanish when x ∈ {0, L}. However, when H is not constant, (1)
and (2) do not allow to choose ( f ∗, g∗)=−( f0, g0). Indeed, if ( f ∗, g∗)=−( f0, g0), then v∗ = v̄ and p∗

should be constant, which is not compatible with (2) when H is not constant.

• If H0, f0 and g0 are C∞ smooth, we obtain solutions of arbitrarily high regularity. However, we don’t
necessarily obtain C∞ smooth solutions since ε̄ depends on j . It might be possible to obtain smooth
solutions by applying other versions of the Nash–Moser theorem, for example an analytic version, but
that’s outside the scope of the paper.

• The uniqueness assertion implies that the solution ( f̄ + f0+ f ∗, ḡ+ g0+ g∗) only depends on f0 and
g0 through their boundary values.

• On the other hand, it is possible for two different sets of data to give rise to the same velocity field v
(see the Appendix for more details).

The following example illustrates the relationship with Beltrami flows (flows such that, at each point
of D, the vorticity is parallel to the velocity) and the role of the boundary conditions at x = 0 and x = L .

Example. Let f̄ (x, y, z)= y, ḡ(x, y, z)= z, c1, c2=0 and H0=0, so that v̄= (1, 0, 0). Let f0(x, y, z)=
δx sin(2π z/P2) and g0 = 0, and let ( f ∗, g∗) be given by Theorem 1.1 (for |δ| small enough). Remember
that f ∗ and g∗ vanish at x = 0 and x = L . The pointwise flux of v∗ at x = 0 and x = L is the constant 1:

v∗1 = ∂y( f̄ + f0) ∂z(ḡ+ g0)− ∂z( f̄ + f0) ∂y(ḡ+ g0)= 1.

Let us prove that v∗ is not irrotational by assuming the opposite. Then v∗1 would be a (P1, P2)-periodic
function in y and z that is harmonic. By the maximum principle, v∗1 = 1 and thus (v∗2 , v

∗

3) would be
x-independent. The functions v∗2 and v∗3 would also be harmonic and thus they would be constant, and
v∗ would be a constant vector field. Hence the map that sends a fluid parcel when x = 0 to its position
when x = L would be a translation. But this is impossible because f̄ + f0+ f ∗ is preserved along every
parcel trajectory and its level sets at x = 0 (that is, the level sets of f̄ + f0 at x = 0) cannot be sent
by a translation to its level sets at x = L . Although v∗ is not an irrotational flow, it is a Beltrami flow
because H = 0. As the flux through the boundaries x = 0 and x = L does not vanish, the proportionality
factor between the velocity and the vorticity cannot be constant (using also the periodicity in the y-
and z-directions). Beltrami flows have been considered in many papers, for example in [Enciso and
Peralta-Salas 2015] (Beltrami flows with constant proportionality factors) and [Kaiser et al. 2000] (with
nonconstant proportionality factors).

The representation v =∇ f ×∇g can be seen as a generalization of the stream function representation
v=∇⊥ψ for planar divergence-free stationary flows, in which the stream function ψ is replaced by a pair
of functions f and g (note that f and g are constant on stream lines). This representation always holds
locally near regular points of the velocity field; see, e.g., [Barbarosie 2011]. For the reader’s convenience,
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we give in the Appendix a self-contained proof when v1 is nonvanishing that the representation holds
globally in D with additional (P1, P2)-periodicity with respect to y and z for ∇ f and ∇g.

In this formulation, the Euler equation has a particularly helpful variational structure [Keller 1996];
see also [Buffoni 2012]. Namely, the pair of functions ( f, g) will be called admissible for the present
purpose if

• f and g are of class C2(D),

• ∇ f and ∇g are P1-periodic in y and P2-periodic in z,

• ( f (x, y, z), g(x, y, z))= ( f̃0(x, y, z), g̃0(x, y, z)) for all (x, y, z) ∈ {0, L}×R2,

where f̃0 and g̃0 are two fixed functions of class C2(D) such that ∇ f̃0 and ∇ g̃0 are P1-periodic in y and
P2-periodic in z. Under these conditions, v =∇ f ×∇g is divergence-free and the first component

v1 = (∇ f ×∇g) · (1, 0, 0)= ∂y f ∂zg− ∂yg ∂z f = ∂y f̃0 ∂z g̃0− ∂y g̃0 ∂z f̃0

of v is prescribed on {0, L}×R2. In order to get a better insight into the set of admissible ( f, g), note
that f (x, y, z)−a1 y−a2z and g(x, y, z)−a3 y−a4z are P1-periodic in y and P2-periodic in z for some
constants a1, a2, a3, a4 ∈ R. The boundary condition ensures that a1, a2, a3, a4 ∈ R do not depend on the
particular admissible pair of functions ( f, g).

We also assume that the function H : R2
→ R is of class C2 and that ∂ f H and ∂g H composed with

every admissible pair ( f, g) are (P1, P2)-periodic in y and z. The latter is equivalent to requiring that
∇( f,g)H is periodic with respect to the lattice generated by P1(a1, a3) and P2(a2, a4).

Let ( f̃ , g̃) be admissible and assume that ( f̃ , g̃) is a critical point of the integral functional∫
P

{ 1
2 |∇ f ×∇g|2+ H( f, g)

}
dx dy dz (3)

defined on the set of admissible pairs ( f, g). Let us check that ṽ := ∇ f̃ × ∇ g̃ is a solution to the
Euler equation with p̃ = − 1

2 |ṽ|
2
+ H( f̃ , g̃). We consider admissible variations ( fs, gs), that is, maps

(s, x, y, z)→ ( fs(x, y, z), gs(x, y, z)) of class C2([−1, 1]× D) such that ( f0, g0)= ( f̃ , g̃), ( f1, g1) is
admissible and

( fs, gs)= ((1− s) f0+ s f1, (1− s)g0+ sg1) for all s ∈ (−1, 1).

The meaning of critical point is that the integral functional at ( fs, gs) as a function of s has a vanishing
derivative at s = 0 for every admissible variation ( fs, gs). If in addition we assume that ( f1− f0, g1−g0)

is compactly supported in P , we get the Euler–Lagrange equation(
− div(∇ g̃× (∇ f̃ ×∇ g̃))+ ∂ f H( f̃ , g̃)
− div((∇ f̃ ×∇ g̃)×∇ f̃ ))+ ∂g H( f̃ , g̃)

)
= 0. (4)

Because of the periodicity assumption on ∇ f̃ and ∇ g̃, more general admissible variations ( fs, gs) do not
provide additional knowledge and, thanks to the periodicity condition on ∂ f H( f̃ , g̃) and ∂g H( f̃ , g̃), (4)
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holds true on all of D. Equation (4) can also be written

∇ g̃ · rot ṽ+ ∂ f H( f̃ , g̃)= 0 and − rot ṽ · ∇ f̃ + ∂g H( f̃ , g̃)= 0, with ṽ =∇ f̃ ×∇ g̃. (5)

It then follows that

ṽ× rot ṽ = (∇ f̃ ×∇ g̃)× rot ṽ = (∇ f̃ · rot ṽ)∇ g̃− (∇ g̃ · rot ṽ)∇ f̃

= ∂ f H( f̃ , g̃)∇ f̃ + ∂g H( f̃ , g̃)∇ g̃ =∇(x,y,z)H( f̃ , g̃). (6)

The identity, see, e.g., [Serrin 1959, p. 151],

∇
( 1

2 |ṽ|
2)
= ṽ× rot ṽ+ (ṽ · ∇)ṽ

gives
(ṽ · ∇)ṽ−∇

( 1
2 |ṽ|

2)
+∇(x,y,z)H( f̃ , g̃)= 0,

which is equivalent to the classical Euler equation for inviscid, incompressible and time-independent
flows

(ṽ · ∇)ṽ+∇ p̃ = 0 with p̃ =− 1
2 |ṽ|

2
+ H( f̃ , g̃).

H( f̃ , g̃) can be seen as the Bernoulli function, which is preserved by the flow since∇(x,y,z)(H( f̃ , g̃))·ṽ=0
by (6).

The aim of the paper is to develop an existence theory in a small neighborhood of ( f̄ , ḡ) ∈ C∞(D)
when

• ∇ f̄ and ∇ ḡ are constant, and

• the first component of v̄ =∇ f̄ ×∇ ḡ does not vanish.

If we perturb (4) into the equation(
−ε(∂2

y f̃ + ∂2
z f̃ )− div(∇ g̃× (∇ f̃ ×∇ g̃))+ ∂ f H( f̃ , g̃)

−ε(∂2
y g̃+ ∂2

z g̃)− div((∇ f̃ ×∇ g̃)×∇ f̃ ))+ ∂g H( f̃ , g̃)

)
= 0

and then linearize this perturbed equation, the obtained linear problem is coercive [Kohn and Nirenberg
1965], provided that ε > 0. The linearization of (4) can thus be described as “degenerate”, the x-direction
being however nondegenerate [loc. cit.]. In Section 2, we analyze the linear operator obtained from the
linearization of (4) and its invertibility, following the classical work [Kohn and Nirenberg 1965] for
noncoercive boundary value problems. The analysis of the linearized problem relies on the particular
structure of the integral functional (3). The main point is that its quadratic part is positive definite (see
Proposition 2.3 for a precise statement). The local uniqueness result is obtained as a corollary.

The Nash–Moser iteration method [Moser 1961; Zehnder 1975] has been applied to noncoercive
problems in previous works, like [Kiremidjian 1978; Han and Hong 2006]. The approach we shall follow
is the one described in Section 6 of [Han and Hong 2006] for the embedding problem of Riemannian
manifolds with nonnegative Gauss curvature. The details are given in Section 3. For simplicity, we have
restricted ourselves as in [loc. cit.] to periodicity conditions with respect to (y, z). A key ingredient



1230 BORIS BUFFONI AND ERIK WAHLÉN

are tame estimates for the inverse of the linearization, which are obtained in Section 2 using suitable
commutator estimates.

Alber [1992] deals with a closely related setting. The steady Euler equation is considered in a bounded,
simply connected, smooth domain � ⊂ R3. There are three boundary conditions: (1) the flux through
∂� is given by a function f : ∂�→ R, (2) a condition on the vorticity flux through the entrance set
{(x, y, z) ∈ R3

: f (x, y, z) < 0} := ∂�− and (3) a condition on the Bernoulli function on ∂�−. Under
precise assumptions, existence and uniqueness are obtained near a solution v0 with small vorticity when
the boundary conditions (2) and (3) are slightly modified. In the present paper, boundary condition (2) is,
roughly speaking, replaced by a condition on the Bernoulli function on the exit set. These more symmetric
boundary conditions might be a first step to considering flows which are periodic in x , which is a natural
geometry in the study of water waves. Our approach also has the benefit of using a variational structure.

Note that the stationary Euler equation also appears as a model in ideal magnetohydrodynamics, with
v replaced by the magnetic field B, the vorticity rot v replaced by the current density J (up to a constant
multiple) and the Bernoulli function H replaced by the negative of the fluid pressure p. Grad and Rubin
[1958] derived a variational principle for this problem which is rather close to the one considered here,
see, e.g., [loc. cit., Theorem 1], although they did not use it to construct solutions. Moreover the above
example is related to their Theorems 3 and 5 and to a remark that follows their Theorem 5. A recent work
that relies on this variational principle for Euler flows is [Slobodeanu 2015]; it is formulated in a more
general geometric framework. An iterative method, not of Nash–Moser type, is developed in [Kaiser
et al. 2000] to get Beltrami flows with nonconstant proportionality factors. The boundary conditions there
have the same flavor as the ones in [Alber 1992]. Writing a divergence-free velocity field v in the form
v = ∇ f ×∇g may also be useful for irrotational flows, as it could lead to helpful changes of variables;
see [Plotnikov 1980].

2. Linearization

The variational structure of (4) allows one to study its linearization with the help of the quadratic part
of the integral functional (3) around an admissible pair ( f, g). From now on we shall call a pair ( f, g)
admissible if

(Ad1) f and g are of class C3(D),

(Ad2) ∇ f and ∇g are (P1, P2)-periodic in y and z.

The quadratic part is given by

(F,G) 7→
∫
P

{ 1
2 |∇F ×∇g+∇ f ×∇G|2+ (∇ f ×∇g) · (∇F ×∇G)

+
1
2

(
∂2

f H( f, g)F2
+ 2∂ f ∂g H( f, g)FG+ ∂2

g H( f, g)G2)} dx dy dz,

where (F,G) is assumed admissible in the sense that

(Ad′1) F and G are in the Sobolev space H 1
loc(D),

(Ad′2) F and G are (P1, P2)-periodic in y and z,
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(Ad′3) (F,G)= 0 on ∂D in the sense of traces.

Condition (Ad′3) is introduced because we shall assume later that the restriction of ( f, g) to ∂D is a priori
given.

Given an admissible pair ( f, g), we shall call H admissible if

(Ad′′) H ∈ C2(R2) and H ′′( f, g) is (P1, P2)-periodic in y and z.

In this section we will mostly think of H ′′( f, g) as a given function of (x, y, z) rather than a composition.
The quadratic part can be written 1

2 B( f,g)((F,G), (F,G)), where B( f,g) is the symmetric bilinear form

B( f,g)((F,G), (δF, δG))

=

∫
P

{
(∇F ×∇g+∇ f ×∇G) · (∇δF ×∇g+∇ f ×∇δG)

+ (∇ f ×∇g) · (∇F ×∇δG)+ (∇ f ×∇g) · (∇δF ×∇G)

+ ∂2
f H( f, g)FδF + ∂ f ∂g H( f, g)(FδG+GδF)+ ∂2

g H( f, g)GδG
}

dx dy dz.

This section contains two kinds of results: firstly, we bound from below the quadratic part and, secondly,
we study the regularity of solutions to the linearization of problem (4) at ( f, g). A preliminary observation
is that the quadratic part is not coercive at ( f, g) in the sense that there is no α > 0 such that, for all
admissible (F,G),

1
2 B( f,g)((F,G), (F,G))≥

∫
P
{α(|∇F |2+ |∇G|2)−α−1(F2

+G2)} dx dy dz.

For example, taking G = 0, the quadratic part becomes

F 7→
∫
P

( 1
2 |∇F ×∇g|2+ 1

2∂
2
f H( f, g)F2) dx dy dz.

In the particular case f (x, y, z)= y, g(x, y, z)= z, H = 0 and P1 = P2 = 1, the integral reduces to

1
2

∫
P
(F2

x + F2
y ) dx dy dz.

Choosing Fn of the form
Fn(x, y, z)= φ(x) cos(2πnz),

where φ ∈ C∞(R, [0, 1]) is compactly supported in (0, 1) and takes the value 1 on
( 1

4 ,
3
4

)
, we find that

the quadratic part and ‖(Fn,G)‖L2(P) have positive constant values along the sequence {(Fn,G)}n≥1.
However, ‖(∇Fn,∇G)‖L2(P)→∞ and thus α as above cannot exist. For a general pair ( f, g), we instead
fix (x0, y0, z0) ∈ P such that ∇g(x0, y0, z0) 6= 0 and consider Fn which is (P1, P2)-periodic in (y, z) and
when restricted to P is given by

Fn(x, y, z)= φ(x, y, z) cos(ng(x, y, z)),

where φ ∈ C∞(P, [0, 1]) is compactly supported in P , with φ(x0, y0, z0) = 1. By choosing n large
enough, one again obtains that α cannot exist. In fact, we have made the stronger observation that, for all
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α > 0, there exists a sequence {(Fn,Gn)} of admissible pairs such that

1
2 B( f,g)((Fn,Gn), (Fn,Gn))+α

−1
∫
P
(F2

n +G2
n) dx dy dz

remains bounded, but {(Fn,Gn)} does not have any subsequence converging in L2(P). This has implica-
tions for the regularity of the solutions to the linearized problem, as described below.

Nevertheless, in Theorem 2.1, we bound from below the quadratic part in a rougher way. The term∫
P

1
2 |∇F × ∇g + ∇ f × ∇G|2 dx dy dz turns out to be rather nice, as shown in the first part of the

proof, because it is bounded from below by
∫
P{(v · ∇F)2+ (v · ∇G)2} dx dy dz (under the simplifying

assumption (7), otherwise there is an additional factor). With the help of a Poincaré inequality and thanks
to the Dirichlet boundary condition at x = 0 and x = L ,

∫
P{(v · ∇F)2+ (v · ∇G)2} dx dy dz can in turn

be bounded from below by a positive constant times ‖(F,G)‖2L2(P). In the second and third parts of the
proof of Theorem 2.1, we bound from below the second term of the quadratic part, that is,

∫
P(∇ f ×∇g) ·

(∇F×∇G) dx dy dz: it cannot become too negative with respect to
∫
P

1
2 |∇F×∇g+∇ f×∇G|2 dx dy dz.

In these estimates, it is assumed that (∇ f,∇g) is in some small neighborhood of (∇ f̄ ,∇ ḡ) in C2(P).
To get a better feeling for the term

∫
P(∇ f ×∇g) · (∇F ×∇G) dx dy dz, observe that it vanishes when v

is irrotational because (see the beginning of the second step)∫
P
(∇ f ×∇g) · (∇F ×∇G) dx dy dz = 1

2

∫
P

rot v · (F∇G−G∇F) dx dy dz.

As we allow v to be slightly rotational, this term needs careful estimates.
As a consequence of Theorem 2.1, the integral functional is strictly convex in a neighborhood of ( f̄ , ḡ),

which implies local uniqueness of a solution to (4) (but not existence at this stage); see Theorem 2.2.
With the aim to apply the technique of elliptic regularization [Kohn and Nirenberg 1965], we consider

for ε ∈ [0, 1] the regularized quadratic part

(F,G) 7→
∫
P

{1
2 |∇F×∇g+∇ f ×∇G|2+ (∇ f ×∇g) · (∇F×∇G)+ 1

2ε(|∇F |2+|∇G|2)

+
1
2

(
∂2

f H( f, g)F2
+2∂ f ∂g H( f, g)FG+ ∂2

g H( f, g)G2)} dx dy dz

:=
1
2 Bε( f,g)((F,G), (F,G)).

All the obtained estimates are uniform in ε ∈ [0, 1], but, in addition, the problem becomes elliptic for
ε ∈ (0, 1].

For every admissible ( f, g) ∈ C3(D), we introduce the following system for (µ, ν) ∈ L2
loc(D) that is

(P1, P2)-periodic in y and z, and for (F,G) ∈ H 2
loc(D) admissible in the sense of (Ad′1)–(Ad′3):

µ=− div
(
∇g×(∇F×∇g+∇ f ×∇G)+∇G×(∇ f ×∇g)

)
−ε1F+∂2

f H( f, g)F+∂ f ∂g H( f, g)G,

ν =− div
(
(∇F×∇g+∇ f ×∇G)×∇ f +(∇ f ×∇g)×∇F

)
−ε1G+∂ f ∂g H( f, g)F+∂2

g H( f, g)G.

The right-hand side is the linear operator related to the regularized quadratic part. This system also makes
sense in a weak form if, instead of (F,G) ∈ H 2

loc(D), we ask that (F,G) ∈ H 1
loc(D). Given (µ, ν) in any

higher-order Sobolev space, the main issue of Section 2 is to study the regularity of a solution (F,G),
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aiming at estimates of the Sobolev norms, uniformly in ε ∈ [0, 1]. Such a pair (F,G) is easily proved to be
unique and its existence for ε ∈ (0, 1] follows from the fact that the system is elliptic. The same particular
case as above gives more insight into this system. Setting µ = ν = 0, ε = 0, G = 0, f (x, y, z) = y,
g(x, y, z)= z and P1 = P2 = 1, we get

− div(∂1 F, ∂2 F, 0)+ ∂2
f H( f, g)F = 0,

− div(0,−∂3 F, 2∂2 F)+ ∂ f ∂g H( f, g)F = 0.

Keeping only the second-order terms and forgetting the boundary and periodicity conditions, we see that
F(x, y, z)= cos(z) is a solution to both equations. Hence the regularity theory in [Agmon et al. 1964]
cannot be used when ε = 0, f (x, y, z)= y, g(x, y, z)= z and P1 = P2 = 1.

In Proposition 2.4, we explain how the general system allows one to express ∂2
11 F and ∂2

11G with
respect to the other second-order partial derivatives of F and G, and lower-order terms, involving µ and
ν too. After iterative differentiations, this also yields expressions for higher-order derivatives that contain
at least two partial derivatives with respect to x . In a more general setting, this is developed in [Kohn and
Nirenberg 1965].

For i ∈ {2, 3}, multiplying both sides of each equation of the system by (−1)r∂2r
i F and (−1)r∂2r

i G,
respectively, summing the two equations and then integrating by parts many times, B( f,g)(∂

r
i F, ∂r

i F)
arises, with additional bilinear terms in (F,G) that turn out to involve at most r partial derivatives of F
and G for each of the two components of each bilinear term. We can make some of these additional terms
small if v is near v̄ (here, the hypothesis that ∇ f̄ and ∇ ḡ are constant is used; see the remarks following
Theorem 2.7). This crucial observation is developed in [Kohn and Nirenberg 1965] in a more general
framework, and is presented here in our specific setting in Theorem 2.5. The quadratic part gives then
control on the L2(P)-norms of ∂r

i F and ∂r
i G, but also on the L2(P)-norms of ∂1∂

r
i F and ∂1∂

r
i G. Hence the

L2(P)-norms of ∂r
i F , ∂r

i G, ∂1∂
r
i F and ∂1∂

r
i G are controlled by the L2(P)-norms of ∂r

i µ and ∂r
i ν and by

a small factor times the H r (P)-norms of F and G. With all these tools, we get the estimate of Theorem 2.8
at the end of Section 2, in which the norm of ( f, g) in some Sobolev space also appears, the order of
which is under sufficient control. Although we follow ideas from [loc. cit.] (see in particular Theorem 2′),
explicit estimates allow one to get explicit regularity results for the solutions obtained by the Nash–Moser
procedure. It may be expected that these estimates could be improved and thus also the statements on
regularity, but we do not strive in the present work to be optimal. The lack of compactness mentioned above
prevents us from proving C∞ smoothness of the solution using the method behind Theorem 2 in [loc. cit.].

Our first aim is to find conditions that ensure that B( f,g) is positive definite. In [Buffoni 2012], a
minimizer of a more general integral functional could be found in some space of general flows, in a very
similar spirit as in [Brenier 1999]. Hence it could be expected that, under appropriate conditions, the
quadratic part is nonnegative at a solution of (4). In the proof of the following theorem, we also rely on
Poincaré’s inequality to get the stronger result that the quadratic part is positive definite for ( f, g) (not
necessarily a solution to (4)) sufficiently close to ( f̄ , ḡ) and H ′′ sufficiently small (see Theorem 2.1). For
simplicity, we shall assume in the following statement that

|∇ f̄ |2+ |∇ ḡ|2+
√
(|∇ f̄ |2+ |∇ ḡ|2)2− 4|v̄|2 ≤ 2, v̄ := ∇ f̄ ×∇ ḡ. (7)
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As for (small) λ > 0, equation (4) remains invariant under the transformation

( f̃ , g̃)→ (λ f̃ , λg̃), H → λ4 H(λ−1
· , λ−1

· ),

there is no loss of generality.

Theorem 2.1. Assume that ∇ f̄ and ∇ ḡ are constant, that the first component of v̄ does not vanish and
that (7) holds true. For admissible ( f, g) and (F,G),

B( f,g)((F,G), (F,G))

≥

∫
P

{
1

16(v · ∇F)2+ 1
16(v · ∇G)2+ (1− O(‖v′‖C(P)))

π2 minP v
2
1

16L2 (F2
+G2)

+ ∂2
f H( f, g)F2

+ 2∂ f ∂g H( f, g)FG+ ∂2
g H( f, g)G2

}
dx dy dz (8)

holds if (∇ f,∇g) is in some small neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) (independent of H admissible).

Notation. The notation u = O(v) means that the norm (or absolute value) of u is less than a constant
times v in the relevant domain. We also use the notation u . v to indicate that there exists a constant
C > 0 (independent of u and v) such that u ≤ Cv.

Remark. It is not essential that ∇ f̄ and ∇ ḡ are constant for this result to hold. The result would
still remain true if we instead were to require that rot v̄ = 0 (the other hypotheses remaining the
same) and replace the coefficient 1− O(‖v′‖C(P)) in (8) by exp(−4L‖(v/v1)

′
‖C(P)). This might be

useful for considering perturbations of other irrotational flows. See, however, the remarks following
Theorem 2.7.

Proof. Under the hypotheses of the theorem, we can assume that the first component of the velocity field
v =∇ f ×∇g never vanishes (like the one of v̄). We study the various terms separately.

First step: Let us first show that∫
P
|∇F ×∇g+∇ f ×∇G|2 dx dy dz ≥

∫
P
{(v · ∇F)2+ (v · ∇G)2} dx dy dz

≥ (1− O(‖v′‖C(P)))
π2 minP v

2
1

L2

∫
P
(F2
+G2) dx dy dz

if (∇ f,∇g) is near enough to (∇ f̄ ,∇ ḡ) in C1(P).
To this end, write

∇F ×∇g+∇ f ×∇G = a∇ f + b∇g+ c∇ f ×∇g.

By taking the scalar product of both sides with ∇ f , ∇g and ∇ f ×∇g successively, we get
(∇g×∇ f ) · ∇F = a|∇ f |2+ b∇ f · ∇g,
(∇g×∇ f ) · ∇G = a∇ f · ∇g+ b|∇g|2,
(∇g× (∇ f ×∇g)) · ∇F + ((∇ f ×∇g)×∇ f ) · ∇G = c|∇ f ×∇g|2
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and

a =
−|∇g|2(v · ∇F)+ (∇ f · ∇g)(v · ∇G)

|∇ f |2|∇g|2− (∇ f · ∇g)2
=
−|∇g|2(v · ∇F)+ (∇ f · ∇g)(v · ∇G)

|v|2
,

b =
−|∇ f |2(v · ∇G)+ (∇ f · ∇g)(v · ∇F)

|v|2
,

c =
(v×∇ f ) · ∇G+ (∇g× v) · ∇F

|v|2
.

Hence∫
P
|∇F×∇g+∇ f×∇G|2 dx dy dz

≥

∫
P
|a∇ f+b∇g|2 dx dy dz

=

∫
P
(a b)

(
|∇ f |2 ∇ f ·∇g
(∇ f ·∇g) |∇g|2

)(
a
b

)
dx dy dz

=

∫
P

1
|v|4

(
v·∇F v·∇G

)
×

(
−|∇g|2 ∇ f ·∇g
∇ f ·∇g −|∇ f |2

)(
|∇ f |2 ∇ f ·∇g
∇ f ·∇g |∇g|2

)(
−|∇g|2 ∇ f ·∇g
∇ f ·∇g −|∇ f |2

)(
v·∇F
v·∇G

)
dx dy dz

=

∫
P

1
|v|4

(
v·∇F v·∇G

) (−|∇g|2 ∇ f ·∇g
∇ f ·∇g −|∇ f |2

)(
−|v|2 0

0 −|v|2

)(
v·∇F
v·∇G

)
dx dy dz

=

∫
P

1
|v|2

(
v·∇F v·∇G

) ( |∇g|2 −∇ f ·∇g
−∇ f ·∇g |∇ f |2

)(
v·∇F
v·∇G

)
dx dy dz

≥

∫
P

|∇ f |2+|∇g|2−
√
(|∇ f |2+|∇g|2)2−4|v|2

2|v|2
{(v·∇F)2+(v·∇G)2} dx dy dz

because the eigenvalues of (
|∇g|2 −∇ f · ∇g
−∇ f · ∇g |∇ f |2

)
are 1

2

(
|∇ f |2+ |∇g|2±

√
(|∇ f |2+ |∇g|2)2− 4|v|2

)
. By the simplifying assumption (7),∫

P
|∇F ×∇g+∇ f ×∇G|2 dx dy dz ≥

∫
P
{(v · ∇F)2+ (v · ∇G)2} dx dy dz

if (∇ f,∇g) is near enough to (∇ f̄ ,∇ ḡ) in C(P).
To obtain the second inequality of the first step, we now use Poincaré’s inequality in one dimension by

relying on the fact that F and G vanish on {0, L}× (0, P1)× (0, P2), and then integrate with respect to
the two remaining variables. We use again that the first component of v̄ does not vanish and that v is in
some small neighborhood of v̄, so that the first component of v does not vanish either. Given (ỹ, z̃) ∈ R2,
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let 0(ỹ,z̃) : [0, L] → R2 be the function of the variable x̃ ∈ [0, L] satisfying

0′(ỹ,z̃)(x̃)=
1

v1(x̃, 0(ỹ,z̃)(x̃))
(v2(x̃, 0(ỹ,z̃)(x̃)), v3(x̃, 0(ỹ,z̃)(x̃)))

with the initial condition 0(ỹ,z̃)(0)= (ỹ, z̃). By Theorem 7.2 of Chapter 1 in [Coddington and Levinson
1955] on the regularity of solutions of ODEs, the map (x̃, ỹ, z̃)→ 0(ỹ,z̃)(x̃) is of class C2(P).

Moreover the Jacobian determinant of the map (ỹ, z̃)→ 0(ỹ,z̃)(s) is given by

exp
∫ s

0
div(y,z)(v2/v1, v3/v1)|(x̃,0(ỹ,z̃)(x̃)) dx̃ .

Given x̃ ∈ (0, L), we associate to (x̃, ỹ, z̃) the point

(x, y, z)= (x̃, 0(ỹ,z̃)(x̃)).

Observe that x = x̃ . We denote by J (x̃, ỹ, z̃) the Jacobian determinant and obtain

J (s, ỹ, z̃)= exp
∫ s

0
div(y,z)(v2/v1, v3/v1)|(x̃,0(ỹ,z̃)(x̃)) dx̃ = 1+ O(‖v′‖C(P))

uniformly in (s, ỹ, z̃) ∈ P if v is near enough to v̄ in C1(P).
Setting

F̃(x̃, ỹ, z̃)= F(x, y, z), G̃(x̃, ỹ, z̃)= G(x, y, z), ṽ1(x̃, ỹ, z̃)= v1(x, y, z),

we get

∂1 F̃(x̃, ỹ, z̃)=
d

dx̃
F(x̃, 0(ỹ,z̃)(x̃))=∇F ·

 1
v2/v1

v3/v1

 at (x̃, 0(ỹ,z̃)(x̃)),

ṽ1∂1 F̃ = v · ∇F, ṽ1∂1G̃ = v · ∇G

and∫
P
{(v · ∇F)2+ (v · ∇G)2} dx dy dz =

∫
P
{(ṽ1∂1 F̃)2+ (ṽ1∂1G̃)2}J (x̃, ỹ, z̃) dx̃ d ỹ d z̃

≥min
P
(ṽ2

1 J )
∫
(0,P1)×(0,P2)

{∫ L

0
{(∂1 F̃)2+ (∂1G̃)2} dx̃

}
d ỹ dz̃

≥
π2 minP ṽ

2
1 J

L2

∫
(0,P1)×(0,P2)

{∫ L

0
(F̃2
+ G̃2)dx̃

}
d ỹ dz̃

≥
π2 minP ṽ

2
1 J

L2 maxP J

∫
P
(F2
+G2) dx dy dz

≥ (1− O(‖v′‖C(P)))
π2 minP v

2
1

L2

∫
P
(F2
+G2) dx dy dz

if v is in some small neighborhood of v̄ in C1(P).
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Second step: We now deal with the term
∫
P(∇ f ×∇g) · (∇F ×∇G) dx dy dz. Write

rot v = αv+βv×∇ f + γ∇g× v,

with
α =

rot v · v
|v|2

, β =
rot v · ∇g
|v|2

, γ =
rot v · ∇ f
|v|2

.

We get ∫
P
(∇ f ×∇g) · (∇F ×∇G) dx dy dz = 1

2

∫
P
v · rot(F∇G−G∇F) dx dy dz

=
1
2

∫
P

rot v · (F∇G−G∇F) dx dy dz

because

0=
∫
P

div(v×(F∇G−G∇F)) dx dy dz =
∫
P
(rot v ·(F∇G−G∇F)−v ·rot(F∇G−G∇F)) dx dy dz.

Hence∫
P
(∇ f ×∇g) · (∇F ×∇G) dx dy dz

=
1
2

∫
P
(αv+βv×∇ f + γ∇g× v) · (F∇G−G∇F) dx dy dz

=
1
2

∫
P

{
α(∇F ×∇g+∇ f ×∇G) · (G∇ f − F∇g)

+ (βv×∇ f + γ∇g× v) · (F∇G−G∇F)
}

dx dy dz

≥

∫
P

{
−

1
8 |∇F ×∇g+∇ f ×∇G|2−α2(G2

|∇ f |2+ F2
|∇g|2)

+
1
2(βv×∇ f + γ∇g× v) · (F∇G−G∇F)

}
dx dy dz.

The (absolute value of the) first term in this expression does not create problems because it can be
controlled by one eighth of the term studied in the first step. Neither does the second term because it can
also be controlled by any fraction of the term studied in the first step (as the second term is quadratic in
(F,G) and |α| is as small as needed if rot v is near enough to rot v̄ = 0). The aim of the next step is to
deal with the last term.

Third step: The aim of this step it to get control of the term

1
2

∫
P
(βv×∇ f + γ∇g× v) · (F∇G−G∇F) dx dy dz.

First, using ∇(FG)= G∇F + F∇G, we have

1
2

∫
P
(βv×∇ f ) · (F∇G−G∇F) dx dy dz

=
1
2

∫
P
(βv×∇ f ) · ∇(FG) dx dy dz−

∫
P
(βv×∇ f ) · (G∇F) dx dy dz

=−
1
2

∫
P

FG(β rot v+∇β × v) · ∇ f dx dy dz−
∫
P
(βv×∇ f ) · (G∇F) dx dy dz.
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Similarly, we can rewrite

1
2

∫
P
(γ∇g× v) · (F∇G−G∇F) dx dy dz

=−
1
2

∫
P
(γ∇g× v) · ∇(FG) dx dy dz+

∫
P
(γ∇g× v) · (F∇G) dx dy dz

=−
1
2

∫
P

FG(γ rot v+∇γ × v) · ∇g dx dy dz+
∫
P
(γ∇g× v) · (F∇G) dx dy dz.

As

| −βFv · (∇F ×∇g+∇ f ×∇G)| ≤ 2β2 F2
|v|2+ 1

8 |∇F ×∇g+∇ f ×∇G|2

and

0=
∫
P

div
(
v×

(
−

1
2βF2

∇g+βFG∇ f
))

dx dy dz

=

∫
P

rot v ·
(
−

1
2βF2

∇g+βFG∇ f
)

dx dy dz−
∫
P
v · rot

(
−

1
2βF2

∇g+βFG∇ f
)

dx dy dz, (9)

we have∫
P

1
8 |∇F ×∇g+∇ f ×∇G|2 dx dy dz

≥

∫
P
{−βFv · (∇F ×∇g+∇ f ×∇G)− 2β2 F2

|v|2} dx dy dz

=

∫
P

{
v ·
(
rot
(
−β 1

2 F2
∇g+βFG∇ f

)
+

1
2 F2
∇β ×∇g

− FG∇β ×∇ f −βG∇F ×∇ f
)
− 2β2 F2

|v|2
}

dx dy dz

(9)
=

∫
P

{
rot v ·

(
−β 1

2 F2
∇g+βFG∇ f

)
+

1
2 F2v · (∇β ×∇g)

− FGv · (∇β ×∇ f )−βGv · (∇F ×∇ f )− 2β2 F2
|v|2

}
dx dy dz

and therefore

−

∫
P
(βv×∇ f ) · (G∇F) dx dy dz

=

∫
P
βGv · (∇F ×∇ f ) dx dy dz

≥−

∫
P

1
8 |∇F ×∇g+∇ f ×∇G|2 dx dy dz

+

∫
P

{
rot v ·

(
−

1
2βF2

∇g+βFG∇ f
)
+

1
2 F2v · (∇β ×∇g)

− FGv · (∇β ×∇ f )− 2β2 F2
|v|2

}
dx dy dz.
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In the previous computations, substitute f and F by −g and −G, g and G by f and F , and β by γ,
yielding∫
P
(γ∇g×v)·(F∇G) dx dy dz

≥−

∫
P

1
8 |∇F×∇g+∇ f×∇G|2 dx dy dz

+

∫
P

{
rot v·

(
−

1
2γG2

∇ f+γ FG∇g
)
+

1
2 G2v·(∇γ×∇ f )−FGv·(∇γ×∇g)−2γ 2G2

|v|2
}

dx dy dz.

Adding the different contributions, we find that

1
2

∫
P
(βv×∇ f+γ∇g×v)·(F∇G−G∇F) dx dy dz

≥−

∫
P

1
4 |∇F×∇g+∇ f×∇G|2 dx dy dz

+

∫
P

{
rot v·

(
−

1
2βF2

∇g+1
2 FGβ∇ f

)
+

1
2 F2v·(∇β×∇g)− 1

2 FGv·(∇β×∇ f )−2β2 F2
|v|2

}
dx dy dz

+

∫
P

{
rot v·

(
−

1
2γG2

∇ f+1
2 FGγ∇g

)
+

1
2 G2v·(∇γ×∇ f )−1

2 FGv·(∇γ×∇g)−2γ 2G2
|v|2

}
dx dy dz.

All the absolute values of these terms are controlled by multiples of the term studied in the first step.
Moreover |∇β| and |∇γ | become small if (∇ f,∇g) is near enough to (∇ f̄ ,∇ ḡ) in C2(P).

Last step:∫
P

{ 1
2 |∇F×∇g+∇ f×∇G|2+(∇ f×∇g)·(∇F×∇G)

}
dx dy dz

step 2
≥

∫
P

{ 3
8 |∇F×∇g+∇ f×∇G|2−α(G2

|∇ f |2+F2
|∇g|2)

+
1
2(βv×∇ f+γ∇g×v)·(F∇G−G∇F)

}
dx dy dz

step 3
≥

∫
P

{ 1
8 |∇F×∇g+∇ f×∇G|2−α(G2

|∇ f |2+F2
|∇g|2)

}
dx dy dz

+

∫
P

{
rotv·

(
−β 1

2 F2
∇g+1

2 FGβ∇ f
)
+

1
2 F2v·(∇β×∇g)− 1

2 FGv·(∇β×∇ f )−2β2 F2
|v|2

}
dx dy dz

+

∫
P

{
rotv·

(
−γ 1

2 G2
∇ f+1

2 FGγ∇g
)
+

1
2 G2v·(∇γ×∇ f )−1

2 FGv·(∇γ×∇g)−2γ 2G2
|v|2

}
dx dy dz

step 1
≥

∫
P

1
16 |∇F×∇g+∇ f×∇G|2 dx dy dz

step 1
≥

∫
P

{
1
32(v·∇F)2+ 1

32(v·∇G)2+(1−O(‖v′‖C(P)))
π2 minP v

2
1

32L2 (F2
+G2)

}
dx dy dz

if (∇ f,∇g) is in some small neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) (independent of H ). �

Theorem 2.1 implies local uniqueness of solutions (existence will be discussed later).
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Theorem 2.2. Assume that ( f, g) and ( f̃ , g̃) and are admissible (see (Ad1)–(Ad2) above) such that

( f (x, y, z), g(x, y, z))= ( f̃ (x, y, z), g̃(x, y, z)) for all (x, y, z) ∈ {0, L}×R2,

and both ( f, g) and ( f̃ , g̃) are solutions to (4). In addition let ( f̄ , ḡ) be as in Theorem 2.1 and H
be as in Theorem 1.1 (but H0 can be assumed of class C2 only). If (∇ f,∇g) and (∇ f̃ ,∇ g̃) are in a
sufficiently small open convex neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) and ‖H ′′0 ‖C(Q) is sufficiently small,
then ( f, g)= ( f̃ , g̃) on [0, L]×R2.

Proof. If they were not equal, we could consider

( fθ , gθ )= θ( f̃ , g̃)+ (1− θ)( f, g)

for θ in some slightly larger interval than [0, 1]. The map

θ→

∫
P

{ 1
2 |∇ fθ ×∇gθ |2+ H( fθ , gθ )

}
dx dy dz

would be of class C2, its derivative would vanish at θ = 0 and θ = 1, and its second derivative would be
strictly positive on [0, 1] (by Theorem 2.1), which is a contradiction. �

Remark. The proof of Theorem 2.2 relies on the local convexity of the functional (3). It is natural
to wonder if local convexity may lead to existence too. Theorem 2.1 shows that the quadratic form
B( f,g)((F,G), (F,G)) is positive definite if (∇ f,∇g) is in some small neighborhood of (∇ f̄ ,∇ ḡ) in
C2(P) (independent of H as long as ‖H ′′( f, g)‖C(P) is sufficiently small). However, as mentioned above,
the quadratic form is not coercive at ( f, g) = ( f̄ , ḡ). This feature creates difficulties in getting good
a priori bounds on minimizing sequences. One can hope that they may converge in some weak sense to
some kind of weak solution and indeed such kind of results, in a more general setting, are obtained in
[Buffoni 2012]. One can also wonder if some kind of regularization of the integral functional followed by
a limiting process could lead to regular solutions. If this were feasible, it seems likely that it would rely
on a regularity analysis similar to the one that follows. We leave these considerations for further works.

To implement a Nash–Moser iteration, we introduce for ε ∈ [0, 1] the regularized quadratic form

(F,G) 7→
∫
P

{1
2 |∇F×∇g+∇ f ×∇G|2+(∇ f ×∇g)·(∇F×∇G)+ 1

2ε(|∇F |2+|∇G|2)

+
1
2

(
∂2

f H( f, g)F2
+2∂ f ∂g H( f, g)FG+∂2

g H( f, g)G2)} dx dy dz,

which is clearly also positive definite if (∇ f,∇g) is in some small neighborhood of (∇ f̄ ,∇ ḡ) in C2(P)
and ‖H ′′( f, g)‖C(P) is small enough, uniformly in ε ∈ [0, 1], and coercive for a fixed ε ∈ (0, 1]. Again,
the regularized quadratic form can be written 1

2 Bε( f,g)((F,G), (F,G)), where Bε( f,g) is the corresponding
symmetric bilinear form.

For an admissible ( f, g) ∈ C3(D) (see (Ad1)–(Ad2) above), we are interested in the map (µ, ν) 7→
(F,G) defined as follows:

• (F,G) ∈ H 1
loc(D) is admissible in the sense of (Ad′1)–(Ad′3).

• (µ, ν) ∈ L2
loc(D) is (P1, P2)-periodic in y and z.
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• For all δF, δG ∈ H 1
loc(D) that are admissible in the sense of (Ad′1)–(Ad′3)

Bε( f,g)((F,G), (δF, δG))=
∫
P
(µδF + νδG) dx dy dz. (10)

If ( f, g) is admissible and (F,G) is admissible in H 2
loc(D), (10) is equivalent to the system

µ=−div
(
∇g×(∇F×∇g+∇ f×∇G)+∇G×(∇ f×∇g)

)
−ε1F+∂2

f H( f,g)F+∂ f ∂g H( f,g)G,

ν=−div
(
(∇F×∇g+∇ f×∇G)×∇ f+(∇ f×∇g)×∇F

)
−ε1G+∂ f ∂g H( f,g)F+∂2

g H( f,g)G.
(11)

In particular, if ε = 0, then the linear operator related to Bε( f,g) is the linearization of (4) around ( f, g).
Thanks to the fact that the regularized quadratic form is positive definite, (F,G) is uniquely defined

by (µ, ν). We leave for later the issue of the existence of (F,G) and its regularity, as dealt with in [Kohn
and Nirenberg 1965].

Proposition 2.3. Assume that ∇ f̄ and ∇ ḡ are constant, that the first component of v̄ does not vanish
and that (7) holds true. If f, g (admissible) are of class C3(D) and H (admissible) is of class C2(R2),
(∇ f,∇g) is in some small enough neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) and ‖H ′′( f, g)‖C(P) is small
enough, then

Bε( f,g)((F,G), (F,G))≥
∫
P

{
1
16(v · ∇F)2+ 1

16(v · ∇G)2+
π2 minP v

2
1

32L2 (F2
+G2)

}
dx dy dz. (12)

Moreover

‖(F,G)‖L2(P) ≤
32L2

π2 minP v
2
1
‖(µ, ν)‖L2(P) (13)

and ∫
P

{ 1
16(v · ∇F)2+ 1

16(v · ∇G)2
}

dx dy dz ≤
32L2

π2 minP v
2
1
‖(µ, ν)‖2L2(P)

for all periodic (µ, ν) ∈ L2
loc(D) and all admissible (F,G) ∈ H 1

loc(D) satisfying (10). These estimates
are uniform in ε ∈ [0, 1].

Proof. Assuming |v′| and |H ′′( f, g)| small enough (as we can), we get in (8)

(1− O(‖v′‖C(P)))
π2 minP v

2
1

32L2 (F2
+G2)+ 1

2

(
∂2

f H( f, g)F2
+ 2∂ f ∂g H( f, g)FG+ ∂2

g H( f, g)G2)
≥
π2 minP v

2
1

64L2 (F2
+G2)

and inequality (12) follows from (8). Applying (10) to (δF, δG)= (F,G),∫
P

{
1

16(v · ∇F)2+ 1
16(v · ∇G)2+

π2 minP v
2
1

32L2 (F2
+G2)

}
dx dy dz ≤ Bε( f,g)((F,G), (F,G))

≤ ‖(µ, ν)‖L2(P)‖(F,G)‖L2(P),

‖(F,G)‖L2(P) ≤
32L2

π2 minP v
2
1
‖(µ, ν)‖L2(P)
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and ∫
P

{ 1
16(v · ∇F)2+ 1

16(v · ∇G)2
}

dx dy dz ≤
32L2

π2 minP v
2
1
‖(µ, ν)‖2L2(P). �

Proposition 2.4. Assume that the first component of v̄ does not vanish and that (∇ f,∇g) is near enough
to (∇ f̄ ,∇ ḡ) in C2(P). Then system (11) allows one to express the partial derivatives ∂2

11 F and ∂2
11G

linearly with respect to µ, ν, the other second-order partial derivatives of F and G, the first-order partial
derivatives of F and G, and F and G. The coefficients of these two linear expressions are rational
functions of f ′, g′, f ′′, g′′, H ′′( f, g), ε (without singularities on D). More precisely,

∂2
11 F = a1µ+a2ν+a3∂

2
12 F+a4∂

2
13 F+a5∂

2
22 F+a6∂

2
23 F+a7∂

2
33 F+a8∂

2
12G+a9∂

2
13G+a10∂

2
22G

+a11∂
2
23G+a12∂

2
33G+a13∂1 F+a14∂2 F+a15∂3 F+a16∂1G+a17∂2G+a18∂3G+a19 F+a20G,

where each ai , 1≤ i ≤ 20, is of the form

ai =
Qi

v2
1 + ε|(∂2 f, ∂3 f, ∂2g, ∂3g)|2+ ε2

for some polynomial

Qi =


Qi ( f ′, g′, ε), 1≤ i ≤ 12,
Qi ( f ′′, g′′), 13≤ i ≤ 18,
Qi (H ′′), 19≤ i ≤ 20.

The denominator does not vanish on D because (∇ f,∇g) is supposed near enough to (∇ f̄ ,∇ ḡ) and
ε ∈ [0, 1]. Moreover, for all integers 1≤ i ≤ 20 and `≥ 0,

‖ai‖C`(P) =


O(‖( f, g)‖C`+1(P)+ 1), 1≤ i ≤ 12,
O(‖( f, g)‖C`+2(P)+ 1), 13≤ i ≤ 18,
O(‖H ′′( f, g)‖C`(P)+‖( f, g)‖C`+1(P)+ 1), 19≤ i ≤ 20

if all norms are well-defined. Analogous results hold for ∂2
11G and all the estimates are uniform in

ε ∈ [0, 1].

Proof. If we keep only the second-order terms in (F,G), we get

µ=∇g · rot(∇F ×∇g+∇ f ×∇G)− ε1F + · · · ,

ν =− rot(∇F ×∇g+∇ f ×∇G) · ∇ f − ε1G+ · · · .
Observe that

rot(∇F ×∇g)=1g∇F −1F∇g+ F ′′∇g− g′′∇F

and thus
µ=∇g · ((F ′′−1F I )∇g)−∇g · ((G ′′−1G I )∇ f )− ε1F + · · · ,

ν =−∇ f · ((F ′′−1F I )∇g)+∇ f · ((G ′′−1G I )∇ f )− ε1G+ · · · ,

where I is the identity matrix. To see that this allows one to express ∂2
11 F and ∂2

11G with respect to µ, ν,
the other second-order partial derivatives of F and G, and the first-order partial derivatives of F and G,
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and F and G, it is sufficient to study

µ=−∂2
11 F∇g · (J∇g)+ ∂2

11G∇ f · (J∇g)− ε∂2
11 F + · · · ,

ν = ∂2
11 F∇ f · (J∇g)− ∂2

11G∇ f · (J∇ f )− ε∂2
11G+ · · · ,

where J is the diagonal matrix with entries (0, 1, 1) on the diagonal and the remainders now also contain
the other second-order partial derivatives of F and G. The discriminant of this system for (∂2

11 F, ∂2
11G) is

(|J∇g|2+ ε)(|J∇ f |2+ ε)− ((J∇ f ) · (J∇g))2 = |(J∇ f )× (J∇g)|2+ ε|J∇ f |2+ ε|J∇g|2+ ε2

= v2
1 + ε|J∇ f |2+ ε|J∇g|2+ ε2.

We estimate ‖ai‖C`(P), 1≤ i ≤ 20, using the inequality

‖ξ(u1, . . . , uN )‖Ck(P) ≤ C‖ξ‖Ck (1+‖u1‖Ck(P)+ · · ·+ ‖uN‖Ck(P)) (14)

for ξ ∈ Ck([−M,M]N ) and u j ∈ Ck(P) with ‖u j‖C(P) ≤ M for 1 ≤ j ≤ N , which, e.g., follows by
interpolation in Ck spaces, see, e.g., of [Hamilton 1982, Theorem 2.2.1, p. 143], and the Faà di Bruno
formula. Hence

O(‖ai‖C`(P))=


O(‖( f, g)‖C`+1(P)+ 1), 1≤ i ≤ 12,
O(‖( f, g)‖C`+2(P)+ 1), 13≤ i ≤ 18,
O(‖H ′′( f, g)‖C`(P)+‖( f, g)‖C`+1(P)+ 1), 19≤ i ≤ 20. �

We now study to which extent Bε( f,g) commutes with differentiations in y and z, following the general
approach of [Kohn and Nirenberg 1965].

Theorem 2.5. Let (∇ f,∇g) be in any bounded subset of C1(P), r ∈ {1, 2, 3, . . .}, ( f, g) ∈ Cr+2(D),
H ∈ Cr+2(R2) and (F,G) ∈ H 2r+1

loc (D) (all admissible). Then, for j ∈ {2, 3},

Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))− Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))

=

∑
p∈S

∫
P
∂

2r−sp−tp
j L p ∂

sp
j u p ∂

tp
j vp dx dy dz+

∑
p∈S̃

∫
P
∂

r−s̃p
j L̃ p ∂

s̃p
j ũ p ∂

r
j ṽp dx dy dz,

where, for each p in some finite sets S and S̃ of indices,

0≤ sp ≤ tp ≤ r − 1, 2≤ 2r − sp − tp ≤ r + 1, 0≤ s̃p ≤ r − 1

and

{u p, vp} ⊂ {∂1 F, ∂2 F, ∂3 F, ∂1G, ∂2G, ∂3G}, {ũ p, ṽp} ⊂ {F,G}.

For each p, the coefficient L p(x, y, z) is a polynomial of all partial derivatives of f and g of order 1,
while L̃ p is a second-order partial derivative of H (with respect to f and g). Moreover we have the
following estimate, where the dependence on r is more explicitly stated:∥∥∥∥ ∑

p∈S:
sp=tp=r−1

∂
2r−sp−tp
j L p

∥∥∥∥
C(P)
=

∥∥∥∥ ∑
p∈S:

sp=tp=r−1

∂2
j L p

∥∥∥∥
C(P)
= O(r2)‖(∂ j∇ f, ∂ j∇g)‖C1(P) (15)
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(the function O(r2) being independent of f, g, F,G, H ′′( f, g) and ε). Finally, for the other indices p,

‖∂
2r−sp−tp
j L p‖C(P) = O(‖(∇ f,∇g)‖C2r−sp−tp (P)+ 1), p ∈ S,

‖∂
r−s̃p
j L̃ p‖C(P) = O(‖H ′′( f, g)‖Cr−s̃ p (P)), p ∈ S̃,

(16)

where the constants in the estimates may depend on r.

Remarks. The expression

Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))− Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))

would vanish if (∇ f,∇g) and H ′′( f, g) were independent of y and z, and the statement allows one to
estimate its size otherwise. In the statement, we add the property sp ≤ tp. In fact we shall omit this
property in the proof, as it is easy to get it by renaming sp and tp. The statement would be much easier if
we would aim at the weaker inequality 0 ≤ sp ≤ tp ≤ r (the proof would then rely on straightforward
integrations by parts). The crucial regularity gain sp, tp ≤ r − 1 has been explored in a general setting in
[Kohn and Nirenberg 1965].

Proof. The typical term of Bε( f,g)((F,G), (F,G)) is of either of the form∫
P

2L(x, y, z)u(x, y, z)v(x, y, z) dx dy dz,

where

{u, v} ⊂ {∂1 F, ∂2 F, ∂3 F, ∂1G, ∂2G, ∂3G}

and the coefficient L(x, y, z) can be expressed as a polynomial of the partial derivatives of f and g of
order 1, or of the form ∫

P
2L̃(x, y, z)ũ(x, y, z)ṽ(x, y, z) dx dy dz,

where

{ũ, ṽ} ⊂ {F,G}

and L̃ is equal to ∂2
f H( f, g), 2∂ f ∂g H( f, g) or ∂2

g H( f, g). The typical term of

Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))− Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))

is therefore either of the form∫
P

(
2L∂r

j u∂
r
jv− (−1)r Lv∂2r

j u− (−1)r Lu∂2r
j v
)

dx dy dz

or ∫
P

(
2L̃∂r

j ũ∂
r
j ṽ− (−1)r L̃ ṽ∂2r

j ũ− (−1)r L̃ũ∂2r
j ṽ
)

dx dy dz.

We only give the details for the first type of term since the argument for the second is similar but simpler
(move r derivatives using integration by parts).
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We get as in [Kohn and Nirenberg 1965] (but in a simpler setting)∫
P
−(−1)r Lv∂2r

j u dx dy dz =
∫
P
∂r+1

j (Lv)∂r−1
j u dx dy dz

=

∫
P

r+1∑
k=0

(r+1
k

)
∂r+1−k

j L∂k
j v∂

r−1
j u dx dy dz

=

∫
P

L∂r+1
j v∂r−1

j u dx dy dz+
∫
P
(r + 1)∂ j L∂r

jv∂
r−1
j u dx dy dz

+

∫
P

1
2r(r + 1)∂2

j L∂r−1
j v∂r−1

j u dx dy dz

+

∫
P

r−2∑
k=0

(r+1
k

)
∂r+1−k

j L∂k
j v∂

r−1
j u dx dy dz

and thus, together with the equality one gets by permuting u and v,∫
P

(
2L∂r

j u∂
r
jv− (−1)r Lv∂2r

j u− (−1)r Lu∂2r
j v
)

dx dy dz

=

∫
P

L∂2
j (∂

r−1
j u∂r−1

j v) dx dy dz

+

∫
P
(r + 1)∂ j L∂ j (∂

r−1
j u∂r−1

j v) dx dy dz+
∫
P

r(r + 1)∂2
j L∂r−1

j u∂r−1
j v dx dy dz

+

∫
P

r−2∑
k=0

(r+1
k

)
∂r+1−k

j L(∂k
j v∂

r−1
j u+ ∂k

j u∂r−1
j v) dx dy dz

= r2
∫
P
∂2

j L∂r−1
j u∂r−1

j v dx dy dz+
∫
P

r−2∑
k=0

(r+1
k

)
∂r+1−k

j L(∂k
j v∂

r−1
j u+ ∂k

j u∂r−1
j v) dx dy dz.

With respect to the j-th variable, L is differentiated at most r + 1 times, and u and v at most r − 1 times.
Moreover the term containing ∂r−1

j u∂r−1
j v is given by

r2
∫
P
∂2

j L∂r−1
j u∂r−1

j v dx dy dz,

where
‖∂2

j L‖C(P) = O(‖(∂ j∇ f, ∂ j∇g)‖C1(P))

(using the fact that (∇ f,∇g) is supposed to be in some bounded subset of the algebra C1(P)). To get
(16), we use (14) with k = 2r − sp − tp and ξ = L . �

In the two following results, everything is uniform in ε ∈ [0, 1] and we do not state explicitly the
dependence on ε.

Proposition 2.6. If ( f, g, H) ∈ C3(D) × C3(D) × C3(R2) is admissible, (∇ f,∇g) is in some small
enough neighborhood of (∇ f̄ ,∇ ḡ) in C2(P) and ‖H ′′( f, g)‖C(P) is small enough, then

‖(F,G)‖H1(P) = O(‖H ′′( f, g)‖C1(P)+ 1)‖(µ, ν)‖H1(P) (17)
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and ∑
j∈{2,3}

∫
P

{ 1
16(v · ∇∂ j F)2+ 1

16(v · ∇∂ j G)2
}

dx dy dz = O(‖H ′′( f, g)‖C1(P)+ 1)2‖(µ, ν)‖2H1(P)

for all periodic (µ, ν) ∈ H 1
loc(D) and all admissible (F,G) ∈ H 3

loc(D) satisfying (10).

Proof. In Theorem 2.5, we consider r = 1. Applying (10) to (δF, δG)=−(∂2
j F, ∂2

j G) with j ∈ {2, 3}
and using Proposition 2.3, we get∫
P

{
1

16(v·∇∂ j F)2+ 1
16(v·∇∂ j G)2+

π2 minP v
2
1

32L2 ((∂ j F)2+(∂ j G)2)
}

dx dy dz

≤ Bε( f,g)((∂ j F,∂ j G), (∂ j F,∂ j G))

= Bε( f,g)((F,G),−(∂
2
j F,∂2

j G))+{Bε( f,g)((∂ j F,∂ j G), (∂ j F,∂ j G))−Bε( f,g)((F,G),−(∂
2
j F,∂2

j G))}

(10)
=

∫
P
(∂ jµ∂ j F+∂ jν∂ j G)dx dy dz+{Bε( f,g)((∂ j F,∂ j G), (∂ j F,∂ j G))−Bε( f,g)((F,G),−(∂

2
j F,∂2

j G))}

(15),(16)
≤ ‖(∂ jµ,∂ jν)‖L2(P)‖(∂ j F,∂ j G)‖L2(P)+O(‖(∂ j∇ f,∂ j∇g)‖C1(P))‖(F,G)‖

2
H1(P)

+O(‖H ′′( f,g)‖C1(P))‖(F,G)‖L2(P)‖(∂ j F,∂ j G)‖L2(P)

≤ ‖(∂ jµ,∂ jν)‖L2(P)‖(∂ j F,∂ j G)‖L2(P)+O(‖(∂ j∇ f,∂ j∇g)‖C1(P))‖(F,G)‖
2
H1(P)

+δ−1O(‖H ′′( f,g)‖C1(P))
2
‖(F,G)‖2L2(P)+δ‖(∂ j F,∂ j G)‖2L2(P).

If, in addition,
‖(∂2∇ f, ∂3∇ f, ∂2∇g, ∂3∇g)‖C1(P) < δ

and δ > 0 is small enough, we get (note that the coefficient 32 is replaced by 64, and later by 128)∑
j∈{2,3}

∫
P

{
1
16(v · ∇∂ j F)2+ 1

16(v · ∇∂ j G)2+
π2 minP v

2
1

64L2 ((∂ j F)2+ (∂ j G)2)
}

dx dy dz

. ‖(µ, ν)‖2H1(P)+ δ
−1(‖H ′′( f, g)‖C1(P)+ 1)2‖(F,G)‖2L2(P)+ δ‖(∂1 F, ∂1G)‖2L2(P)

(13)
. ‖(µ, ν)‖2H1(P)+ δ

−1(‖H ′′( f, g)‖C1(P)+ 1)2‖(µ, ν)‖2L2(P)+ δ‖(∂1 F, ∂1G)‖2L2(P).

Using the last inequality in Proposition 2.3 to estimate ‖∂1 F‖2L2(P) and ‖∂1G‖2L2(P) (using also the fact
that the first component of v never vanishes), we obtain

‖(∂1 F, ∂1G)‖2L2(P) = O(‖(µ, ν, ∂2 F, ∂2G, ∂3 F, ∂3G)‖2L2(P))

and∑
j∈{2,3}

∫
P

{
1

16(v · ∇∂ j F)2+ 1
16(v · ∇∂ j G)2

}
dx dy dz+

π2 minP v
2
1

128L2 ‖(∇F,∇G)‖2L2(P)

= O(‖H ′′( f, g)‖C1(P)+ 1)2‖(µ, ν)‖2H1(P).

We get (17) by combining this with (13). �
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By induction, we get the following theorem.

Theorem 2.7. Let r ≥ 1 be an integer, ( f, g) ∈ H r+4
loc (D) (admissible) be in some small enough neighbor-

hood of ( f̄ , ḡ) in H 5(P), H ∈ C2(R2) be admissible, H ′′( f, g) ∈ Cr (P) and H ′′( f, g) be small enough
in C(P). There exists a constant Cr > 0 such that, if

‖(∂2∇ f, ∂3∇ f, ∂2∇g, ∂3∇g)‖C1(P) < C−1
r , (18)

then∑
j∈{2,3}

∫
P

{ 1
16(v · ∇∂

r
j F)2+ 1

16(v · ∇∂
r
j G)2

}
dx dy dz+‖(F,G)‖2H r (P)

≤ Cr‖(µ, ν)‖
2
H r (P)+Cr‖(µ, ν)‖

2
H1(P)(‖( f, g)‖H r+4(P)+‖H

′′( f, g)‖Cr (P)+ 1)2 (19)

for all periodic (µ, ν) ∈ H r (P) and all admissible (F,G) ∈ H 2r+1
loc (D) satisfying (10).

Remarks. • In (18), all terms in the norm are differentiated at least once with respect to y or z. In the
first sentence of the statement, the small neighborhood and the small bound on the size of H ′′( f, g) in
C(P) are independent of r ≥ 1. The constant Cr can depend on them, on r , f̄ and ḡ, but not on H, f
and g.

• The r-dependence in (18) is due to the appearance of r in the estimate (15) in Theorem 2.5; see also
(23) below.

• Unlike Theorem 2.1 where the constancy of v̄ was not essential it really does matter here; see (18).

Proof. As the result is already known for r = 1 (see Proposition 2.6) let us assume that r ≥ 2.

First step: We first bound from above∫
P

{
1

16(v · ∇∂
r
j F)2+ 1

16(v · ∇∂
r
j G)2+

π2 minP v
2
1

32L2 ((∂r
j F)2+ (∂r

j G)2)
}

dx dy dz

for j ∈ {2, 3}. We shall deal with ∂r
1 F and ∂r

1 G in the third and fourth steps. Applying (10) to (δF, δG)=
(−1)r (∂2r

j F, ∂2r
j G) with j ∈ {2, 3}, and using Proposition 2.3 we get∫

P

{
1

16(v · ∇∂
r
j F)2+ 1

16(v · ∇∂
r
j G)2+

π2 minP v
2
1

32L2 ((∂r
j F)2+ (∂r

j G)2)
}

dx dy dz

≤ Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))

= Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))

+{Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))− Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))}

(10)
=

∫
P
(∂r

jµ∂
r
j F + ∂r

j ν∂
r
j G) dx dy dz

+{Bε( f,g)((∂
r
j F, ∂r

j G), (∂r
j F, ∂r

j G))− Bε( f,g)((F,G), (−1)r (∂2r
j F, ∂2r

j G))}.
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By Theorem 2.5,∫
P

{
1

16(v · ∇∂
r
j F)2+ 1

16(v · ∇∂
r
j G)2+

π2 minP v
2
1

32L2 ((∂r
j F)2+ (∂r

j G)2)
}

dx dy dz

≤ ‖(∂r
jµ, ∂

r
j ν)‖L2(P)‖(∂

r
j F, ∂r

j G)‖L2(P)+ O(r2)‖(∂ j∇ f, ∂ j∇g)‖C1(P)‖(F,G)‖2H r (P)

+

∑
O(‖( f, g)‖H k1+3(P)+ 1)‖(F,G)‖H k2+1(P)‖(F,G)‖H k3+1(P)

+

∑
O(‖H ′′( f, g)‖Cr−k4 (P))‖(F,G)‖H k4 (P)‖(F,G)‖H r (P), (20)

where the sums are over all integers k1, k2, k3 ≥ 0 such that

k1+ k2+ k3 = 2r, k1 ≤ r + 1, k2 ≤ k3 ≤ r − 1, k2+ k3 < 2r − 2

(this implies k1 > 2 and, as r ≥ 2, k2+ k3 > 0) and 0≤ k4 ≤ r − 1. Here and in the following estimates,
we only indicate the r-dependence in the coefficients of ‖(F,G)‖H r (P). We don’t keep track of the
r -dependence of the lower-order terms.

By standard interpolation in Sobolev spaces based on the equality

k j + 1=
r − 1− k j

r − 1
· 1+

k j

r − 1
· r, j = 2, 3,

see, e.g., [Han and Hong 2006, Section 4.3], the first sum can be estimated by∑
O(‖( f, g)‖H k1+3(P)+ 1)‖(F,G)‖(k1−2)/(r−1)

H1(P) ‖(F,G)‖(2r−k1)/(r−1)
H r (P)

=

∑
{O(‖( f, g)‖H k1+3(P)+ 1)(2(r−1))/(k1−2)δ−(2r−k1)/(k1−2)

‖(F,G)‖2H1(P)}
(k1−2)/(2(r−1))

×{δ‖(F,G)‖2H r (P)}
(2r−k1)/(2(r−1)),

where δ > 0 will be chosen as small as needed. The choice of δ > 0 can depend on r , f̄ and ḡ, but not
on (F,G), (µ, ν), H, f and g. In what follows, we write explicitly some negative powers of δ, even
when they can be merged with other positive factors, for example those referred to in the notation .
(possibly depending on r , f̄ and ḡ). By Young’s inequality for products, xy ≤ p−1x p

+ q−1 yq with
p = 2(r − 1)/(k1− 2), q = 2(r − 1)/(2r − k1), and interpolation based on the equality

k1+ 3=
r + 1− k1

r − 1
· 5+

k1− 2
r − 1

· (r + 4),

this can in turn be estimated by

δ‖(F,G)‖2H r (P)+
∑

δ−(2r−k1)/(k1−2)O(‖( f,g)‖H k1+3(P)+1)2(r−1)/(k1−2)
‖(F,G)‖2H1(P)

. δ‖(F,G)‖2H r (P)+
∑

δ−(2r−k1)/(k1−2)

×(‖( f,g)‖H5(P)+1)2(r+1−k1)/(k1−2)(‖( f,g)‖H r+4(P)+1)2‖(F,G)‖2H1(P).

By Proposition 2.6, the sum is thus estimated above:∑
(‖( f, g)‖H k1+3(P)+ 1)‖(F,G)‖H k2+1(P)‖(F,G)‖H k3+1(P)

. δ−2r (‖( f, g)‖H r+4(P)+ 1)2‖(µ, ν)‖2H1(P)+ δ‖(F,G)‖2H r (P). (21)

We have also used that, by assumption, ( f, g) is in some small enough neighborhood of ( f̄ , ḡ) in H 5(P).
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The second sum can similarly be estimated as follows:∑
‖H ′′( f, g)‖Cr−k4 (P)‖(F,G)‖H k4 (P)‖(F,G)‖H r (P)

.
∑
‖H ′′( f, g)‖k4/r

C(P)‖H
′′( f, g)‖(r−k4)/r

Cr (P) ‖(F,G)‖(r−k4)/r
L2(P) ‖(F,G)‖(r+k4)/r

H r (P)

(13)
. δ−2r

‖H ′′( f, g)‖2Cr (P)‖(µ, ν)‖
2
L2(P)+ δ‖(F,G)‖2H r (P). (22)

Let us now choose
‖(∂2∇ f, ∂3∇ f, ∂2∇g, ∂3∇g)‖C1(P) < r−2δ. (23)

If δ is small enough (this is allowed by assumption (18)), then, by (20)–(22) (note that the coefficient 32
is replaced by 64),∑
j∈{2,3}

∫
P

{
1
16(v · ∇∂

r
j F)2+ 1

16(v · ∇∂
r
j G)2+

π2 minP v
2
1

64L2 ((∂r
j F)2+ (∂r

j G)2)
}

dx dy dz+‖(F,G)‖2L2(P)

. ‖(F,G)‖2L2(P)+ δ
−1
‖(µ, ν)‖2H r (P)+ δ‖(F,G, ∂1 F, ∂1G)‖2H r−1(P)

+ δ−2r (‖( f, g)‖H r+4(P)+‖H
′′( f, g)‖Cr (P)+ 1)2‖(µ, ν)‖2H1(P)

because, for r̂ = r ,∑
|α2|+|α3|≤r̂

‖(∂αF, ∂αG)‖2L2(P) . ‖(F,G)‖2L2(P)+
∑

j∈{2,3}

‖(∂ r̂
j F, ∂ r̂

j G))‖2L2(P), (24)

where the sum is over all multi-indices α = (α2, α3) ∈ N2
0 such that |α2| + |α3| ≤ r̂ and ∂α is the

corresponding partial derivative with respect to the variables (y, z). Thanks to the induction hypothesis,∑
j∈{2,3}

∫
P

{
1
16(v · ∇∂

r
j F)2+ 1

16(v · ∇∂
r
j G)2+

π2 minP v
2
1

64L2 ((∂r
j F)2+ (∂r

j G)2)
}

dx dy dz+‖(F,G)‖2L2(P)

. δ−1
‖(µ, ν)‖2H r (P)+ δ‖(∂1 F, ∂1G)‖2H r−1(P)

+ δ−2r (‖( f, g)‖H r+4(P)+‖H
′′( f, g)‖Cr (P)+ 1)2‖(µ, ν)‖2H1(P). (25)

Second step: Let us now deal with the terms containing only one partial derivative with respect to x and
r − 1 partial derivatives with respect to y or z. By induction, we know that∑
j∈{2,3}

∫
P

{ 1
16(v · ∇∂

r−1
j F)2+ 1

16(v · ∇∂
r−1
j G)2

}
dx dy dz+‖(F,G)‖2H r−1(P)

≤ Cr−1‖(µ, ν)‖
2
H r−1(P)+Cr−1‖(µ, ν)‖

2
H1(P)(‖( f, g)‖H r+3(P)+‖H

′′( f, g)‖Cr−1(P)+ 1)2

and thus∑
j∈{2,3}

‖(∂1∂
r−1
j F, ∂1∂

r−1
j G)‖2L2(P)

.
∑

j∈{2,3}

‖(∂2∂
r−1
j F, ∂2∂

r−1
j G, ∂3∂

r−1
j F, ∂3∂

r−1
j G)‖2L2(P)

+‖(µ, ν)‖2H r−1(P)+‖(µ, ν)‖
2
H1(P)(‖( f, g)‖H r+3(P)+‖H

′′( f, g)‖Cr−1(P)+ 1)2
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because the first component of v never vanishes. Together with the first step and thanks to (24) with r̂ = r ,
this gives

‖(F,G)‖2L2(P)+
∑

j∈{2,3}

‖(∂1∂
r−1
j F, ∂1∂

r−1
j G)‖2L2(P)

. δ−1
‖(µ, ν)‖2H r (P)+ δ‖(∂1 F, ∂1G)‖2H r−1(P)

+ δ−2r (‖( f, g)‖H r+4(P)+‖H
′′( f, g)‖Cr (P)+ 1)2‖(µ, ν)‖2H1(P).

Applying (24) to r̂ = r − 1 and to (∂1 F, ∂1G), we obtain for small enough δ

‖(F,G)‖2L2(P)+‖(∂1 F, ∂1G)‖2L2(P)+
∑

j∈{2,3}

‖(∂r−1
j ∂1 F, ∂r−1

j ∂1G)‖2L2(P)

. δ−1
‖(µ, ν)‖2H r (P)+ δ‖(∂

2
1 F, ∂2

1 G)‖2H r−2(P)

+ δ−2r (‖( f, g)‖H r+4(P)+‖H
′′( f, g)‖Cr (P)+ 1)2‖(µ, ν)‖2H1(P). (26)

Third step: We now deal with partial derivatives in which F and G are differentiated at least twice with
respect to x . We estimate these using induction on the number of partial derivatives with respect to x for
a fixed r . In the special case r = 2 there is only one second-order partial derivative to estimate, and we
simply note directly using Proposition 2.4 that

‖(∂2
1 F, ∂2

1 G)‖L2(P) . ‖(µ, ν)‖L2(P)+‖(∂2∇F, ∂2∇G, ∂3∇F, ∂3∇G)‖L2(P)+‖(F,G)‖H1(P)
(17)
. (‖H ′′( f, g)‖C1(P)+ 1)‖(µ, ν)‖H1(P)+‖(∂2∇F, ∂2∇G, ∂3∇F, ∂3∇G)‖L2(P).

Next, let r > 2 and Bs be a differential operator of order r − 2 in (x, y, z) that consists of an iteration
of r − 2 partial derivatives, exactly s of which are with respect to x (0 ≤ s ≤ r − 2). Differentiating
r − 2 times the expressions for ∂2

1 F and ∂2
1 G in Proposition 2.4, we get

‖(Bs∂
2
1 F, Bs∂

2
1 G)‖L2(P).

r−2∑
k=0

(‖( f,g)‖H r+1−k(P)+1)‖(µ,ν)‖H k(P)

+

r−2∑
k=0

(‖( f,g)‖H r+2−k(P)+1)‖(F,G)‖H k+1(P)

+

r−2∑
k=0

‖H ′′‖Cr−2−k(P)‖(F,G)‖H k(P)

+(‖( f,g)‖H3(P)+1)(‖Ds(∂2 F,∂2G)‖L2(P)+‖Es(∂3 F,∂3G)‖L2(P)),

where Ds and Es are matricial differential operators of order r − 1 in (x, y, z), but at most of order s+ 1
when seen as differential operators in x (their coefficients being constants). The terms involving Es and
Ds come from applying Bs to the terms in Proposition 2.4 involving ∂2

αβF or ∂2
αβG with (α, β) 6= (1, 1).

The last inequality allows one to estimate differential expressions of order s + 2 with respect to x by
differential expressions of orders at most s+ 1 with respect to x .
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We get again by interpolation and Young’s inequality

‖(Bs∂
2
1 F, Bs∂

2
1 G)‖L2(P)

. (‖( f, g)‖H r+1(P)+ 1)‖(µ, ν)‖L2(P)+ (‖( f, g)‖H3(P)+ 1)‖(µ, ν)‖H r−2(P)

+ (‖( f, g)‖H r+3(P)+ 1)‖(F,G)‖L2(P)+ (‖( f, g)‖H4(P)+ 1)‖(F,G)‖H r−1(P)

+‖H ′′( f, g)‖Cr−2(P)‖(F,G)‖L2(P)+‖H
′′( f, g)‖C(P)‖(F,G)‖H r−2(P)

+ (‖( f, g)‖H3(P)+ 1)(‖Ds(∂2 F, ∂2G)‖L2(P)+‖Es(∂3 F, ∂3G)‖L2(P))

. (‖( f, g)‖H r+3(P)+‖H
′′( f, g)‖Cr−2(P)+ 1)‖(µ, ν)‖L2(P)

+‖(µ, ν)‖H r−2(P)+‖(F,G)‖H r−1(P)+‖Ds(∂2 F, ∂2G)‖L2(P)+‖Es(∂3 F, ∂3G)‖L2(P)

. (‖( f, g)‖H r+3(P)+‖H
′′( f, g)‖Cr−1(P)+ 1)‖(µ, ν)‖H1(P)

+‖(µ, ν)‖H r−1(P)+‖Ds(∂2 F, ∂2G)‖L2(P)+‖Es(∂3 F, ∂3G)‖L2(P),

where we’ve used the induction hypothesis (19) with r replaced by r − 1 in the last step. By induction
on s, we get the estimate

‖(Bs∂
2
1 F, Bs∂

2
1 G)‖L2(P). (‖( f,g)‖H r+4(P)+‖H

′′( f,g)‖Cr (P)+1)‖(µ,ν)‖H1(P)

+‖(µ,ν)‖H r (P)+
∑

j∈{2,3}

‖(∂r−1
j ∂1 F,∂r−1

j ∂1G)‖L2(P)+δ‖(∂
2
1 F,∂2

1 G)‖H r−2(P),

thanks to (24) applied to (F,G) and (∂1 F, ∂1G), and to (25). Hence, choosing δ sufficiently small

‖(∂2
1 F, ∂2

1 G)‖H r−2(P) . (‖( f, g)‖H r+4(P)+‖H
′′( f, g)‖Cr (P)+ 1)‖(µ, ν)‖H1(P)

+‖(µ, ν)‖H r (P)+
∑

j∈{2,3}

‖(∂r−1
j ∂1 F, ∂r−1

j ∂1G)‖L2(P). (27)

Combining (27) with (26) and again choosing δ sufficiently small allows us to estimate all partial
derivatives of order r with precisely one derivative with respect to x . Substitution of the resulting estimate
into (27) gives us control of all derivatives with at least two derivatives with respect to x .

Conclusion: The estimate of the statement follows from the three steps. �

Let us deal with the case ε = 0 with the help of the technique of elliptic regularization introduced and
well explained in [Kohn and Nirenberg 1965]; see, e.g, p. 449, the beginning of the proof of Theorem 2
and the proof of Theorem 2′ in that work. Firstly, when ε > 0, one deduces from this a priori estimate the
existence of an admissible solution (F,G) ∈ H r (P) given any (µ, ν) ∈ H r (P), by approximating ( f, g),
H ′′( f, g) itself and (µ, ν) by smooth functions. The existence of (F,G) is ensured because the problem
is elliptic in this case. Secondly, as the above estimate holds uniformly in ε ∈ (0, 1], the existence persists
when taking the limit ε→ 0. Thus we get the following theorem.

Theorem 2.8. Let ε = 0, r ≥ 1 be an integer, ( f, g) ∈ H r+4
loc (D) (admissible) be in some small enough

neighborhood of ( f̄ , ḡ) in H 5(P), H ∈ C2(R2) be admissible, H ′′( f, g) ∈ Cr (D) and H ′′( f, g) be small
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enough in C(P). There exists a constant Cr > 0 such that if

‖(∂2∇ f, ∂3∇ f, ∂2∇g, ∂3∇g)‖C1(P) < C−1
r ,

then for any periodic (µ, ν) ∈ H r
loc(D) there exists an admissible (F,G) ∈ H r

loc(D) satisfying (10) (with
ε = 0) and

‖(F,G)‖2H r (P) ≤ Cr‖(µ, ν)‖
2
H r (P)+Cr‖(µ, ν)‖

2
H1(P)(‖( f, g)‖H r+4(P)+‖H

′′( f, g)‖Cr (P)+ 1)2.

This result remains true without the simplifying hypothesis (7).

3. A solution by the Nash–Moser method

In this section we shall take f̄ and ḡ to be some fixed linear functions and let R be the corresponding
Jacobian matrix with respect to (y, z) as in the Introduction.

Let us define three decreasing sequences of Banach spaces.

Definition of the Banach spaces Uk. For each integer k ≥ 2, let Uk be the real linear space of all (F,G)
in H k

loc(D) satisfying (Ad′2) and (Ad′3). We define the norm ‖ · ‖k on Uk as

‖(F,G)‖2k = ‖F‖
2
H k(P)+‖G‖

2
H k(P).

Definition of the Banach spaces Vk. For each integer k ≥ 0, let Vk be the real linear space of all (µ, ν)
in H k

loc(D) that satisfy the periodicity condition (Ad′2) almost everywhere. We define the norm ‖ · ‖k on
Vk by

‖(µ, ν)‖2k = ‖µ‖
2
H k(P)+‖ν‖

2
H k(P).

Definition of the Banach spaces Wk. For each integer k ≥ 4, let Wk be the real linear space of
( f0, g0, H0, c) such that

(i) f0, g0 ∈ H k
loc(D) satisfy the periodicity condition (Ad′2),

(ii) H0 ∈ Ck−2(R2) is periodic with respect to the lattice generated by R P1e1 and R P2 e2, and c ∈ R2.

Note that (ii) ensures that H0( f̄ + f0+ f1, ḡ+ g0+ g1) satisfies (Ad′2) for all ( f1, g1) ∈ Uk .
We define the norm ‖ · ‖k on Wk by

‖( f0, g0, H0, c)‖2k = ‖ f0‖
2
H k(P)+‖g0‖

2
H k(P)+‖H0‖

2
Ck−2(Q)+ |c|

2.

Given ( f0, g0, H0, c) ∈W4, with H0 ∈ C3(R2), we define the map F : U4→ V2 by(
f1

g1

)
→ F

(
f1

g1

)
=

(
− div(∇g× (∇ f ×∇g))+ ∂ f H( f, g)
− div((∇ f ×∇g)×∇ f ))+ ∂g H( f, g)

)
with f = f̄ + f0+ f1, g = ḡ+ g0+ g1 and H( f, g)= c1 f + c2g+ H0( f, g).

The following theorem results directly from Theorem 2.8 and (14) (with ξ = H ).
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Theorem 3.1. Let k≥1 be an integer and suppose that ( f0, g0, H0, c)∈Wk+4, ( f1, g1)∈Uk+4, ‖H ′′0 ‖C(Q)
is small enough, and ( f, g) is in some small enough neighborhood of ( f̄ , ḡ) in H 5(P), with

f = f̄ + f0+ f1, g = ḡ+ g0+ g1 and H( f, g)= c1 f + c2g+ H0( f, g).

There exists a constant Mk > 0 such that if

‖(∂2∇ f, ∂3∇ f, ∂2∇g, ∂3∇g)‖C1(P) < M−1
k ,

we get the following. Given any (µ, ν) ∈ Vk , there exists a unique (F,G) ∈ Uk satisfying (10) with ε = 0.
It also satisfies

‖(F,G)‖k ≤ Mk‖(µ, ν)‖k +Mk‖(µ, ν)‖1(‖( f1, g1)‖H k+4(P)+ 1)
and

‖(F,G)‖0 ≤ M0‖(µ, ν)‖0

for some constant M0 > 0 independent of k.

Remark. The constants Mk in Theorem 3.1 can also depend on ( f0, g0, H0, c) and ( f̄ , ḡ).

Let us state Theorem 6.3.1 in [Han and Hong 2006]. There � is a smooth domain in Rn or a rectangle
with the sides parallel to the coordinate axes and with periodic boundary conditions with respect to n− 1
coordinates. The corresponding Sobolev spaces are simply denoted by H k .

Theorem 3.2. Suppose F(w) is a nonlinear differential operator of order m in a domain�⊂Rn , given by

F(w)= 0(x, w, ∂w, . . . , ∂mw),

where 0 is smooth (see, however, the remark below).
Suppose that d0, d1, d2, d3, s0 and s̃ are nonnegative integers with

d0 ≥ m+ [n/2] + 1
and

s̃ ≥max{3m+ 2d∗+ [n/2] + 2,m+ d∗+ d0+ 1,m+ d2+ d3+ 1},

where d∗ =max{d1, d3− s0− 1}. Assume that, for any h ∈ H s̃+d1 = H s̃+d1(�) and w ∈ H s̃+d2 with

‖w‖Hd0 ≤ r0 := 1,
the linear equation

F ′(w)ρ = h (28)

admits a solution ρ ∈ H s̃ satisfying for any s = 0, 1, . . . , s̃

‖ρ‖H s ≤ cs(‖h‖H s+d1 + (s− s0)
+(‖w‖H s+d2 + 1)‖h‖Hd3 ),

where cs is a positive constant independent of h, w and ρ. Then there exists a positive constant µ∗,
depending only on �, cs,m, d0, d1, d2, d3, s0 and s̃, such that if

‖F(0)‖H s̃−m ≤ µ2
∗
, (29)

the equation F(w)= 0 admits an H s̃−m−d∗−1 solution w in �.
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Remarks. • By inspecting the proof in [Han and Hong 2006], we see that it holds as well for systems of
N ≥ 1 differential equations. Moreover the constant r0 = 1 can be replaced by any fixed value r0 > 0 by
multiplying appropriately functions by constant factors.

• Also the solution w is the limit in H s̃−m−d∗−1 of sums of solutions in H s̃ to linear equations of type (28).
See in [loc. cit.] equations (6.3.14) and (6.3.15), and the proof of Theorem 6.3.1 on p. 103.

• We can relax the condition that 0 is smooth. Let ĉ > 0 be such that, for all w ∈ H d0 with ‖w‖Hd0 ≤ r0,
we have

‖w‖Cm(�) ≤ ĉ,

and define 6 ⊂ RN+Nn+Nn2
+···+Nnm

as the ball of radius ĉ centered at the origin. In the proof, the map 0
appears in the various estimates via ‖F(0)‖H s̃−m and via “constants” depending on

‖∂α∂β0‖C s̃−m(�×6),

where ∂α and ∂β are all possible partial derivatives with respect to w, . . . , ∂mw. See (14) and, in [loc. cit.],
the proof of (P3)`+1 on p. 101. It therefore suffices to assume that 0 is of class C s̃−m+2.

• From [loc. cit.] it follows that there exists a constant C > 0 such that ‖w‖H s̃−m−d∗−1 ≤ Cµ2
∗
. More

precisely, see in [loc. cit.] the last estimate in the proof of (P1)l+1 on p. 100, (6.3.31) and the proof of
Theorem 6.3.1 on p. 103.

To apply this theorem, we need to check (29). For this reason, we shall stay near a solution (namely
( f1, g1)= 0) to an unperturbed problem (namely ( f0, g0)= 0 and H = 0), so that (29) is satisfied, and
rely on the fact that all relevant “constants” (in particular µ∗) for the perturbed problem can be chosen
equal to those of the unperturbed problem.

Theorem 3.3. Let j ≥ 0 be an integer, R > 0 arbitrary and δ > 0 sufficiently small and assume that
( f0, g0, H0, c)∈W13+ j with ‖( f0, g0, H0, c)‖13+ j < R and ‖( f0, g0, H0, 0)‖5<δ. It is possible to choose
ε > 0 (independent of ( f0, g0, H0, c), but depending on ( f̄ , ḡ), j , R and δ) such that if ‖F(0, 0)‖7+ j < ε

then there exists ( f ∗, g∗) ∈ U6+ j satisfying F( f ∗, g∗)= 0.

Proof. We choose r0 > 0 small enough so that Theorem 3.1 with k = 9 + j can be applied for all
( f1, g1) ∈ U5 in the closed ball of radius r0 centered at the origin. Let ĉ > 0 be such that

‖( f1, g1)‖C2(P) ≤ ĉ

for all ( f1, g1) ∈ U5 in this ball, and define 6 ⊂ R2+6+18 as the ball of radius ĉ centered at the origin.
We apply Theorem 3.2 with m = 2, � = P ⊂ Rn , n = 3, d0 = 5, d1 = 0, d2 = 4, d3 = 1, s0 = 1,

d∗ = 0 and s̃ = 9+ j . We get

s̃+ d1 = 9+ j, s̃+ d2 = 13+ j, s̃−m = 7+ j, s̃−m− d∗− 1= 6+ j

and a solution ( f ∗, g∗) ∈ H 6+ j (P). Let the map 0 : P ×R1+1+3+3+9+9
→ R2 be such that

F( f1, g1)= 0(x, y, z, f1, g1, f ′1, g′1, f ′′1 , g′′1 ).
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It appears in the various estimates also via “constants” depending on ‖∂α∂β0‖C s̃−m(P×6), where ∂α
and ∂β are all possible partial derivatives with respect to f1, g1, f ′1, g′1, f ′′1 or g′′1. Observe that
( f0, g0, H0, c) ∈ W13+ j implies ( f0, g0, H0, c) ∈ C s̃+2(P)× C s̃+2(P)× C s̃+2(Q)× R2 and ∂α∂β0 ∈
C s̃−m(P×6). As ( f ∗, g∗) is the limit in H 6+ j (P) of sums of solutions in U 9+ j to equations of type (10)
(with ε = 0), it satisfies (Ad′3) and thus belongs to U6+ j . �

As a corollary, we get the following simplified statement.

Theorem 3.4. Assume that H0 ∈ C11+ j and f0, g0 ∈ H 13+ j. It is possible to choose ε̄ > 0 such that if
‖( f0, g0, H0, c)‖13+ j < ε̄, then there exists ( f ∗, g∗) ∈ U6+ j satisfying F( f ∗, g∗)= 0.

Theorem 1.1 is a reformulation of this last result and Theorem 2.2.

Appendix: Representation of divergence-free vector fields

The fact that the vector field ∇ f ×∇g is divergence-free if f and g are C2 is easily checked using the
formula div(u×v)= v · rot u−u · rot v. A local converse near points where v is nonzero has been known
for a long time; see, e.g., [Barbarosie 2011; Cartan 1967, Chapter 3, Exercise 14]. A local converse that
can be seen as a global converse under additional conditions can be found in Appendix I in [Grad and
Rubin 1958]. In the present appendix, we give for the reader’s convenience a self-contained proof that a
divergence-free vector field v ∈ C2(D) can be represented globally in this form if v is periodic in y and z
and v1 6= 0 in D, and that f and g can be chosen to be of the form “linear plus periodic”. Our argument
is essentially a simple version of an elementary proof of global equivalence of volume forms on compact
connected manifolds due to [Moser 1965].

For a given point (x, y, z) ∈ D we solve the system of ODEs φ′ = v(φ), with φ(0) = (x, y, z), and
let T = T (x, y, z) be the unique time such that φ1(−T ; x, y, z)= 0 (here we use that infD |v1|> 0 and
supD |v|<∞). We define the C2 functions Y, Z : D→ R2 by

Y : (x, y, z) 7→ φ2(−T ; x, y, z) and Z : (x, y, z) 7→ φ3(−T ; x, y, z).

The functions Y and Z are invariants of the vector field v and therefore ∇Y×∇Z =λv for some function λ.
Using the fact that v is divergence-free, it is easily established that λ is another invariant and therefore

∇Y ×∇Z =
1

v1(0, Y, Z)
v

in view of the relations Y (0, y, z)= y and Z(0, y, z)= z. If F,G : R2
→ R2 and

f (x, y, z)= F(Y (x, y, z), Z(x, y, z)), g(x, y, z)= G(Y (x, y, z), Z(x, y, z)),

then
∇ f ×∇g = (∂1 F ∂2G− ∂2 F ∂1G)∇Y ×∇Z .

Thus in order to have ∇ f ×∇g = v we must find F and G with

∂1 F(Y, Z) ∂2G(Y, Z)− ∂2 F(Y, Z) ∂1G(Y, Z)= v1(0, Y, Z).
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If it weren’t for the periodicity conditions, this would be trivial. We describe next how to make a choice
which respects these conditions (the choice is not unique).

Note that v1(0, Y, Z) is P1-periodic in Y and P2-periodic in Z . Let

α =
1

P1 P2

∫ P1

0

∫ P2

0
v1(0, Y, Z) dY d Z

and write v1(0, Y, Z)= a(Y ) b(Y, Z), where

a(Y )=
1
P2

∫ P2

0
v1(0, Y, Z) d Z and b(Y, Z)=

v1(0, Y, Z)
a(Y )

,

so that
1
P1

∫ P1

0
a(Y ) dY = α and

1
P2

∫ P2

0
b(Y, Z) d Z = 1.

We choose

F(Y )=
∫ Y

0
a(s) ds and G(Y, Z)=

∫ Z

0
b(Y, s) ds.

Note that F and G (and hence f and g) are C2 and that the map

9 : (Y, Z) 7→ (F(Y ),G(Y, Z))

from R2 to itself is bijective. It is easily verified that

∂1 F(Y ) ∂2G(Y, Z)= a(Y ) b(Y, Z)= v1(0, Y, Z),

that F(Y )− αY is P1-periodic and that G(Y, Z)− Z is (P1, P2)-periodic. Finally, by the periodicity
of v and standard ODE theory, it follows that (Y (x, y, z), Z(x, y, z))− (y, z) is P1 periodic in y and
P2-periodic in z, and therefore so is ( f (x, y, z), g(x, y, z))− (αy, z). This concludes the proof.

As mentioned above, the representation v=∇ f ×∇g is not unique. Indeed, if8∈C2(R2,R2) satisfies

det8′ = ∂181∂282− ∂281∂182 = 1,

then ( f̃ , g̃)=8( f, g) also satisfies ∇ f̃ ×∇ g̃ = v. Moreover, ( f̃ , g̃) is also linear plus (P1, P2)-periodic
in (y, z) if 8( f, g)= T ( f, g)+80( f, g), where T : R2

→ R2 is linear and 80 is (αP1, P2)-periodic.
Note that T is bijective, since otherwise one could find a nonzero linear functional ` annihilating its

range. This would cause ` ◦8 to be periodic, and thus ` ◦8 would have a critical point at which det8′

would vanish. As T is bijective, 8 is proper and hence bijective by the global inversion theorem (using
again det8′ = 1).

Conversely, if v = ∇ f̃ ×∇ g̃ for some C2 functions f̃ and g̃, then f̃ and g̃ are constant along the
streamlines of v. Hence

( f̃ (x, y, z), g̃(x, y, z))= ( f̃ (0, Y, Z), g̃(0, Y, Z))

with (Y, Z)=(Y (x, y, z), Z(x, y, z)) as above, and we obtain ( f̃ , g̃)=8( f,g), where8=( f̃ , g̃)|x=0◦9
−1

is C2. Moreover, 8 is linear plus (αP1, P2)-periodic and det8′ = 1.
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Let us finally note that the Bernoulli function H = 1
2 |v|

2
+ P can clearly be written as a function of

( f, g) since it is constant on streamlines. Denoting this function also by H( f, g), we find that if ( f, g) is
transformed to ( f̃ , g̃)=8( f, g) with 8 as above, then H is transformed to H ◦8−1.
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