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CONVERGENCE OF THE KÄHLER–RICCI ITERATION

TAMÁS DARVAS AND YANIR A. RUBINSTEIN

The Ricci iteration is a discrete analogue of the Ricci flow. According to Perelman, the Ricci flow
converges to a Kähler–Einstein metric whenever one exists, and it has been conjectured that the Ricci
iteration should behave similarly. This article confirms this conjecture. As a special case, this gives a new
method of uniformization of the Riemann sphere.

1. Introduction

Let .M;g1/ be a compact Riemannian manifold. A Ricci iteration is a sequence of metrics fgigi2N on M

satisfying
Ric giC1 D gi ; i 2 N; (1)

where Ric giC1 denotes the Ricci curvature of giC1. One may think of (1) as a dynamical system on
the space of Riemannian metrics on M. Part of the interest in the Ricci iteration is that, clearly, Einstein
metrics are fixed points, and so (1) aims to provide a natural theoretical and numerical approach to
uniformization in the challenging case of positive Ricci curvature (different Ricci iterations can be defined
in the context of nonpositive curvature, but these are typically easier to understand and will not be
discussed here). In essence, the Ricci iteration aims to reduce the Einstein equation to a sequence of
prescribed Ricci curvature equations and can be thought of as a discretization of the Ricci flow. Going back
to [Rubinstein 2007; 2008c], it has been studied since by a number of authors [Berman 2013; Berman et al.
2016a; Cheltsov et al. 2010; Cheltsov and Shramov 2011a; 2011b; Cheltsov and Wilson 2013; Guedj et al.
2013; Jeffres et al. 2016; Keller 2009; Pulemotov and Rubinstein 2016]; see also the survey [Rubinstein
2014, §6.5]. One of the motivations for considering (1) and not simply repeatedly applying the Ricci
tensor (as in [Nadel 1995], see also [Rubinstein 2008a, Remark 4.63]) is the gain of derivatives inherent
in (1) as well as monotonicity of certain functionals. Both of these properties will feature below.

Of particular interest has been the study of the Ricci iteration on Kähler manifolds (for the non-Kähler
case results are scarce, see [Pulemotov and Rubinstein 2016]). When .M; J;g1/ is Kähler, the Calabi–Yau
theorem [Yau 1978] guarantees the existence and uniqueness of the sequence fgigi2N if and only if M is
Fano (i.e., has positive first Chern class c1.M; J/) and the Kähler class associated to g1 is c1.M; J/. Under
a rather restrictive technical assumption, one of us showed that gi converges smoothly to a Kähler–Einstein
metric [Rubinstein 2008c, Theorem 3.3] and made the following general conjecture (see Conjecture 3.2
of the same work):
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Conjecture 1.1. Let .M; J;g1/ be a compact Kähler manifold admitting a Kähler–Einstein metric.
Suppose the Kähler class associated to g1 is c1.M; J/. Then the Ricci iteration (1) converges in the sense
of Cheeger–Gromov to a Kähler–Einstein metric.

Roughly speaking, .M;gk/ converges in the sense of Cheeger–Gromov to a Kähler–Einstein metric
if there exist smooth diffeomorphisms fk WM !M such that f �

k
gk converges smoothly to a Kähler–

Einstein metric. As we will see, our methods will actually produce biholomorphisms fk . For more on
Cheeger–Gromov convergence we refer to [Petersen 2016, Chapter 10].

The best result so far on this conjecture is due to Berman et al. [2016a], who replaced the technical
assumption of [Rubinstein 2008c, Theorem 3.3] concerning Tian’s ˛-invariant by the weaker assumption
of the Mabuchi energy being proper (both of these assumptions imply a Kähler–Einstein metric exists).
Therefore, by a classical result of Tian [1997], Conjecture 1.1 holds if M admits no holomorphic vector
fields. However, the properness assumption is still too restrictive and fails in general. For example,
Conjecture 1.1 is still open even for M D S2, the two-sphere. Furthermore, as recent counterexamples
show [Darvas and Rubinstein 2017], certain key theorems in Kähler geometry that one might naively
expect to generalize in a straightforward manner from the case of no automorphisms require new tools
and ideas when automorphisms are present.

The main result of the present article is the resolution of Conjecture 1.1, and in fact with a stronger
convergence:

Theorem 1.2. Let .M; J;g1/ be a compact Kähler manifold admitting a Kähler–Einstein metric. Suppose
the Kähler class associated to g1 is c1.M; J/ and let fgigi2N be given by (1). Then there exist holomorphic
diffeomorphisms hk such that h�

k
gk converges smoothly to a Kähler–Einstein metric.

A key ingredient in establishing this result is our use of a Finsler metric structure on the space of Kähler
metrics introduced previously by one of us [Darvas 2015]. In this infinite-dimensional geometry, the
automorphisms of X act by isometries. We establish the boundedness of the Ricci iteration with respect
to this Finsler metric, up to automorphisms of X. This is then shown to imply the key a priori estimates
with respect to the stronger C k norms. In fact, we also show a rather stronger result: discretizations of
the Kähler–Ricci flow for any time step converge. This is new even for the case of no automorphisms
considered in [Rubinstein 2008c; Berman et al. 2016a] and resolves a more general conjecture than
Conjecture 1.1; see Theorem 1.6 below.

Uniformization of the two-sphere. As a very special case we obtain the following new method of
uniformization. Fix a conformal class of volume V on S2. As we know, in this class there is a constant
curvature metric, the round one. More precisely, let !c denote the round form of the constant-c Ricci
curvature metric on M D .S2; J/, given locally by

!c D

p
�1

c�

dz ^ d Nz

.1Cjzj2/2
:

Here V D
R

S2 !c D c1.ŒM �/=c D 2=c. Consequently, c D 1
2�

in the case where we restrict the Euclidean
metric of R3 to the unit sphere.
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Let ! be any metric on S2 with
R

S2 ! D V D 2=c. Introduce u0 D 0, and we solve iteratively to find
ui 2 C1.S2/ satisfying

�!ui DR! � 2eui�1 and
Z

S2

eui! D
2

c
; (2)

so that the scalar curvature of !i WD eui! satisfies R!i
D 2eui�1�ui, or equivalently, Ric!i D !i�1.

(In two dimensions, Ric! D 1
2
R!!, where R! is the scalar curvature. If !1 D e�!0, then the scalar

curvatures of these two metrics satisfy

�!0
� �R!0

CR!1
e� D 0:

We note that the conformal factor is often written e2� elsewhere, but this is compensated for here by the
fact that R! D 2K! , where K! is the Gauss curvature.)

Corollary 1.3. We fix c > 0 and let ! be any Kähler form on S2 with
R
X ! D 2=c. We introduce fuig �

C1.S2/ by repeatedly solving the Poisson equation (2). Then, there exist Möbius transformations hi

such that h�i .e
ui!/ converges smoothly to the round metric !c .

Discretization of the Ricci flow. One of the original motivations for introducing the Ricci iteration, going
back to [Rubinstein 2007; 2008c], is its relation to the Ricci flow. Hamilton’s Ricci flow on a Kähler
manifold of definite or zero first Chern class is defined as f!.t/gt2RC satisfying the evolution equation

@!.t/

@t
D�Ric!.t/C�!.t/; t 2 RC;

!.0/D !;

where � is a Kähler class satisfying ��D c1.M; J/ for � 2 f�1; 0; 1g and Œ!�D� [Hamilton 1982].
The following dynamical system is seen to be a discrete version of this flow [Rubinstein 2008c,

Definition 3.1], obtained by a backward Euler discretization with time step � .

Definition 1.4. Let � be a Kähler class satisfying ��D c1.M; J/ for � 2 f�1; 0; 1g. Given a Kähler
form ! with Œ!�D� and a number � > 0, define the time-� Ricci iteration to be the sequence of forms
f!k�gk�0 satisfying the equations

!k� �!.k�1/�

�
D�Ric!k� C�!k� ; k 2 N;

!0 D !:

Let us assume that �D 1 from now on; for the cases � 2 f�1; 0g see [Rubinstein 2008c, Theorem 3.3].
Observe that in the case when � D 1, the time-� Ricci iteration is precisely the Ricci iteration from (1).
Indeed, Conjecture 1.1 is in fact a special case of the following conjecture concerning the time-� Ricci
iteration for any � > 0 [Rubinstein 2008c, Conjecture 3.2].

Conjecture 1.5. Let .M; J/ be a compact Kähler manifold admitting a Kähler–Einstein metric. Let � be
a Kähler class such that �D c1.M; J/. Then for any ! with Œ!�D� and for any � > 0, the time-� Ricci
iteration exists for all k 2 N and converges in the sense of Cheeger–Gromov to a Kähler–Einstein metric.
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The case when � > 1 is treated in [Rubinstein 2008c, Theorem 3.3]. However, it is the case � � 1

that is the most interesting and challenging. The case � D 1 is perhaps the most interesting due to the
simple geometrical interpretation (1), while the cases � < 1 are interesting due to the connection to the
Kähler–Ricci flow. In this regime one may expect the Ricci iteration to converge to the Ricci flow in a
certain scaling limit as �! 0. The cases � � 1 are challenging since the a priori estimates are considerably
harder then. While in the regime � > 1, one has a uniform positive Ricci lower bound along the iteration;
this is no longer true when � � 1. Thus, there is no a priori control on the diameter or the Poincaré
and Sobolev constants. We work around these difficulties by analyzing the Ricci iteration in the metric
geometry of the space of Kähler potentials [Darvas 2015].

In this article, we confirm the more general Conjecture 1.5, and treat the iteration for all time steps �
by proving the following result, of which Theorem 1.2 is a special case.

Theorem 1.6. Let .M; J;g1/ be a compact Kähler manifold admitting a Kähler–Einstein metric. Suppose
the Kähler class associated to g1 is c1.M; J/ and let f!k�gk2N be the time-� Ricci iteration given by
Definition 1.4. Then there exist holomorphic diffeomorphisms hk such that h�

k
!k� converges smoothly to

a Kähler–Einstein form.

2. Energy functionals

Let .M; !/ denote a connected compact closed Kähler manifold. The space of smooth strictly !-
plurisubharmonic functions (Kähler potentials)

H! WD f' 2 C1.M / W !' WD !C
p
�1 @N@' > 0g (3)

can be identified with H�R, where

HD f!' W ' 2 C1.M /; !' > 0g (4)

is the space of all Kähler metrics (or forms) representing the fixed cohomology class Œ!�.
From now on let ! be a Kähler form on M, cohomologous to c1.M; J/. The Aubin–Mabuchi functional

was introduced by Mabuchi [1986, Theorem 2.3],

AM.'/ WD
V �1

nC 1

nX
jD0

Z
M

'!j
^!n�j

' ; (5)

where V WD
R

M !n
' D

R
M !n

' is the total volume of the Kähler class. Integration by parts gives the useful
estimates

1

V

Z
M

.u� v/!n
u � AM.u/�AM.v/�

1

V

Z
M

.u� v/!n
v : (6)

The subspace

H0 WD AM�1.0/\H! (7)

is isomorphic to H (4), the space of Kähler metrics.
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Let f!' 2 C1.M / denote the unique function (called the Ricci potential of !') satisfying

p
�1 @N@f!' D Ric!' �!' ;

1

V

Z
M

ef!'!n
' D 1:

The Ding and Mabuchi functionals are given by [Ding 1988; Mabuchi 1986]

D.'/ WD �AM.'/� log
1

V

Z
M

ef!�'!n;

E.'/ WD
1

V

Z
X

log
!n
'

ef!!n
!n
' �AM.'/C

1

V

Z
M

'!n
' C

1

V

Z
M

f!!
n:

(8)

Notice that these functionals are invariant under addition of constants to '; hence they descend to H.
Additionally, the critical points of these functionals are exactly the Kähler–Einstein metrics.

For ' 2H! with
R

M ef!�'!n D V , Jensen’s inequality for the convex weight t ! t log t yields

Ent.ef!�'!n; !n
'/ WD

1

V

Z
X

log
!n
'

ef!�'!n
!n
' D

1

V

Z
X

!n
'

ef!�'!n
log

!n
'

ef!�'!n
ef!�'!n

� 0: (9)

Thus,

E.!'/�
1

V

Z
M

f!!
n
D Ent.ef!�'!n; !n

'/�AM.'/� �AM.'/DD.!'/:

Moreover, if

D.!'/DE.!'/�
1

V

Z
M

f!!
n

then equality holds in (9). As a result, !n
' D ef!�'!n D ef!'!n

' ; i.e., !' is Kähler–Einstein. This
together with the fact that Kähler–Einstein metrics minimize both D and E allows us to conclude the
following result; see also [Rubinstein 2008b, (24)].

Proposition 2.1. For ' 2H! ,

D.!'/�E.!'/�
1

V

Z
M

f!!
n;

with equality if and only if Ric!' D !' .

3. The metric completion

All of the functionals introduced in the previous section can be extended to the potential space E1

introduced by Guedj and Zeriahi [2007], which can be identified with a natural metric completion of H
[Darvas 2015]. The resulting metric theory provides essential tools for proving our main result concerning
convergence of the Ricci iteration. We briefly recall this machinery, referring to [Darvas and Rubinstein
2017, §4–5] for more details.

Let

PSH.M; !/D f' 2L1.M; !n/ W ' is upper semicontinuous and !' � 0g:
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Following [Guedj and Zeriahi 2007, Definition 1.1] we define the subset of full mass potentials

E.M; !/ WD

�
' 2 PSH.M; !/ W lim

j!�1

Z
f'�jg

.!C
p
�1 @N@maxf'; j g/n D 0

�
:

For each '2E.M; !/, define!n
' WD limj!�1 1f'>jg.!C

p
�1 @N@maxf'; j g/n:By definition, 1f'>jg.x/

is equal to 1 if '.x/ > j and zero otherwise, and the measure .! C
p
�1 @N@maxf'; j g/n is defined

by [Bedford and Taylor 1982] since maxf'; j g is bounded. Consequently, ' 2 E.M; !/ if and only ifR
X !n

' D
R
X !n, justifying the name of E.M; !/.

Next, define a further subset, the space of finite 1-energy potentials

E1 WD

�
' 2 E.M; !/ W

Z
j'j!n

' <1

�
:

Consider the following weak Finsler metric on H! [Darvas 2015]:

k�k' WD V �1

Z
M

j�j!n
' ; � 2 T'H! D C1.M /: (10)

We denote by d1 the associated pseudometric and recall the result alluded to above, characterizing the
d1-metric completion of H! [Darvas 2015, Theorems 2 and 3.5]:

Theorem 3.1. .H! ; d1/ is a metric space whose completion can be identified with .E1; d1/, where

d1.u0;u1/ WD lim
k!1

d1.u0.k/;u1.k//

for any smooth decreasing sequences fui.k/gk2N �H! converging pointwise to ui 2 E1, i D 0; 1.

Also, by [Darvas 2015, Theorem 3], we have the following qualitative estimates for the d1-metric in
terms of analytic quantities:

1

C
d1.u; v/�

Z
M

ju� vj!n
u C

Z
M

ju� vj!n
v � Cd1.u; v/; u; v 2 E1; (11)

where C > 1 only depends on !.
A crucial fact is that the formulas defining the energy functionals discussed in Section 2 actually make

sense on the metric completion E1, and then coincide with the greatest lower semicontinuous extension
of the said functionals restricted to H! [Darvas and Rubinstein 2017, Lemma 5.2, Propositions 5.19
and 5.21]:

Lemma 3.2. (i) AM;D W H! ! R each admit a unique d1-continuous extension to E1 and these
extensions still satisfy (5) and (8) respectively.

(ii) E WH!! R admits a d1-lower semicontinuous extension to E1 and the greatest such extension still
satisfies (8).

Proposition 2.1 was generalized by Berman [2013, Theorem 1.1] to the context of the metric completion
(for a proof using the Ricci iteration see [Darvas 2017, Proposition 4.42]):

Theorem 3.3. Proposition 2.1 holds more generally for all ' 2 E1.
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Let G WD Aut0.M / denote the connected component of the complex Lie group of automorphisms
(biholomorphisms) of M. The automorphism group acts on H by pullback:

f:� WD f ?�; f 2G; � 2H: (12)

Given the one-to-one correspondence between H and H0, recall (7), the group G also acts on H0. The
precise action is described in the next lemma [Darvas and Rubinstein 2017, Lemma 5.8].

Lemma 3.4. For ' 2H0 and f 2G let f:' 2H0 be the unique potential such that f �!' D !f:' . Then,

f:' D f:0C' ıf: (13)

Complementing the above, G acts on H0 by d1-isometries [Darvas and Rubinstein 2017, Lemma 5.9],
which allows us to introduce a natural (pseudo-)metric on the space H0=G:

d1;G.Gu;Gv/D inf
g2G

d1.u;g:v/; u; v 2H0: (14)

4. Metric convergence of the iteration

We consider the � -step Ricci iteration equation
! .kC1/�

�! k�

�
D ! .kC1/�

�Ric! .kC1/�

for � 2 .0; 1�. When � D 1, the iteration simply becomes Ric! kC1
D ! k

. As explained in [Rubinstein
2008c, (33)], on the level of scalars the iteration can be written in the following manner:

!n
 .kC1/�

D ef!�
1
�
 k��.1� 1

�
/ .kC1/�!n; k 2 N; (15)

with the natural normalization

1

V

Z
M

ef!�
1
�
 k��.1� 1

�
/ .kC1/�!n

D 1: (16)

Since � 2 .0; 1�, note that (15)–(16) has a unique solution  .kC1/� 2H! , according to [Aubin 1984; Yau
1978].

In our particular case, there will be special emphasis on working in the geodesically complete potential
space H0, and we introduce accordingly

 0k� WD  k� �AM. k� / 2H0: (17)

First we generalize an inequality of [Rubinstein 2008c] (in the case � D 1) that provides a comparison
of the Ding and Mabuchi energies along the � -iteration:

Proposition 4.1. Suppose � 2 .0; 1� and .M; !/ is a Fano manifold and  1� 2H! . Then the following
estimate holds along the iteration:

E.! .kC1/�
/�

1

V

Z
M

f!!
n
�

1

�
D.! k�

/C

�
1�

1

�

�
D.! .kC1/� / for all k 2 N: (18)
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In the argument below (and thereafter) we will suppress the parameter � from superscripts whenever
this will cause no confusion.

Proof. Using (8) and (15),

E.! kC1
/�

1

V

Z
M

f!!
n
D

1

V

Z
X

log
!n
 kC1

ef!!n
!n
 kC1

�AM. kC1/C
1

V

Z
M

 kC1!
n
 kC1

D�
1

V

Z
M

�
1

�
 kC

�
1�

1

�

�
 kC1

�
!n
 kC1

�AM. kC1/C
1

V

Z
M

 kC1!
n
 kC1

D
1

�V

Z
M

. kC1� k/!
n
 kC1

�AM. kC1/:

Using this identity, to finish the proof, we notice that it is enough to prove the following two inequalities
(and later add them up):

1

�V

Z
M

. kC1� k/!
n
 kC1

�AM. kC1/� �
1

�
AM. k/�

�
1�

1

�

�
AM. kC1/; (19)

0� �
1

�
log
�

1

V

Z
M

ef!� k!n

�
�

�
1�

1

�

�
log
�

1

V

Z
M

ef!� kC1!n

�
: (20)

Notice that, after rearranging terms, (19) is seen to be equivalent to

1

V

Z
M

. kC1� k/!
n
 kC1

� AM. kC1/�AM. k/:

Thus, (19) follows from (6). To address (20) we prove the following more general claim.

Claim 4.2. For � 2 .0; 1� and g; h 2 C1.X / the following estimate holds:�
1

V

Z
M

ef!�g!n

�1
�
�

1

V

Z
M

ef!�h!n

�1� 1
�

�
1

V

Z
M

ef!�
1
�

g�.1� 1
�
/h!n: (21)

By our choice of normalization (16), this inequality implies (20).

As (21) is seen to be invariant under adding constants to g and h, we can assume that

1

V

Z
M

ef!�h!n
D 1:

In particular, we only have to argue that�
1

V

Z
M

e�gChef!�h!n

�1
�

�
1

V

Z
M

.e�gCh/
1
� ef!�h!n:

This follows from Jensen’s inequality, as the function f .t/D t
1
� is convex for t > 0. �

Next we show that in the case a Kähler–Einstein metric exists, the iteration f 0
k
gk d1-converges up to

pullbacks:
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Proposition 4.3. Let � 2 .0; 1�. Suppose a Kähler–Einstein metric exists in H, and let f k�gk2N be the
solutions of (15). Then there exist gk 2G such that gk : 

0
k�

d1-converges to a Kähler–Einstein potential.

Proof. Proposition 4.1 combined with Proposition 2.1 gives

D.! kC1
/�E.! kC1

/�
1

V

Z
M

f!!
n
�

1

�
D.! k

/C

�
1�

1

�

�
D.! kC1

/; k 2 N: (22)

As a result, fD.! l
/gl is a decreasing sequence (this is proved in [Rubinstein 2008c, Proposition 4.2(ii)]

for � D 1). We fix a Kähler–Einstein potential

 KE 2H0:

Existence of such a potential implies that both D and E are bounded below [Bando and Mabuchi 1987;
Ding and Tian 1992]. Therefore, the (monotone) sequence fD.! l

/gl converges. Additionally, by (22),˚
E.! l

/� 1
V

R
M f!!

n
	

l
converges and

� WD lim
l

E.! l
/�

1

V

Z
M

f!!
n
D lim

l
D.! l

/ 2 R:

Next we focus on the potentials  0
l
2 H0. By [Darvas and Rubinstein 2017, Theorem 2.4], E is

G-invariant and
E. 0l/� C1d1;G.0;  

0
l/�C2;

and so d1;G.0;  
0
l
/� C 0. By definition, see (14), there exists gl 2G such that

d1. KE;gl : 
0
l/� d1;G.G KE;G 

0
l/C

1

l
� C 0C 1: (23)

Remark 4.4. In fact, there exists gl which achieve the equality d1. KE;gl : 
0
l
/D d1;G.G KE;G 

0
l
/ by

[Darvas and Rubinstein 2017, Proposition 6.8] but we do not have to know that for our proof here.

Setting
vl WD gl : 

0
l ;

by the G-invariance of E, we obtain that E.vl/ is bounded. On the other hand, a combination of (11)
and (23) gives that AM.vl/ D 0 and

R
M vl!

n
vl

are bounded as well. Comparing with (4), we see that
Ent.ef0!n; !n

vl
/ is bounded too.

By (11), d1-boundedness of potentials implies L1-boundedness, which in turn implies boundedness of
the supremum. As a result, we can apply the compactness result of [Berman et al. 2016a] (see [Darvas
and Rubinstein 2017, Theorem 5.6] for a convenient formulation for our context) to conclude that fvlgl is
d1-precompact.

Next we claim that d1. KE; vl/! 0. If this is not the case, then by possibly choosing a subsequence,
we can assume that d1. KE; vl/ > " > 0. By possibly choosing another subsequence, we can assume that
d1.vl ;u/! 0 for some u 2 E1. Lemma 3.2 gives that

�DD.u/DE.u/�
1

V

Z
M

f!!
n;

and in particular u is a Kähler–Einstein potential by Theorem 3.3.
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By the Bando–Mabuchi uniqueness theorem [1987] uD h: KE for some h 2G. Combining this with
(23), we conclude that

d1.vkl
;  KE/�

1

kl

� d1;G.Gvl ;G KE/� d1.h
�1vl ;  KE/D d1.vl ; h: KE/D d1.vl ;u/:

By choice, the right-hand side converges to zero, and the lim inf of left-hand side is bounded below by
" > 0, giving a contradiction. This implies that d1.vk ;  KE/! 0, concluding the proof. �

5. A priori estimates and smooth convergence

In this section we prove our main result by strengthening Proposition 4.3.

Theorem 5.1. Let � 2 .0; 1�. Suppose a Kähler–Einstein metric exists in H, and let f k�gk2N be the
solutions of (15). Then there exist gk 2 G such that gk : 

0
k�

converges smoothly to a Kähler–Einstein
potential. In particular, g�

k
! k�

converges smoothly to a Kähler–Einstein metric.

Proof. By Proposition 4.3 there exists gk 2 G and a Kähler–Einstein potential  KE 2 H0 such that
d1.gk : 

0
k
;  KE/! 0. We show below that in fact gk : 

0
k
!C1  KE.

Focusing on the � -step Ricci iteration recursion, we can write

.g�1
kC1 ıgk/

� Ric!gkC1: 
0
kC1
D g�k Ric! 0

kC1
D g�k

�
1

�
! 0

k
C

�
1�

1

�

�
! 0

kC1

�
D

1

�
!gk : 

0
k
C

�
1�

1

�

�
!gk : 

0
kC1

D
1

�
!gk : 

0
k
C

�
1�

1

�

�
!.g�1

kC1
ıgk/:gkC1: 

0
kC1

: (24)

Set
'k WD gk : 

0
k 2H0;

fk WD g�1
k ıgk�1 2G:

With this notation, (24) becomes

Ric!fkC1:'kC1
D

1

�
!'k
C

�
1�

1

�

�
!fkC1:'kC1

: (25)

Without loss of generality we assume that ! (the reference form) is Kähler–Einstein. Using (25) we
can write

p
�1 @N@

�
1

�
'k�1C

�
1�

1

�

�
fk :'k

�
D Ric!fk :'k

�Ric! D
p
�1 @N@ log.!n=!n

fk :'k
/:

This implies
1

�
'k�1C

�
1�

1

�

�
fk :'k C log.!n

fk :'k
=!n/D Bj 2 R:

Since log is a concave function, by Jensen’s inequality,

1

V

Z
M

log.!n
fk :'k

=!n/!n
� log

1

V

Z
M

!n
fk :'k

D 0:
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By the triangle inequality, for k sufficiently large,

d1.0; 'k�1/� d1. KE; 0/C 1:

Using (11) we conclude that
R

M 'k�1!
n � C. These last two estimates combine to give

Bj �

�
1�

1

�

�
1

V

Z
M

fk :'k!
n
D

1

V

Z
M

'k�1!
n
C

1

V

Z
M

log.!n
fk :'k

=!n/!n
� C:

Since fk :'k 2 PSH.M; !/, it is well known that
R

M fk :'k!
n and supM fk :'k are comparable. As a

result,

Bj �

�
1�

1

�

�
sup
M

fk :'k � C I

hence we can write

!n
fk :'k

D eBj�.1� 1
�
/fk :'k�

1
�
'k�1!n

� eC� 1
�
'k�1!n: (26)

Moreover, by Zeriahi’s version of the Skoda integrability theorem [Zeriahi 2001] (see [Darvas and
Rubinstein 2017, Theorem 5.7] for a formulation that fits our context most), there exists C > 0 such that,
say, Z

M

e�
3
�
'k�1!n

� C; k 2 N:

Combining this estimate with (26), we get that

k!n
fk :'k

=!n
kL3.M;!n/ � C:

Now Kołodziej’s estimate [2005], see also [Błocki 2005], allows us to conclude that the oscillation
satisfies oscfk :'k � C for some uniform C. Note that for any u 2H0, it follows from (6) that

inf u�
1

V

Z
u!n

u � 0�
1

V

Z
u!n
� sup u;

so u changes signs on M. Thus, since fk :'k 2H0, the oscillation bound implies the uniform bound

kfk :'kkL1.M / � C: (27)

Consequently, (11) yields

d1.0; fk :'k/D d1.f
�1

k :0; 'k/� C:

Thus,

d1.f
�1

k :0; 0/� d1.f
�1

k :0; 'k/C d1.'k ; 0/� C 0:

From Lemma 5.2, proved below, it follows that ff �1
k
gk is contained in a bounded set of G. In particular,

all derivatives up to order m of f �1
k

are bounded by some Cm, independent of k. So, to finish the proof,
it suffices to estimate derivatives of

hk WD fk :'k



732 TAMÁS DARVAS AND YANIR A. RUBINSTEIN

(since that will imply the same estimates on f �1
k
:hk D 'k). From (25) it follows that

Ric!hkC1
D Ric!fkC1:'kC1

�

�
1�

1

�

�
!fkC1:'kC1

D

�
1�

1

�

�
!hkC1

:

Using this, Lemma 5.3 implies tr!hk
! < C, and using the fact that !n

hk
=!n < C by (26) we thus obtain

tr! !hk
< C 0 so j�!hk j< C 00, as in [Rubinstein 2008c, p. 1540]. Given the Laplacian bound, the C 2;˛

and higher-order estimates then follow the same way as in [Rubinstein 2008c, Theorem 3.3] (or by
applying [Błocki 2012, Theorem 5.1] directly to (26), followed by bootstrapping).

By the Arzelà–Ascoli compactness theorem, f'kgk is C k-precompact. From (11) it follows that
C k-convergence implies d1-convergence. Consequently, any C k-convergent subsequence of f'kgk

d1-converges to  KE. As a result, f'kgk C k-converges to  KE, finishing the proof. �

We note that in our arguments above the estimates depend on a positive lower bound to � > 0. If this
could be avoided, then one could hope that these estimates also hold in a scaled limit, as the iteration is
expected to converge to the Kähler–Ricci flow.

Lemma 5.2. Let .X; !/ be a Fano Kähler–Einstein manifold. Let C > 0 and suppose that d1.g:0; 0/�C

for some g 2G. Then g is contained in a geodesic ball B �G centered at Id with radius R WDR.C / > 0.

This result is implicit in the arguments of [Darvas and Rubinstein 2017, Proposition 6.8]; see also
[Berman et al. 2016b, Lemma 2.7; Darvas and Rubinstein 2017, Claim 7.11].

Proof. By [Darvas and Rubinstein 2017, Propositions 6.2 and 6.9] there exists k 2 Isom0.X; !/ and a
Hamiltonian vector field X 2 isom.X; !/ such that g D k expId JX , where expId is the exponential map
of the Lie group G (recall that J is the complex structure of X ). It is clear from the definition of the action
of G on the level of potentials that k�1:0D 0. Thus we can write

C � d1.g:0; 0/D d1.k expId.JX /:0; 0/D d1.expId.JX /:0; k
�1:0/D d1.expId.JX /:0; 0/:

As shown in [Darvas and Rubinstein 2017, Section 7.1], the curve Œ0;1/ 3 t ! expId.tJX /:0 2H0 is a
d1-geodesic ray, and hence kXk is bounded. Since Isom0.X; !/ is compact, we obtain that gDk expId JX
is contained in a geodesic ball B �G centered at Id with radius R WDR.C / > 0. �

For the sake of completeness we recall a version of the Chern–Lu inequality, going back to [Lu 1968],
that gives the Laplacian estimate based on a C 0 estimate, elaborated in [Rubinstein 2008c, pp. 1539–
1540]; see also [Jeffres et al. 2016, Lemma 7.2]. Since it is stated there in the context of incomplete edge
metrics, we state here the simpler smooth version, which follows by setting D D∅ in [Jeffres et al. 2016,
Lemma 7.2] or [Rubinstein 2014, Corollary 7.8(i)]. Recall that oscf WD supf � inff .

Lemma 5.3. Let ' 2 C 4.M / \ H! . Suppose that Ric!' � �C1! � C2!' . Then for some C D

C.M; !;C1;C2; osc'/ > 0,

tr!' ! � C: (28)
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Proof. Let f W .M; !'/! .M; !/ be the identity map. Then consider the Chern–Lu inequality, see, e.g.,
[Rubinstein 2014, Proposition 7.1],

j@f j2�!' log j@f j2 � .Ric!'/#˝!.@f; N@f /�!'#
˝!'

#
˝R!.@f; N@f; @f; N@f /; (29)

whose meaning (and proof) in local coordinates we now explain. Write

!' D
p
�1gi Nj .z/dzi

^ dzj ; ! D
p
�1hi Nj .w/dw

i
^ dwj ;

where we choose two holomorphic coordinate charts .z1; : : : ; zn/ and .w1; : : : ; wn/, respectively, centered
at the same point z0 D f .z0/ 2M such that the first is normal for !' , while the second is normal for !.
Write f W z D .z1; : : : ; zn/ 7! f .z/D .f 1.z/; : : : ; f n.z//: Then,

@f D f
j

i dzi
jz˝

@

@wj

ˇ̌̌̌
f .z/

;

and the norm of @f induced from considering f as the map f W .M; !'/! .M; !/ is then j@f j2 D

gi Nl.z/h
j Nk
.f .z//f

j
i .z/f

k
l
.z/: Thus, at z0,

�! j@f j
2
D

X
p;q

gp Nq
@2.gi Nlh

j Nk
f

j
i f

k
l
/

@zp@zp

D

X
p

gp Nq Œgi Nlh
j Nk;d Ne

f
j

i f
k

l
f d

p f
e

q � h
j Nk

gi Ntgs Nlgs Nt ;p Nqf
j

i f
k

l
Cgi Nlh

j Nk
f

j
ipf

k
lq
�

D�!#
' ˝!

#
' ˝R!.@f; N@f; @f; N@f /C .Ric!'/#˝!.@f; N@f /Cgp Nqgi Nlh

j Nk
f

j
ipf

k
lq
: (30)

Here R! denotes the curvature tensor of � (of type .0; 4/), while !# denotes the metric g�1 on T 1;0?M

(i.e., of type .2; 0/), and similarly .Ric!/# denotes the .2; 0/-type tensor obtained from Ric!' by raising
indices using g. The proof of (29) now follows from (30), the identity u�! log uD�!u�uj@ log uj2,
and the Cauchy–Schwarz inequality; see [Rubinstein 2014, p. 102].

We claim that (29) implies

�!' .log tr!' ! � .C2C 2C3C 1/'/� �C1� .C2C 2C3C 1/nC tr!' !; (31)

where C3 depends on the curvature of !. Indeed, the assumption on Ric!' implies

.Ric!'/#˝!.@f; N@f /D gi Nlgk Nj Ri Nj h
k Nl

� �C1gi Nlgk Nj gi Nj h
k Nl
�C2gi Nlgk Nj hi Nj h

k Nl

� �C1 tr!' ! �C2.tr!' !/
2:

Similarly, we also have

�!'
#
˝!'

#
˝R!.@f; N@f; @f; N@f /D�gi Nj gk NlR!

i Njk Nl

� �C3gi Nj gk Nl.hi Nj h
k Nl
C h

i Nl
hk Nj /� �2C3.tr!' !/

2;



734 TAMÁS DARVAS AND YANIR A. RUBINSTEIN

where C3 is an upper bound for the bisectional curvature of !. Finally, the claim follows since tr!' ! D
tr!' .!' �

p
�1 @N@'/D n��!''.

Using the inequality now in (31) (at the point where the maximum of log tr!' !� .C2C 2C3C 1/' is
attained), the maximum principle thus gives an estimate on tr!' !, depending of course also on osc'. �
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