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DINI AND SCHAUDER ESTIMATES FOR NONLOCAL FULLY NONLINEAR
PARABOLIC EQUATIONS WITH DRIFTS

HONGIJIE DONG, TIANLING JIN AND HONG ZHANG

We obtain Dini- and Schauder-type estimates for concave fully nonlinear nonlocal parabolic equations
of order ¢ € (0,2) with rough and nonsymmetric kernels and drift terms. We also study such linear
equations with only measurable coefficients in the time variable, and obtain Dini-type estimates in the
spacial variable. This is a continuation of work by the authors Dong and Zhang.

1. Introduction and main results

The paper is a continuation of [Dong and Zhang 2016a; 2016b] by the first and last authors, where
they obtained Schauder-type estimates for concave fully nonlinear nonlocal parabolic equations and
Dini-type estimates for concave fully nonlinear nonlocal elliptic equations. Here, we consider concave
fully nonlinear nonlocal parabolic equations with Dini continuous coefficients, drifts and nonhomogeneous
terms, and establish a C? estimate under these assumptions.

The study of second-order equations with Dini continuous coefficients and data dates back to at least
1970s, when Burch [1978] first considered divergence-type linear elliptic equations with Dini continuous
coefficients and data, and estimated the modulus of continuity of the derivatives of solutions. Later work
for second-order linear or concave fully nonlinear elliptic and parabolic equations with Dini data includes,
for example, [Sperner 1981; Lieberman 1987; Safonov 1988; Kovats 1997; Bao 2002; Duzaar and Gastel
2002; Wang 2006; Maz’ya and McOwen 2011; Li 2017], and many others.

The regularity theory for nonlocal elliptic and parabolic equations has been developed extensively in
recent years. For example, C% estimates, C % estimates, an Evans—Krylov-type theorem, and Schauder
estimates were established in the past decade. See, for instance, [Caffarelli and Silvestre 2009; 2011;
Dong and Kim 2012; 2013; Kim and Lee 2013; Lara and D4vila 2014; Mikulevicius and Pragarauskas
2014; Chang-Lara and Kriventsov 2017; Jin and Xiong 2015; 2016; Serra 2015; Mou 2016; Imbert et al.
2016]. In particular, Mou [2016] investigated a class of concave fully nonlinear nonlocal elliptic equations
with smooth symmetric kernels, and obtained the C? estimate under a slightly stronger assumption
than the usual Dini continuity on the coefficients and data. He implemented a recursive Evans—Krylov
theorem, which was first studied by Jin and Xiong [2016], as well as a perturbation-type argument.
By using a novel perturbation-type argument, the first and last authors proved the C¢ estimate for
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concave fully nonlinear elliptic equations in [Dong and Zhang 2016a], which relaxed the regularity
assumption to simply Dini continuity and also removed the symmetry and smoothness assumptions on
the kernels.

In this paper, we extend the results in [Dong and Zhang 2016a] from elliptic equations to parabolic
equations with drifts; that is, we study fully nonlinear nonlocal parabolic equations in the form

d0;u = inf (Lgu + bgDu + , 1-1
t ﬂEA( B B /B) (1I-1)
where A is an index set and for each 8 € A,

L'Bu:/ 5u(l,x,y)Kﬂ(l,x,y)dy,
R4

u(t,x +y)—u(t, x) foro € (0, 1),
Su(t,x,y)=u(t,x+y)—u(t,x)—y-Du(t,x)xp, foro=1,
u(t,x+y)—u(t,x)—y-Du(t, x) foro € (1,2),

and

Kp(t.x.y) = ag(t.x. y)[y[~7°.
This type of nonlocal operator was first investigated by Komatsu [1984], Mikulevi¢ius and Pragarauskas
[1992; 2014], and later by Dong and Kim [2012; 2013], and Schwab and Silvestre [2016].

We assume
2—-0o)A=ag(-,-,)=(2—0)A forall B €A,

for some ellipticity constants 0 < A < A, and is merely measurable with respect to the y-variable. When
o = 1, we additionally assume

/ yKg(t, x,y)dsy =0 (1-2)
Sr

for any r > 0, where S, is the sphere of radius r centered at the origin.
We also assume bg = 0 when 0 < 1 and bg = b(t, x) is independent of B when o = 1.
We say that a function f is Dini continuous if its modulus of continuity wy is a Dini function, i.e.,

1
/ wf—(r)dr<oo.
0

r

We need the Dini continuity assumptions on the coefficients of (1-1):

sup / lag(t,x,y)—ag(t’,x', y)|dy < Arfwg(max{|x — x|, |t —t’|$}) for all r > 0,
,BG.A B2r\Br

) 1
sup || fgllLeo(@y) <005 sup | fp(t, x) — fp(t, X')| < of (max{|x —x'|, [t —'|7}),
BeA BeA (1-3)

1
sup [1bgllLoe(01) = No.  sup [bg(t, x) = bg(t', X')| < wp(max{|x —x'|, [t —'|7}),
BeA BeA

where No > 0, and wg, wp, wy are all Dini functions.
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In Theorem 1.1 below, w, denotes the modulus of continuity of # in (—1, 0) x R4 that is,

lu(t, x) —u(t’, x")| < wy(max{|x — x|, |t —t'|%}) for all (¢, x), (,x") € (—1,0) x R¥.

We also use the notation C 1"7+(Q1) to denote Ct{;0+8(Q1) for some arbitrarily small & > 0. This

condition is only needed for L gu to be well defined, and may be replaced by other weaker conditions.

Theorem 1.1. Let o €(0,2), 0 <A < A <00, and A be an index set. Assume for each € A, Kg satisfies
(1-2) when o = 1, and the Dini continuity assumption (1-3) holds for all (¢, x), (t’,x") € Q1. Suppose
ue C1’0+(Q1) is a solution of (1-1) in Q1 and is Dini continuous in (—1,0) x R%. Then we have d,u is
uniformly continuous and the a priori estimate

(o, ¢]
100l a1)2) + 1T, , < C D Q@ T0wu(2) + 0u(277) + wp(277)), (1-4)
Jj=0

where C > 0 is a constant depending only on d, o, ., A, Ny, wp, and wg. Moreover, when  # 1, we
have

sup [u]§§Qr(t0;X()) -0 asr—0
(t0,x0)€Q1/2

with a decay rate depending onlyon d, o, A, A, w,, wf, wy, No, and wp. When o =1, Du is uniformly

continuous in Q 1/, with a modulus of continuity controlled by the quantities before.

This theorem improves Theorem 1.1 in [Dong and Zhang 2016a] in the following two ways. First,
(1-1) is parabolic and has drift terms. Second, the right-hand side of the estimate (1-4) depends only on
the seminorms of u and f, in particular, not on supge 4 || /gl Lo (01)-

Remark 1.2. When o € (1,2) in Theorem 1.1, by interpolation inequalities we have

o0
[Du]f%Ql/z < C(10rull Loy +ul3:0,,,) SC D Q7 0u(2) + 0u(27) + 0y (27)),
j=0

The same proof of Theorem 1.1 can be used to prove Schauder estimates for concave fully nonlinear
nonlocal parabolic equations with drifts. To this end, we need the Holder continuity assumptions on the
coefficients of (1-1):

sup/ lag(t, x,y) —aﬂ(t/, X\ y)dy < Ar? max{|x —x|?, |t —t’|%} for all r > 0,
ﬂEA BZr\Br

v
sup || fgllLoo(or) <00, sup | fp(t,x) — fp(t'. x")| < Cp max{|x — x|V, |t — |7},
BeA BeA 1-5)

sup 168l Lc(0r) < No.  sup |bg(t.x) = bg(t'.x")| < Cpmax{|x —x'|". |t —t'|7},
BeA BeA

where Ny, Cr, Cp >0, and y € (0, 1).

Recall that we assume bg = 0 when o < 1, and bg = b(z, x) is independent of 8 when o = 1.
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Theorem 1.3. Let o € (0,2), 0 <A < A < 00, and A be an index set. There exists & depending only on
d, A, A and o (uniform as 0 — 27) such that the following holds. Let y € (0, &) such thato +y < 2
is not an integer. Assume for each 8 € A, Kpg satisfies (1-2) when o = 1, and the Holder continuity
assumptions (1-5) hold for all (¢, x), (t', x') € Q1. Suppose u € C1T&9+t7 (0 )N C &Y ((—1,0) x RY)
is a solution of (1-1) in Q1; then we have the a priori estimate

[l +2 64y:01, = Cllullz yi—1,00xre +CCr, (1-6)
where C > 0 is a constant depending only on d, o,y, A, A, Ny, and Cp.

The essential new part of Theorem 1.3 is for the case 0 = 1. For 0 < 1, Theorem 1.3 is just Theorem 1.1
in [Dong and Zhang 2016b]. Even though the Holder continuity assumption appeared slightly differently,
the proof in [Dong and Zhang 2016b] can be carried out with minimal modifications. For o > 1, the drift
is a lower-order perturbation and the conclusion can be proved without assuming o + y < 2 by using
Theorem 1.1 in [Dong and Zhang 2016b] and interpolation inequalities.

In the case of the linear equation

d;u=Lu+bDu+ f, (1-7)
the estimate (1-6) holds for all y € (0, 0). Again, we assume b = 0 when o < 1.

Theorem 1.4. Leto € (0,2), 0 <A <A <o00,and y € (0,0) such that ¢ + y is not an integer. Assume
K satisfies (1-2) when o = 1, and the Hélder continuity assumptions (1-5) hold for all (¢, x), (', x") € Q1.
Suppose u € CH'%""H’(QI) N C%’V((—l, 0) xR?) is a solution of (1-7) in Qy; then we have the a priori
estimate

[Uli+2.04y;01,2 = Cllullz yi-1,00xre) + CCrs (1-8)
where C > 0 is a constant depending only on d, o,y, A, A, Ny, and Cp.

It is natural to assume y < ¢ in Theorem 1.4, since (1-5) will imply that f is independent of 7 if
0 < o < y. In many applications, a will be independent of ¢ as well under the assumptions of (1-5) and
o < y. Then, we can always differentiate (1-7) in #, and obtain higher-order regularity in ¢ by applying
the result of Theorem 1.4 above.

We are also interested in the linear equation (1-7) when K, b, and f are Dini continuous in x but only
measurable in the time variable ¢, that is, they satisfy

/ la(t,x,y) —a(t.x", )| dy < Arwa(]x —x'|) forall r >0,

B2\ By
1l Loty <00, 1/ (t,%) = f(1.x)] < wp(Ix —x]), (1)
16l Looc@r) = No,  |b(z,x) —b(t, x| < wp(|x —x)),

where No > 0, and wg, wp, wy are all Dini functions.

In Theorem 1.5 below, w, denotes the modulus of continuity of # in x uniform for all #; that is,

lu(t,x) —u(t,x")| < wu(|x —x'|) forall (z,x),(t x") € (~1,0) x RY.



DINI AND SCHAUDER ESTIMATES FOR NONLOCAL FULLY NONLINEAR PARABOLIC EQUATIONS 1491

Theorem 1.5. Let 0 € (0,2), 0 < A < A < oco. Assume K satisfies (1-2) when ¢ = 1, and the Dini
continuity assumption (1-9) holds for all (t, x), (t,x") € Q1. Suppose u € C1’°+(Q1) is a solution of
(1-7) in Q and is Dini continuous in x in (—1,0) x R%. Then we have the a priori estimate: for o € (0, 2),

o0
l0etllzcc01/2) + 50, < C D Q7 0u@) + 0u277) + wp27)). (1-10)
j=0
where C > 0 is a constant depending only on d, o, ., A, Ny, wp, and wg. Moreover, when o # 1, we
have
sup [u]);'Qr(tO xg) 0 asr—0
(t0,x0)€Q1/2 ’ ’
with a decay rate depending only ond, o, A, A, wq, wf, Wy, No, and wp. When o = 1, Du is uniformly
continuous in x in Q5 with a modulus of continuity controlled by the quantities before. Also, 0;u is
uniformly continuous in x in Q 1/, with a modulus of continuity controlled by d, o, A, A, wq, @f, wy,
NOv Wp, and ||u||Loo

If K, b, and f in (1-7) are Holder continuous in x locally but only measurable in the time variable ¢,
that is, they satisfy

/ la(t, x, y)—a(t,x, y)|dy < Ar¢|x —x'|Y forallr >0,
B,

1 fllLooc@r) <00, | f(t, %)= f(t.x")] < Crlx =x"", (1-11)
16l L0y < No,  |b(t, x) —b(t, x")| < Cplx — x|,

where Ny, Cg, Cp >0, and y € (0, 1),
then we have:

Theorem 1.6. Leto € (0,2), 0 <A <A <o0,and y € (0, 1) such that o + y is not an integer. Assume K
satisfies (1-2) when o = 1, and the Holder continuity assumptions (1-11) hold for all (¢, x), (¢, x") € Q1.
Suppose u € CH0HY (1) N CY((—1,0) x RY) is a solution of (1-7) in Qy; then we have the a priori
estimate

[atu];;Ql/z + [u]§+y,;Q1/2 = C”u”;;(—l,o)de) +CC, (1-12)

where C > 0 is a constant depending only on d, 0,y, A, A, Ny, and Cp.

Note that here we assume y € (0, 1) for all o € (0, 2), since all the estimates only involve x. This
theorem improves Theorem 1.1 in [Jin and Xiong 2015], which does not include drifts and requires the
Holder continuity of @ and f in the time variable ¢ as well. In the second-order case, similar results were
obtained a long time ago by Knerr [1980/81] and Lieberman [1992].

A few remarks are in order.

Remark 1.7. It is evident that Theorems 1.1, 1.3, 1.4, 1.5, and 1.6 hold for corresponding elliptic
equations as well.

Remark 1.8. Our proof does not tell whether the a priori estimates in Theorems 1.1 and 1.5 can be made
uniformly bounded as ¢ — 27, even if we replace A by (2— o)A in both (1-5) and (1-9).
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The ideas of our proofs are in the spirit of the approach first developed in [Campanato 1966], which
has been used in [Dong and Zhang 2016a] for nonlocal fully nonlinear elliptic equations. A similar idea
was also used in the literature to derive Cordes—Nirenberg-type estimates; see, e.g., [Nirenberg 1954].
Here, we adapt the methods in [Dong and Zhang 2016a] from elliptic settings to parabolic settings, with
extra efforts to deal with the drift term especially when o = 1 and some simplification of the proofs.

The key idea is that instead of estimating the C? seminorm of the solution, we construct and bound
certain seminorms of the solution; see Lemma 2.1. When o < 1, we define such a seminorm as a series
of lower-order Holder seminorms of u. In order for the nonlocal operator to be well defined, the solution
needs to be smoother than C°. This motivates us to divide the integral domain into annuli, and use a
lower-order seminorm to estimate the integral in each annulus. The proof of the case when o > 1 is
more involved mainly due to the fact that the series of lower-order Holder seminorms of the solution
itself is no longer sufficient to estimate the C° norm. Therefore, we need to subtract a polynomial from
the solution in the construction of the seminorm. In some sense, the polynomial should be chosen to
minimize the series. It turns out that when o > 1, we can make use of the first-order Taylor’s expansion
of the mollification of the solution.

The organization of this paper is as follows. In the next section, we introduce some notation and
preliminary results that are necessary in the proofs of our main theorems. In Section 3, we show the Dini
estimates for nonlocal nonlinear parabolic equations in Theorem 1.1. In Section 4, we prove the Schauder
estimates for equations with a drift in Theorems 1.3 and 1.4. The last section is devoted to linear parabolic
equations with measurable coefficients in the time variable ¢, where Theorems 1.5 and 1.6 are proved.

2. Preliminaries

We will use the following notation:

e For r > 0, we set Q,(to, x9) = (to — %, t9] x Br(xg) and Q, (to, x0) = (to — 1% 19 + %) X By (x9),
where B, (xg) C R¥ is the ball of radius r centered at xo. We write Q, = Q,(0, 0) for brevity.

e P; (or Py) is the set of first-order polynomials in # (or x), respectively.

e Py is the set of first-order polynomials in both ¢ and x.

e Fora, f >0,
e 100 Go.x0) = [l 0, 0,00
[418.0, (tox) = SUP_ [, )lcs (B, (x0))»
te(to—ro ty)
[u]ti;Qr(lo,xo) = sup [u(- ’x)]co‘((to—r”,fo))'
X€B;(x0)

If B (or @) is an integer, the above seminorms mean the Lipschitz norm of DIAI-1 (or Bltal_l ). If there is
no subscript about the region where the norm is taken, then it means the whole domain where the function
is defined (e.g., R or (=19, 0] x R¥ for some 7o > 0).

e Wesay u € Cl’”+(Q1) if u e C1°%¢(Q) for some small £ > 0.
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¢ We will also use the following Lipschitz—Zygmund seminorms. Let 2 C R4 be a domain, r > 0, and
0= (tgy—r,t9] x Q. For a, B € (0, 2), we define

[M]x _ sup [M(t )] 8 _ sup sup |u(t,x1)+u(t,X3)—2u(t, X2)|
B — [ - )
A (Q) te(ty—ro, t()] AT@) te(ty—ro, to] X1,X2,X3€EQ |X1 _x2|(¥

X17#X3, X1 +X3=2Xx2

[M]t _ sup[u( X)] = sup sup |u(t1,x)+u(l3,x)—2u(lz,x)|
o — “ Aa —r9, —
AT(©Q) XeN ((to=r®10)) XEQ  t1,t2,t3€(tg—r5 to] |Z1—Z2|“

n#L3, h+=2t

] s = sup lu(ty, x1) +u(ts, x3) —2u(tz, x2)|
A*P(Q) — .

(t1,x1),(t2,%x2),(13,X3)€Q |t; —12]% + [xy — x2 |8
(t1,x1)#(#3,x3), (21,x1)+(13,x3)=2(f2,X2)

’

We will frequently use the identities
27 (u(t,x +2771) —u(t, x)) — (u(t, x +1) —u(t, x))

J
=Y 2K u x+27* D —u( x+27* D —u(. x)). @21
k=1

2 (u(t =277, x)—u(t,x)) — (u(t—1,x) —u(t,x))

j
= Z 2k=1 (2u(l—2_k,x)—u(t—2_k+1,x)—u(l,x)), (2-2)
k=1

which hold for any unit vector / € R? and j € N.
Lemma 2.1. Let @ € (0, 0) be a constant. Let Q be a convex cylinder such that Q% cCQcCO;.

(1) When o € (0, 1), we have

o0
]y o+ 19l < C Y257 sup inf [u— Ple a0, 4 to,x0) T CllullLo(0,1/0) (2-3)
k=0 (to.x0)eQ PEP1

where C is a constant depending only on d, o, and o.. Moreover, the modulus of continuity of 0su is
bounded by the tail of the summation on the right-hand side of (2-3).

(i) When o € (1, 2), we have

[ul5.0 + 10:ullL0) + [Du]f%l;Q

o0
<C Y 27 sup inf [u—ple o, 4 Gox) T Clulliain, @4
k=0 (to.x0)eQ PP

where C is a constant depending on d, a, and o. The modulus of continuity of 0;u is bounded by the
tail of the summation above.



1494 HONGIJIE DONG, TIANLING JIN AND HONG ZHANG

(iii) When o = 1, we have

o0
1DullLoo(o) + 10etull Loy < C Y 2K sup  inf [u— plaa:o, s (r0.x0)
k=0 (to,x0)€Q PP

+C sup lu(t,x)—u(t,x")|, (2-5)
(t,X),(t/,x/)GQZ

max{|z—1'|,|x—x'|}=1

where C is a constant depending on d, o, and 0. The modulus of continuity of d;u and Du are
bounded by the tail of the summation above.

Proof. We first prove the estimate of d;u for o € (0, 2) by showing that

oo
”8tu”Loo(Q) <C Z 2k(O'—Ot) sup inf [u _p]t%§Q2—k (t0,%0) +2 sup |u(t0 -1, Xo) —M(t(), X0)|.

k=0 (to,x0)eQ PPt (t0,x0)€Q
(2-6)
Indeed, from (2-2),
2 u(t =277, x) —u(t, x)|
o0
<lu(t—1,x)—u(t, x)|+ Z k-1 [2u(t — 27k, x)—u(t— 2_k+1,x) —u(t, x)|
k=1
S 5k(1-2)
< — — k(=3 )11t -
<lu(t—1.x)—u(t,x)| +C];2 Wlyero o, ey 2-7)

where C only depends on o and k* = [(k — 1) /0], i.e., the largest integer which is smaller than (k —1) /0.
The right-hand side of the above inequality is less than

o0
3 _ (k*o+0)(1-2)p, 1t
lu(t —1,x) —u(t, x)| +C kX_:l 2 [”]A“/(’(Qz_k* (t.x))

o0
< _ _ k*(o—a) : oot
<lu(t—1,x)—u(,x)|+C ,; 2 plengt[u p]A“/”(Qz_k*(t,x))'
By using the definition of k£ *, it is easy to see the second term on the right-hand side of the above inequality
is bounded by

o0
C Z 2k@=a) qup  inf[u—

plh. .
= (tox0)cQ PEPr &30,—k (t0,%0)

Therefore, by sending j — oo in (2-7), we prove that [|d;u| (@) is bounded by the right-hand side of
(2-6). Since

. t .
plélvg, [u— p]%§Q2—k (t0,x0) = p‘é‘gt [t — p]%,oc;Qz,k (t0,x0)°

. t .
,,lé%g, [ — p]%;Qz—k (t0,x0) = plen;l [ — p]%aa;Qz—k (t0,x0)°

the right-hand side of (2-6) is bounded by that of (2-3)—(2-5). We obtain the bound of ||d;u||z ()
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Next, we bound the modulus of continuity of d;u in Q. Assume
It —1'|+ |x—x'|° e[27E*+D 27 for some i > 1.
From (2-2), forany j >i + 1,

2wt =277, x)—u(t,x)) = 2" (u(t — 275 x) —u(t, x))
J
= > 2 'Que-27F ) —u@ 27 x) —u(t. x)).
k=i+1

and the same identity holds with (¢, x’) in place of (¢, x). Then we have

18,u(t, x) — ,u(t’, x")| = lim |27 (u(t =277, x) —u(t,x)) =2/ (u(t’ =277, x") —u(t’, x"))|
j—oo

< 128u@t =275 x) —u(t, x)) = 2" (u(@ =27, x") —u(t', x'))|

+C sup  2K0=Dpl ,
k;—l (to,x0)€Q ATQ e (t0,%0))
where k* is defined above. By the triangle inequality, the first term on the right-hand side is bounded by
2u(t =270 x) +u(d, x") = 2u(@, %) + 2 |u(t’ — 27, x") = 2u(f, X) + u(t, x)|,

where f = (t +¢' —27%)/2 and X = (x + x’)/2. This is further bounded by

2i(1_%) sup [U] oo ’
Comoyeo AT Qo (t0,x0))
where i* = [(i — 1)/c]. Therefore,
o
|0,u(t, x)—d,u(t,x")| <C Z sup 2k(1_5)[u]Aa/g’“(Q2_,~*(to,xo))
k=i (fo,.x0)€Q
00 ( )
=¢ sup  2KU75) inf [ — ple 4.0 1 (rox0)-
k2=; (to,x0)€Q DPEP a’a’Qz i+ (t0,X0)

which, from the definition of i *, converges to 0 as i — oo.

In the rest of the proof, we consider the three cases separately.
Case 1: 0 € (0, 1). The estimates of [u]} are the same as [Dong and Zhang 2016a, Lemma 2.1] and we
only provide a sketch here. Let (¢, x), (¢, x") € O be two different points. Suppose 4 := |x —x’| € (0, 1).
Since

h=% lu(t, x") —u(t, x)| < sup h*"u(t, )e:By(x)»
x€Q

by taking the supremum with respect to ¢, x, and x’ for 4 < 1 on both sides, we get

o0
[0 = sup  sup h*T[ul, <CY 2K wup [,
70 (to,x0)€Q 0<h<1 ;@ (f0,%0) l;) (t0.x0)€0 a; 0,k (20,%0)



1496 HONGIJIE DONG, TIANLING JIN AND HONG ZHANG

Notice that

[u]z;QZ—k (to,x0) — piégt [t — p]§§Q2—k (0,x0) = piél;t [t — p]%’“?Qz—k (t0,x0)-

The proof of Case 1 is completed.

Case 2: ¢ € (1,2). Similar to the previous case, we only provide the sketch of the proof following that
of [Dong and Zhang 2016a, Lemma 2.1]. Let £ € R be a unit vector and ¢ € (0, %) be a small constant
to be specified later. For any two distinct points (¢, x), (z, x’) € Q such that 7 = |x — x'| < %, there
exist X, X’ € O such that |x —X| < eh, X +ehl € Q, and |x' — X'| < ¢h, X’ + ehl € Q. By the triangle
inequality,
W=\ Dou(t,x)— Dou(t,x")| < I + I, + I, (2-8)

where

I :=h'""9|Dyu(t, x) — (h) " (u(t, % + ehl) —u(t, X))|.

I :=h'""%|Dyu(t,x")— (eh) " (u(t, X' + ehl) —u(t, X)),

I3 :=h'7eh) Y (u(t, X + ehl) —u(t, %)) — (u(t, ¥’ + eht) —u(t, X'))|.

By the mean value theorem,
I+ 1, <2767 ulf. . (2-9)

Now we choose and fix an ¢ sufficiently small depending only on ¢ such that 27°~! < % Using the
triangle inequality, we have

I3 < Ch7™ (Ju(t, % + ehl) + u(t, X') = 2u(t, X)| + |u(t, 3" + eh€) + u(t, ) — 2u(t, X)|),
where X = (X + ¢hl + X’)/2. Thus,

I3 < Ch*u(t, )i« (2-10)

(Qn (%)
Combining (2-8), (2-9), and (2-10), we get

o0
x k(o—a) ; —_ pl¥
Hose =€ kz—;) i (to ilil))eQ plengx[u Pla;0, ko, x0)°

Because

L (1= Yoo, o) = I0E [ P2 as0, 1 o.x0)-

we bound [u]i,Q by the right-hand side of (2-4).
It follows from [Krylov 1996, Section 3.3] that [Du]",

o—1.

o

is bounded by [0;u| .. () + [u]’;;Q.
Therefore, (2-4) is proved.

Case 3: 0 = 1. We give the estimate of || Du||r . It follows from (2-1) that

J
Vlult,x + 2770 —u(.x)| =< Jul.x + 0 —ue. )+ 3 2T ) e g, vranoy
k=1
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Taking j — oo, we obtain that

o0
IDullz. <C Z 2k(=0) gup inf [u _p]ft;Qrk(to,xo) + sup lu(t, x) —u(t, x")|.

k=1 (to,x0)€Q PEPx (t.%),(t.x")€Q2
|lx—x'|=1
The estimate of the continuity of Du is the same as d,u, and thus omitted. O

Let 1 be a smooth nonnegative function in R with unit integral and vanishing outside (0, 1). For R > 0
and o € (0, 1), we define the mollification of u with respect to ¢ as

u(R)(l,x)=/u(t—R”s,x)n(s)ds.
R

For the case o €[1, 2), we define u® differently by mollifying the x-variable as well. Let { € Cso(B1)
be a radial nonnegative function with unit integral. For R > 0, we define

u® (i, x) 2/ u(t — R%s,x — Ry)n(s)¢(y) dy ds.
Rd-{—l

The following lemma is for the case o € (0, 1).

Lemma 2.2. Let o € (0,1), @ € (0,0), and R > 0 be constants. Let py = po(t) be the first-order Taylor
expansion ofu(R) at the origin int and i = u — pgo. Then for any integer j > 0, we have

[ﬁ]%,a;(—Ra, 0)xB,j p = Cpin}; [u— p]%,a;(—RU, 0)XB,j p° (2-11)

€P
where C is a constant only depending on d and «.

Proof. 1t is easily seen that # is invariant up to a constant if we replace u by u — p for any p € P;. Thus
to prove the lemma, we only need to bound the left-hand side of (2-11) by

Clule a;(—Ro, 0)x B, -
Since &t = u — p(t), it suffices to observe that

[Plee,_go,0) = R7*19:R(0,0)] = Clulle,p ..

The following lemma is useful in dealing with the case o € (1, 2).

Lemma 2.3. Leta € (0, 1) and o € (1, 2) be constant. Then for any u € C' and any cylinder Q, we have

o0

o0
2k@=) qup  [u— pol~. . <C 2k@=®) qup  inf [u— pI~. oy (2-12)
kgo (t0,x0)€Q % Qo (f0.%0) kgo (to,x0)eQ PEPx % Qo (f0.%0)
where pg is the first-order Taylor’s expansion of u in the x-variable at (ty, xo), and C > 0 is a constant
depending only on d, a, and o.

Proof. Define

._ Ak(oc—a) i —pl*
i :=2 (toil:)I))GQ Plengx[u p]"“Qz*k (to,x0)"
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Then for any (¢9, xo) € Q and each k =0, 1, ..., there exists p; € Py such that
X —k(o—a)
[u _pk]a;Qrk (t0,x0) =2by2 :
By the triangle inequality, for kK > 1 we have
[Pr—1 —pk]z;Qz_k (t0,%0) < 2bk2_k(a—a) + 2bk_12—(k—1)(0—ot). (2-13)

It is easily seen that
[Pr—1 = Pkla:0, s toxo) = V-1 = VP |2~ (k=D
which together with (2-13) implies
Vo1 = Vil = C275CD gy + by). (2-14)

Since ) 4 by < oo, from (2-14) we see that {Vpy } is a Cauchy sequence in Re. Let g = q(to. xo) € R?
be the limit, which clearly satisfies for each k£ > 0,

o0
lg—Vprl <C Y 277/ Dp;.
j=k
By the triangle inequality, we get

u—q- x]z;Qz—k (t0.x0) = [u— pk]z;Qz—k (to.x0) T lbx —a 'X]E;Qz—k (t0,x0)
e}
< C R N " gilemlp, < cpmkeme), (2-15)

j=k
which implies

lue(to, -) = uto, X0) = q - (X = X0) | Lo (B, (xo)) < C27*7.

and thus ¢ = Vu(ty, xo). It then follows from (2-15) that

o0 o0 o0
k(o— k(o—1 —j(o—1
2250 swp (= polig, ey <€ D24V D27,
k=0 (t(),X())GQ k=0 ]:k
0 ) J 00
—C Y 2Ny 3 koD <03 g
j=0 k=0 j=0
This completes the proof of (2-12). O

The last lemma in this section is for the case when o € [1, 2).

Lemma 2.4. Let ¢ € (0,1), 0 € [1,2), and R > 0 be constants. Let py = po(t, x) be the first-order
Taylor’s expansion of u® at the origin and it = u — Ppo- Then for any integer j > 0, we have

la(z, x) —u(t’, x")| )
sup , e =C inf [u_p]%,a;(—RU,O)szij (2-16)
(t,%),(t,x')E(—R%, 0)x B, , |Xx —X'|* + [t —1'|o PEP
t,x)#@'x"), 0<|x—x'|<2R

where C > 0 is a constant depending only on d, o, and o.
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Proof. 1t is easily seen that i is invariant up to a constant if we replace u by u — p for any p € P;. Thus
to show (2-16), we only bound the left-hand side of (2-16) by

C[u]%,a;(—RU, 0)XB,j p*
Since it = u — py, it suffices to observe that for any two distinct (z, x), (¢, x") € (—R?,0) x B,; g such
that 0 < |x — x| < 2R,
|Po(t.x) = po(t'.x")]| = |x = x| Du®(0,0)] + |t —'118,u®(0, 0)]

< Clx = ¥'| R ul g, + Cle =1 RTG Dl

<C(x =X+ |t = ') )2 a;0 - O
3. Dini estimates for nonlocal nonlinear parabolic equations

The following proposition is a further refinement of [Dong and Zhang 2016b, Corollary 4.6].
Proposition 3.1. Let o € (0,2) and 0 < A < A. Assume for any B € A that K g only depends on y. There
is a constant & depending on d, o, A, and A (uniformly as 6 — 27) so that the following holds. Let
a € (0,&) such that o + « is not an integer. Suppose u € C'ta2+2 (0 )N C7*((—1,0) x RY) is a
solution of
d;u = inf (Lgu + in Q.
t ﬁeA( pu+ fp) inQ
Then,
w .
(142 at0:01, SC Y 27M; +C Sl;p[fﬂ]%,a;le
ji=1

where
lu(t, x) —u(t’, x")|

M; = sup &
(t.%),(t',x")e(=1,0)x B, ; |x —x'|*+ |t —t'|o
(t,x)#({@',x"), 0<|x—x"]|<2
and C > 0 depends only on d, ), A, a and o, and is uniformly bounded as 0 — 2~.

Proof. This follows from the proof of [Dong and Zhang 2016b, Corollary 4.6] by observing that in the
estimate of [/ ﬂ]g,a; 0, the term [u]%’a;(_l’o)x B,; can be replaced by M;. Moreover, by replacing u by
u—u(0,0), we see that

”””%,a;(—l,O)sz = C[”]%,a;(—l,O)ng- O
In the rest of this section, we consider three cases separately.
The case o € (0, 1).

Proposition 3.2. Suppose (1-1) is satisfied in Q51/0. Then under the conditions of Theorem 1.1, we have

o0
W10, ,, + 10:UlL0ci01)2 < Cllulle o +C D~ w275, (3-1)
k=1

where C > 0 is a constant depending only on d, A, A, wg, and o.
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Proof. For k € N, let v be the solution of

{Btv = infge 4(Lg(0,0)v + f5(0,0)— 9, po) in Qp—rk,
v=u— po(t) in (=27%9,0)x BS_, ) U ({t=—2"%} x B,),

where L g(0, 0) is the operator with kernel Kg(0, 0, y), and po(¢) is the Taylor’s expansion of u@ in ¢
at the origin. Then by Proposition 3.1 with scaling, we have

o0
Pt eatoi0, o <C Y25 D7M; +C2*Nle 4o, (3-2)
Jj=1
where « € (0, @) satisfying 0 + o < 1,
Mo — sup (¢, x) — (¢, x')|
J — a
(t,x),(t’,x/)e(—2_k",0)xB2,’_k |x — x/la + |[ - [’| o
(t,x)#(',x"), 0<|x—x'| <2~k +1

and 4 = u — py.
Let ko > 1 be an integer to be specified and p; = p(¢) be the Taylor’s expansion of v in ¢ at the
origin. By the mean value formula,

) < 2—(k +ko)(o+a) [U]

lv—p1 ”Loo(QZ—k—kO 1+ &.0+050,k—ky

and the interpolation inequality

[U - pl]%,a;Qz_k_kO =C (2(k+k0)a || V—7D1 ||Loo(Q2—k—k0) + 2_(k+k0)0'[v - p1]1+%:a+0;Q2—k—k0 )’
we obtain
—(k+k
[U - pl]%,a;QZ_k_kO = C2 (et O)U[U]1+%;W+U;Q2—k—k0 :

From Lemma 2.2, we have
M;j = Cpien;, [u = ple g;(—2-k00)xB,; ) = Clule a;—2—ko 0)xrd- (3-3)
These and (3-2) give
[v— pl]%,a;Qz—k—ko
k .
< ¢~ ktko)o Z 2(k_])an + 2~ kFkoopy,, a;(—2—ko 0)xRd T Cz_koa[v]%,a;QZ—k

o

Jj=1

k
< o7 Hh0e A "o =Do g 4 com (RO e + C2TR e g - (3-4)
j=1
Next, w := u — po — v satisfies
w, —Mtw < Cy in Qy—«,
wr—M"w=—-Cg in Qyx, (3-5)
w=0 in ((—27%9,0) x BS_, ) U ({r=—27} x B, 1),



DINI AND SCHAUDER ESTIMATES FOR NONLOCAL FULLY NONLINEAR PARABOLIC EQUATIONS 1501
where M™ and M~ are the Pucci extremal operators, see, e.g., [Dong and Zhang 2016b], and
Cr = ;’up /g — /p(0.0) + (Lg — Lg(0,0)uull Lo (0, 1)
€A

It is easily seen that
Cx> .
Cr <wp(27%) + Cwa(Z_k)( sup Y 21("‘“)[u]§;Q2_j (to.xo) T ”””Loo)'
(t0,x0)€Q5—k j—o
Then by the Holder estimate [Dong and Zhang 2016b, Lemma 2.5], we have

[wle a:0, , =<C27KC9C,

o0
< ko) [wf(z—")ma(z‘k)( sup D IR e T ”””Loo)]
(t0,x0)€Q5—k j—q 2
(3-6)

for some o > 0. This « can be the same as the one in (3-2) since « is always small. By the triangle
inequality and Lemma 2.2 with j =0
[U]%yo‘;szk = [w]%aa;szk + [u - pO]%aa;szk

=[wle a0, + Cpiggt[” —Ple w0, - G-7)

Combining (3-4), (3-6), (3-3), and (3-7) yields

26— o~ prls a0, 4,

= 2ktko)@=a) [y, 4 4 — P .a:0, 1k,

k
< ¢2~ (ko) Z 2&=o inf [y — Ple gy (—2ko 0)xB,; 4

1 DPEP:
Jj=
+ C2—(k+k0)a [u]%’a + Cz—koa-‘r-k(a—(x) pien,,gt [u _ p]%,a;Qz_k + Czko(a—a)wf (2—k)
o0
ko(o—a) —k Jjlo—a)p, 1x -
+C2 w4 (2 )( sup ) VO, ||u||Loo)- (3-8)
(t0,x0)€Q5—k j—0
Let £y > 1 be an integer such that
1 - 1 _ |
ot 2 5o =
I=Lp+1

Set Q€0=Q% and for/ =€y + 1,49 +2,..., we define

[ [
(1 | . | |

j=Lo+1 j=to+1
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The choice of £¢ will ensure that Q' C Q4 for all > £, and the definition of Q! will ensure that for
[ >4y, k>1+1, there holds

0! + 0,k (to, x0) C Q' forall (19, x0) € O'.

By translation of the coordinates, from (3-8) we have for any / > £y and k >/ + 1,

2k +hko) (o) sup [U—PO—PI]%,a;QZ,,‘,,,‘,O (t0,x0)
(t0,x0)€Q!
k .
< 2~ ktkoe gy Z 2(k=No inf [u—p]%,a;(,o_rka’lo)szj_k (XO)+C2_(k+k°)“[u]%,a
(to,x0)€Q" j—o PEP:

+C2ko(o—e) [wf 7%

o0

+wa(2_k)( sup 2707 inf [u—pla 4o (to,xo)+||u“Loo):|- (3-9)
(to,x0)€Q' 1 ;o PEPt

Then we take the sum (3-9)ink =/+ 1,/ + 2, ... to obtain

(o.¢]
Z o (k+ko)(o—) sup inf [u— p]%ya;QZ—k—kO (t0.%0)

k=Il+1 (t0,x0)e Q! PEP
(') k
—(k+ko)o k—j)o -
=C Z 2~ (kHho) Sup Z 202D 1€n7£ [ — p]%,d;(to—Z_k", t0)X B, j —k (x0)
k=I+1 (t0,x0)€Q" j—9 L

o0
+ 2Ry 4 €2 N (27F)
k=I+1

) )
+ C2kolo—a) Z wa(2_k)(z yj(o—a) sup lél; [u— p]%,a;Qz_J- (to.x0) T ||u||Loo)
k=I+1 =0 (to,xo)eQ!+1 PEF

By switching the order of summations and then replacing k by k + j, the first term on the right-hand
side is bounded by

o0 o0

C27hox Ny "m0 N "ok qup inf [u— P ai(tg—2-%0, t9)x B, ;s (x0)

j=0 k=j (t0,x0)eQ! Pt

o0 o0
< C2Fo Z 27 Z 2k Sup leng [~ p]%aa;(fo—l_k", o)X B,k (x0)
j=0 k=0 (to,x0)eQ! PE™1

o0
< c27koa N ok(o=0) gy inf [u— ple 4.0, (t0.x0)
12) (t0,x0)eQ! PPt o % &r—k l0,%0
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With the above inequality, we have

o0
k-+ko)(o— :
Z 2lktko)o—e) gy [ plenygt[u_p]%’sz—k—ko(’me)
k=I+1 (f0,x0)€Q

o0
< 2 ko Z 2/~ qup inf [u — p]

o . .
Jj=0 (to,x0)eQ! PET1 o :#:Q5-j (to,%0)

o0
+C2 IRy g 4 C2RTD N (27F)
k=I+1
o0 o0 .
+C2M0Om N, 27F) (Z 2/ sup inf = pleaig, (oo + I ||Loo)-
k=I+1 =0 (to.x0)eQ!+1 PEF
The bound above, together with the obvious inequality

I+ko

Z pjlo—a) sup inf [u _p]%,a;Qz_,- (to,x0) = C2(l+ko)(0—a)[u]%,a»
j=0 (to,%0)eQ! Pt

implies
o0
/=) gy inf [u— ple 4.0. .
ng (to,xo)P;Ql peP,[ p]g,a,Qz_j (ro-x0)

o0
< 27k N oile—a)  gyp inf [u— ple 4.0 (t0.x0)
j§0 (to,x0)eQ!+1 PEPt o @m0

o
+ C2HRO@ D)y 4 C2ROTD N " (27F)
k=I

) 00
+ Czko(o—a) Z wa(z—k)(z 2](0—06) sup 1€n7£ [u — p]%,oﬁQZ—j (t0,%0) + ||u||Loo)
k=1 j=0 (to,x0)eQ!+1 PEFT

By first choosing kg sufficiently large, and then £ sufficiently large (recalling that / > £,), we get

00
Z 2/~ sup inf [u — p]%,oﬁszk (t0,x0)
izo (t0.x0)€Q! PP

1 o0 ) o0
<> ojlem0) gy inf [u— ple 4. + C2UHk) =Dy lle  +C Y w275,
4;) e Jinf [ = plz a0, 10,0 [P ]; (275

Multiplying both sides by 4~ taking the sum in /, we have

o0 o0
4713 "2/ qup in [ = Pl a:0, s (toxo) < Cllulla g +C Y wr(27F). (3-10)
=0 (t0,x0)€Q! ! k=1

This, together with Lemma 2.1(i) and the fact that QZO =0 L gives (3-1) and the continuity of d,u. O
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The case when o € (1, 2).

Proposition 3.3. Suppose (1-1) is satisfied in Q. Then under the conditions of Theorem 1.1, we have

foro € (1,2)

o0
)., ,, + (Dl + 110 Ly (@1)2) < Cllulle o +C D 0p(275),

G—I.Q
“5301/2
7 k=1

where C > 0 is a constant depending only on d, A, A, wg, wp, Ny, and o.

Proof. For k € N, let vps be the solution of

d,upr = infge4(Lg(0,0)var + f3(0,0) + bg(0,0)Du(0,0) —; po) in Qp—k.
UM = gM in ((—27%9,0) x BS_, ) U ({r=—27k} x B, 1),

where M > 2||u — po| Loo(Qy—r) is a constant to be specified later,

gy = max(min(u — po, M), —M),

(3-11)

and po = po(¢, x) is the first-order Taylor’s expansion of u@™ at the origin. By Proposition 3.1, we

have

00
[UM]I—i-%,a—i-a;QZ_k_l =C Z Z(k_J)UMj + C2kU[UM]%,a;Q2_k ,
j=1

where @ € (0, min{&@, (c —1)/2,2—0}) and

lu(t, x) — po(t, x) —u(t’,x") + po(t’, x")]|
M; = sup

) ne ’
(t.%),(t/,x") e(=27K 0)x B, ; . [t —1"]o +[x — x|
(1, x)#(t,x"), 0=|x—x'| <27k +!

From Lemma 2.4 with o € (1, 2), it follows

. < 1 —
M; < Cplengl[u Ple g (—2-k0,0)xB,; -

In particular, for j > k, we have
Mj = Clule o (—2ko 0)xmd -
and thus,
w .
[UM]1+%,a+U;Q2_k_1 <C Z 2(k—])an + C2ka[vM]%,a;Q2_k

j=1
k

<C ) 28I M; 4 Clula giaro0yxnt + C2%loumle s, -

j=1

(3-12)

(3-13)
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From (3-13), and the mean value formula (recalling that « < 2 — o),

k

oar = P11l Loo(@, ki) < C27EHROEHD Y olkmnopy;
j=1

+ C2_(k+k°)("+a)[u]g

o’

2—k(x—k0(a+a)[

a;(—2—ko, 0)xRrd + C UM]%,a;QZ_k )

where p; is the first-order Taylor’s expansion of vjs at the origin. The above inequality, (3-13), and the
interpolation inequality imply
[UM - Pl]%,a;Qz_k_kO
k .
< o7 HkIo R "otk gy 4 o RO y]a oy ke gyxpa + C2TFurrle 00 (B-14)
j=1
Next wps := gpm — v satisfies
dwar < MTwpr+hpr +Cr in Oy,
drwpr = M- wpr +hpyr —Cr in Qy—k,

war =0 in (=27%9,0)x BS_, ) U ({t=—2"%} x B,),
where
hag := MY (u—po—gm).  ha =M (u—po—gum).
Here

Cr = Zup I f5— f3(0,0) + bgDu—bg(0,0)Du(0,0) + (Lg — Lg(0, 0))u||LOO(Q2_k).
€A

It follows easily that
Cr < 075 + 0 @) | Dul| Loy, 1) +5up 1bgll Lo 2 **[DUle 00,
+Cwa(2_k)( sup > 2O = pryxlnio, o) T 1P Lac(0,) + ||u||Loo),
(t0,x0)€Q5—k j—9

where psy.xo = Dig,xo(X) is the first-order Taylor’s expansion of u with respect to x at (g, Xo). From
Lemma 2.3, we obtain

Cr = 0r 27 +0p 7)1 Dul L0, 1) + sup g |27 [Dule 00,

o’

o0
+ Cwa(275) (Z Qi) g inf [u—plg.o0 (x0T 1PULec(0,—i) + ||u||Loo).
j=0 (thXO)EQZ_k PEPx 2

By the dominated convergence theorem, it is easy to see that
1M llLa0, 1) IhmllLo@, ) >0 as M —oo.
Thus similar to (3-6), choosing M sufficiently large so that

ML ec0,-0): MM llLaoco,-0) = 3Ck.
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we have
[wrmle a0,

<ok [wf(z—k> + (@27 + 0a QTN DUl Ly (0, 1) + 27 DUl a0,

o’

o0
+wa(2_k)( 2/ qup inf [u—pls., + Jlu| Loo)]. (3-15)
j;o (t(),XO)GQz—k per Ol,Q2 ](ZO’XO)

Clearly,

piergx[u - p]i;QZ_j (t9,x0) = pien'lgl [T/l - p]%,(x;QZ_]’ (20,x0)* (3'16)

From the triangle inequality and Lemma 2.4 with j = 0,
[orlg a0, =lWMlgai0, . + U= Polgaio, o =[WMI2 a0, +C inf U= pl2ao,

Forall/ =1,2,..., we define Ql = Q;_,—. Combining (3-14), (3-15) with (3-16), and (3-12), similar
to (3-9), we get that forall / > 1 and k >/ + 1,

k
< 2~ (ktko)e sup Z 2k=0)o inf [u—Dle 4:(p—2-k 19)x B
(t0,x0)€Q" j—9 PEF1 o ,

+ CZ_(k+k0)a[u]%’a + C2_ka+k°(a_a)[Du] 0!+

o
o

2f_/‘(x0)

1 2ko(o—a) |:C‘)f(2_k)+(a)b Q) +wa @FNIDull i+
o0

+wa(z—k)(22f("‘°‘) sup inf [u—p]g,a;gz,(to,xo>+||u||Lm)]. (3-17)
izo (t0,x0)€Q! 1 PEP]

Summing the above inequality in k =/ + 1,/ 42, ... as before, we obtain

o0
k+ko)(o— :
Z o (k+ko)(o—a) sup lplengl[u_p]%’“;gz—k—ko(’O’x")
k=I+1 (t0,x0)€Q

o0
< ¢ koo pile—0) oy inf [u—ple . .
Z (to,xo)ele-i-l P€7’1[ p]"’a’Qz_] (f0,x0)

j=0
oo
+C27 0D ulg o, +C2R™ KT 2 Dulg g
k=141

o0
+C200=® N (0 (27F) + (0p @7F) +0a TN | Dull L or+19)
k=1+1
o0

oo
4+ 2ko(o—a) Z wa(2_k)(z 2/ gup 16117£ [u—p]z;er (to,x0)+”u||Loo)’ (3-18)
k=I+1 =0 (to,xp)eQ!+1 PE1
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and

i) oy inf [u —
Z (t0, xo)P;Ql pEPl[ p]a’a Qzms lo30)

< Cz(k()-l-l)(a—a)[u] + 2 Hoa Z yjlo—a) sup inf [u — p]z @0, (t0,x0)
j=0 (t0,x0)€Q!+1 PEP

+C20O I Dyla o

o0
+C20OD N (0, 27F) + (0, 27F) + a7 | DullLor+1))

k=Il+1
+ C2kolo =) Z a (2"‘)(2 2707 sup - inf [u- P]§;Q2_j(ro,xo>+”””Loo)'
k=I+1 j=0 (t0,x0)€ Q!+ P

By choosing ko and / sufficiently large, and using (2-4) and interpolation inequalities (recalling that
a < (o0 —1)/2), we obtain

2/ s inf [u—ple 4.0,
Z (thxo)P;Ql pepl[ 7] o %:Q5—j (t0,%0)

00
1
ZZ yj(o—a) sup inf [u_p]o,a 0, ](to,x0)+C2(k0+l)(U a)”u”a +C wa(z k)

(t9,x0)€Q!+1 PEF1 k=1
Therefore,
o0
22“" @ sup o inf 4= ple g, (owo) = Clulga+C Y 0@, (19)
(to,x0)eQ! PEM k=1
which together with Lemma 2.1(ii) gives (3-11) and the continuity of d,u. O

The case when o = 1.
Proposition 3.4. Suppose (1-1) is satisfied in Q. Then under the conditions of Theorem 1.1,

o0
1DUlLo(@1)2) + 10Ul Log(01/2) < Clltllae +C Y wp(275), (3-20)
k=1

where C > 0 is a constant depending only on d, A, A, Ny, wq, and wy,.

Proof. Set by = b(0,0) and we define
i(t,x) = u(t,x —bot), fp(t,x) = fa(t,x —bot), and b(t,x) = b(t,x —bot).
It is easy to see that in Qg for some § > 0,

d:1(t,x) = dsu(t,x —bot) —boVu(t,x — bot),



1508 HONGIJIE DONG, TIANLING JIN AND HONG ZHANG

and for (¢,x) € Qy—«,
| /(. x) = f3(0.0)| < wp((1 4+ No)275),
|b— bo| < wp((1+ No)27F).
It follows immediately that
i =i%f(z,3ﬁ+f,g+(13—bo)Vﬁ), (3-21)

where L is the operator with kernel a(z, x — bot, y)|y|~4~°. Furthermore,
[1Dull Lo + 101l Lo = (1 + No)(| Ditll Lo, + 197kl Los)-

Therefore, it is sufficient to bound #. In the rest of the proof, we estimate the solution to (3-21) and abuse
the notation to use u instead of @ for simplicity. By scaling, translation and covering arguments, we also
assume u satisfies the equation in Q5.

The proof is similar to the case o € (1, 2) and we indeed proceed as in the previous case. Take pq to be
the first-order Taylor’s expansion of u@™ atthe origin. We also assume that the solution v to the equations

d;v = infge 4(Lg(0,0)v + fp(0,0) =9 po) in Qr—r,
vV=1u—po in (=27%9,0)x BS_, ) U ({t=—2"%} x B, )

exists without carrying out another approximation argument. By Proposition 3.1 and Lemma 2.4 witho =1,

o0
i+ai+a:0, 1 =C Y2 My + C2HF oo,
j=1

o0
k—j k
=C Z 2% p1€n7£1 [u = Ploas—2-k,00xB,; i T C2 Va:0,«
j=1

<C Z 2k J 1nf Ll —p]a oy (—2—F L0)XB,j i + C[u]a,a + C2k[v]a,a;Q2_k'

PEP
(3-22)
From (3-22) and the interpolation inequality, we obtain
[v— pl]a,d;QZ—k—ko
k
—(k+k k— —k —(k+k
S Zl 247 inf [Pl a2 0y +C2 a0, O g, (3-23)
j=

where pq is the first-order Taylor’s expansion of v at the origin. Next w := u — py — v satisfies (3-5),
where by the cancellation property,

Cre < o (1+ No)2™) + o (1 + No)2 )| Dul L 0, 1)
o0

—k j—a) X
+ Cwa((1+ No)2 )((to e Z}) 257 inf 4= plaig, ;o) ”””Loo)'
9 27 j:
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Clearly, for any » > 0,
we((1 + No)r) < (24 No)w.(r).
Therefore, similar to (3-6), we have

[Wla.a:0,

< Cco7k-o) [wf(Z_k) + wp (2_k)||Du”Loo(Q2—k)

o0
+ o, (2_k)( 2/ (1—a) sup inf [u—pl*., + ”u”Loo)]’ (3-24)
’ Z(:) (to,x0)€Q,k PEPx ;05— (t0,%0)

From (2-16) and the triangle inequality,

[U]a,a;Qrk = [w]a,a;QZ,k +[u— PO]a,a;QZ,k = [w]a,a;QZ,k + Cpiengl [u— p]a,oc;szk .
Forall/ =1,2,..., we define Ql = Q;_,—. Similar to (3-9), by combining (3-23) and (3-24), shifting
the coordinates, and using the above inequality, we obtain for all / > 1 and k >/ 41,

pletko) A=) gy inf [u — pla,a:0
(t0.x0)eQ! PET1 2

k

—k—kq (tg-x0)

< ¢ ktkoe gyp

k—j
2 I inf [U - p](x,a;(to—Z_k,to)Xsz_k (x0)
(IO’XO)EQI]'=0 PEP1

+ C2k0(1—a) |:a)f(2_k) + wp, (2_k)||Du”LOO(Q/+1)
oo
e (2"‘)( 2/0) sup inf [u—ply 5 + [lu ||Loo)]
jg(:) (to,x0)€Q!+1 PEPx a,Q,—j (t0.X0)
I (7 (3-25)

which by summingink =/+1,/42,... implies

o0
k+ky)(1— .
Z o (k+ko)(1—) sup lplengl[u_P]a,a;Qz_k_ko(to,xo)
k=I+1 (t0,x0)€Q

o0
< 2 Fo 2/(-e) su inf [u — . .
Z (to,xo)ele+1 P€7’1[ P]a,a,QZ,, (f0,x0)

j=0
o0
+ 2 kotDoqy), o 4 2P0~ N 4 (27F)
k=I1+1

o0
+ C2kol1=e) 37 [wb(z—")||Du||Lm<Ql+1>+wa(2"‘)

k=I+1 o

. yi(1-a) sup inf [u— p]*. . + ||u||Loo):|’
(j;o (to.x0)e Q! +1 PEPx o;Q,—j (to,x0)
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where for the first term on the right-hand side, we replaced j by k — j, switched the order of the
summation, and bounded it by

p- o 2 su inf [u — . .
Z 12(:) (%o, xo)epQH‘1 1’57’1[ p]a,a,Qz_j (to,x0)

oo

o0
_ 2—k00l Z 2J sup inf [U ]a,(x;QZ—j (t0,x0) Z 2_ka
j=0 (to.x0)eQ!+1 PEPI k=j

< 2 ko Z /(=) sup inf [u— P]a,a;QZ_,- (t0,%0)-

Jj=0 (to,x0)€Q!+1 PEP1
Therefore,
o0
2/0-0) gyp inf [4—plae:0,_; (t.x0)
jg() (t0,x0)€Q! DPEP 03, —j o,X0

< 2 ko 2/0=0)  gyp inf [u—ply.a-0.
/2(:) (to,x0)€Q!+1 PEPI 0,230, (t0%0)

o0
+C2(1+k°)(1_a)[u]a,a—l—CZkO(l_a) Z a)f(Z_k)
k=I+1

o0
+C2k=a) N @)1 Dull L gi+1y

k=l+1
o0 (&%) .

+Cakol—e) wa(z—k)(zy(‘—"‘) sup inf [u— p]a,a;Qz_j(to,x0)+”u”Loo)' (3-26)
k=l11 =0 (t0.x0)Q! 1 PET

Then we choose kg and / sufficiently large, and apply Lemma 2.1(iii) to obtain

yj(—a) inf [ — plya |
Z (o, xo)P;Ql pepl[ ]a’“’Qz—f (t0,x0)

00 1)
1 _ _
Z Z ](1 —a) sup inf [u _ p]a,a;QZ_j (to.xo) T C2(1+k0)(1 Ot)”u”%’a +C Z a)f(2 k),

(t0.x0)eQ!+1 PEPI k=1
and thus,
o0
Z P07 sup inf 4= Plaaio, - towe) = Cllullga +C Y 0p @), (3:27)
(t9,x0)eQ! PP k=1
from which (3-20) follows. The proposition is proved. O

Proof of Theorem 1.1. We use the localization argument to prove Theorem 1.1.
Without loss of generality, we assume the equation holds in 3. We divide the proof into three steps.
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Step 1: For k = 1,2, ..., define Ok := Qi_5—«. Letng € Cgo(QkH) be a sequence of nongeg.ative
smooth cutoff functions satisfying nz = 1 in QK*2, ;| < 1in QF13, 107 D' gl Lo, < C2KG+)) for
each i, j > 0. Set vy := ung € C°F and notice that in Q**1,

0rVk = N Oru + 0pnpu = ﬂifeli(nkLB“ + nibg Du + ny fg + d¢npu)
= ﬂini(Lﬂvk +bgDvg —bguDny + hig + ni fg + denu),
€
where

Ex(t,x, y)ap(t,x,y)
|y|d+a

hig = nkLpu— Lpvg = dy,

Rd
and
Ext,x,y)=ult,x +y) k€, x + ) = nx(t,x)) — y - Dng (¢, x)u(t, x)(Xo=1XB, + Xo>1)
=u(t,x + y)(e(t.x + y) = nie(t. X)) since Dy = 0in QF+1.,

We will apply Proposition 3.3 to the equation of vy in Qk *1 and obtain corresponding estimates for vy
in Q.

Obviously, in Ok+1 we have Nk fp = fg. bpuDng =0, and d;ngu = 0. Thus, we only need to
estimate the modulus of continuity of /g in Qk +1,

Step 2: For (z,x) € OK*1 and |y| <27%73, we have

Er(t,x,y) =0.
Also,
Ex (. x. p)| = [u(t, x + y) (i (2, x + y) = nie (2. X))
- {Zwu(lyl) +2[u(t, x)|  when [y| =1,
“\C2¥|u(t, x + y)||y]  when27k73 < |y| < 1.
For (¢, x), (", x") € Q¥*1, by the triangle inequality,

\hip(t, x) —hip(t', x")|

- / |Gr (1. x, ) =& (' X", y))ap(t, x, p)| N §x (¢, X" y)(ap(t, x, y) —ap(t',x' y))| dy
LT |y|d+e |p|d+e
=1+1L (3-28)
By the estimates of |& (¢, x, y)| above, we have
o0
Il < c(z"<°+”||u||Loo<Q2> + 2‘f"wu<2f))wa<max{|x —Xle=r7h. (3-29)

j=0

where C depends on d, o, and A. For I, by the fundamental theorem of calculus,

1
Er(t.x,y) =&t X"\ y)=y / (u(t,x + y)Dng(t, x +sy) —u(t’, x" 4+ p) Dni (", X" + sy)) ds.
0
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When 27%=3 < |y| < 2, similar to the estimate of £ (7, x, ), it follows that
|k (2, x, ) = E (£ X", )

< Clyl(2Fwumax{lx — x|, [t =117 1) + 22 lull . gay (1% — X' + [t —1']). (3-30)
When |y| > 2, we have

&t x, p) =& (. X )| = lu(t,.x + y) —u(’. x" + p)| < wu(max{|x — x|, |¢ _[/|$}),
which implies
1= C25O Doy (maxile — ). |t =[5 1) + C2C Dl g (e = ¥'| + [t =),
Therefore,
g (2, ) — higp (¢, X')] < op(maxt|x = x|, 1 = |7 }),
where

o0
on(r) = C (2Ol + - 2770 @) 0
j=0

+ C2KO D0, (1) + C2XO D L0 (r +17)  (3-31)
is a Dini function.

Step 3: In this last step, we only present the detailed proof for o € (1, 2). We omit the details for the proof
of the case o € (0, 1], since it is almost the same as and actually even simpler than the case o € (1, 2).
We apply Proposition 3.3, together with a scaling and covering argument, to v to obtain

100 vicll Lo @y + [0kl ok + [ka]’%l;Qk
o0
< C2fuel| Ly + C2XOTNuple 4 + C Y (0h Q7))+ 0p(277))
j=1
< C2k(o+2)”u”LOO(Q3) + C02k(0_a)[u]%,a;gk+3
o o0
+C Y 277%0,(20) + C Y (2w, 27) + wp(27)).
Jj=0 Jj=0

where C and Cy depend on d, A, A, o, Ny, wp, and wg,, but are independent of k. Since n; =1 in Qk, it
follows that

19041 )+l g HIDUlcs
<C2%CDNullr 09 +Co2X DUl 4. g3

o
o

o0 o0
+C Y 2770, +C Y 2OV e, 27 )+ 277)). (3-32)
j=0 j=0
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By the interpolation inequality, for any ¢ € (0, 1),

e gsgi+s < e(lBrull @ity + Y, prs) + Ce™7 ull L (0y)- (3-33)

Recall that o < (0 — 1)/2 and thus,

o o—1 1
< < —.
o—a o+1 2

Combining (3-32) and (3-33) with e = C; ' 273716, we obtain

9:ullL.cor) +[u]0 ok +[Du]a Lok
<2710l gres + 19eutll o @its) + [Du]Z%;QkH) +C2*ull Lo (0s)
o0 o0
+C Y 270,27+ C Y Ve, 27) + 0, 27)).
Jj=0 j=0
Then we multiply 275 1o both sides of the above inequality and get
F(orull L ory + T .ok T [Dulo_y —1;on)
= 27Tl ety + [u]’;;QkH + [Pl i)
o
+ C2Mlull L (05) + C27F Y @704 (2)) + 0 277) + wp (277)).
Jj=0
We sum up the both sides of the above inequality and obtain

22_ (191l L oo cry + [l ok +[Du]cr L. oK)
k=1

oo
1
zZ “0:u 2 (gr) + [T, o + DUl 1)

o0
+Cllullzaiy +C Y Q7 wu(@) + 0u27) + 0p (277)),
j=0
which further implies

oo
3 2 (el cgry + T i+ [Dulics )
k=1

o0
< CllullLo(oy + CD_ Q7 w0u(2) + 0u27) + wp (277)),
Jj=0

where C depends on d, A, A, 0, wp, Ny, and w,. By applying this estimate to u — u(0, 0), we obtain
[e.e]
0:ullr o) + [u]i;Q4 + [Du];%];Q4 =C Z(z—lawu )+ wu27) +wr(277)). (3-34)
j=0
This proves (1-4).
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Finally, since ||v1 || a o is bounded by the right-hand side of (3-34), from (3-19), we see that

o0

E 2/ qup inf [v1 — ple g0 <C
o % ¥r— 0,X0) —
j=0 (to,x0)€Q! DPEP 2—J

for some large /. This and (3-18) with u replaced by vy and /g replaced by /118411 fg+03:n1u—bguDn,y
give

o0
Z 2 +ko)(o—a) sup inf [v; — p]

&L ;O i (t0,x
j=ki+1 (to,x0)e Q1 PEP o 2% Q5—j—k (10:X0)
=K1 5

o0
< C27h0% 4 2% N " (0, (207) + 0a 27T + 0u(27) + w0 27T) +2779).
j=k1

Here we also used (3-31) with k = 1. Therefore, for any small ¢ > 0, we can find k¢ sufficiently large,
then k sufficiently large, depending only on C, o, Ny, &, wf, wa, @y, wp, and wy, such that

o0
Z 7 (i+ko)(o—a) sup pieng [vi — p]%s“?Qz—i—ko (to,x0) < &
j=ki+1 (to,x0)€ Q"1 !

which, together with the fact that v{ = u in O 1 and the proof of Lemma 2.1(ii), indicates that

sup  ([ulg, +[Dull_, . )—0 asr—0
(to,x0)€Q1/2 o3 Qr (f0,%0) =10, (t0,x0)

with a decay rate depending only on d, A, Ny, A, wg, wfr, wp, wy, and o. Hence, the proof of the case
when o € (1, 2) is completed. O
4. Schauder estimates for equations with drifts

We now are going to prove Theorems 1.3 and 1.4. Here, the main difference from the theorems in [Dong
and Zhang 2016b] is that our equation may have a drift, especially for o = 1.
We first prove a weaker version of Theorem 1.3.

Proposition 4.1. Suppose (1-1) is satisfied in Q,. Then under the conditions of Theorem 1.3, for any
y € (0, min{@, 2 — o'}) with & being the one in Proposition 3.1, and any a € (y, min{&, 2 —o'}), we have

[u]l—i-g,a—i-y;Ql/z = C(”“”%,a + Cy),
where C > 0 is a constant depending only on d, y,a, o, A, A, Ny, and Cp,.

Proof. The proof is very similar to that of Propositions 3.2, 3.3, and 3.4. We fix an « € (y, &).

Case 1: o € (0, 1). We start from (3-9). Let Q' and £ be as in the proof of Proposition 3.2. Multiplying
2(k+ko)¥ to both sides of (3-9) and making use of the Holder continuity of @ and £, we have for all / > £
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and k >/ + 1,

2(k+k())(0+)’_0‘) su inf [u — ple 4
(to,xo)I?EQl PGPt[ p]g’a’QZ_k_ko(to’xO)

k
< ¢ p\k+ko)(y—a) sup Z 2k=j)o inf [

U= Pl g (to—2-50 t0)x B, i i (
oAU s L0 j—k XO)
(to,x0)€Q" j—9 PEP 7 2

+ Cz(k-i-ko)(y—ﬂt)[u]Q o

o0

+ C2koloty=0) [Cf + sup Y 2O inf [u—plagio e + Il Loo}.
(t0,x0)€Q!*! i g PEP: ’

Taking the supremum in k > £y + 1 and using the fact that y < &, we have

k(o+y— i
sup  2K@TY=) g 1n7£ [u = ple.0;0, « (to.x0)
k>Lo+ko+1 (t0.x0)eQ! P

< C2kolr=a) gyp okloty—a)  gyp inf [u — p]
k=0 (t0.x0)eQ! PP

&0;0,—k (x0)
+ Cz(eo-Fko-i-1)(1/—06)[14]g o
m .
+ C2koloty—a) |:Cf + s Y ajlem Jinf 1= ple a0, ; (oxo) + IIMIILOO}-
(t0,x0)€Q' ! j—9

By taking kg large, / = £y, using (3-10), and noticing that

sup  2kOHY=@) g inf [u — p]%’a;QZ_k(to,xo) < Cz(ﬁ()-i-ko)(a-i-y—oc)[u]%’a’

0<k<lo+ko (to,x0)eQ! PEPr
we have
sup 2€CHY=0) sup inf [u— pla g;0, 40 = CLCr + lull 2 o]
k>0 (to,x0)€Q1/2 PEPt
Since
()i v 5y < Csup 2k@tr=o)  gyp inf [u— ple 4.0 (to.x0) T Clitle 4.
Z.0+y;01/2 k>0 (030012 P<P: 2,050,k (t0,x0) 2o
we obtain

[Uh+264y:0,,, = Cllulle o + Cr).

Case 2: o € (1,2). We start from (3-17). Let Q' be as in the proof of Proposition 3.3. Multiplying
2(k+ko)y 6 both sides of (3-17) and making use of the Holder continuity of a, b, and f, we have for all
I>landk>1+1,
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pletko)oty—a) gy inf [u—ple

(toxorco! PEP! &2 Q,—k—ko (f0,Xx0)

k
< Cok TG gy 3267 inf [y pla

,a;(tg—2— —ko, ,t0)X B, i i (x0)
pEP o 2J
(IO,X())EQIJ‘_O !

+ 2Ry 4 C2E RGO Dyl iy

+czk0(a+y—“>[cf+||Du||Lw(Q1+1)+ sup sz(ﬂ ) inf [u— p]a,a;Qz_j(,O,xo)+||u||Lw].
(to,x0)€Q'+! i PEPY

Note that this & can be chosen very small, at least strictly smaller than o — 1. Taking the supremum in
k > 2 and using the fact that ¥ < «, we have

sup 2kloty—a) sup inf [u— P]f o;Q,— (t0,X0)
k>ko+2 (t0,x0)eQ! PE1

< C2kor=0) gyp okloty—a)  gyp inf [u—pla

20305 (x0)
k>0 (t0,x0)eQ! PEP1 2

L Catko+2) - "‘)[u]a +C2C@+ko (= a)+koa[Du] ;01

o0

+czk0(a+y—“>[cf+||Du||Lw(Q1+1)+ sup Y 277 inf [u— p]a,a;Qz_j(,O,xo)+||u||Lw].
(to,x0)€Q'+! i PEPY

By taking kg large, / = 1, using (3-19) and (2-4), and noticing that

sup 2k(o+y—a) sup inf [u—p]o’a Ok o < C2(tko)(oty— “)[u]
0<k=<1+ko (to,x0)eQ! PEP 0-%0
we have
sup 2€CHY7) - qup inf [u— pla a0, 4 (.x0) = CICr + llull 2 o]
k=0 (to,x0)€Q1 /2 PEPI
Since

[u)y v . < Csup 2k@tr=a)  gyp inf [u — ple xo) T Clule 4.
+5,0+y;01/2 k>0 (tox0)e Q1 /2 PEP & 0305k (t0,%0) .

we obtain

[u]1+§,a+y;Q1/2 = C(”“”%,a + Cy).

Case 3: 0 = 1. We start from (3-25). Multiplying 2k+k0)v 1o both sides of (3-25) and making use of
the Holder continuity of @, b, f, we have forall/ > 1 and k >/ + 1,
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ketko)1+y—a) g inf [u—p]
(t0,x0)€Q! PEP1

k

k—j -
sup E 2 inf [1—ply a:(t0—2—F 10)x B,
(t(),x())tej=0 DPEP o035 (to 0)XB,j—k (x0)

00,050 ke —kegy (t0.%0)

< C2k+ko)(y—a)

o0
+C2k0(1+y—“)[Cf+||Dulle(Qz+1)+sz“‘“) sup ~inf [”_p]z,QZ—j(lo,xO)+”u”L°°:|
j=0 (to,x0)eQ!t1 PEFx

+C2(k+k0)()’—05)[u]

o,
Taking the supremum in k& > 2 and using the fact that y < o, we have

sup 2K0+r—o)  gyp inf [u—p]

o050,k
k>ky+2 (to,xo)GQl PEPL 2 o-x0)

< C2ko= D=0 gup 2k (+Y=0)  qup  inf [u—p]

050,k
k>0 (to,x0)eQ! PEP1 2 o-xo)

o0
+C2ko(+y—a) |:Cf+||Du||L°o(Qz+1)+22](1_“) sup 1€n7£ [”—P]Zi,gz_,» (,0,x0)+||u||Looi|
j=0 (to,x0)eQ!+1 PE7x

+C 2k =y, 4.

By taking kg large, / = 1, using (3-27), and noticing that

sup Hk(1+y—a) sup inf [u _p]""“;Qz—k(z .- C2k0(1+y_“)[u]a,a,
0<k=<ko+1 (to,x0)€Q! PEP1 0-X0
we have
sup 2k(1+y—a) sup inf [u — p]‘xﬂ“?Qz—k(, ) < C[Cr + |[u] aa)-
k=0 (to,x0)eQ! PEP1 0-%0
Since

[Dulyy.0,,, +10:uly.y:0,,, < C sup 2k(1+y—a) sup inf [u — plaa:0,_ + Clua,a-
v.v;Q1/2 y.¥:01/2 it (300201 PP @05 Q0K (1.x0) @a

we obtain

[D”]V,V;Ql/z + [at“]y,y;Ql/z = C[Cf + ”uHa,a]- g

Proof of Theorem 1.3. The proof is the same as that of Theorem 1.1 using localizations. We sketch the
proof here. We use the same notation as in the proof of Theorem 1.1. Without loss of generality, we
assume (1-1) holds in Q3.

Let n; € C(g’o(Qk *3) be a sequence of nonnegative smooth cutoff functions satisfying n = 1 in Qk +2
In| <1in QK3 ||3{Di77k||Loo < C2kG+)) for each i, j > 0. Set v := uny € C'*5:91 and notice
that in Q1,

drvg = ggg(Lﬂvk +bgDvg —bguDny + hyp + ni fp + engu),
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where

Ex(t,x, y)ag(t,x,y)
hip(t,x) = dy,
p i p|a+ g

and
Ec(t.x,y) i=u(t,.x + y) e (t,x + y) =ni (t,x)) —u(t, x)y - Dng (2, x) (Xo=1XB, + Xo>1)
=ult,x+ y)(r(t,x +y)—nr(t,x)) since Dnx =0 in Qk+1.

We will apply Proposition 4.1 to the equation of vy in Qk +1 and obtain corresponding estimates for vy
in Q.

Obviously, in Q%! we have ny Jg = /g, buDny =0, and 9;nxu = 0. Thus, we only need to estimate
the modulus of continuity of /xg in Qk *1, Since

Ex(t,x,y) :=u(t,x +y)(ne @, x +y) —ne (2, x)),

which is the same as in Theorem 1.1, we also have (3-31) here. Therefore,

o0
kgl ;01 =C (Zk(gﬂ)k lullzocion+) 2_10“’”(21)) +C2X O Dy |+ ullL 0y
j=0
The rest is almost the same as (actually much simpler than) the proof of Theorem 1.1, by using
Proposition 4.1 (recalling y < «), and we omit the details. O

In the following, we prove Theorem 1.4 using Theorem 1.3 and difference quotients.

Proof of Theorem 1.4. We only provide the proof for o + y > 2. We know from Theorem 1.3 that there
exists yo such that o + Y < 2 is not an integer, and the theorem holds for 0 < y < y,. Below we will
prove the theorem for all y € (yy, 0) using difference quotients.

We suppose (1-7) holds in Q4. We will consider the difference quotients in x first. For /s € (0, %),
ee€ Sd_l, let

u(t,x +he)—u(t, x) ft,x+he)— f(t,x)

h _ h _
wit,x) = hY—Yo - S x) = hY—Yo ’
and
i _a(t,x +he,y)—a(t,x,y) ph _ b(t.x +he)—b(t,x)
a*(t,x,y) = A= , (t,x) = = .

Then u” satisfies

du(t,x) = Lpu" +b(t,x + he)Du" + f" +b"Du+ g in 0,
where

Su(t,x, y)a(t,x + he, y) Su(t,x, y)a(t, x, y)
Lyu= dy, g= dy.
Rd [pldte Rd |pld+e

Applying the result for y = y gives
[uh]l+?,a+)’0;Q3/4 = C||uh ”%,VO T C[fh +b" Du + g]?,yo;Ql )
It follows from direct calculations that

<
[g]%o,)’o;Ql - C[u]1+%0,0+)/0;Q5/4 + C”u”%(),yo'
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. Yo . . o .
Applying the C1T 7o 0 F70 estimate as mentioned at the beginning of this proof, we have

[g]?’m;g1 = C“L‘HQ,VO + C[f]%oyl’o;Qz'
Similarly, we have

b Dula 0, = CllDulla o = Cllullva, +CLY T

v0;Q1 705027
Therefore,
[uh]l‘l‘yo ,0+v0,03/4 — C||u||y + C[f]%a)’;Qz'

Note that we assumed that 0 + y > 2 and thus, 0 > 1. Also 1 <o + y9 < 2. Then we have

[(Du)h]a+y0 1;03/4 = C||u||y + C[f]%,V;Qz’
that is,
|Du(t,x +2he) —2Du(t, x + he) + Du(t, x)|

hoty—1

< Clullz,, +Clf12,:0.

forall (¢,x) € Q1 1 and h < Making use of (2-1) and sending j — oo there, we have

20

1519

o0
| Du(t, x +he) = Du(t, x) —hD*u(t, x)-e| < Ch?+7=1 3 "2 KO D(uly . +[f1x ,.0,)

k=1
=C(llullz,, + [f]g,y;Qz)haer_l,
from which we have
[M]U"r‘y 012 _C”M“V +C[f]%,y;Q2'
Similarly, we can use the difference quotients in 7. For s € (0, ), let
u,x)—u(t—s, x)

Y=Y
s o

u’(t,x) =
By similar arguments, we have

[us]i+%Qm = Cllullz , +Cl1]2 5.0,
that is
[(ur)® ]VO ;01 <C||U||%,V+C[f]g’y;Q2.

The same arguments as the above (noticing o > y) will lead to
[u]i-i-%;Ql/z = C”u”%,)’ + C[f]%,)/;Qz'
This estimate, together with (4-1), implies

[”]1+%,0+V;Q1/2 - C”””%V T C[f]%’y?Qf

(4-1)

(4-2)

We remark that actually the proof of the other situation o + y € (0, 1) U (1, 2) is exactly the same as

above.

O
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5. Linear parabolic equations with measurable coefficient in ¢

We now consider the linear equation (1-7), where K, b, and f are Dini continuous in x but only measurable
in the time variable 7. We first need a proposition for the case that K does not depend on x, and b = 0.

Proposition 5.1. Let o € (0,2) and 0 <A < A. Assume K does not depend on x,and b =0. Let o € (0, 1)
such that o + « is not an integer. Suppose u € CZT¥(Q1) N C%’O‘((—2", 0) x R?) is a solution of (1-7)
in Q1. Then,

o0
[y t0:0,,, SC D277 M +Clf T,
j=1
where ,
u(t,x)—u(t,x
V= wp 00w
(#,%),(t,x")€(—1,0)x B, ; |x — x|
0<|x—x'|<2

and C > 0 is a constant depending only on d, o, A, A, and Ny, and is uniformly bounded as 0 — 2™,
Proof. We only prove the case that 0 4+« > 2 as before. Let 1 be a cut-off function such that n € C, C"’(Q )
and n = 1 in Q% Let w(t,x) = u(t,x) —u(¢,0), f(t x) = f(t,x)— f(¢,0) and v = nw. Then v
satisfies
v =Lo+h+nw+nf—ng@) in(=2°,0) xR’
where
h=nLw—L(w) = /R((n(t, X) =1t x + y)w(t,x +y) + " Dn(t, x)w(t, x)) K(¢, y) dy

and

g(t) = (Lu)(z,0).
By Theorem 4 in [Mikulevicius and Pragarauskas 2014], we have

W3 4q < Cllh+niw+nf —ng@]5.
From (3.18) and (3.23) in [Dong and Zhang 2016a], we have
112 < CUWIZE, oyt + VR0, 1) = CUUIE, L oyt + [Vl 01510
It is clear that
Ing @5 < CUID*tl|Log(@r/5) + 1 DU Lo(@rs) + 11l L ((=1,0) )
10713 < CUTS o, o

Therefore, we have

[u])ccr+0{;Q1/2 = C(||D2”||Loo(Q7/s) + ||Du||Loo(Q7/8) + [V”]z;le/m + ||”||§;(—1,0)de + [f]E;Qs/A)'

The same interpolation arguments of the proof of Theorem 1.1 in [Dong and Zhang 2016b] lead to

[u]a+a Q12 — C(“u”a 3(—=1,0)xR4 + [f]z;Q3/4)-
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Then as in the proof of Proposition 3.1, see also [Dong and Zhang 2016b, Corollary 4.6], applying this
estimate to the equation of v := f(u(¢, x) —u(¢,0)), where 77 € Cg’o(é%) satisfying 7 = 1 in Q%, we

. . X
have the desired estimates for [u]}, | 01" O

Proposition 5.2. Suppose (1-7) is satisfied in Q5. Then under the conditions of Theorem 1.5, we have
o0
Wly.0,, <Cluly +C Y wp2™), (5-1)
k=1
where C > 0 is a constant depending only on d, A, A, wg, wp, Ny and o.
Proof. We will consider three cases separately.
Case 1: 0 € (0,1). For k € N, let v be the solution of

{8,1} =L 0)v+ f(¢t,0) forx € B,—«,and almost every ¢ € (—=279% 0], (5-2)

v=u in ((—27%%,0) x BS_, ) U ({r=—27K} x B,1).

We sketch the proof of the existence of such v as follows. Let K¢(z, 0, y) and f*(¢, 0) be the mollifications
of K(¢,0, y) and f(¢,0) in ¢. Then there exists v® satisfying

{8;1}5 = LE(t, 0)v% + £5(1,0) in Qyek,

Ve =u in (=27%9,0)x BS_, ) U ({t=—27%} x By).

(5-3)

Since this equation is uniformly elliptic, we have the global uniform Holder estimate of v®, which is
independent of . Thus, there exists a subsequence converging locally uniformly to a global Holder
continuous function v. On the other hand, by Proposition 5.1, we can reselect a subsequence such that for
almost every time, they converge to v locally uniformly in CZ+%(B,«). Since we have from (5-3) that
for all 7 € (—27%9,0),

v (t,x) = u(=27% x) + [T o LE(x, 0008 (t, X) dT + [T )io [2(z,0)0dT  in Oy,
vE=u in (—27%2,0) x BS_, ) U ({r=—27%7} x Byx).

we can send ¢ — 0, using the dominated convergence theorem, to obtain

v(t,x) =u(=27% x) 4+ [* o L(z,0)v(z,x)dt + [* ) io f(z,0)dT in Oy,
v=u in (=27%9,0)x BS_, ) U ({t=—27%} x By—).

This proves (5-2). Moreover, we have from the estimates of v® in Proposition 5.1 by sending ¢ — 0, that

o0
Vatoi0, 0 =€ > 2k=Dong; + c2koply

> e (5-4)
J=
where o € (0, 1) satisfying 0 +« < 1 and
u(t,x)—u(t,x’'
My — - ut.3) —u(t. )|
(t,x),(t,x/)e(—2_k“, O)Xsz—k |x - |

0<|x—x'|<2~ k1
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Let ko > 1 be an integer to be specified. From (5-4), we have

k
[v]* < C27ktko N " pk=Do pp; 4 comkHkoop x4 comhRoo ]y, 0, (5-5)

50— k—kg k*

j=1
Let w := u — v which satisfies
{B,w =L, 0w+ C, in Qy—k,
w=0 in ((—=27%9,0)x BS_, ) U ({t=—27%} x B,—),
where
Cr(t,x)= f(t,x)— f(t,0)+ (L(t,x)— L(¢,0))u.
It is easily seen that

o0

—k —k jlo—a)r, 1x
1€k Loo(@,-1) = @r(27) + Cwa(2 )((m e 2 Y a0, syt IIulle)-
’ 2—k j=0

Then by the Holder estimate [Dong and Zhang 2016b, Lemma 2.5], we have

[wle a0, , <C27HTC

o0
<y ko—a) [wf(z"‘)+wa(2‘k)( sup Y 2Ot ”“”Loo)}'

(t0,x0)€Q5—k j—q

(5-6)
Combining (5-5) and (5-6) yields
k+k —
A P
k
—(k+ko) (k—j)
<C2 0)e Z 257l ke 0)xByj s
j=1
+ C2—(k+k())a[u]z + C2—k0a+k(0’—a)[u]x + Czko(a—(x)wf (Z_k) (5_7)

o;(=27%% 0)x B,k

2—J (ZO ,Xo)

o0
+ C2kolo=a),, (2_k)( sup Z 2J(o—) [u]a:0
(t0,x0)€Q,—k j=0

+ ||u||Loo)-

Let Ql, I =149,0g+1,...,be those in the proof of Proposition 3.2. By translation of the coordinates,
from (5-7) we have for [ > £o, k > 1 +1,

(k+k )(0'—&) X
i 0 (to,)sc:)l)pe 0! [u]a;Qz—k—kO (to,x0)
k
< 0 (ktko)e sup z(k—j)a[u
(thxo)tej=O

X —(k+ko)ay,,1x
]a;(to_z_kgst())Xszfk (X())+C2 0 [u]a

o0
+C2k0(0’—0!) |:wf(2_k)+a)a(2_k)( sup Zz](o'_a)[u]z;QZ_j (to,x0)+||u||Lw)]’ (5-8)
(t0,x0)€Q!*1 i
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Then we take the sum (5-8)ink =/+ 1,/ +2,... to obtain

o0
k+k —
Z o (k+ko)(o—a) sup [u]z;Qz—k—kO(to,Xo)

k=Il+1 (t0,x0)€Q!

oo k

—(k+ko)a (k—j)op, 1%
=C Z 2 ’ Sup 22 [u]ot;(to—Z_k”,to)Xsz—k(Xo)
k=I+1 (to,x0)€Q" j—9

o0
+C2—(l+k0)(¥[u]§+C2k0(0—a) Z a)f(2_k)
k=I+1
o0

yjlo—a) sup [ul. . +||u”Loo)'
=0 (tg,x0)€Q!+1 a;0,j (t0.x0)

As before, by switching the order of summations and then replacing k& by k + j, the first term on the
right-hand side is bounded by

o0
+ 2Rl R a)a(2_k)(

k=I+1 J

o0
—k k(o—
2" Z 2klo=e) sup [u]ﬁ;QZ—k (0, x0)"
k=0 (t0,x0)€Q!
With the above inequality, we have
o0
(k+ko)(o—a) X
Z 2 ’ Sup [u]a;QZ—k—kO (#0,x0)
k=I+1 (t0,x0)€Q!
o0 e e]
< (2 koa Z 2k@=a) qup [u]z;Qz_k (toxo) T C2~UHkoapx 4 Cokolo—e) Z a)f(2_k)
k=0 (t0,x0)€Q! k=I+1
o0 o0 .
4+ 2ko(o—a) Z wa(2_k)(z 2/@=)  qup [“]fz;Qz_j (toxo) T ||u||Loo).
k=I+1 =0 (t0,x0)€Q! 1
The bound above, together with the obvious inequality
1+ko
2.V sw (g gy < C2TOT G,
J:() (tOsx())te 2
implies
o0
200 qup W,
j;) (t0,x0)€Q! @0z (fo%0)
o0
—k i(o—
< C foo 22](0' a) sup 1[u]§;Q2_j (to,%0)
j=0 (t0,x0)€Q

oo
+ C2m Ry 4 ol TRy 1 cokolm) N7 (a7K)

k=I1+1
)

o0
+ C2ko(o—a) Z a)a(z_k) (Z j(o—a) sup [u]§§Q2—j (to.x0) T l|lu ”Loo)'
k=I+1 =0 (t0,x0)€Q! !
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By first choosing k¢ sufficiently large and then £ sufficiently large (recalling / > £;), we get
o0

Z 2](6—a) sup I[U]a 0,—j (to.x0)
j=0 (to,x0)€Q

o0
1 i(o— _ _
ZZZJ(U D s il gy + 2O+ C Y 0y @)

(t0,x0)€ Q! ! k=1
This implies
o0 . e
32D sup Wy o = ClulE+C Y wp@7F),
j=0 (tox0)eQ! 7 k=1

which together with Lemma 2.1(i) gives (5-1).
Case 2: 0 € (1,2). For k € N, let vas be the solution of
drvpr = L(2,0)var + f(2,0) +b(¢,0)Du(t,0) — 9, po  in Qyr—k,
UM = gMm in ((—27%9,0) x BS_, ) U ({r=—27} x B, 1),
where M > 2||u — pollL..(@,) 1s a constant to be specified later,

gm = max(min(u — po, M), —M),

and po = po(¢, x) is the first-order Taylor’s expansion of u@ ) in x at (¢,0), and 1™ is the mollification
of u in the x-variable only:

Bz, x) = / u(t.x — Ry)E(y) dy
Rd

with { € C3°(B1) being a radial nonnegative function with unit integral.
By Proposition 5.1, we have

[UM]()[+O’ Q,—k—1 _sz(k J)UM +C2ka[vM]
j=1

where o € (0, min{2 — g, (c —1)/2}) and

lu(t,x) — po(t, x) —u(t,x") + po(t, x")|
lx —x'|@ '

M; = sup
(1,),(t,x")e(—27%% 0)x B, j

0<|x—x’|<2~k+1
From Lemma 2.4 with o € (1, 2), it follows that for j > k, we have

Mj = Cluly, _y-ro gy

and thus,

[om]3 4o 0,k = CZZ(" Do M; + C2ko[up X, 0,
=1

k
=C Y 29DIMy 4 Cluly, o gy + C2MoM a0, - (59)
j=1
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From (5-9), and the mean value formula (recalling that @ < 2 — o),

k
oar = P11l La(@, ki) < C27EHFOEHD Y o=y
j=1

+ 2~ (k+ko)(o+a) [ul®

w;(—2—k0, 0)xrd T C2kekolotalpy, 1%

a;Qz—k ’
where pq is the first-order Taylor’s expansion of vps in x at (¢, 0). The above inequality, (5-9), and the

interpolation inequality imply

[UM - pl]z;QZ_k_kO

k
S Cz—(k—f-ko)lf Z 2(k_])0'Mj _|_ C2_(k+k0)0' [u]zg(_sz(r’ O)XRd + C2_k00 [UM].;C[;QZ_k ) (5_10)
j=1
Next wps := gar — var, which equals u — po —vps in Q,—«, satisfies
drwpr = L(t,0)wpr +har + Cx - in Oy,
wpr =0 in (=27%9,0)x BS_, ) U ({t=—27%} x By),
where
hag := L(2,0)(u — po— gm)
and
Ck = f = f(t,0) +bDu —b(t,0)Du(z,0) + (L — L(,0))u.

It follows easily that

|Ckl < 0p27F) + 0p ) Dut]| L0, ) + b1 Log27**[Duel

(X;szk
o0

+ Cwq (2_k) sup Z 2/(e=) sup [u(e,-)— pt,xo]fz;B —j (x0)
(t0,%0)€Q,5—k g te(to—279%10) :

+ Cwa2) (1 DUl L0, ) + 14lLo0),

where ps x, = Pr,x,(x) is the first-order Taylor’s expansion of u with respect to x at (¢, xo). From
Lemma 2.3, we obtain

Gkl < 0p27F) + 0p ) | DullL 0, ) + 1Bl Lo 27 *[Dul

o‘;Qz—k
m .
+ Cuw, (2_k) sup 2/(0=) sup inf [u(t,-)—plY.5 .
(t0,:x0)€Q,—k Z(:) te(to—2-7919) PEPx %85 (o)

+ Coa @) (I DUl Logio, ) + Il Loo)-

By the dominated convergence theorem, it is easy to see that

”hM”Loo(Qz—k) —0 as M — oo.
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Thus, similar to (3-6), choosing M sufficiently large so that
I Looc@smi) = 3Ck
we have

[wamle a:0,

<y ko [wf(z—k>+<wb(2—k)+wa(2—")>||Du||LOO<Q2_,<)+2—"“[Du1§;Q2_k

o0

—k i(o— .
rou( s PO st )l g e )| 610

(to,x0)€Q5—k j—0 te(to—2=19,19) PSP~
From Lemma 2.4 (more precisely, its proof)

M; <C sup inf [u(z,-)— p] (5-12)

x
B ji—k
te(—2—ko o) PEPx X B5)—k

From the triangle inequality and Lemma 2.4 with j = 0,
[UM]z;Qz—k = [wM]g;Qz_k + [T/l - pO]z;QZ_k

< x i O —pl¥
B [WM]a;Qz_k " C;e(—szu—e«f 0) Plengx[u(t’ ) p]"“Bz—k'

For/=1,2,...,let Ql = Q_,—1. Combining (5-10), (5-11), and (5-12), similar to (5-8), we then get

pktko)(o—a) gy sup inf [u(z,-)— P]é;Bz_(kOJrk)(xo)

(to,x0)€Q! re(ty—2—Ko+K)a 1) PEPx

k+ko)(o—
< plktko)(o—a) sup  [u— po— Pl]i;Qr(koJrk)(;O,xo)

(t0,x0)€ Q!
k .
< 2~ ktko)e  gyp 1 2tk=ie sug' Pieng [u(z,-) —p]ft;sz_k(xo)
(t0,x0)€Q" j=1 te(to—27%%1) x
—(k+k —ko+ko(o—
+Com ")“[u]ﬁ + sup 27 ol a)[Du]z;Qz—k(to,xo)
(t0,x0)€Q!
+ €2k [wf(z—h + (@5275) + 0a @) Dull o141
o0
—k j(0—a) . X
o (L 2O0 sup g () = P+ Il )|
j;) (t0.x0)€Q! 1 te(to—2-7%10) PEP %855 (o)
Summing the above inequality in k =/ + 1,/ 42, ... as before, we obtain
o0
plktko)o—e) gy sup inf [u(t,-)— p]*
’ ’B (1
k=21;rl (t0,x0)€Q! te(tg—2~Ko+H)0 1) PEPx %8y G+ (o)
o0
—koa jlo—a) . N X
<(C2%o ZZ sup sup inf (u(t.) = pla:n,; (xo)

j=0 (to,x0)€ QI te(to—27015) PEPx
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ko+1 ki —k
+ C27 koD + cofolem Z 277 sup - [Duly.o L rg.x0)
k=l+1 (t0,x0)€Q!

(e.¢]

+C2k0(o_a)[ > (0@ + (@ 27F) + 0a @D Dull L gi+1))
k=Il+1

+ Z wa (2™ >(|u||L +sz<" “ sup sup inf [u(r,-) — plaBz,.m))],

k=I1+1 j=0 (t0.x0)€Q!+1 1€(t9—2719,19) PEPx
(5-13)
and

oo

jlo—a)
Zz sup sup plenf [u(t,-)— pl,. B, (x0)
j=0 (tox0)€Q! te(to—2-7%1y) PEPx

<C2~ k0“22/(" ) qup sup inf [u(t,-) = ply.p

j (x0)
j=0 (t0,x0)€ Q! T re(to—277%19) PEF¥ >

+ CPO Dy + 2RIy cokolaTapyp

o
+ 2% N (0, 27F) + (05, 27F) + 0a 7)1 Dull L or+1)
k=I+1

4+ Cc2kolo—a) Z wq (2_k)221(0 @) sup sup 1n7£ [u(t,-)— p]aB (o)
k=I+1 j=0 (t0,x0)€QI T te(tg—2791y) P€

By choosing k¢ and / sufficiently large, and using (2-4) and interpolation inequalities (recalling that
a < (0 —1)/2), we obtain

pjlo—a) sup sup 1nf [u(z ) — p]
Z (to,x0)EQ! te(ty—2—101y) PE B, (x0)
(e .¢]
2z yilo—a) ;
p sup inf [u(t)~ plp
4 ; (to,x0)€Q! 1 te(ty—2—7%1y) PEPx a; B, (x0) N
+ C2*o D@D X €Y wp27H).
k=1
Therefore,
—k
22](0 a) sup sup inf [u(z,-)— p]a B, (x) = C||u||x +C wa(z ). (5-14)

(t0,x0)€Q! 1€(t9—271019) PP k=1
which together with Lemma 2.1(ii) (actually the proof of it) gives (5-1).
Case3: 0 =1. Set

0
Bo (1) :/t b(s, 0) ds
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and we define

i(t,x) = u(t,x + Bo(t)), fp(t,x) = fa(t,x + Bo(t)), and b(t,x) =b(t,x + Bo(r)).
It is easy to see that in Qg for some § > 0,

3:01(t, x) = (3;u) (¢, x + Bo(t)) — b(t, 0)Vu(t, x + Bo(t))
= Lgit+ fg+ (b—b(t,0) Vi, (5-15)

where L is the operator with kernel a(z, x + Bo(t), y)|y|~¢~°. For (¢, x) € Or—k,

| f5(t, %) — fp(1,0)] < wp(275),
1b—b(t,0)| < wp((1+ No)275).
Furthermore,

[DullL + 10:ull Lo = (1 + No)(| Ditll Lo + 191 L)

Therefore, it is sufficient to bound #. In the rest of the proof, we estimate the solution to (5-15) and abuse
the notation to use u instead of @ for simplicity. By scaling, translation and covering arguments, we also
assume u satisfies the equation in Q5.

The proof is similar to the case o € (1, 2) and we indeed proceed as in the previous case. Take pg to
be the first-order Taylor’s expansion of u@™) in x at (z,0), where 1™ is the mollification of u in the
x-variable only, as in Case 2. We also assume that the solution v to the equations

fmziaﬂw+f@m—mm in Qy«,
v=1u—po in (=27%9,0)x BS_, ) U ({t=—27%} x By),

exists without carrying out another approximation argument. By Proposition 5.1 with 0 = 1 and Lemma 2.4
in [Dong and Zhang 2016a],

o0
[U])f+a;Q2 =C Z 2k M;j + c2* [V]oe: 0,k

—k—1 —
j=1
o0
<cY 2w inf [u(t,)—plX. 5 +C2F[I~.
; ze(—z—pka,o) per[ ®) p]“’BZJ—"’ [ ]“’Qz—"
k
k—j : ) nlX x kp _
<C 22 su_pko plengx[u(t, ) P]a;sz_,( +Clul, +C2 [v]a;Qz—k' (5-16)
j=1 te(—2 .0)
From (5-16) and the interpolation inequality, we obtain
[v— pl]Z;QZ—k—ko
k .
Scz—(k—i-ko)z 2k—j sup inf [u(r, .)_p]z;szik +C2_k°[v]§;grk +C2_(k+k°)[u]§, (5-17)

i1 te(-27ko) PEPx
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where pq is the first-order Taylor’s expansion of v in x at (¢,0). Next w := u — po — v satisfies

d;w=L(0)w+Ck inQyx,
w=0 in (=27%,0) x B ) U ({t=—27F} x By),

where by the cancellation property,

Cr = f = f(t,0)+ (b—b(t,0))Vu + (L — L(2,0)u,
so that
|Cel < 0 27)+wp (14+No)2 ) | Dull L (0, 1)

o0

+Cwa((1+N0)2_k)( sup 2/ (1) sup inf [u(t,-)—pl%.5 . +””||Loo)~
(to,Xo)Eszjgo te(to—2-79,19) PEPx @B, j (x0)

Clearly, for any r > 0,
wo((1 4 No)r) = (2+ No)w.(r).
Therefore, similar to (5-11), we have
[Wle,e;0, &
<27k [wf Q) +0p 7)1 DUl L0, 1)

o0

rou (s Y00 s g ) sl il ) 619

(t0=x0)eQ2—k j=0 te(to—2-79,1t9) DEPx
From the proof of (2-16) and the triangle inequality,

X < X _ X < ) . R, b4

o, =Wlao,  Hlu—polaio, , <[Wlaio, , + C,e(_sggc,m plengx[u(t, )= Plap, -
For/ =1,2,..., let Ql = (Q,_,—. Similar to (5-8), by combining (5-17) and (5-18), shifting the
coordinates, and using the above inequality, we obtain for / > 1 and k >/ 41,

2k tk) (=) g sup inf [u(t,")-ply.p _,_,
(t0,x0)€Q! re(tg—2— Ktk 14) DEPx 2 0(xq)
k
< C2—(k+k())(¥ 2k_] sup sup inf [u(t )_p]x
— ’ ;B =
jg(:) (to,x0)€Q! 1€(tg—2—k0,19) PEPx ko)

+C2ko(1=) [wf(Z_k)wwa Q) Dullp (o1

00
oy (2—k) (Z pJj(1—a) sup sup inf [u(z, -)—p]z,Bz_j (x0)+ [|ee ”Loo):|

o (t0,x0)€Q! 1 r€(tg—2719,19) PP
+C o kFko)ar,1x (5-19)
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which by summing in k =/+ 1,/ +2,... implies

o
Z 9 (k+ko)(1—a) sup sup inf [u(fw)—pli;B i (x0)
k=1+1 (t0:x0)€Q! 1€(tg—2~ Kk k0, 1) PEPx S
o
§C2_k0“ 2/ (1—a) sup sup inf [u(t,-)—p]x.B .
jg(:) (to,x0)€Q!+1 te(to—2—10,15) PEPx By (x0)

oo
+C2 RotDeppyy cokol=e) ™ ) (27F)

k=I+1
o0
+C2fotme %7 [wb@—k)nDuuLm(Qm)
k=Il+1
Cx> .
+wa(2_k)( /(1) sup sup inf [u(t,-)—pl>.5 . +||u||Loo)j|’
ng (to,x0)€Q!H1 te(ty—2—10,19) PEPx % By=i (o)

where for the first term on the right-hand side of (5-19), we replaced j by k — j and switched the order
of the summation as before. Therefore,

o0
2/(1—) sup sup inf [u(t,-)—pl>.5 .
ng (t0,x0)€Q! te(tg—2—19,19) PEPx *By-i (o)

o0
= Coory 2070 qup sup inf [u(t,-)—ply.5. .
jgo (to,x0)€Q!F1 te(tg—2—70,1y) PEPx @3B, (xo)

o0
42U HR A=) x | coko(1-e) Z wf (7%

k=1+1
o0
+C2k01= N o, 7Y | Dull iy
k=Il+1
o0 0 .
4+ 2ko(1~2) Z wa(Z_k)(Z 7i(1-a) sup sup ing [u(t’.)_p]z;Brf (XO)+||M||LOO)‘
k=I+1 j=0 (t0,x0)€Q!H1 1e(to—277%19) PP~

Then we choose k¢ and then / sufficiently large, and apply Lemma 2.1(iii) (actually the proof it) to get

oo
7Jj(1—a) sup sup inf [u(z,-) —P]X~B i
jgo (t0,%0)€Q! 1€(t9—277%19) PP Pt
| &
<1 7j(1—a) sup sup inf [u(z,-)— pl;
p— ’ ;B —J
4j§0 (t0,x0)€ QI+ te(to—2—1019) PEPx B ()

o
+ 2% DUy €N " wp(275).
k=1
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This implies

221(1 ) gup sup inf [u(t,-) = ply.p s (x0) = < Cllully +CZa)f(2 ky,
(t0,x0)€Q! 1€(to—2-7915) PEP~ k=1
from which (5-1) follows. O

Proof of Theorem 1.5. As before, Theorem 1.5 follows from Proposition 5.2 using the argument of
freezing the coefficients. We only present the detailed proof of Theorem 1.5 for o € (1, 2). We omit the
proof of the case o € (0, 1] since it is almost the same and actually is simpler.
Indeed, the proof here for o € (1, 2) is almost identical to that of Theorem 1.1, so we just sketch it.
Without loss of generality, we assume the equation holds in Q3.

Step 1: For k = 1,2, ..., define Q% := =Q; k. Letng € C°°(Qk+3) be a sequence of nonnegative
smooth cutoff functlons satlsfymg n=1in QX2 |y <1in QkJr3 and [|3/ Ding || < C2KG+D) for
eachi, j > 0. Set vy := ung € C'°% and notice that in Q%+1,

0tk = N 0ru + 0¢mgu = Ny Lu + ngbDu + g [+ d¢npu

= Lvg +bDvg —buDny + hy + ng f + deniu,
where
Ek(t,x, y)a(t, x, y)

hg =ngLu— Ly = dto ,

R4

and
Ex(t,x,y) =ut,x +y)(x(t,x +y) —ni(t,x)) — y - Dy (¢, X)u(t, x)

=u(t,x+ ) (t,x +y)—ni(t,x)) since Dni =0in Qk'H.

We will apply Proposition 5.2 to the equation of vy in Qk +1 and obtain corresponding estimates for vy
in Q.

As before, we have 1y f = f, 9:nu = 0, and buDny = 0 in Q¥+ Thus, we only need to estimate
the moduli of continuity of /j in Qk +1 with respect to x. The same proof of (3-31) shows that

oo
wp(r):=C (2“" lullLoion + Y 2—1%,,(21))%@) +C2K 0, (1) + C2XCF D | 1 05yr (5-20)
j=0
As in the proof of Theorem 1.1, by making use of Proposition 5.2 to v and interpolation inequalities,
an iteration procedure will lead to

[ul}.04 = CllullLooy + € 2(2 70y (27) + 0u277) + wp (277)). (5-21)
j=0
Applying this to the equation of u(¢, x) — u(¢, 0) gives to (1-10).
Finally, since ||vy ||} is bounded by the right-hand side of (5-21), from (5-14), we see that

oo

yjlo—a) sup sup inf [u(t,-)— pl*. 5 <C
Z(:) (to,x0)€Q! te(to—2—10 1) PEPx a;B,_j(x0) —

for some large /.
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This and (5-13) with u replaced by vq and f replaced by iy + 1y f + d;n1u —buDny give

o0
j+ko)(0— :
Z 2UFkO—0) gy sup inf [v1 —pl5. 5 ke (x0)
j=ki+1 (t0,x0)€ QK1 1€(tg—2U k07 1) PEPx 2o

(e .e]
< 7R 1 2070 N (0 (27) + 0a(27) F 0u2T) Fwp(277) +277%).
j=ki

Here we also used (5-20) with k = 1. Therefore, for any small ¢ > 0, we can find kg sufficiently large,
then k sufficiently large, depending only on C, o, Ny, &, wga, @y, wp, and wy, such that

o0
k) (o )
Z 2Utko)e—a) gy sup inf [v; —pl}.p ik (x0) S E
j=ki+1 (t0.x0)€Q¥1 1e(tg—2=U k07, 1) PEPx S

This, together with the fact that vy = u in Q 1 and the proof of Lemma 2.1(ii), indicates that

sup [u]’;.Qr (toxo) >0 asr—0
(f0,x0)€Q1/2 ’ ’
with a decay rate depending only on d, A, Ny, A, wa, oy, wp, wy, and o. Also, by evaluating (1-7)
on both sides and making use of the dominated convergence theorem, we have that d;u is uniformly
continuous in x in @ with a modulus of continuity controlled by d, o, A, A, wg, wf, wy, No, wp,
and [|u]|z-
Hence, the proof of the case when o € (1,2) is completed. O

Proof of Theorem 1.6. Given the proofs of Theorems 1.3 and 1.4, Theorem 1.6 can be similarly proved
(actually simpler), and we omit the details. O
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