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THE INVERSE PROBLEM FOR THE DIRICHLET-TO-NEUMANN MAP
ON LORENTZIAN MANIFOLDS

PLAMEN STEFANOV AND YANG YANG

We consider the Dirichlet-to-Neumann map ƒ on a cylinder-like Lorentzian manifold related to the wave
equation related to the metric g, the magnetic field A and the potential q. We show that we can recover
the jet of g;A; q on the boundary from ƒ up to a gauge transformation in a stable way. We also show
that ƒ recovers the following three invariants in a stable way: the lens relation of g, and the light ray
transforms of A and q. Moreover, ƒ is an FIO away from the diagonal with a canonical relation given by
the lens relation. We present applications for recovery of A and q in a logarithmically stable way in the
Minkowski case, and uniqueness with partial data.

1. Introduction and main results

Let .M; g/ be a Lorentzian manifold of dimension 1C n, n � 2; i.e., g is a metric with signature
.�1; 1; : : : ; 1/. Suppose a part of @M is timelike. An example ofM is a cylinder-like domain representing
a moving and shape-changing compact manifold in the x-space (if we have fixed time and space variables)
with the requirement that the normal speed of the boundary is less than 1; see Section 5.

Denote the wave operator by �g ; in local coordinates x D .x0; : : : ; xn/ it takes the form

�g WD
1p
j detgj

@j .
p
j detgjgjk@k/:

Consider the following operator P D Pg;A;q , which is a first-order perturbation of �g :

P D Pg;A;q WD
1p
j detgj

.@j � iAj /
p
j detgjgjk.@k � iAk/C q: (1)

Here i D
p
�1, A is a smooth 1-form on M , and q is a smooth function on M.

The goal of this work is to study the inverse problem of recovery of g, A and q, up to a data-preserving
gauge transformation, from the outgoing Dirichlet-to-Neumann (DN) ƒ map on a timelike boundary
associated with the wave equation

PuD 0 in M: (2)

We are motivated by applications in relativity but also in applications to classical wave-propagation
problems with media moving and/or changing at a speed not negligible compared to the wave speed. We
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are interested in possible stability results even though some steps in the recovery are inherently unstable.
This problem remains widely open. The results we prove are the following. First, we show that one
can recover the jet of g;A; q at the boundary (up to a gauge transform) in a Hölder-stable way. Next,
we show that one can extract the natural geometric invariants of g;A; q from ƒ in a Hölder-stable way.
More precisely, ƒ recovers the lens relation L related to g, in stable way. If we know g, the light ray
transform L1A of A is recovered stably. If g and A are known, the light ray transform L0q of q is
recovered stably. The lens relation L is the canonical relation of the Fourier integral operator (FIO) ƒ
away from the diagonal, and the light ray transforms L1A and L0q are in fact encoded in the principal
and the subprincipal symbols of it. In fact, L is directly measurable from ƒ.

Since the results we prove are local or semilocal (near a fixed lightlike geodesic), and the proofs are
microlocal, we do not formulate a global mixed problem for the wave equation at the beginning but we do
consider one in Section 5. In fact, existence of solutions of such problems depends on global properties
of .M; g/, one of which is global hyperbolicity, which are not needed for our weaker formulation and for
the proofs. Instead, we define the DN map up to smoothing operators only. In the case when one can
prove the existence of a global solution, the true DN map would coincide with ours up to a smoothing
error, see Section 5, and our results are not affected by adding smoothing operators.

This problem has a long history in the stationary Riemannian setting, i.e., when M D Œ0; T ��M0,
where .M0; g/ is a compact Riemannian manifold with boundary, and the metric is �dt2Cgij .x/dxidxj.
The boundary control method [Belishev 1987] and Tataru’s uniqueness continuation theorem [1995; 1999]
give uniqueness provided that T is greater than a certain sharp critical value T, as shown by Belishev
and Kurylev [1992]; see also the survey [Belishev 2007]. Stability however does not follow from such
arguments. Stability results for recovering of the metric and lower-order terms appeared in [Stefanov
and Uhlmann 1998; 2005b; Montalto 2014; Bellassoued and Dos Santos Ferreira 2011; Bao and Zhang
2014], with [Montalto 2014] covering the general case. A main assumption in those works is that the
metric is simple, i.e., that there are no conjugate points and the boundary is strictly convex (a not so
essential assumption) and the main technical tool for recovery of the metric is to reduce it to stability for
the boundary/lens rigidity problem; see, e.g., [Stefanov and Uhlmann 2005a]. For related results, we refer
to [Isakov and Sun 1992; Sun 1990]. Recently, the progress in treating the local rigidity problem allowed
results under the more general foliation condition [Stefanov et al. 2016], which allows conjugate points.
In any case, some condition is believed to be necessary for stability. It is worth noticing that all inverse
(hyperbolic) scattering problems for compactly supported perturbations are equivalent to inverse DN map
problems.

Recently, there has been increased interest in this problem or in related inverse scattering problems in
time-space. Recovery of lower-order time-dependent terms for the Minkowski metric has been studied
in [Stefanov 1989; Ramm and Sjöstrand 1991; Ramm and Rakesh 1991; Waters 2014; Salazar 2013;
Ben Aïcha 2015; Bellassoued and Ben Aïcha 2017], and for �dt2Cgij .x/dxidxj in [Kian et al. 2018].
Eskin [2017] proved that one can recover g;A; q up to a gauge transformation, assuming existence of
a global time variable t and analyticity of all coefficients with respect to it. The proof is based on an
adaptation of the boundary control methods and the analyticity is needed so that one can still use the
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unique continuation results in [Tataru 1999]. Stability does not follow from such arguments. Other inverse
problems on Lorentzian manifolds are studied in [Kurylev et al. 2014a; 2014b; Lassas et al. 2016]. The
inverse scattering problem of recovering a moving boundary is studied in [Cooper and Strauss 1984;
Stefanov 1991; Eskin and Ralston 2010]. The first author showed in [Stefanov 1989] that in the case
where g is Minkowski and AD 0, the problem of recovery of q reduces to the inversion of the X-ray
transform in time-space over light rays, which was shown there to be injective for functions tempered in
time and uniformly compactly supported in space. In [Lassas et al. 2017], it was shown that the linearized
metric problem leads to the inversion of a light ray transform of tensor fields. Such light ray transforms are
inherently unstable however because they are smoothing on the timelike cone. They require specialized
tools for analyzing the singularities near the lightlike cone, not fully developed in the geodesic case; see
[Greenleaf and Uhlmann 1989; 1990a; 1990b]. The light ray transform has been also studied in [Boman
and Quinto 1993; Begmatov 2001; Stefanov 2017; Kian 2016].

We describe the main results below. Let x0 2 @M and assume that @M is timelike near x0. Then @M
with the induced metric is a Lorentzian manifold as well and we choose (locally) one of the two time
orientations, which we call future pointing.

Let f 2 E 0.@M/ be supported near x0 with WF.f / close to a fixed timelike .x0; �00/ 2 T �@M n0. We
define the local outgoing solution operator f 7! u, defined up to a smoothing operator, as the operator
mapping f to the outgoing solution u of

Pu 2 C1 in M near x0; uj@M D f mod C1: (3)

The term “outgoing” here refers to the following. We chose that microlocal solution (parametrix) for
which the singularities of the solution are required to propagate along future-pointing bicharacteristics. We
refer to the subsection on page 1385 for more details. On the other hand, it is “local” because it solves (3)
near x0 only and this keeps the singularities close enough to @M without allowing them to hit @M again.

Define the associated local outgoing Dirichlet-to-Neumann map as

ƒloc
g;A;qf D .@�u� ihA; �iu/j@M ; (4)

where � denotes the unit outer normal vector field to @M, and the equality is modulo smoothing operators
applied to f . By definition, the ƒloc

g;A;q is defined near x0 only, and in fact, in some conic neighborhood
of the timelike .x0; �00/. Since the latter is arbitrary, ƒloc

g;A;q extends naturally to the whole timelike cone
on @M but we keep it microlocalized near .x0; �00/ to emphasize what we can recover given microlocal
data only.

As we show in Theorem 3.1, ƒloc
g;A;q is actually a ‰DO (pseudodifferential operator) on the timelike

cone bundle near x0. The main result about ƒloc
g;A;q is Theorem 3.2: a stability estimate about the recovery

of the boundary jets of the coefficients.
Let f 2 E 0.@M/ have WF.f / as above. Let u, as in (3), be the parametrix in a neighborhood

of the future-pointing null bicharacteristic issued from the unique future-pointing lightlike covector
.x0; �

0/ 2 T �M n 0 with orthogonal projection .x0; �00/. Note that the direction of .x0; �0/ and that
of the bicharacteristic might be the same or opposite. Assume that this bicharacteristic hits @M again,
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transversely, at point y0 in the codirection �0 and let �00 be the corresponding orthogonal tangential
projection on T �y0@M. Then .y0; �00/ is timelike, as well. Let U and V be two small conic timelike
neighborhoods in T �@M n 0 of .x0; �00/ and .y0; �00/, respectively. If U is small enough, for every
timelike .x; � 0/2 U close to .x0; �00/, we can define .y; �0/ in the same way. This defines the lens relation

L W U �! V; L.x; � 0/D .y; �0/I (5)

see Figure 1. By definition, L is an even map in the second variable; i.e., L.x;�� 0/D .y;��0/. If .x; � 0/
is future-pointing (i.e., if the associated vector by the metric is such), then .x;�� 0/ is past-pointing but
we can interpret .y;��0/ as the end point of the null geodesic with initial point projecting to .y;��0/ but
moving “backward” with respect to the parameter over it. This property correlates well with Theorem 4.2
since the wave equation has two wave “speeds” of opposite signs.

The map L is positively homogeneous of order 1 in its second variable. Now, for f as above, let u be an
outgoing microlocal solution to (3) near (the projection on the base of) the bicharacteristic 
0 issued from
.x0; �

0/ all the way to its second contact with @M at y0. In other words, u is a distribution defined near

0 and solving (3) there rather than just near x0, having future-propagating singularities only. It is unique
up to a function smooth near 
0; see Proposition 4.1. At this point, we assume that .x0; �00/ is not a fixed
point for L, which means that the reflected bicharacteristic does not become a periodic one after the first
reflection. This solution is constructed as a solution with the boundary removed, in some neighborhood
of 
0. Since f is smooth near .y0; �00/ that means there is no singularity of the solution u at .y0; �00/;
therefore, the singularity reflects at y0. We extend the solution microlocally over a small segment of the
reflected ray before reaching @M again; see Proposition 4.1 for details. Then we define the global outgoing
DN map ƒgl

g;A;q by (4) again but with the right-hand side localized to V , the projection of V to the base.
In fact, by propagation of singularities, ƒgl

g;A;qf has a wave-front set in V only and we can cut smoothly
outside some neighborhood of y0. The map ƒgl

g;A;q is actually just semiglobal because it is the DN map
restricted to a solution near one geodesic segment connecting boundary points. Also, it is only defined up
to an operator smoothing near .x0; �0/. If a global initial boundary value problem is well defined, ƒgl

g;A;q

coincides with the associated DN operator up to a smoothing operator; see Section 5. In Theorem 4.2, we
prove thatƒgl

g;A;q is an FIO associated with the graph of L. In Theorem 4.3, we show thatƒgl
g;A;q recovers

L in a stable way, which is also a general property of FIOs associated to a local canonical diffeomorphism.
Another fundamental object is the light ray transform L which integrates functions, or more generally

tensor fields, along lightlike geodesics. We define L on functions by

L0f .
/D

Z
f .
.s// ds; (6)

and on covector fields of order 1 by

L1f .
/D

Z
hf .
.s//; P
.s/i ds; (7)

where hf .
.s//; P
.s/i D fj .
.s// P

j .s/ in local coordinates and 
 runs over a given set of lightlike

geodesics, and we always assume that suppf is such that the integral is taken over a finite interval. In
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our results below, 
’s in L0 and L1 are the maximal geodesics through M connecting boundary points.
Unlike the Riemannian case, lightlike geodesics do not have a natural speed-1 parametrization and every
rescaling of the parameter along them (even if that rescaling changes from geodesic to geodesic) keeps
them being lightlike. The transform L1 is invariant under reparametrization of the geodesics and can
be considered as an integral of hf; d
i over the geodesics. On the other hand, L0 is not. Despite that
freedom, the property L0f D 0 does not change. One way to parametrize it is to define it locally near a
lightlike geodesic hitting a timelike surface at sD 0, in our case, @M. Then the orthogonal projection P
 0.0/
of each such 
 on T @M (the prime stands for projection) determines P
.0/, and therefore 
 , uniquely.
To normalize the projections on T @M, we can choose a timelike covector field Z on T @M locally and
require g. P
;Z/D�1 for future-/past-pointing directions.

In Theorem 4.4, we show that given g, one can recover L1A in a Hölder-stable way; and if we are
given g, A, one can recover L0q in a Hölder-stable way. Notice that we do not require absence of
conjugate points and we do not use Gaussian beams. Instead, we use standard microlocal tools including
Egorov’s theorem. In Section 5, we consider some cases where L1 and L0 can be inverted to derive
uniqueness results. As we mentioned above, those transforms are unstable. The reason is that they are
microlocally smoothing in the spacelike cone; see, e.g., [Greenleaf and Uhlmann 1990b; Stefanov 2017;
Lassas et al. 2017]. Therefore, stable recovery of L1A and L0q does not imply Hölder-stable recovery of
A1 (up to a gauge transform) and q but allows for weaker logarithmic estimates using the estimate for
recovery of q from L0q in the Minkowski case proven in [Begmatov 2001], for example. We discuss
some of those possible corollaries in Section 5. Recovery of g from L is an open problem, with some
results about the linearized problems obtained recently in [Lassas et al. 2017].

2. Preliminaries

Notation and terminology. In what follows, we denote by U and V the projections of U and V onto the
base @M. We freely assume that U and V , and therefore, U and V are small enough to satisfy the needed
requirements below.

If � is a covector based at a point x on @M, we denote by � 0 its orthogonal projection to T �x @M. We
routinely denote covectors on T �x @M by placing primes, like � 0, etc., even if a priori such a covector is
not a projection of a given one.

Timelike/spacelike/lightlike vectors v are the ones satisfying g.v; v/ < 0, or g.v; v/ > 0, or g.v; v/D 0,
respectively. We identify vectors and covectors by the metric. We choose an orientation in U that we call
future pointing (FP). More precisely, we choose some smooth timelike vector Z in U (identified with an
open set in the tangent bundle) and we call future pointing those timelike vectors v for which g.v;Z/ > 0.
If we have a time variable t , for example, such a choice could be Z D @=@t . In semigeodesic coordinates
.x0D t; x/ near a spacelike hypersurface, see (9) after Lemma 2.3, FP vD .v0; v0/ means v0 > 0. Notice
that for the associated covector .�; �/D gv, we have � < 0.

Given a timelike .x; � 0/ 2 U , assume first that � 0 is FP. Let � be the lightlike covector pointing into M
with orthogonal projection � 0, identified with the vector v D g�1�. The geodesic 
x;�0.s/ issued from
.x; v/, for s � 0 will be called the FP geodesic issued from .x; � 0/. In Figure 1, left, v D vint and
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∂M

∂M ∂M
v′vext

vint

γ γ

x

ξ′ ξintξext

∂M

x

ξ′ ξintξext

v′vext vint

η′

η′

y y

Figure 1. A tangent timelike future-pointing (FP) vector v0 on the left, and a past-pointing
on the right; and the two lightlike vectors vint and vext with the same projection, pointing
toM and outsideM, respectively. The FP geodesic 
 D 
x;�0.s/ in both cases propagates
to the future but on the right, it is determined by negative values of the parameter over
it. The corresponding covectors � 0, �int and �ext are plotted, as well. The lens relation is
L.x; � 0/D .y; �0/.


x;�0.s/ D 
 . If .x; � 0/ is past pointing, then we choose v to be the lightlike vector projecting to v0

pointing to the exterior (vext in Figure 1, right) and take 
x;�0.s/ for s � 0. By propagation of singularities,
a boundary singularity .x; � 0/ as above would propagate either along the FP geodesics chosen above, or
along the past-pointing ones (or both) that we did not choose. The choice we made reflects the requirement
that singularities should propagate to the future only. We call such microlocal solutions outgoing. We
borrow that term from scattering theory. In the case of the classical formulation of the Riemannian version
of this problem, this is guaranteed by the condition uD 0 for t < 0.

Gauge invariance. There exist some gauge transformations which leave the local and the global versions
of the Dirichlet-to-Neumann map ƒg;A;q invariant; thus one can only expect to recover the corresponding
gauge-equivalence class. To simplify the formulations, we assume that the DN mapƒg;A;q is well defined
globally on M. In our main theorems, we will apply this to the ‰DO part of ƒg;A;q first, and then ˆ
below needs to be the identity near a fixed point only. For the semiglobal one, we need ˆ to be identity
near both ends of the fixed lightlike geodesic only. Since the computations below are purely algebraic,
the lemmas remain true for the localized maps with obvious modifications.

We will consider two types of gauge transformations in this part. The first one is a diffeomorphism in
M which fixes @M.

Lemma 2.1. Let .M; g/ be a Lorentzian manifold with boundary as above, let A be a smooth 1-form and
q be a smooth function on M. If ˆ WM !M is a diffeomorphism with ˆj@M D Id, then

ƒg;A;q Dƒˆ�g;ˆ�A;ˆ�q:

Here Id is the identity map, and ˆ�g, ˆ�A, ˆ�q are the pullbacks of g;A; q under ˆ, respectively.

Proof. For any f 2C1.@M/, let u be the solution of Lg;A;quD0 onM with uj@M Df . Define v WDˆ�u
as the pull-back of u; then a simple calculation in local coordinates shows that Lˆ�g;ˆ�A;ˆ�qv D 0 and
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vj@M D f . If we write y Dˆ.x/ as a local coordinate representation of ˆ, then

ƒg;A;qf .y/D �
j .y/

@u

@yj
.y/� i�j .y/Aj .y/u.y/

ˇ̌̌̌
@M

D �j .x/
@xl

@yj
@v

@yl
� i

@xl

@yj
�j .x/

@yk

@xl
Ak.x/v.x/

ˇ̌̌̌
@M

D Q�j .x/
@v

@xj
.x/� i Q�j .x/.ˆ�A/j .x/v.x/

ˇ̌̌̌
@M

Dƒˆ�g;ˆ�A;ˆ�qf;

where � and Q� are the unit normals in the y- and x-variables, respectively. The above calculation essentially
verifies that ƒg;A;q is defined invariantly. Therefore, ƒg;A;q Dƒˆ�g;ˆ�A;ˆ�q . �

Another type of gauge invariance occurs when one makes a conformal change of the metric g. This
type of gauge invariance also occurs when g is a Riemannian metric and ƒg;A;q is the corresponding
Dirichlet-to-Neumann map for the magnetic Schrödinger equation; see [Dos Santos Ferreira et al. 2009,
Proposition 8.2].

Lemma 2.2. Let .M; g/ be a Lorentzian manifold with boundary as above, let A be a smooth 1-form and
q be a smooth function on M. If ' and  are smooth functions such that

'j@M D @�'j@M D 0;  j@M D 0;

then we have
ƒg;A;q Dƒe�2'g;A�d ;e2'.q�q'/

where q' WD e
n�2
2
'�ge

2�n
2
' .

Proof. A direct computation in local coordinates shows that

e
nC2
2
'Pg;A;q.e

2�n
2
'u/D Pe�2'g;A;e2'.q�q'/u;

e�i Pg;A;q.e
i u/D Pg;A�d ;qu:

For any f 2 C1.@M/, let u be the solution of Pg;A;qu D 0 on M with uj@M D f . Setting v WD
e
n�2
2
'e�i u, we have

Pe�2'g;A�d ;e2'.q�q'/v D Pe�2'g;A�d ;e2'.q�q'/.e
n�2
2
'e�i u/

D e
nC2
2
'Pg;A�d ;q.e

�i u/D e
nC2
2
'e�i Pg;A;quD 0:

Furthermore, notice that �e�2'g D �g by the assumption on '; thus

ƒe�2'g;A�d ;e2'.q�q'/f D �
j @v

@xj
� i�j

�
Aj �

@ 

@xj

�
vj@M

D �j
@.e

n�2
2
'e�i u/

@xj
� i�j

�
Aj �

@ 

@xj

�
.e
n�2
2
'e�i u/j@M

D �j
�
�i
@ 

@xj
uC

@u

@xj

�
� i�j i�j

�
Aj �

@ 

@xj

�
uj@M

D �j
@u

@xj
� i�jAjuj@M Dƒg;A;qf: �
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Gauge equivalent modifications of g; A; q. It is convenient to work in semigeodesic normal coordi-
nates on a Lorentzian manifold. These coordinates are the Lorentzian counterparts of the well-known
Riemannian semigeodesic coordinates for Riemannian manifolds with boundary. We formulate the
existence of such coordinates in the following lemma.

Lemma 2.3. Let S be a timelike hypersurface inM. For every x02S , there exist ">0, a neighborhoodN
of x0 in M, and a diffeomorphism ‰ W S \N � Œ0; T /!N such that

(i) ‰.x0; 0/D x0 for all x0 2 S \N ;

(ii) ‰.x0; xn/D 
x0.xn/, where 
x0.xn/ is the unit speed geodesic issued from x0 normal to S .

Moreover, if .x0; : : : ;xn�1/ are local boundary coordinates on S , in the coordinate system .x0; : : : ;xn/,
the metric tensor g takes the form

g D g˛ˇdx
˛
˝ dxˇ C dxn˝ dxn; ˛; ˇ � n� 1: (8)

Clearly, g˛ˇ has a Lorentzian signature as well. If M has a boundary, then S can be @M and xn is
restricted to Œ0; "�. A proof of the lemma can be found in [Petrov 1969] and is based on the fact that the
lines x0 D const. and xn D s are unit speed geodesics; therefore the Christoffel symbols � inn vanish for
all i . We will call such coordinates the semigeodesic normal coordinates. The lemma remains true if S is
spacelike with a negative sign in front of dxn˝ dxn in (8) (we replace the index n by 0 below), and this
gives us a way to define a time function t D x0 locally, and put the metric in the block form

g D�dt2Cgij .t; x/dx
i
˝ dxj ; 1� i; j � n; (9)

with gij Riemannian.
Now we use the gauge invariance of ƒg;A;q to alter g;A; q without changing the DN map. Three

types of modifications are made in the following, labeled as (M1)–(M3) respectively.
Firstly, given two metrics g and Qg, one can choose diffeomorphisms as in Lemma 2.1 to obtain common

semigeodesic normal coordinates. In fact, let‰ and z‰ be diffeomorphisms like in Lemma 2.3 with respect
to g and Qg respectively; then z‰ı‰�1 is a diffeomorphism near @M which fixes @M. Extend z‰ı‰�1 as in
[Palais 1960] to be a global diffeomorphism onM. The properties of‰ and z‰ ensure that the two metrics g
and .z‰ ı‰�1/� Qg have common semigeodesic normal coordinates near @M. Therefore, we may assume:

(M1) If .x0; xn/ are the semigeodesic normal coordinates for g, they are also the semigeodesic normal
coordinates for Qg.

Secondly, we employ the conformal gauge invariance to replace Qg with a gauge-equivalent one to
obtain some identities which later will help simplify the calculations.

Lemma 2.4. Let S be either a timelike or a spacelike hyperplane near some point p0 2 S . Given smooth
functions r2; r3; : : : on S near p0, there exists a smooth function � near p0 with �D 0, @��D 0 on S
so that if y‰ is the diffeomorphism in Lemma 2.3 related to the metric Og WD e�g, then

@jn det.y‰� Og/D rj ; j D 2; 3; : : : ;

on S near p0. Here @n D @=@xn with .x0; : : : ; xn/ the semigeodesic normal coordinates for g.
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Before giving the proof of the lemma, we remark that .x0; : : : ; xn/ may not be the semigeodesic
normal coordinates for Og.

Proof. The statement of the theorem is invariant under replacing g by‰�g for any local diffeomorphismˆ

which preserves the boundary pointwise. Therefore, we may assume that g is replaced by ‰�g, i.e., that
x D .x0; xn/ are semigeodesic coordinates for g.

Note first that the conformal factor does not change the property of a covector being normal to S but
rescales the normal derivative and may change the higher-order ones because 
x0 may change its curvature
with respect to the old metric. More precisely, for the vector en D .0; : : : ; 0; 1/ we have g.en; en/D�1
but Og.en; en/D�e�. Therefore, for the corresponding normal derivatives we have O@� D e�

�
2 @� D @n

on xn D 0. Let O
x0.s/ be the normal geodesic at x0 2 S with PO
x0 consistent with the orientation of S ,
normalized by Og. PO
x0.s/; PO
x0.s//D�1. Then for every smooth function f ,

@jn
y‰�f .x0/jxnD0 D @

j
njxnD0f . O
x0.x

n//:

For j D 0; 1, the results are not affected by the conformal factor and we get

y‰�f .x0/jxnD0 D f .x
0; 0/; @n y‰

�f .x0/jxnD0 D fn.x
0; 0/:

To compute the higher-order normal derivatives, we write

@2n
y‰�f .x0/D fij PO


i
x0
PO

j
x0 Cfi

RO
 ix0 on xn D 0: (10)

Under the conformal change of the metric, the Christoffel symbols are transformed by the law

y�kjk D �
k
ij C

1
2
ıki @j�C

1
2
ıkj @i��gijr

k�:

In particular,

y�knn D �
k
nnC

1
2
ıkn@n�C

1
2
ıkn@n��gnnr

k�D ıkn@n��
1
2
gkl@l�: (11)

Therefore, y�knn D 0 on xn D 0 and (10) reduces to

@2n
y‰�f .x0/D fnn on xn D 0: (12)

In a similar way, we may compute @jn y‰�f .x0/ on xn D 0. The result is @jnf plus normal derivatives
of f of order j �1 and less, with coefficients depending on the normal derivatives of � up to order j �1.
For our purposes, the exact expression does not matter.

The metric Og has the form

.y‰� Og/kl D . Ogij ı y‰/
@y‰i

@xk

@y‰j

@xl
D . Og˛ˇ ı y‰/

@y‰˛

@xk

@y‰ˇ

@xl
C
@y‰n

@xk

@y‰n

@xl
;

where the Greek indices range from 0 to n� 1 (but not n). In particular,

det y‰� Og D .det dy‰/2 det. Og ı y‰/: (13)
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We need to understand the structure of @kn.det dy‰/jxnD0 now. For k D 0, we have dy‰jxnD0 D Id.
Notice next that

dy‰ D .@0 y‰; : : : ; @n�1 y‰; @n y‰/; (14)

where each partial derivative is a vector. Since by (11), @2n y‰
i D�y� inn D 0 for xn D 0,

@n.det dy‰/jxnD0 D 0:

To analyze k D 2, we notice first that

@3n
y‰i D�@ny�

i
nn D�@n

�
ıin@n��

1
2
gil@l�

�
D�ıin�nnC � � � ;

where the dots represent a term involving lower-order @n-derivatives of �. Using this in (14), we get

@2n.det dy‰/jxnD0 D��nnjxnD0:

Reasoning as above, we see that

@jn.det dy‰/jxnD0 D�@jn�jxnD0C � � � ; (15)

where the dots represent terms involving normal derivatives of � (possibly differentiated tangentially) up
to order j � 1.

We will analyze the normal derivatives of det. Og ı y‰/ in (13) now. Since det Og D en� detg, we get

@n det. Og ı y‰/D @n.e.nC1/�ı
y‰ detg ı y‰/

D .nC 1/�n detgC @n detg D @n detg on @M: (16)

We used the fact that d‰D Id on @M and that @nd‰D 0 since d�D 0 on @M. Therefore, @jn det Og ı y‰D
@
j
n detg on xn D 0 for j D 0; 1.

For the highest-order derivatives, notice that @jn y‰ involves @j�1n � as its highest-order normal �-
derivative, as the arguments leading to (15) show. Differentiating (16), we therefore get

@jn det. Og ı y‰/D @jn.e
.nC1/�ıy‰ detg ı y‰/

D .nC 1/.@jn�/ detgC � � � on @M; (17)

where the dots have the same meaning as in (15).
Using (13) in combination with (15) and (17), we get

@jn.det y‰� Og/jxnD0 D .n� 1/.@jn�/ detgC � � � : (18)

To complete the proof of the lemma, we determine the normal derivatives of � on xnD 0 for j D 2; : : : .
We get first @2n.det y‰� Og/jxnD0 D .n� 1/�nnjxnD0, which needs to be equal to r2, and can be solved
for �nn. Then we can determine the tangential derivatives of the latter. After that, we can solve (17) with
j D 3 for �nnn, etc. To complete the proof, we use Borel’s lemma. �

Let g and Qg be two metrics satisfying (M1) with the two diffeomorphisms ‰ and z‰ respectively, as in
Lemma 2.3. Applying Lemma 2.4 to S D @M and p D x0, we can find a metric Og WD e�g with �D 0,
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@��D 0 on @M such that under the semigeodesic normal coordinates .x0; : : : ; xn/ for g we have

@jn det.y‰� Og/D @jn det.z‰� Qg/; j D 2; 3; : : : ;

on @M. Notice that .x0; : : : ; xn/ are also semigeodesic normal coordinates for Qg by (M1).
Now consider the metrics .y‰ ı z‰�1/� Og and Qg. These metrics have common semigeodesic normal

coordinates (see the argument following Lemma 2.3), which are .x0; : : : ; xn/. In these coordinates the
choice of Og yields

@jn det.z‰� ı .y‰ ı z‰�1/� Og/D @jn det.y‰� Og/D @jn det.z‰� Qg/:

Thus we may replace g by .y‰ ı z‰�1/� Og and change A, q accordingly, as in Lemma 2.1 and Lemma 2.2,
without affecting ƒg;A;q . We therefore can assume that g and Qg satisfy not only (M1), but also:

(M2) In the common semigeodesic normal coordinates .x0; xn/,

@jn detg.x0; 0/D @jn det Qg.x0; 0/; j D 2; 3; : : : :

Here we have identified the metrics with their coordinate representations under z‰.
Thirdly, we make modifications to the 1-form A. Again the modification does not change the gauge-

equivalence class of ƒg;A;q due to Lemma 2.2.

Lemma 2.5. Let .M; g/ be a Lorentzian manifold with boundary as above, let A be a smooth 1-form
and q be a smooth function on M. There exists a smooth function  with  j@M D 0 such that in the
semigeodesic normal coordinates .x0; xn/, B WD A� d satisfy

@jnBn.x
0; 0/D 0; j D 0; 1; 2; : : : : (19)

Proof. We can find a smooth function  with

 .x0; 0/D 0; @jC1n  .x0; 0/D @jnAn.x
0; 0/; j D 0; 1; 2; : : : :

Extend it in a suitable manner so that  2 C1.M/ with  j@M D 0. Then B DA�d satisfies (19). �

As a result we may further assume:

(M3) In the common semigeodesic normal coordinates .x0; xn/ of g and Qg,

@jnAn.x
0; 0/D @jn

zAn.x
0; 0/D 0; j D 0; 1; 2; : : : :

3. Boundary stability

We choose the semigeodesic coordinates .x0; xn/ near x0 so that x0 D 0, @M locally is given by xn D 0,
and the interior of M is given by xn > 0. Let �00 be a future-pointing timelike covector in T �x0@M at x0.
On Figure 1, the associated vector would look like v0 on the left, while the covector �00 would have the
opposite time direction, like the figure on the right. Let �.x0; � 0/ be a smooth cutoff function with small
enough support in U that is equal to 1 in a smaller conic timelike neighborhood of .x0; �00/. Assume also
that � is homogeneous in � 0 of order 0.
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For
f .x0/D ei�x

0��0�.x0; � 0/; (20)

and for every N > 0, we would like to construct a geometric optics approximation of the outgoing
solution u of (3) near x0 in M of the form

uN .x/ WD e
i��.x;�0/

NX
jD0

1

�j
aj .x; �

0/: (21)

The eikonal and the transport equations below are based on the identity

e�i��Pei�� D��2gjk.@j�/.@k�/C i��g�C 2i�gjk@j�.@k � iAk/CP:

In M near x0, the phase function �.x; � 0/ solves the eikonal equation, which in the semigeodesic
coordinates takes the form

g˛ˇ@˛� @ˇ�C .@n�/
2
D 0; �jxnD0 D x

0
� � 0: (22)

With the extra condition @��j@M < 0, (22) is locally uniquely solvable. Moreover, (22) implies

@n�.x
0; 0/D �n.x

0; � 0/ > 0 for any .x0; � 0/ 2 U ; (23)

where

�n.x
0; � 0/ WD

p
�g˛ˇ .x0; 0/�˛�ˇ : (24)

Notice that the choice of the sign of �n makes � a lightlike future-pointing covector, pointing into M. In
Figure 1, the associated vector v D g�1� looks like vint on the left.

We recall briefly the method of characteristics for solving the eikonal equation. We first determine
@� on xn D 0 to get (23) or the same equation with a negative square root. We choose one of them,
and in this case our choice is determined by the requirement that @� points into M; see Figure 1. Let
now .qx0;�0.s/; px0;�0.s// be the null bicharacteristic with qx0;�0.0/D x0, px0;�0.0/D .� 0; �n/. We think of
.x0; s/ as local coordinates and set �.x0; s/D x0 � � 0. More precisely, � is uniquely determined locally by
the requirement to be constant along the null bicharacteristics qx0;�0 . Moreover,

p.s/Drx�.q.s/; �
0/: (25)

Since by the Hamilton equations, Pqi .s/Dgijpj .s/, we get in particular that gij @j�@i is just the derivative
@=@s along the null bicharacteristic.

In M near x0, the amplitudes a0 and aj , j D 1; 2; : : : , solve the following transport equations:

Ta0 D0; a0jxnD0 D �; (26)

iTaj D�Paj�1; aj jxnD0 D 0; j � 1: (27)

where the operator T is defined as

T WD 2gjk@j�.@k � iAk/C�g�: (28)
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We prefer to express the bicharacteristics through the geodesics

�.s/ WD .qx0;�0.s/; px0;�0.s//D .
x0;�0.s/; g P
x0;�0.s//:

Then along the bicharacteristics, we have

T D 2@s � 2ihA;p.s/iC�g� D 2�@s��1; (29)

with the integrating factor � given by

�.�.s//D exp
�
�
1

2

Z s

0

.�g�/.
x0;�0.�// d�
�

exp
�
i

Z s

0

˝
A.
x0;�0.�//; P
x0;�0.�/

˛
d�
�
: (30)

The amplitudes aj , j D 0; 1; : : : , are supported in a neighborhood of the characteristics issued from
x0 2 @M in the codirection �.x0/. As a result, on some neighborhood of x0, we have uN solves
PuN DO.�

�N /, uj@M D f .

Theorem 3.1. ƒloc
g;A;q is an elliptic ‰DO of order 1 in U .

Proof. Given f 2 E 0.U /, not related to (20), with a wave-front set as in the theorem, we are looking for
an outgoing solution u of PuD 0 near x0, uD f on U , of the form

u.x/D .2�/�n
Z
ei�.x;�

0/a.x; � 0/ Of .� 0/ d� 0: (31)

The phase � solves the eikonal equation (22) and therefore coincides with � there. We chose the solution
which guarantees a locally outgoing u, which corresponds to the positive square root in (24). We are
looking for an amplitude a of the form a�

P1
jD0 aj .x; �

0/, where aj is homogeneous in the � 0-variable of
degree �j . The standard geometric optics construction leads to the transport equations (26), (27). Using
the standard Borel lemma argument, we construct a convergent series for a. Then u is the microlocal
solution (up to a microlocally smoothing operator applied to f ) that we used to define ƒloc

g;A;q . Then
ƒloc
g;A;qf D @u=@�jU . Since � D x0 � � 0 on U , we get that ƒloc

g;A;q is a ‰DO with symbol

�i�n.x
0; � 0/� @najxnD0:

In particular, for the principal symbol we get

�p.ƒ
loc
g;A;q/.x

0; � 0/D�i�n D�i
p
�g˛ˇ .x0/�˛�ˇ : (32)

We proceed in the same way if .x0; � 0/ is past pointing.
It remains to show that if we use another locally outgoing solution Qu, the resulting zƒloc

g;A;q would differ
by a smoothing operator. This follows by considering v WD u� Qu which is a locally outgoing solution
with smooth boundary data, which therefore must be smooth. We omit the details. �

We prove a stable determination result on the boundary next. Let .g; A; q/ and . Qg; zA; Qq/ be two triples.
Define

ı D


ƒloc

g;A;q �ƒ
loc
Qg; zA; Qq




H1.U /!L2.U /

; (33)
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where, as above, ƒloc
g;A;q and ƒloc

Qg; zA; Qq
are the local DN maps associated with .g; A; q/ and . Qg; zA; Qq/ respec-

tively microlocally restricted to a fixed conic neighborhood U of a timelike future-pointing .x0; �00/2T �U
with x0 2 U � @M. As above, we assume that �00 is future pointing and timelike for both g and Qg,
and that U is small enough so that it is included in the future timelike cone on T �U for both metrics.
Therefore, in the theorem below, we need to know the DN map microlocally only near a fixed timelike
covector on T �@M.

Theorem 3.2. Let .g; A; q/ and . Qg; zA; Qq/ be replaced by their gauge equivalent triples satisfying (M1)–
(M3). Then for any � < 1 and m� 0, and some open neighborhood U0 b U of x0,

(1) supx2U 0;j
 j�m j@

 .g� Qg/j � Cı

�

2m ;

(2) supx2U 0;j
 j�m j@

 .A� zA/j � Cı

�

2mC1 ;

(3) supx2U 0;j
 j�m j@

 .q� Qq/j � Cı

�

2mC2

are valid whenever g; Qg;A; zA; q; Qq are bounded in a certain C k norm in the semigeodesic normal
coordinates near x0 with a constant C > 0 depending on that bound with k D k.m;�/.

Proof. We adapt the proofs in [Montalto 2014; Stefanov and Uhlmann 2005b] in the Riemannian setting.
Let �0 be a small conic neighborhood of �00. We can assume that �D 1 on U0��0. Let f be as in (20).
We restrict .x0; � 0/ to U0 ��0 below. In addition, we normalize � 0 to have unit Euclidean length (in that
coordinate system). Since @� D �@n, the formal Dirichlet-to-Neumann map in the boundary normal
coordinates .x0; xn/ is given by

ƒloc
g;A;qf .x

0/D�ei�x
0��0
�
i�@n�.x

0; 0; � 0/C

NX
jD0

1

�j
.@n� iAn/aj .x

0; 0; �/

�
CO.��N�1/: (34)

The expression for ƒ
Qg; zA; Qq

f is similar, with � and aj replaced by Q� and Qaj , respectively.
The representation (34) could be derived from (21) but since u there is an approximate solution only,

and we defined ƒloc
g;A;q microlocally, we need to go back to its definition. To justify (34), notice that by

[Taylor 1981, Chapter VIII.7], on the set �D 1, we have e�i�x
0��0ƒloc

g;A;qf is equal to the full symbol of
ƒloc
g;A;q with �D j�j and � in (34) unit.
In the following, C denotes various constants depending only on M, � in (20), on the choice of k� 1

and on the a priori bounds of the coefficients of P in C k. Solving for @n� (resp. @n Q�) in (34) and taking
the difference we obtain

@n� � @n Q� D
1

i�
.ƒloc

g;A;qf �ƒ
loc
Qg; zA; Qq

f /C
1

i�

NX
jD0

1

�j

�
.@naj � @n Qaj /� i.Anaj � zAn Qaj /

�
CO.��N�1/

in L2.U0/. Integrating in U0 yields

k@n� � @n Q�kL2.U0/ �
C

�
ıkf kH1.U0/

C
C

�
: (35)
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The choice of f in (20) indicates that kf kH1.U0/
� C�. Thus, taking the limit �!1 yields

k�n� Q�nkL2.U0/ D k@n� � @n
Q�kL2.U0/ � Cı: (36)

From relation (24) we have

.g˛ˇ � Qg˛ˇ /�˛�ˇ

L2.U0/ D k�2n � Q�2nkL2.U0/ D 

.@n�/2� .@n Q�/2

L2.U0/ � Cı: (37)

We use the following argument here and in several places below: a quadratic form h˛ˇ �˛�ˇ is uniquely
determined for � 0 in any fixed-in-advance open set � on the unit sphere. In fact, one can choose n.n�1/=2
vectors � 0 in � and then the recovery is done by inverting an isomorphism on R

n.n�1/
2 , and is therefore

stable; see [Dairbekov et al. 2007, Lemma 3.3]. Therefore, (37) implies kg � QgkL2.U0/ � Cı. By
interpolation estimates in Sobolev space and Sobolev embedding theorems, we have for any m� 0 and
� < 1 that

kg� QgkCm.U 0/ � Cı
� (38)

provided k� 1 is sufficiently large.
Second, we show that the first-order normal derivatives of g and the 1-form can be stably determined

on the boundary. From (34) we have

.@n� i zAn/ Qa0� .@n� iAn/a0 D e
�i�x0��0.ƒg;A;qf �ƒ Qg; zA; Qqf /

C i�.@n� � @n Q�/C

NX
jD1

1

�j
.@naj � @n Qaj /CO

�
1

�NC1

�
in L2.U0/:

Estimate as in (35) to obtain

.@n� iAn/a0� .@n� i zAn/ Qa0

L2.U0/ � C�ıC�ıC 1

�

�
;

which holds for all � > 0. In particular, we may choose �D ı�
1
2 to minimize the right-hand side; then

.@n� iAn/a0� .@n� i zAn/ Qa0

L2.U0/ � Cı 12 : (39)

In order to estimate the difference of first-order normal derivatives of the metrics, we consider the
transport equation in (26). Since �� 1 for x 2 U0, it follows from the boundary condition in (26) that
@˛a0 D @˛�D 0 for ˛ D 0; : : : ; n� 1. Moreover, gnj D ınj in the semigeodesic coordinates; thus the
transport equation in (26) becomes

2�n.@n� iAn/a0� 2iA
˛�˛C

1
p
� detg

@n.
p
� detg@n�/CQ.g/D 0; (40)

where, as before, Greek indices range from 0 to n� 1 (but not n). Here A˛ WD g˛ˇAˇ , and Q.g/ is a
linear combination of tangential derivatives of g, which is defined as follows:

Q.g/ WD
1

p
� detg

@˛.
p
� detgg˛ˇ /�ˇ ;
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where we have used that @ˇ� D �ˇ in U0, ˇ D 0; : : : ; n� 1. As a consequence of (38),

Q.g/�Q. Qg/DO.ı
1
2 /: (41)

Therefore, combining (39), (40) and (41) we obtain

1
p
� detg

@n.
p
� detg@n�/�

1p
� det Qg

@n.
p
� det Qg@n Q�/� 2i.A˛ � zA˛/�˛ DO.ı

1
2 /:

Notice that
1

p
� detg

@n.
p
� detg@n�/D

1

2 detg
@n detg@n�C @2n� D

�n

2 detg
@n detg�

1

2�n
@ng

˛ˇ �˛�ˇ

is an even function of � 0. Here in the computation, @n� is substituted by �n due to (23) and @2n� is
calculated by differentiating the eikonal equation (22). Separating the even and odd parts in � 0 we
conclude�

�n

2 detg
@n detg�

1

2�n
@ng

˛ˇ �˛�ˇ

�
�

�
Q�n

2 det Qg
@n det Qg�

1

2 Q�n
@n Qg

˛ˇ �˛�ˇ

�
DO.ı

1
2 /; (42)

.A˛ � zA˛/�˛ DO.ı
1
2 /: (43)

From the odd part (43), varying � 0 locally, we get

kA� zAkL2.U0/ � Cı
1
2 : (44)

To deal with the even part, notice (42) states that

�n

2 detg
@n detg�

1

2�n
@ng

˛ˇ �˛�ˇ

is stably determined of order O.ı
1
2 /. As �n is stably determined on U0, see (36), their product

�2n
2 detg

@n detg� 1
2
@ng

˛ˇ �˛�ˇ D�
1

2 detg
.@n detg/g˛ˇ �˛�ˇ �

1

2
@ng

˛ˇ �˛�ˇ

D�
1

2

1

detg
@n.detg �g˛ˇ /�˛�ˇ

is also stably determined. Since detg is known to be stable and away from zero, it follows that @nh˛ˇ

is stable where h˛ˇ WD .detg/g˛ˇ. Hence, the normal derivative of g D .det h/
1
1�nh is also stably

determined; that is,
k@ng� @n QgkL2.U0/ � Cı

1
2 : (45)

Using interpolation and Sobolev embedding theorems, we obtain from (45) and (44) that for any m� 0
and � < 1,

k@ng� @n QgkCm.U 0/CkA�
zAkCm.U 0/ � Cı

�
2 (46)

provided k� 1 is sufficiently large.
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Next we show that the second-order normal derivatives of g, the first-order normal derivatives of A,
and the values of q can be stably determined on the boundary. By (34) up to ��1 we obtain

.@n� iAn/a1� .@n� i zAn/ Qa1

L2.U0/ � C.�2ıC�ı 12 C��1/:
Choose �D ı�

1
4 to minimize the right-hand side. Then

.@n� iAn/a1� .@n� i zAn/ Qa1

L2.U0/ � Cı 14 : (47)

Consider the transport equation (27) for a1. In the semigeodesic coordinates this equation takes the form

2i�n.@n� iAn/a1 D�@
2
na0C qCO.ı

1
2 /; (48)

where O.ı
1
2 / represents the stably determined terms of order O.ı

1
2 /. (In fact, a1D 0 in these expressions

by the boundary condition in (27), but it is left here for the convenience of tracking the corresponding
terms.) From the estimates (36), (45) and (48) it follows that

.�@2na0C @
2
n Qa0/C .q� Qq/DO.ı

1
4 /: (49)

To obtain an expression of @2na0, we differentiate the transport equation in (26) and evaluate it on U0:

@2na0 D�
1

4 detg
@2n detg�

1

2�n
@3n�C

i

�n
g˛ˇ@nA˛�ˇ CO.ı

1
2 /

D�
1

4 detg
@2n detgC

1

4�2n
@2ng

˛ˇ �˛�ˇ C
i

�n
g˛ˇ@nA˛�ˇ CO.ı

1
2 /;

where the O.ı
1
2 / terms are estimated by (38) and (46) and we have used that @nAn.x0; 0/D 0 in (M3).

Inserting this into (49) and separating the even and odd parts in � 0 gives (notice that �n D
p
�g˛ˇ �˛�ˇ is

an even function of � 0):�
1

4 detg
@2n detg�

1

4 det Qg
@2n det Qg�

1

4�2n
@2ng

˛ˇ �˛�ˇ C
1

4 Q�2n
@2n Qg

˛ˇ �˛�ˇ

�
C .q� Qq/DO.ı

1
4 /; (50)

�
i

�n
g˛ˇ@nA˛�ˇ C

i

Q�n
Qg˛ˇ@n zA˛�ˇ DO.ı

1
4 /: (51)

To deal with (51), we multiply the two terms by �n and Q�n respectively. This is valid since �n is stably
determined in (36). By the argument following (37),

k@nA˛ � @n zA˛kL2.U0/ � Cı
1
2 :

To deal with (50), recall the following matrix identity which is valid for any invertible matrix S :

@ logjdetS j D tr.S�1@S/:

Taking S D g˛ˇ and applying @j�1n we see that

@jn log.� detg˛ˇ /D @j�1n .g˛ˇ@ng
˛ˇ /; j D 1; 2; : : : :
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For j D 2, it gives

g˛ˇ@
2
ng
˛ˇ
D @2n log.� detg˛ˇ /� @ng˛ˇ@ng

˛ˇ:

The right-hand side is stably determined by (M2) and (45); we thus get on U0 that

g˛ˇ@
2
ng
˛ˇ
� Qg˛ˇ@

2
n Qg
˛ˇ
DO.ı

1
2 /: (52)

On the other hand, remember that the two metrics g and Qg have been modified to satisfy (M2); thus
by (37)

1

4 detg
@2n detg� 1

4 det Qg
@2n det Qg D

�
1

4 detg
�

1

4 det Qg

�
@2n detg DO.ı/:

This together with (50) gives�
�
1

4�2n
@2ng

˛ˇ �˛�ˇ C
1

4 Q�2n
@2n Qg

˛ˇ �˛�ˇ

�
C .q� Qq/DO.ı

1
4 /: (53)

Again we multiply the terms without the tilde by �2n and those with it by Q�2n ; using (24) we have

.@2ng
˛ˇ
C 4qg˛ˇ � @2n Qg

˛ˇ
� 4 Qq Qg˛ˇ /�˛�ˇ DO.ı

1
4 /:

By the argument following (37),

.@2ng
˛ˇ
C 4qg˛ˇ /� .@2n Qg

˛ˇ
C 4 Qq Qg˛ˇ /DO.ı

1
4 /:

Multiplying those terms without the tilde by g˛ˇ , those with the tilde by Qg˛ˇ , and then summing up in
˛; ˇ yields

.g˛ˇ@
2
ng
˛ˇ
C 4nq/� . Qg˛ˇ@

2
n Qg
˛ˇ
C 4n Qq/DO.ı

1
4 /:

From (52) we come to the conclusion that

kq� QqkL2.U0/ � Cı
1
4 :

Inserting this into (53) and using the argument following (37),

k@2ng
˛ˇ
� @2n Qg

˛ˇ
kL2.U0/ � Cı

1
4 :

Putting the estimates on g;A; q together, we have established

k@2ng� @
2
n QgkL2.U0/Ck@nA˛ � @n

zA˛kL2.U0/Ckq� QqkL2.U0/ � Cı
1
4 :

As before, interpolation and the Sobolev embedding theorem lead to

k@2ng� @
2
n QgkCm.U 0/Ck@nA˛ � @n

zA˛kCm.U 0/Ckq� QqkCm.U 0/ � Cı
�
4

for m > 0 and � < 1. Repeating this type of argument will establish the stability for higher-order
derivatives of g;A; q on U0. �
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∂M

v
γ0
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ξ′ ξ

η′

y
Γ0

U

V

Figure 2. The solution u.

4. Interior stability

The semiglobal microlocal solution. We construct the semiglobal microlocal solution u sketched in the
Introduction in the paragraph following (5) and used to defineƒgl

g;A;q . We recall the assumptions. We fix a
timelike .x0; �00/2T �@M n0 and a small conic neighborhood U of it. We choose a local orientation so that
.x0; �

00/ is future pointing. Then there is a unique lightlike .x0; �0/2T �M n0which projects orthogonally
to .x0; �00/. Let 
0 be the zero bicharacteristic issued from .x0; �

00/ extended until it hits T �@M again,
transversally, by assumption, at some .y0; �0/ with projection .y0; �00/ D L.x0; �00/ 2 T �@M. Let
V D L.U/ and denote by U and V the projections �.U/, �.V/ of U and V onto the base, i.e., their
“x-parts”. Denote by � the union of all zero bicharacteristics issued “from U”, i.e., from all future-
pointing .x; �/ with x 2 @M which have projections on the boundary in U . Let �0 WD �.�/�M be the
projection of � onto the base; see Figure 2. We assume below, for convenience, that .M; g/ is embedded
in a slightly larger manifold.

Next proposition says that the microlocal solution u used in the Introduction to define ƒgl
g;A;q is well

defined.

Proposition 4.1. If U is small enough, then for every f 2 E 0.@M/ with WF.f / 2 U there exists a
distribution u defined in a neighborhood of �0 so that Pu2C1.�0/, ujU �f 2C1.U / and ujV 2C1.
Moreover, u is unique up to a smooth function in �0.

Proof. We are looking for a solution uinc of the form (31) with f having a wave-front set in U . Past-
pointing codirections can be handled the same way. The solution is the same as in Theorem 3.1 but we
are now trying to extend it as far as possible away from @M. We know that microlocally, uinc is supported
in a small neighborhood of the null bicharacteristic (projecting to a null geodesic on M ) issued from
.x0; �

0/ with �0 future pointing with a projection �00 on the boundary; i.e., �0 D .�00; �n.x0; �0//, where
�n is given by (24). See Figure 1. This follows from the general propagation of singularities theory but in
this particular case it can be derived from the fact that T in (28) has its principal part a vector field along
such null geodesics, and WF.uinc/ can be analyzed directly with the aid of (31).

Such a solution is guaranteed to exist only near some neighborhood of x0 because the eikonal equation
may not be globally solvable. On the other hand, the solution is still a global FIO applied to the boundary
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data f . Indeed, it can also be viewed as a superposition of a finite number of local FIOs, each one
having a representation of the kind (31). We construct uinc first near @M ; call it u1. Then we restrict
it to a timelike hypersurface S1 intersecting the null geodesic �.
0/ transversely and we chose S1 so
that the geometric optics construction is still valid along �.
0/ until it hits S1, and a bit beyond it. We
take the boundary data at S1, and solve a new similar problem, by taking the outgoing solution (the
future-pointing cone on S1 is the one determined by WF.u1jS1/), etc. By compactness arguments, we can
cover the whole null geodesic (the projection of 
0 to the base) until it hits @M again. This construction
provides solutions (modulo smooth terms) u1; : : : ; uk , each one defined in an open set �k , where

S
k �k

covers �0. Without loss of generality we may assume that the only intersections of the �k’s happen
among consecutive ones. Then on Sk , near the intersection with �.
0/, we have two microlocal solutions:
uk and ukC1. They have the same traces on Sk modulo a smooth function.

Next, in their common domain of definition, uk and ukC1 coincide up to a smooth function. Indeed, the
difference v has smooth trace on Sk and it is outgoing. By the last paragraph of the proof of Theorem 3.1,
v is smooth near Sk .

We choose a partition of unity 1D
P
k �k near �0 subordinate to that cover and set uinc D

P
k �kuk .

The latter is a microlocal solution (i.e., a solution up to smooth errors) in a neighborhood of �0. Indeed,
this is not completely obvious only when supp�k and supp�kC1 intersect but then ukC1 D uk modulo
C1 and therefore, near such a point, uincD �kukC�kC1ukC1D uk modulo C1, which is a microlocal
solution.

We use this argument several times below. This construction is similar to that in [Duistermaat 1996],
where it is shown that the Cauchy problem on a spacelike surface gives rise to a global FIO. As a result,
one gets a microlocal solution uinc in a neighborhood of �0 (not satisfying the needed boundary conditions
on V yet) as a composition of a finite number of FIOs.

We need to reflect uinc at V to satisfy the zero boundary condition. We write the solution u as the sum
of the incident wave uinc and the reflected wave uref: uD uincCuref. The construction of uref is similar —
we start with boundary data �uincjV on V and singularities which propagate into M into the future (the
past-future orientation near V is determined by declaring the singularities of uinc on V coming from the
past). We refer to (57) below and the construction following it for more details. The solution uref needs
to be extended to a small neighborhood of the geodesics near 
0 reflected at V until they leave �0. By
choosing U small enough, we guarantee that the reflected geodesics do not hit @M again.

Finally, we prove the uniqueness statement. If u1 and u2 are two such solutions, then v WD u1�u2 is
smooth on bothU and V . A priori, v can be only singular along bicharacteristics close to 
0 or its reflection
from V . By the argument we used above, v must be smooth in �0 with the possible exception of some neigh-
borhood of V in M, where uref might be nontrivial. Near V , we know v has smooth Cauchy data. An (eas-
ier) adaptation of the same argument shows that v has to be smooth near V as well. Indeed, otherwise, for v,
extended as zero outsideM, we would get that Pv has singularities conormal to V only, and the microlocal
propagation of singularities theorem then would yield that v has no singularities near 
0 or its reflection. �

Having constructed u, then we define ƒgl
g;A;q as in (4) but with the so-constructed u. The uniqueness

part of the proposition shows that ƒgl
g;A;q is defined up to a smoothing operator.
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ƒ
gl
g;A;q

recovers the lens relation L in a stable way.

Theorem 4.2. Under the assumptions in the Introduction, ƒgl
g;A;q is an elliptic FIO of order 1 associated

with the (canonical) graph of L.

Note that we excluded lightlike covectors in WF.f /. This excludes bicharacteristics (geodesics) tangent
to @M carrying singularities of u. This is where the two Lagrangians (one of them being the diagonal)
intersect. We also restricted u to the first reflection shortly after that. Without that, the canonical relations
would contain powers of L. The theorem is a direct consequence of the geometric optics construction and
propagation of singularities results for the wave equation and can be considered as essentially known.

As a consequence of Theorem 4.2, for every s, we have ƒloc
g;A;q maps H s.U / into H s�1.U / and

ƒ
gl
g;A;q maps H s.U / into H s�1.V /. Fixing s D 1, one may conclude that the natural norms for those

two operators are the H 1!L2 ones. While both operators are bounded in those norms, their dependence
on the metric g is not necessarily continuous if we stay in those norms. For ƒloc

g;A;q , we will see that the
principal symbol (and the whole one, in fact) depends continuously on g; and in fact the whole operator
does, as well. On the other hand, while the canonical relation of ƒgl

g;A;q depends continuously on g, the
operator itself does not. This observation was used in [Bao and Zhang 2014]; see also [Stefanov et al.
2016] for a discussion.

Proof of Theorem 4.2. We will analyze first the map F W f 7! uincjS , where S is a timelike surface as in
the proof of Proposition 4.1, and (31) for uD uinc is valid all the way to it, and a bit beyond it.

Change the coordinates x so that S D fxnD1g. This can be done if S is close enough to @M. Then
(31) with x D .x0; 1/ is a local representation of the FIO F and its canonical relation is given by (see,
e.g., [Taylor 1981, Chapter VIII])

.r�0�jxnD1; �
0/ 7! .x0;rx0�jxnD1/:

By (25), with the momentum p projected to T �fxnD1g, we get that this is the lens relation L1 from
U � T �@M to T �S (instead of the image being on T �@M again).

We can repeat this finitely many times by choosing S1, S2, etc., to get a composition of finitely many
canonical relations, starting with L1; then L2 maps data on T �S1 to T �S2, etc. That composition of, say
m of them, gives the lens relation from @M to Sm. In the final step, we need to take the normal derivative.
This shows that the map f 7! @�u

incjV is an FIO of the claimed type.
To prove this for ƒgl

g;A;q , we need to add @�urefjV . The latter has an oscillatory representation of
the same kind with a different phase; see (57). Its normal derivative on V is the same however and the
principal symbol is the same as that of @�urefjV ; see (58) below. �

To prove stable recovery of the lens relation L, we recall that the H 1! L2 norm of the DN maps is
not suitable for measuring how close the canonical relations L and zL of the FIOs ƒgl

g;A;q and ƒgl
Qg; zA; Qq

are.
Instead, we formulate stability based on measuring propagation of singularities. Given a properly supported
‰DO R on @M near .y0; �0/, with a principal symbol r0, we consider ƒ�Rƒ, where ƒDƒgl

g;A;q . By
the Egorov theorem, this is actually a ‰DO near .x0; �0/ with a principal symbol .r0 ıL/�0, where �0
is the principal symbol of ƒƒ� which depends on g. In this way, we do not recover L directly; instead
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we recover functions of L for various choices of r0, multiplied by �0. Choosing a finite number of R’s
satisfying some nondegeneracy assumption, we can apply the implicit function theorem to recover L
locally. In fact, we choose below the differential operators

fRj g D f1; y
0; : : : ; yn�1; @=@y0; : : : ; @=@yn�1g: (54)

Theorem 4.3. Let .y0; : : : ; yn�1/ be local coordinates on @M near y0. Let

n�1X
jD0

kƒ�yjƒ� zƒ�yj zƒkH2.U /!L2.U / � ı; kƒ
�ƒ� zƒ� zƒkH2.U /!L2.U / � ı;

n�1X
jD0





ƒ� @

@yj
ƒ� zƒ�

@

@yj
zƒ






H3.U /!L2.U /

� ı;

(55)

with ƒ WD ƒ
gl
g;A;q , zƒ WD zƒgl

Qg; zA; Qq
. Assume that .g; A; q/ and . Qg; zA; Qq/ are "-close to a fixed triple

.g0; A0; q0/ in a certain C k norm in the semigeodesic normal coordinates near x0 and near y0. Then
there exist k > 0 and � 2 .0; 1/ so that

j.L� zL/.x; � 0/j � Cı�
p
�g.� 0; � 0/ for all .x; � 0/ 2 U ; (56)

if U and " > 0 are small enough.

A few remarks:

(a) The square-root term is just a homogeneity factor.

(b) The cotangent bundle T �@M is not a linear space; therefore the difference L� zL makes sense in
fixed coordinates only.

(c) The norms in (55) are the natural one since the operators we subtract there are ‰DOs of orders 2
and 3, respectively.

(d) The norms in (55) are equivalent to studying the quadratic forms .ƒf;Rjƒf /� .zƒf;Rj zƒf /.

(e) One could reduce the number of the Rj ’s to 2n� 2; in fact, R0 D 1 in (55) is not needed, as it
follows from Remark 4.8, since we can recover �0=�n and use the fact �D .�0; �n/ is a null covector.

We prove Theorem 4.3 at the end of this section.

Stable recovery of the light ray transforms of A and q. Let, as in the Introduction, �0 2 Tx0M n 0 be
the future-pointing lightlike covector whose projection on T �@M n0 is the timelike covector �00 as in the
definition of the semiglobal DN map. Let 
0 WD 
x0;�00 be the lightlike geodesic issued from .x0; �

0/

which intersects @M at another point y0. Let V be a neighborhood of y0 containing all endpoints of
future-pointing geodesics issued from U . Choose and fix any parametrization of the lightlike geodesics
close to 
0 by normalizing � 0. This defines a hypersurface U0 in U . The theorem below holds if U is a
small enough neighborhood of .x0; �00/, and therefore U0 is small enough, as well. Then L1 and L0 are
well defined on U0.
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Theorem 4.4. Fix a Lorentzian metric g and .x0; �0/ satisfying the assumptions above. Let .A; q/ and
. zA; Qq/ be two pairs of magnetic and electric potentials. Define ı WD kƒgl

g;A;q �ƒ
gl
g; zA; Qq
kH1.U /!L2.V /.

Then:

(a) For any �<1 andm� 0, the following estimates are valid for some integerN whenever g;A; zA; q; Qq
are bounded in a certain C k norm:

kL1.A� zA/� 2�N kCm.U0/ � Cı
�:

(b) Under the a priori condition kA� zAkC1.M/ � ı1 for some ı1 > 0, for any 0 < � < �0 and m� 0,
the following estimate is valid whenever g;A; zA; q; Qq are bounded in a certain C k norm:

kL0.q� Qq/kCm.U0/ � C.ı
�
C ı

�
1 /:

If there are no conjugate points along 
0, the proof can be done using a geometric optics construction
of the kind (21) but with a different phase in (21) all the way along that geodesic and taking the normal
derivative in V . Since we do not want to assume there are no conjugate points along 
0, we will proceed
in a somewhat different way.

The fact that we cannot rule out the case N 6D 0 based on those arguments can be considered as a
manifestation of the Aharonov–Bohm effect. If zA and A are a priori close, then N D 0.

We start with a preparation for the proof of the theorem. Consider first the geometric optics parametrix of
the kind (31) of the outgoing solution u like in the previous section. We assume that the boundary condition
f has a wave-front set in the timelike cone on the boundary, and for simplicity, assume that it is in the future-
pointing one (� <0 in local coordinates for which @=@t is future pointing). Assume at this point that the con-
struction is valid in some neighborhood of the maximal 
0. We microlocalize all calculations below there.
All inverses likeD�1, etc., below are microlocal parametrices and the equalities between operators are mod-
ulo smoothing operators in the corresponding conic microlocal neighborhoods depending on the context.

The construction is the same as that in the previous section, but this time the outgoing solution u is
constructed near the bicharacteristic issued from .x0; �

00/ all the way to y0. Since the solution can reach the
other side of the boundary, we need to reflect it at the boundary to satisfy the zero boundary condition. We
write the solution u as the sum of the incident wave uinc and the reflected wave uref: uDuincCuref where

uinc.x/D .2�/�n
Z
ei�.x;�

0/.ainc
0 C a

inc
1 CR

inc/.x; � 0/ Of .� 0/ d� 0;

uref.x/D .2�/�n
Z
ei�

ref.x;�0/.aref
0 C a

ref
1 CR

ref/.x; � 0/ Of .� 0/ d� 0:
(57)

Here the phase function �ref solves the same eikonal equation as � does but satisfies the boundary condition
�refjV D �. It differs from � by the sign of its (exterior) normal derivative @�=@� D�@�ref=@� > 0 on V .
The amplitudes are of orders 0 and �1, respectively, and satisfy

T incainc
0 D 0; ainc

0 jU D �;

T refaref
0 D 0; aref

0 jV D�a
inc
0 jV ;

iT incainc
1 D�Pa

inc
0 ; ainc

1 jU D 0;

iT refaref
1 D�Pa

ref
0 ; aref

1 jV D�a
inc
1 jV ;
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where T inc and T ref are the transport operators defined in (28), related to the corresponding phase function,
and the remainder terms are of order �2. Replace A and zA with their gauge-equivalent field satisfying
(M3) on V . This does not change their light ray transforms. A direct computation, which can be justified
as (34), yields

ƒ
gl
g;A;qf D .2�/

�n

Z
ei�.x;�

0/
�
2i.@��/a

inc
0 C 2i.@��/a

inc
1 C @�.a

inc
0 C a

ref
0 /C a�1

�
Of .� 0/ d� 0; (58)

where a�1 is of order �1 and � and the amplitudes are restricted to x 2 V .
The expression (58) allows us to factorizeƒgl

g;A;q asƒgl
g;A;qD2N0D modulo FIOs of order 0 associated

with the same canonical relation, where Df is the trace of uinc on V (a “Dirichlet-to-Dirichlet map”)
and N0 is the DN map ƒloc

g;0;0 but localized in V . Note that replacing A and q in N0 by zeros or not
contributes to lower-order error terms. Let D0 be the operator D related to A D 0, q D 0. Let N�10
and D�10 be microlocal parametrices of those operators which are actually parametrices of the local
Neumann-to-Dirichlet map and the incoming Dirichlet-to-Dirichlet one from V to U . Then

D�10 N�10 ƒ
gl
g;A;q D 2D

�1
0 D mod S�1 (59)

is a ‰DO of order 0.
In the next lemma, we do not assume that the geometric optics construction is valid along the whole 
0.

Lemma 4.5. The operator D�10 N�10 ƒ
gl
g;A;q is a ‰DO of order 0 in U with principal symbol

2 expfiL1A.
x0;�0/g; (60)

where 
x0;�0 is the future-pointing lightlike geodesic issued from x0 in direction � with projection � 0.

Proof. By (59), we need to find the principal symbol of D�10 D.
The transport equation for ainc

0 is�
2gjk.@j�/.@k � iAk/C�g�

�
ainc
0 D 0; ainc

0 jU D 1:

As explained right after (25), gjk.@j�/@k is the tangent vector field along the null geodesic 
x0;�0 .
Therefore, with �.s/ WD .
x0;�0.s/; g P
x0;�0.s//, as before, on the set �D1we get ainc

0 D�; see (30). That is,

ainc
0 .�.s//D exp

�
�
1

2

Z s

0

.�g�/.�.�// d�
�

exp
�
i

Z s

0

Ak ı 
x0;�0.�/ P

k
x0;�0.�/ d�

�
: (61)

Take s D s.x; �/ so that 
x0;�0.s/ 2 V to get

.ainc
0 ıL/.x

0; � 0/D exp
˚
�
1
2
L.�g�/.x0; � 0/C iL1A.x0; � 0/

	
;

where we use the coordinates .x0; � 0/ to parametrize the lightlike geodesics locally, and the definition of
L.�g�/ is clear from (61).

To construct a representation for D�10 , note first that when AD 0, the term involving L1A is missing
above. We look for a parametrix of the incoming solution of �guD 0 with boundary data uD h on V
with WF.h/� V of the form

u.x/D .2�/�n
Z
ei�.x;�

0/b.x; � 0/ Of .� 0/ d� 0; (62)
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where � is the same phase as in the first equation in (57) and f , not related to (20), depends on h as
below. The amplitude b solves the transport equation along the same bicharacteristics (with different
coefficients since AD 0, q D 0) with the initial condition

bjV D a
inc
jV ;

where ainc is the full amplitude in the first equation in (57). Restricted to V , the map f ! ujV is just Df .
Then to satisfy uD h on V , we need to solve Df D h, i.e., to take f DD�1h microlocally.

To illustrate the argument below better, suppose that we are solving the ODE

y0C ay D 0; y.0/D 1;

from t D 0 to t D 1, where aD a.t/. Then we solve

y01C a1y1 D 0; y1.1/D y.1/;

where a1 D a1.t/. A direct calculation yields

y.t/D exp
�
�

Z t

0

a.s/ ds
�
; y1.t/D exp

�
�

Z t

1

a1.s/ ds
�
y.1/:

In particular,

y1.0/D exp
�
�

Z 1

0

.a1.s/� a.s// ds
�
:

We apply those argument to the transport equation to get

bjU D expfiL1A.
x0;�0/g:

Then

D�10 Df D .2�/�n
Z
ex
0��0 expfiL1A.
x0;�0/g Of .�

0/ d� 0:

This proves the lemma under the assumption that the geometric optics construction is valid in a neigh-
borhood of 
0.

To prove the theorem in the general case, we use the partition argument we used in Proposition 4.1.
Let S1; : : : ; Sk be small timelike surfaces intersecting 
0 in increasing order from U to V so that the
geometric optics construction is valid in a neighborhood of each segment of 
0 cut by two consecutive
surfaces of the sequence fU; S1; : : : ; Sk; V g. This determines Dirichlet-to-Dirichlet maps D1 from U

to S1, then D2, from S1 to S2, etc., until DkC1 from Sk to V . Then D DDkC1Dk � � �D1. Similarly,
D0 DD0;kC1D0;k � � �D0;1. Then (59) is still valid and takes the form

D�10 N�10 ƒ
gl
g;A;q D 2D

�1
0;1 � � �D

�1
0;kD

�1
0;kC1DkC1Dk � � �D1 mod S�1:

By the first part of the proof, D�1
0;kC1

DkC1 is a ‰DO on V with principal symbol expfiL.kC1/1 Ag, where
L
.kC1/
1 is the light ray transform L1 restricted to geodesics between Sk and V . Then we apply Egorov’s

theorem, see [Hörmander 1985b, Theorem 25.2.5], to conclude that D�1
0;k
.D�1

0;kC1
DkC1/Dk is a ‰DO

with a principal symbol that of D�1
0;kC1

DkC1, pulled back by LkC1, the canonical relation between Sk
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and V , multiplied by the principal symbol of D�1
0;k
Dk . The result is then (60) without the factor of 2 with

the integration between Sk (through SkC1) to V . Repeating this argument several times, we complete
the proof of the lemma. �

Stability of the light ray transform of the magnetic field.

Proof of Theorem 4.4(a). We have

D�10 N�10 .ƒ
gl
g;A;q �ƒ

gl
g; zA; Qq

/



H1.U /

� C


ƒgl

g;A;q �ƒ
gl
g; zA; Qq




H1.U /!L2.V /

D Cı: (63)

Set R WDD�10 N�10 .ƒ
gl
g;A;q �ƒ

gl
g; zA; Qq

/. By Lemma 4.5, R is a‰DO in U of order 0 with principal symbol

r0.x
0; � 0/D 2 expfiL1. zA�A/.
x0;�0/g;

and we have kRkH1.V / � Cı, by (63). We need to derive that r0 is “small” in U , as well. We essentially
did that in the proof of Theorem 3.2. Choose f as in (20). By [Taylor 1981, Chapter VIII.7], on the set
�D 1, we know e�i�x

0��0Rf is equal to the full symbol of ƒloc
g;A;q with �D j�j and � in (34) bounded,

say, unit. Therefore,
r0.x

0; � 0/D e�i�x
0��0Rf CO.1=�/ (64)

in C k for every k. Since kf kL2 D C and kf kH1 � �, (63) yields

kr0. � ; �
0/kH1.U / � C�ıCC=�;

uniformly for � in some neighborhood of �00. With a little more effort one can remove � from C�ı but
this is not needed. Take �D ı�

1
2 to get

expfiL1. zA�A/.
x0;�0/g




H1.U 0/ � Cı

1
2 :

Using interpolation estimates, we can replace the H 1 norm by any other one at the expense of lowering
the exponent on the right from 1

2
to another positive one, if k in Theorem 4.4 is large enough. Since

jeiz � 1j< " implies jz� 2�N j< C" for some integer N , this proves part (a) of the theorem. �

Stability of the light ray transform of the potential.

Proof of Theorem 4.4(b). First, we will reduce the problem to the case zAD A. For ƒgl
g; zA; Qq

�ƒ
gl
g;A; Qq

,
we get a representation as in (58) with a principal symbol with seminorms O.ı�

0

1 /, since we can use
interpolation estimates to estimate the higher derivatives of zA�A. Apply a parametrix .ƒgl

g;A; Qq
/�1 to that

difference to get a ‰DO Q of order 0 microlocally supported in U . If the geometric optics construction
is valid all the way from U to V , we get as in the proof of (a) that Qf DO.ı�

0

1 /CO.1=�/ in H 1. This
implies the same estimate for



.ƒgl
g; zA; Qq

�ƒ
gl
g;A; Qq

/f



L2

. In the general case, we can prove the same
estimate as in the proof of (a). We will use this later and for now, we assume zAD A.

Lemma 4.6. The operator D�1N�10 .ƒ
gl
g;A; Qq

�ƒ
gl
g;A;q/ is a ‰DO of order �1 on U with principal

symbol
2ŒL0. Qq� q/� ı 
x0;�0 ; (65)

where 
x0;�0 is the future-pointing lightlike geodesic issued from x0 in direction � with projection � 0.
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Proof. Assume first that the geometric optics construction is valid in a neighborhood of the whole 
0. In
the amplitude

�2i.@��/a
inc
0 � 2i.@��/a

inc
1 C @�.a

inc
0 C a

ref
0 /C a�1

in (58), the terms �2i.@��/ainc
0 and @�.ainc

0 C a
ref
0 / do not depend on q; see (61). The other two terms

depend on q but they are of different orders. Therefore,

.ƒ
gl
g;A; Qq

�ƒ
gl
g;A;q/f D .2�/

�n

Z
ei�.x;�

0/
�
�2i.@��/. Qa

inc
1 � a

inc
1 /C .a�1� Qa�1/

�
Of .� 0/ d� 0jV : (66)

The order of the FIO above is zero. As in the previous proof, we can represent this as a composition of
2N0 with the operator zD�D (the difference of two such Dirichlet-to-Dirichlet maps):

ƒ
gl
g;A; Qq

�ƒ
gl
g;A;q D 2N0.

zD�D/ (67)

modulo FIOs of order �2. That operator zD�D is an FIO with a symbol, compare with (66),

�. zD�D/D�2i. Qainc
1 � a

inc
1 /C a�2; (68)

with a�2 of order �2.
To compute ainc

1 , recall the transport equation for ainc
1�

2gjk@j�.@k � iAk/C�g�
�
ainc
1 D iPa

inc
0 ; ainc

1 jU D 0; (69)

where
iPainc

0 D iPg;A;0a
inc
0 C iqa

inc
0 :

The first term on the right is independent of q. By (29), (30), with �.s/ as in (61), we get

ainc
1 .�.s//D

iainc
0

2

Z s

0

1

ainc
0

ŒPg;A;0a
inc
0 C qa

inc
0 � ı�.�/ d�

D
iainc
0

2

Z s

0

�
1

ainc
0

Pg;A;0a
inc
0 C q

�
ı�.�/ d�:

(70)

The potential q depends on x only, so q ı�.s/D q ı
.s/. In (70), only the last term depends on q and is
an integral of q over lightlike geodesics multiplied by an elliptic factor. Note that the integral, as well as
ainc
1 , are homogeneous of order �1 in � 0, as they should be.

We go back to (68) now. Using (70), the terms involving Pg;A;0 and P
g; zA;0

cancel below and we get

�. zD�D/ ıLD iainc
0 L0. Qq� q/C a�2; (71)

where a�2 is a symbol of order �2, different from the one above.
Similarly to (59), we have

D�1N�10 .ƒ
gl
g;A; Qq

�ƒ
gl
g;A;q/D 2D

�1. zD�D/ mod S�2: (72)

Therefore, we need to compute the principal symbol of 2D�1. zD �D/. Let R be a ‰DO in U with
principal symbol r�1 given by (65). Then, in U , DR is an FIO of the type (62) with x 2 V with the
same phase function and a principal amplitude b0 solving T b0 D 0, b0jU D r�1. By (29), the solution
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restricted to x 2 V is given by �r�1 ıL�1jV . Recall that �D ainc
0 . By (71), this is 2�. zD�D/ modulo

symbols of order �2. Therefore, DR D 2. zD �D/ modulo FIOs of order �2. This proves the lemma
under the assumption that the geometric optic construction is valid along the whole 
0.

In the general case, we repeat the arguments of Lemma 4.5. We represent D and zD as a composition
DDDkC1 � � �D1, and similarly for zD. We will do the first step. Consider 2.D2D1/�1. zD2 zD1�D2D1/.
We have

2.D2D1/
�1. zD2 zD1�D2D1/D 2D

�1
1 D�12

�
. zD2�D2/ zD1CD2. zD1�D1/

�
DD�11 R2 zD1CR1 DD

�1
1 R2D1CR1

modulo FIOs of order �2, where Rj D 2D�1j . zDj �Dj /, j D 1; 2. We apply Egorov’s theorem to
D�11 R2D1 to conclude that it is a ‰DO on U with a principal symbol equal to the sum of two terms as in
(65) with L0 taken over the geodesic segments between U and S1 first, and S1 and S2 second. The sum
is equal to (65) with L0 taken over the union of those segments. Repeating this argument to include D2,
etc., completes the proof of the lemma. �

We finish the proof of part (b) as we did that for part (a). Set

RDD�1N�10 .ƒ
gl
g;A; Qq

�ƒ
gl
g;A;q/:

It is a ‰DO of order �1 rather than of order 0 as in (a). The analog of (63) is still true. If, as above, r�1
is the principal symbol of R, then by Lemma 4.6,

r�1.x
0; � 0/D�2iŒL0. Qq� q/� ı 
x0;�0 D �e

�i�x0��0Rf CO.1=�/

with f as in (20); compare with (64). Then

kr�1. � ; �
0/kH1.U / � C�

2ıCC=�:

Choose �D ı�
1
3 to get kr�1. � ; � 0/kH1.U / � Cı

1
3 . This completes the proof of the theorem. �

Proof of the stable recovery of the lens relation.

Proof of Theorem 4.3. We use the notation above. Recall the remark preceding Theorem 4.3 above. The
operator ƒ�Pƒ is a ‰DO with a principal symbol .p0 ıL/�0. Take pD p0 D 1 as in (54) to recover �0
first. Knowing the latter, we recover pj ıL for j D 1; : : : ; 2n�1; see (54). That gives us .y; �0/ in (5) as
functions of .x; � 0/. Therefore, we reduce the stability problem to the following: show that the principal
symbol of a ‰DO A of order m is determined by A WHm!L2 in a stable way which is resolved by the
lemma below, see also (35), (36). Note that the lemma is a bit more general than what we need since
fPj g are simple multiplication and differentiation operators.

Lemma 4.7. Let Q be ‰DO in Rn with kernel supported in K �K, where K � Rn is compact. Let qm
be its principal symbol homogeneous of order m. Then

kqm. � ; �/kL2 � C j�j
m
kQkHm!L2

for all � 6D 0 with C > 0 depending on K only.
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Proof. Take f D eix���.x/, where � 2 C10 equals 1 in a neighborhood K. Then for x in a neighborhood
of K, we have Qf.x/D eix��.qm.x; �/C r.x; �// with r 2 Sm�1. We have

j�jm

C
� kf kHm � C j�jm

for j�j � 1. Therefore, for such �,

C1kQf kL2

kf kHm

�





qm. � ; �/j�jm






L2
�
C2

j�j
:

Take the limit j�j !1 along radial rays to complete the proof. �

We complete the proof of Theorem 4.3 with the aid of Lemma 4.7. We recover first the L2-norms with
respect to x of L.x; �/� zL.x; �/ uniformly in � (in fixed coordinates); we can choose �D 1 then. Using
standard interpolation estimates, we can estimate the L1 norm of L.x; �/� zL.x; �/ with � < 1 in (56),
using the a priori bounds on g and Qg in some C k, k� 1, which imply similar bounds on L and zL. �

Remark 4.8. The symbol �0 can be computed. Since we do not use this formula, we will sketch the
proof only. Using Green’s formula, as in the proof of [Stefanov and Uhlmann 1998, Proposition 2.1], we
can show that 2NV ŠD

�ƒ, where Š stands for equality modulo lower-order terms, and NV is N above
with the subscript V indicating that it acts microlocally in that set. The same proof implies that ƒ� is the
DN map associated with the incoming solution, i.e., the one which starts from V microlocally and hits U .
Therefore, ƒ� Š 2NUD

�1, where NU now acts in U . Those two identities and Egorov’s theorem imply
�0 D�4.�n ıL/�n, where �n is the function defined in (32).

5. Applications and examples

We start with a partial but still general enough case. We follow [Hörmander 1985a, §24.1]. Let M be
a Lorentzian manifolds with a timelike boundary @M. Assume that t is a real-valued smooth function
on M so that the level surfaces t D const. are compact and spacelike. For every a < b, the (compact)
“cylinder” Mab D fa � t � bg (assuming Œa; b� is in the range of t) has a boundary consisting of the
spacelike surfaces t�1.a/, t�1.b/ and @M \Mab which intersect transversely. This is a generalization
of Œ0; T ��� in the Riemannian case. By [Hörmander 1985a, Theorem 24.1.1], the following problem is
well posed:

PuD 0 in M; ujt<a D 0; uj@M D f

with f 2 H s.@M/, s � 1, f D 0 for t < a, with a unique solution u 2 H s.M/ vanishing for t < a.
Moreover, the map f 7! u is continuous. Then the Dirichlet-to-Neumann map ƒg;A;q defined as in (4),
is well defined.

Let x0 2 U0 b U � @M be as in Theorem 3.2. Let � be a properly supported ‰DO cutoff of order 0
localizing near some timelike covector over x0 2U0. Since there is a globally defined time function, there
are no periodic lightlike geodesics. Then �ƒg;A;q� can be taken as ƒloc

g;A;q and Theorem 3.2 applies. If
we know a priori that ƒg;A;q WH 1

.0/
.@M/! L2.@M/ is continuous, where the subscript .0/ indicates

functions vanishing for t D 0, then we can replaceƒloc
g;A;q byƒg;A;q in (33) and therefore, in Theorem 3.2.
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Figure 3. The DN map, with g Minkowski, on the lateral boundary of the cylinder
determines a potential and a magnetic field up to d� inside the cylinder but outside the
two characteristic cones.

Similarly, with suitable ‰DO cutoffs �1 and �2, we can take ƒgl
g;A;q D �1ƒg;A;q�2, under the

assumptions of Theorem 4.4. And again, if we know that ƒg;A;q WH 1
.0/
.@M/! L2.@M/ is continuous,

we can remove the cutoffs. The results with the cutoffs are actually stronger.
Some special subcases are discussed below. They recover and extend the uniqueness results in [Stefanov

1989; Ramm and Sjöstrand 1991; Ramm and Rakesh 1991; Waters 2014; Salazar 2013; Ben Aïcha 2015;
Bellassoued and Ben Aïcha 2017], and some of the stability results there. Using the results in this paper
with the support theorems about the light ray transform in [Stefanov 2017; RabieniaHaratbar 2017], we
can get new partial data results.

Example 5.1. Let q be a unknown potential but assume that the metric and the magnetic fields are
known. Restrict the DN map to Mab for some a < b. Then we can recover L0q in a stable way as in
Theorem 4.4 over all timelike geodesics intersecting the lateral boundary transversely at their endpoints.
If g is real-analytic, then we can apply the results in [Stefanov 2017] to recover q in the set covered by
those geodesics under an additional foliation condition. Note that in contrast, the results in [Eskin 2017]
require A and q to be analytic in time.

Example 5.2. In the example above, assume that g is Minkowski, and Mab D Œ0; T � �� for some
bounded smooth �� Rn. By Theorem 3.2, we can recover L1A and L0q over all lightlike geodesics
(lines) lz;� D f.t; x/D .s; zC s�/ W s 2Rg, .z; �/ 2Rn�Sn�1, not intersecting the top and the bottom of
the cylinder. By [Stefanov 2017], we can recover q in the set covered by those lines. By [RabieniaHaratbar
2017], we can recover A up to d�, � D 0 on Œ0; T �� @� in that set as well.

For example, if � is the ball B.0; 1/D fx W jxj< 1g, the DN map recovers uniquely q and A, up to a
gauge transform, in the cylinder Œ0; T ��B.0; 1/with the upward characteristic cone with base f0g�B.0; 1/
and the downward with base fT g �B.0; 1/ removed; see Figure 3. If T � 2, those two cones intersect;
otherwise they do not but the result holds in both cases. This is the possibly reachable region from
Œ0; T �� @�; thus the results are sharp since no information about the complement can be obtained by the
finite speed of propagation.
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This extends further the uniqueness part of the results in [Stefanov 1989; Ramm and Sjöstrand 1991;
Ramm and Rakesh 1991; Waters 2014; Salazar 2013; Ben Aïcha 2015; Bellassoued and Ben Aïcha 2017].
Using the stability estimate in [Begmatov 2001] about L0, and the logarithmic estimate for L1 in [Salazar
2014], we can use Theorem 4.4 to recover the results in [Salazar 2014]. One important improvement
however is that for uniqueness, we do not assume that A and q are known outside Œ0; T �, or that T D1
because the uniqueness results in [Stefanov 2017; RabieniaHaratbar 2017] do not require the function or
the vector field to be compactly supported in time.

Example 5.3. A partial-data case of Example 5.2 is the following. Let � � @� be relatively open, and
assume that @� is strictly convex. Assume that we know the DN map for f supported in Œ0; T ��� , and
we measure ƒf there, as well. Then we can recover q (for all n � 2) and A for n � 3, up to a gauge
transform, in the set covered by the lightlike lines hitting Œ0; T ��@� in Œ0; T ��� at their both endpoints.
When nD 2, the recovery of A up to a potential d� requires that if we know L1A for some lightlike lz;� ,
we also know it for lz;�� , see [RabieniaHaratbar 2017], and this is the reason we restricted n to n� 3.
Those local uniqueness results for the DN maps are new.

Example 5.4. In a recent work [Bellassoued and Ben Aïcha 2017], an inverse problem for the wave
operator

P WD @2t C a.t; x/@t ��C b.t; x/

with real-valued a, b is studied. The coefficient b causes absorption. We do not restrict A and q to be
real-valued, so we can take

AD
�
i

2
a.t; x/; 0; : : : ; 0

�
; q D�1

2
i@ta.t; x/C b.t; x/I

then P in (1) is the same as the one above. Then Theorem 4.4 proves unique recovery of A, q up to the
gauge transform A 7! A� d with  D 0 on Œ0; T �� @�. Since A is restricted to the class of covector
fields with spatial components zero, we must have  D  .t/. However, then  D 0 for x 2 @� implies
 � 0. Therefore, the logarithmic and the double logarithmic stability estimates in [Bellassoued and
Ben Aïcha 2017] for a and for b which are about the DN map can be obtained by Theorem 4.4 combined
with the stability estimates in [Begmatov 2001; Salazar 2014]. We can get new uniqueness results however
with partial data as in the previous examples. In the Riemannian case studied by Montalto [2014] we can
allow an absorption term as well to obtain, up to a gauge transform, stable recovery of a Riemannian
simple metric in a generic class, a magnetic field, a potential and an absorption term from the DN map.
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