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WELL-POSEDNESS AND SMOOTHING EFFECT FOR
GENERALIZED NONLINEAR SCHRÖDINGER EQUATIONS

PIERRE-YVES BIENAIMÉ AND ABDESSLAM BOULKHEMAIR

We improve the result obtained by one of the authors, Bienaimé (2014), and establish the well-posedness
of the Cauchy problem for some nonlinear equations of Schrödinger type in the usual Sobolev space
H s.Rn/ for s > n

2
C 2 instead of s > n

2
C 3. We also improve the smoothing effect of the solution and

obtain the optimal exponent.

1. Introduction

Consider the nonlinear Cauchy problem�
@tuD iL uCF.u;rxu; Nu;rx Nu/; t 2 R; x 2 Rn;

u.x; 0/D u0.x/ 2H s.Rn/;
(1)

where the function F is sufficiently regular in C�Cn �C�Cn, the operator L has the form

L D
X

j�j0

@2
xj
�

X
j>j0

@2
xj
;

with a fixed j0 2 f1; 2; : : : ; ng, and H s.Rn/, s 2R, is the usual Sobolev space on Rn. Thus, L generalizes
the Laplace operator but is not elliptic unless j0 D n. Hence, such equations are generalizations of the
nonlinear Schrödinger (NLS) equations.

In this paper, we continue the work undertaken in [Bienaimé 2014] and study the local existence and the
smoothing effect of the solutions of the Cauchy problem (1) with essentially the following goal: to obtain
the optimal index s of regularity for which (1) is well-posed. In fact, since the partial differential equation
is of second order and is semilinear, the optimal condition on s should be s > n

2
C 1. Unfortunately, up to

now and due to issues that occur when estimating the remainder obtained after the linearization of the
nonlinear equation, we have not been able to prove the desired result under such a condition. In any case,
we shall return to this question in a future work. In this paper, we establish the following:

Theorem 1.1. Assume that F vanishes to the third order at 0; that is, F and its partial derivatives up to
the second order vanish at 0. Then, for every s > n

2
C 2 and every initial data u0 2H s.Rn/, there exists

a real number T > 0 such that the Cauchy problem (1) has a unique solution u which is defined on the
interval Œ0;T � and satisfies

u 2 C.Œ0;T �IH s.Rn//
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and

kjJ sC 1
2 ukjT

def
D sup
�2Zn

�Z T

0

Z
Rn

jhx��i��0J sC 1
2 u.x; t/j2 dx dt

�1
2

<1;

where J D .1 ��/
1
2 , � D

PkDn
kD1 @

2
xk

and �0 >
1
2

is fixed. Moreover, given a bounded subset B of
H s.Rn/, there exists a real number T > 0 such that, for every u0 2 B, the associated solution u of (1)
exists on the interval Œ0;T � and the map which associates u to u0 is Lipschitz continuous from B into the
space

fw 2 C.Œ0;T �IH s.Rn// W kjJ sC 1
2wkjT <1g:

In [Bienaimé 2014], this theorem is proved under the assumption s > n
2
C 3. We also improve the

result with respect to the smoothing effect of the solution since �0 D 2 there. Note that the assumption
�0 >

1
2

in the above theorem seems to be sharp; we refer for example to the survey article [Robbiano
2013] on the subject of Kato’s smoothing effect. Recall that at the origin of [Bienaimé 2014] was the
significant work of C. E. Kenig, G. Ponce and L. Vega [Kenig et al. 1998], who first studied (1) with such
a nonelliptic L and established the local existence and the smoothing effect of the solutions assuming
that F is a polynomial and s � s0, the index s0 being sufficiently large. Note that these authors did not
give an idea about the value of s0, but by going back to the details of their proof, one can see that s0 is of
the order of n

2
C 10nC 1. These authors also studied the case where F (is a polynomial and) vanishes to

the second order at 0. However, it seems that in that case we need to work in weighted Sobolev spaces.

The Cauchy problem (1) was extensively studied in the 90s mainly when L D�, that is, in the case of
the Schrödinger equation. See the introduction of [Kenig et al. 1998]. The case L ¤� is less well-known.
Nevertheless, it is motivated by several equations coming from the applications such as Ishimori-type
equations or Davey–Stewartson-type systems. For more details, we refer the reader to the instructive
introduction of [Kenig et al. 1998]. Let us now quote some papers which are more or less related to this
subject. In [Kenig et al. 2004], the authors extended their results of 1998 to the quasilinear case assuming
essentially that the corresponding dispersive operator L is elliptic and nontrapping. The nonelliptic case
is treated in [Kenig et al. 2006; 2005]. In [Bejenaru and Tataru 2008], the authors solved the Cauchy
problem (1) for s > n

2
C 1 in modified Sobolev spaces and assuming F.u;rxu; Nu;rx Nu/ bilinear. More

recently, in [Marzuola et al. 2012; 2014], the authors considered the quasilinear Schrödinger equation

i@tuC
X
j ;k

gj ;k.u;rxu/@j@kuD F.u;rxu/

and obtained the local well-posedness of the associated Cauchy problem for s > n
2
C 3 in the quadratic

case (with modified Sobolev spaces) and for s > n
2
C

5
2

in the nonquadratic case. However, they assume
the smallness of the data and they do not seem to obtain the smoothing effect of the solutions.

The proof of Theorem 1.1 follows the same ideas as that of [Kenig et al. 1998; Bienaimé 2014]. Of
course, the general plan is unoriginal: linearization of the nonlinear equation, then, establishing energy
estimates for solutions of the linear equation, and finally, solving the nonlinear equation by means of an
appropriate fixed-point theorem. Like [Bienaimé 2014], we start by applying a paralinearization, that is, a
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linearization in the sense of [Bony 1981] instead of the classical linearization. This leads us to the use
of the paradifferential calculus whose main interest lies in the fact that it eliminates the usual losses of
regularity due to commutators. One obtains a paralinear equation and most of the proof of the theorem is
concerned with the study of such an equation, that is, the well-posedness in the Sobolev spaces of the
associated Cauchy problem by means of energy and smoothing effect estimates. As did Kenig, Ponce and
Vega, we establish the smoothing effect estimate by using Doi’s argument [1994] via Gårding’s inequality,
and we prove the energy estimates by following an idea of [Takeuchi 1992], that is, by constructing a
nonclassical invertible pseudodifferential operator C which allows estimates for C u if u is a solution of
the paralinear equation. Finally, we solve the nonlinear Cauchy problem (1) by applying these estimates
to an integrodifferential equation which is equivalent to (1) and obtain the solution as the fixed point of
an appropriate contraction in an appropriate complete metric space.

Now, in order to give a more precise idea about our proof, let us indicate the differences with that
given in [Bienaimé 2014]. In fact, there are three main differences:

� We simplify certain arguments of that paper; for example, we no longer need to use the general Hör-
mander symbol spaces Sm

�;ı
; we only use Sm

1;0
and Sm

0;0
. Also, we only use the original paradifferential

operators (see Section 2) and not the variant introduced in [Bienaimé 2014].

� The linear theorem, that is, Theorem 3.1 (see Section 3), is proved for general paradifferential operators
Tb1

and Tb2
of order 0 instead of paramultiplication operators. Note also that we allow the operators

C1 and C2 to be abstract bounded operators.

� The third difference lies in the nonlinear part (see Section 4) and is crucial for our improvement of
the result of [Bienaimé 2014]: we use anisotropic Sobolev spaces and an interpolation inequality (see
Proposition A.5) to estimate the remainder of the paralinearized equation.

2. Notations and preliminary results

Some notation used in the paper:

� J s D .1��/
s
2 D hDis is the operator whose symbol is h�is D .1C �2/

s
2 .

� Dxk
D�i@xk

, Dx D�i@x .

� j˛j D
PjDn

jD1 j̨ if ˛ 2 Nn.

� �v D .�v1; : : : ; �vn/ and rv D .rv1; : : : ;rvn/ if v D .v1; : : : ; vn/.

� S .Rn/ denotes the Schwartz space of rapidly decreasing functions in Rn.

� D.Rn/ denotes the space of smooth functions with compact support in Rn.

� D 0.Rn/ denotes the space of distributions in Rn.

� S 0.Rn/ denotes the space of tempered distributions in Rn.

� Ou or F .u/ denotes the Fourier transform of u.

� H s.Rn/D fu 2S 0.Rn/ W h�is Ou 2L2.Rn/g is the usual Sobolev space of regularity s.
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� kuks D
�R

Rnh�i
2sj Ou.�/j2 d�

� 1
2 denotes the norm of u in H s.Rn/.

� kukE denotes the norm of u in the space E.

� Hörmander’s classes of symbols: if m 2 R and ; ı 2 Œ0; 1�,

Sm
;ı D

˚
a 2 C1.Rn

�Rn/ W j@˛x@
ˇ

�
a.x; �/j �A˛;ˇh�i

m� jˇjCıj˛j for all ˛; ˇ 2 Nn
	
:

� If % > 0 is an integer, C %.Rn/ denotes the set of functions in Rn which are bounded, of class C m and
their derivatives up to m are bounded. If % > 0 is not an integer, C %.Rn/ denotes the Hölder class, that
is, the set of u in C Œ%�.Rn/ such that

9C 2 R; 8.x;y/ 2 Rn
�Rn; j@˛u.x/� @˛u.y/j � C jx�yj%�Œ%�:

� Op S denotes the set of pseudodifferential operators whose symbols belong to S .

The following statement summarizes the pseudodifferential calculus associated to Hörmander’s classes
of symbols Sm

;ı
:

Theorem 2.1. If a 2 Sm
;ı

, b 2 Sm0

;ı
, m;m0 2 R, and 0� ı <  � 1 or 0� ı �  < 1, then:

(i) a.x;D/b.x;D/D c.x;D/ with c 2 SmCm0

;ı
. Moreover,

c.x; �/D

Z
e�iy:�a.x; �C �/b.xCy; �/

dy d�

.2�/n

D

X
j�j<N

1

�!
@��a.x; �/D

�
xb.x; �/C

X
j�jDN

1

�!

Z 1

0

.1� �/N�1r�;� .x; �/ d�;

where

r�;� .x; �/D

Z
e�iy:�@��a.x; �C ��/D

�
xb.xCy; �/

dy d�

.2�/n
;

and the S
mCm0�N.�ı/

;ı
seminorms of r�;� are bounded by products of seminorms of a and b uniformly

in � 2 Œ0; 1�.

(ii) a.x;D/� D a�.x;D/ with a� 2 Sm
;ı

. Moreover,

a�.x; �/D

Z
e�iy:�

Na.xCy; �C �/
dy d�

.2�/n

D

X
j�j<N

1

�!
@��D

�
x Na.x; �/C

X
j�jDN

1

�!

Z 1

0

.1� �/N�1r��;� .x; �/ d�;

where

r��;� .x; �/D

Z
e�iy:�@��D

�
x Na.xCy; �C ��/

dy d�

.2�/n
;

and the S
m�N.�ı/

;ı
seminorms of r�

�;�
are bounded by seminorms of a uniformly in � 2 Œ0; 1�.

See [Taylor 1991], for instance, for the proof. We shall also often need the following version of the
Calderón–Vaillancourt theorem:
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Theorem 2.2. Let a W Rn �Rn ! C be a bounded function. Assume that, for all ˛; ˇ 2 Nn such that
j˛j C jˇj � nC 1, there exists a constant C˛;ˇ > 0 such that j@˛x@

ˇ

�
a.x; �/j � C˛;ˇ 2 R2n. Then, the

pseudodifferential operator a.x;D/ is bounded in L2.Rn/ and its operator norm is estimated by

sup
j˛jCjˇj�nC1

k@˛x@
ˇ

�
akL1 :

See [Coifman and Meyer 1978] for the proof.
The following technical lemma, which is a consequence of Theorem 2.1, will be very useful in many

of our proofs:

Lemma 2.3. Let a 2 Sm
0;0

, m; � 2 R and � 2 Rn. Then:

(i) We have hx ��i�a.x;D/hx ��i�� D a�.x;D/, where a� 2 Sm
0;0

and the seminorms of a� are
bounded by seminorms of a uniformly in �.

(ii) If � � 0 and if , in addition, a.x; �/ is rapidly decreasing with respect to x � �, then we have
hx��i�a.x;D/hx��i� D b�.x;D/, where b� 2 Sm

0;0
, b� is also rapidly decreasing in x�� and

the seminorms of b� are estimated uniformly in � by expressions of the form

sup
j˛jCjˇj�N

khx��i2� h�i�m@˛xD
ˇ

�
akL1 :

Here, the fact that the symbol a.x; �/ is rapidly decreasing with respect to x�� means that, for every
integer N and all multi-indices ˛; ˇ, the function hx��iN h�i�m@˛xD

ˇ

�
a is bounded in Rn�Rn, and we

shall often meet such symbols in this paper.

Proof. (i) When � � 0, we can use Theorem 2.1(i) and integrations by parts to obtain

a�.x; �/D hx��i
� .2�/�n

Z
e�iy:�a.x; �C �/hxCy ��i�� dy d�

D hx��i� .2�/�n

Z
e�iy:�J N

� Œh�i
�N a.x; �C �/� hyi�N J N

y ŒhxCy ��i�� � dy d�;

where N is a large and even integer. Hence, by taking derivatives and bounding, and next by applying
Peetre’s inequality,

ja�.x; �/j � Ckh�i�makC N hx��i�
Z
h�i�N

h�C �imhyi�N
hxCy ��i�� dy d�

� 2
�Cjmj

2 Ckh�i�makC N h�im
Z
h�ijmj�N

hyi��N dy d�D C 0h�imkh�i�makC N ;

where C and C 0 are constants which are independent of �, and N is taken for example such that
N � jmjC � C nC 1. Of course, the derivatives of a� are treated in the same manner.

The case � < 0 follows from the preceding case by considering the adjoint

a�.x;D/
�
D hx��i��a.x;D/�hx��i�

and by applying Theorem 2.1(ii).

(ii) By using the formula in Theorem 2.1(ii) once more, it is easy to see that, if a is rapidly decreasing
with respect to x��, then the symbol a� is also rapidly decreasing with respect to x�� and that, for all
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N 2 N, ˛; ˇ 2 Nn, there exist M 2 N and a nonnegative constant CN;˛;ˇ which does not depend on �
such that

khx��iN h�i�m@˛xD
ˇ

�
a�kL1 � CN;˛;ˇ sup

j˛0jCjˇ0j�M

khx��iN h�i�m@˛
0

x D
ˇ0

�
akL1 :

Now, by following the same argument as that used in the first part, one can check that the same claim
holds exactly when we replace a� by a� in the above assertion; in particular, we have the estimate

khx��iN h�i�m@˛xD
ˇ

�
a�kL1 � CN;˛;ˇ sup

j˛0jCjˇ0j�M

khx��iN h�i�m@˛
0

x D
ˇ0

�
akL1 ;

and since we can write obviously b�.x; �/D hx��i
2�a�.x; �/, this achieves the proof of the lemma. �

When studying the nonlinear equation, the following result is important in order to explain the
assumption made on the nonlinearity F .

Lemma 2.4. For all s � 0 and all � > n
2

, there exists a constant C > 0 such that, for all v 2H s.Rn/,
the sequence � 7! khx��i��vks is in `2.Zn/ andX

�

khx��i��vk2s � Ckvk2s :

In particular, if s > n
2

, u; v 2 H s.Rn/ and � is a smooth and rapidly decreasing function, then, � 7!
k�.x��/uvks is in `1.Zn/ and X

�

k�.x��/uvks � Ckukskvks:

Proof. The case s D 0 is obvious and follows from the fact that
P
�hx��i

�2� is a bounded function.
The case where s is a positive integer reduces to the case s D 0 by taking derivatives via Leibniz formula.
The general case is obtained by interpolation. Indeed, since the map v 7! hx � �i��v is linear and
bounded from H s into `2.Zn;H s/ for integral indices s D s1; s2, it will be also bounded from H s0 into
`2.Zn;H s0/ for any real s0 between s1 and s2. This follows from the fact that

Œ`2.Zn;H s1/; `2.Zn;H s2/�� D `
2.Zn; ŒH s1;H s2 �� /

for 0< � < 1. See for example [Bergh and Löfström 1976, Theorem 5.1.2, page 107].
The second part is a consequence of the first one and the fact that H s.Rn/ is an algebra if s > n

2
. �

Let us now recall some results on paradifferential operators.

Definition 2.5. We define the class †m
% where m2R and %� 0 to be the class of symbols a.x; �/ defined

on Rn �Rn which are C1 in � and C % in x, in the sense that

for all ˛ 2 Nn; j@˛� a.x; �/jh�i�mCj˛j
2 C %.Rn

�Rn/;
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C % being replaced by L1 when % D 0. If a 2 †m
% , then m is the order of a and % is its regularity.

Following J.-M. Bony, we associate to a symbol a in †m
% the paradifferential operator Ta;� defined by

the expression

1Ta;�u.�/D .2�/�n

Z
Rn

�.� � �; �/F1.a/.� � �; �/ Ou.�/ d�;

where � is what one calls a paratruncature, that is, a C1 function in Rn �Rn satisfying the following
properties:

(i) There exists " > 0 such that " < 1 and �.�; �/D 0 if j�j � "j�j, �; � 2 Rn.

(ii) There exist "0 > 0, "00 > 0 such that "0 < " and �.�; �/D 1 if j�j � "0j�j and j�j � "00.

(iii) For all ˛ 2 N2n, there exists A˛ > 0 such that for all � 2 R2n, we have h�ij˛jj@˛�.�/j �A˛.

The first important result on paradifferential operators is that, even if one can show that Ta;�D Qa.x;D/

with some Qa 2 Sm
1;1

, they are bounded in the Sobolev spaces in the usual manner. In fact, we have:

Theorem 2.6. Assume that � satisfies only the first and third properties among the above ones. Then,
for every real s, the operator Ta;� is bounded from H s.Rn/ into H s�m.Rn/ and its operator norm is
estimated by a seminorm of a in †m

% . In particular, if aD a.x/ 2 L1.Rn/, then, for every real s, the
operator Ta;� is bounded in H s.Rn/ with an operator norm bounded by a constant times kakL1 .

Proof. See [Bony 1981; Meyer 1981; Taylor 1991]. �

Concerning the dependence with respect to the paratruncature �, one can say the following:

Theorem 2.7. If % > 0 and �1, �2 are paratruncatures, then the operator Ta;�1
�Ta;�2

is bounded from
H s.Rn/ into H s�mC%.Rn/ and its operator norm is estimated by a seminorm of a in †m

% .

Proof. See [Bony 1981; Meyer 1981; Taylor 1991]. �

This result shows that the dependence of Ta;� on � is less important than that on a. It also explains
why the remainders in the paradifferential theory are only %-regularizing. From now on, we shall write
Ta instead of Ta;� unless it is needed.

Note also that a possible choice of the paratruncature that we shall often use in the sequel is given by

�.�; �/D �1.�=j�j/.1� 1.�//;

where  1; �1 2 C1.Rn/,  1 D 1 in a neighbourhood of 0,  1 D 0 out of B.0; "00/, and �1 D 1 on
B.0; "0/, supp.�/� B.0; "/, with " and "0 satisfying 0 < "0 < " < 1. In this case, Ta;� D Qa.x;D/ with
the following expression of Qa:

Qa.x; �/D .1� 1.�//j�j
n

Z
Rn

F�1.�1/.j�j.x�y//a.y; �/ dy: (2)

The following lemma gives some properties of Qa which will be needed in the sequel and often used
implicitly.
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Lemma 2.8. Let %� 0 and a 2†m
% . Then, Qa is smooth and

j@
ˇ

�
@˛x Qa.x; �/j �A˛;ˇh�i

m�jˇj if j˛j � %; (3)

j@
ˇ

�
@˛x Qa.x; �/j �A˛;ˇh�i

m�jˇjCj˛j�% if j˛j> %; (4)

where A˛;ˇ are nonnegative constants; more precisely, the A˛;ˇ can be estimated by seminorms of a

in †m
% . In particular, Qa 2 Sm

1;1
.

Moreover, if � is a smooth function with support in some compact subset of Rn and ��.x/D �.x��/,
� 2 Zn, then, for all N 2 N, we have

hx��iN j@
ˇ

�
@˛x

e��a.x; �/j �A˛;ˇ;N h�i
m�jˇj if j˛j � %; (5)

hx��iN j@
ˇ

�
@˛x

e��a.x; �/j �A˛;ˇ;N h�i
m�jˇjCj˛j�% if j˛j> %; (6)

where the A˛;ˇ;N do not depend on � and are estimated by seminorms of a in †m
% .

Proof. For the first part we refer to [Meyer 1981; Taylor 1991]. The second part follows from the first
one by using, for example, for even N the decomposition

hx��iN D
X
˛

.x�y/˛

˛!
@˛y hy ��i

N

together with the expression (2). �

When dealing with nonlinear terms, we shall frequently use the following classical result:

Proposition 2.9. If F is a C1 (or sufficiently regular) function in Cm, F.0/ D 0 and u1; : : : ;um are
functions in H s.Rn/, s > n

2
, then, F.u1; : : : ;um/ 2H s.Rn/ and we have precisely

kF.u1; : : : ;um/ks � C
�
k.u1; : : : ;um/kL1

�
k.u1; : : : ;um/ks;

where � 7! C.�/ is a nonnegative and nondecreasing function.

An important property of the paradifferential operators consists in the fact that they are necessary to
write down Bony’s linearization formula, a formula that we recall here.

Theorem 2.10 (Bony’s linearization formula). For all real functions u1; : : : ;um 2H
n
2
C%.Rn/, % > 0,

and every function F of m real variables which is C1 (or sufficiently regular) and vanishes in 0, we have

F.u1; : : : ;um/D

iDmX
iD1

T@ui
F ui C r with r 2H

n
2
C2%.Rn/:

Proof. See [Bony 1981; Meyer 1981; Meyer 1982]. �

The remainder r in the above formula depends of course on .u1; : : : ;um/. The following result
essentially shows that r is a locally Lipschitz function of .u1; : : : ;um/. More precisely:
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Theorem 2.11. If uD .u1; : : : ;um/2H s.Rn;Rm/, sD n
2
C%, %>0, let us denote by r.u/ the remainder

in Bony’s formula. For all u; v 2H s.Rn;Rm/, we have then

kr.u/� r.v/ksC% � �.kuks; kvks/ku� vks;

where �.kuks; kvks/ is bounded if u and v vary in a bounded subset of H s.Rn;Rm/.

Proof. See [Bienaimé 2014]. �

Remark. In the case of our equation, that is (1), even if u has complex values, we shall be able to apply
Bony’s formula to the nonlinear expression F.u;ru; Nu;r Nu/ where u 2H

n
2
C1C%.Rn/. Indeed, we can

write

F.u;ru; Nu;r Nu/DG.Re.u/;r Re.u/; Im.u/;r Im.u//

where G.x1;x2;y1;y2/ D F.x1C iy1;x2C iy2;x1 � iy1;x2 � iy2/ which is a function from R2nC2

into C. We apply then Bony’s formula to G and obtain that

F.u;ru; Nu;r Nu/D T@x1
G Re.u/CT@x2

Gr Re.u/CT@y1
G Im.u/CT@y2

Gr Im.u/C r.u/:

At last, by using the fact that Re.u/D uCNu
2

, Im.u/D u�Nu
2i

, @z D
1
2
.@x� i@y/ and @Nz D 1

2
.@xC i@y/, and

then the linearity of Tb with respect to b, we obtain the formula used in this paper:

F.u; Nu;ru;r Nu/D T@uF uCT@ NuF NuCT@ruFruCT@r NuFr NuC r.u/

with r.u/ 2H
n
2
C2%.Rn/ if u 2H

n
2
C1C%.Rn/.

We shall also often need the following result similar to Lemma 2.3:

Lemma 2.12. Let a 2 †0
0
.Rn/, � 2 D.Rn/, ��.x/ D �.x ��/, � 2 Rn and s 2 R, and consider the

paradifferential operator T��a D T��a;� (where the paratruncature � does not necessarily satisfy the
second property of Definition 2.5). Then, for all � � 0, the operator hx��i�T��ahx��i

� is bounded
in H s.Rn/ and there exist N 2 N and a nonnegative constant C such that, for every � 2 Rn,

khx��i�T��ahx��i
�
kL.H s/ � C sup

j˛j�N

kh�ij˛j@˛� akL1 :

Proof. First, one can assume that � is an integer and even an even integer. Let us denote by a� the
symbol ��a and consider first the operator Ta�hx��i

�. Recall that Ta� D Qa�.x;D/ with

Qa�.x; �/D .1� 1.�//j�j
n

Z
Rn

F�1.�1/.j�j.x�y//a�.y; �/ dy: (7)

where  1; �1 2 C1.Rn/,  1 D 1 in a neighbourhood of 0,  1 D 0 out of B.0; "00/, and �1 D 1 on
B.0; "0/, supp.�/ � B.0; "/, with " and "0 satisfying 0 < "0 < " < 1. Hence, we can write for arbitrary
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u 2S .Rn/,

Ta�hx��i
�u.x/D .2�/�n

Z
eix�
Qa�.x; �/F .hx��i

�u/.�/ d�

D .2�/�n

Z
eix�
Qa�.x; �/hD� C�i

�
Ou.�/ d�

D .2�/�n

Z
hD� ��i

� Œeix�
Qa�.x; �/� Ou.�/ d�

D .2�/�n
X
˛

1

˛!
D˛

x Œhx��i
� �

Z
eix� @˛� Qa�.x; �/ Ou.�/ d�;

where we have applied integrations by parts and the Leibniz formula. So, we have proved that

Ta�hx��i
�
D

X
˛

1

˛!
D˛

x Œhx��i
� �.@˛� Qa�/.x;D/;

where the sum is of course finite. Now, let us consider the operator .@˛
�
Qa�/.x;D/ and let us remark that,

for example,

@�k
Qa�.x; �/D .1� 1.�//j�j

n

Z
Rn

F�1.�1/.j�j.x�y//@�k
a�.y; �/ dy

� .1� 1.�//j�j
n

Z
Rn

F�1.�2/.j�j.x�y//a�.y; �/
�k

j�j2
dy

� @k 1.�/j�j
n

Z
Rn

F�1.�1/.j�j.x�y//a�.y; �/ dy;

where �2.�/D
Pn

jD1 �j@j�1.�/. This shows that

.@�k
Qa�/.x;D/D

3X
lD1

T��al ;�l ;

where the al are symbols in †�1
0

and the �l are paratruncatures which satisfy the first and third properties
of Definition 2.5. By induction, .@˛

�
Qa�/.x;D/ is then a finite sum of operators of the same form as

Ta� D Ta�;� (of order � �j˛j), and note also that the seminorms of the associated symbols are bounded
uniformly in � by a seminorm of a. Hence, Ta�hx � �i

� is a finite sum of operators of the form
P .x��/Ta� , where P is a polynomial (of degree � � ), and consequently the problem is reduced to the
study of the operator hx��i�Ta� only. Now, the symbol of the latter can be written as

hx��i� Qa�.x; �/D
X
j˛j��

1

˛!
.1� 1.�//j�j

n

Z
Rn

.x�y/˛F�1.�1/.j�j.x�y//@˛y Œhy ��i
� �a�.y; �/ dy

D

X
j˛j�L

1

˛!
.1� 1.�//j�j

n

Z
Rn

F�1.�˛1/.j�j.x�y//�˛.y ��/a˛.y; �/ dy;

where �˛
1

and �˛ are similar to �1 and � respectively, and a˛ 2†
�j˛j
0

with seminorms bounded by
those of a. Hence, hx ��i�Ta� is a finite sum of operators of the same form as Ta� whose symbols
have seminorms bounded uniformly in � by a seminorm of a. Eventually, the lemma follows from
Theorem 2.6. �
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Let us also recall the Gårding inequality which will be used crucially to prove the smoothing effect
estimate.

Theorem 2.13 (sharp Gårding inequality for systems). Let a.x; �/ be a k � k matrix whose elements are
in Sm

1;0
and which satisfies ˝

.a.x; �/C a�.x; �//�; �
˛
� 0

for all � 2 Ck and all .x; �/ such that j�j �A0, where a� denotes the adjoint matrix of a and h � ; � i is the
usual hermitian scalar product of Ck. Then, there exist a nonnegative constant A and an integer N such
that, for all u 2S .Rn;Ck/, we have

Reha.x;D/u;ui � �A sup
j˛jCjˇj�N

kh�ijˇj�m@˛x@
ˇ

�
akL1kuk

2
m�1

2

;

where A depends only on n, k and A0.

Proof. See [Taylor 1991; Tataru 2002] for example. �

3. The paralinear equation

In this section, we solve the Cauchy problem for the paralinear equation, that is, the linear equation
obtained from (1) by applying Bony’s linearization formula (Theorem 2.10).

Recall that Q� is the cube �C Œ0; 1�n, � 2 Zn and that Q�� is a larger cube with side length 2, for
example, �C

�
�

1
2
; 3

2

�n.

Theorem 3.1. Given s 2 R, consider the following linear Cauchy problem:�
@tuD iL uCTb1

:rxuCTb2
:rx NuCC1uCC2 NuCf .x; t/;

u.x; 0/D u0 2H s.Rn/:
(8)

We assume that C1 and C2 are bounded operators in H s.Rn/ and in H sC2.Rn/, that b1; b2 2†
m
% , % > 0,

and more precisely that

bk.x; �/D
X
�2Zn

˛k;�'k;�.x; �/;
X
�

j˛k;�j �Ak ; k D 1; 2;

supp.x 7! 'k;�.x; �//�Q��; sup
jˇj�N0

kh�ijˇj@
ˇ

�
'k;�kC% � 1;

(9)

and kCkkL.H s/; kCkkL.H sC2/ � Ak , k D 1; 2, N0 being a large and fixed integer. We further assume
that b2.x; �/ is even in �. Then, the problem (8) has a unique solution u which is in C.R;H s.Rn// and
satisfies, for all T > 0,

sup
�T�t�T

ku.t/k2s �A.ku0k
2
s C IT .J

sf;J su//; (10)

kjJ sC 1
2 ukj2T �A.ku0k

2
s C IT .J

sf;J su//; (11)
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where the constant A depends only on n, s, %, T , A1, and A2, and the expression IT .v; w/ is a finite sum
of terms of the form

sup
�2Zn

Z T

�T

jhG�v;wij dt

with G� 2 Op S0
0;0

and the seminorms of its symbol (up to N0) are uniformly bounded by a constant that
depends only on s, n, %, A1 and A2.

Recall that kjukj2
T
D sup�

R T
�T

R
Rnhx��i

�2�0 ju.x; t/j2 dt dx, where �0 >
1
2

is fixed.

Proof. Let us start by noting that the uniqueness is an obvious matter. Indeed, if u1 and u2 are solutions
of (8), then, u1�u2 is a solution of (8) with u0 D 0 and f D 0, and the conclusion follows from (10).

As for the existence, as is customary with linear differential equations, it will follow from the a priori
estimates (10) and (11) by using more or less standard arguments of functional analysis, and the proof of
Theorem 3.1 will consist essentially in establishing them.

Another useful remark is that it will be sufficient to prove the theorem in C.RC;H
s.Rn// instead of

C.R;H s.Rn// and the estimates (10) and (11) on Œ0;T � instead of Œ�T;T �. In fact, if the theorem is
proved on RC, one can apply it to v.t/ D u.�t/, which satisfies a Cauchy problem of the same type
as (8). The result is then that v.�t/ will extend u to R� and satisfy (8) on R�, in addition to the fact that
the estimates (10) and (11) are also extended to Œ�T; 0�.

So, let us assume that u 2 C.Œ0;T �IH s.Rn// is a solution of the Cauchy problem (8).
In what follows, it will be quite convenient to use the notation

�N .'/D sup
1�j�N

sup
j˛jCjˇj�N

kh�ijˇj@˛x@
ˇ

�
'k

j
L1

;

and note that such a quantity is not a norm in general but it is well-defined for ' 2 S0
1;0

. Note also that, if
M � 1, �N .'/

M � �NM .'/, a remark that will be often used implicitly.
In fact, the inequalities (10) and (11) will be deduced from the following ones:

Proposition 3.2. Assume that the functions 'k;� defining the bk are C1; that is, 'k;� 2 S0
1;0

, k D 1; 2.
Then, there exist a positive real number A and an integer N such that, for all R � 1, there exists a
pseudodifferential operator C 2 Op S0

0;0
such that, for all T > 0, any solution u 2 C.Œ0;T �IH s.Rn// of

the Cauchy problem (8) satisfies

sup
0�t�T

kC u.t/k2s

� kC u0k
2
s C 2

Z T

0

jhC J sf;C J suij dt CA sup
k;�

�N .'k;�/
�
RT sup

0�t�T

ku.t/k2s C
1

R
kjJ sC 1

2 ukj2T

�
:

Moreover, regarding the operator C, we have the following precise bounds for v 2H s.Rn/ :

kC vks �A sup
�
�N .'1;�/kvks;

kvks �A sup
�
�N .'1;�/kC vksC

A

R
sup
�
�N .'1;�/

2
kvks:
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Proposition 3.3. Under the same assumptions as above and with the same elements A, R, C and N,
there exist also pseudodifferential operators  j .x;D/ 2 Op S0

1;0
, j D 1; 2; 3; 4, such that, for all T > 0,

any solution u 2 C.Œ0;T �IH s.Rn// of the Cauchy problem (8) satisfies

kjJ sC 1
2 ukj2T �A

�
1CT CT sup

�;k

�N .'k;�/
�

sup
Œ0;T �

kuk2s CA

4X
jD1

sup
�2Zn

Z T

0

jh j .x��;D/J
sf;J suij dt;

kjJ sC 1
2 C ukj2T �A

�
1CTCT sup

�;k

�N .'k;�/
�

sup
Œ0;T �

kC uk2sCA

4X
jD1

sup
�

Z T

0

jh j .x��;D/C J sf;C J suij dt

CA sup
k;�

�N .'k;�/
�
RT sup

0�t�T

ku.t/k2s C
1

R
kjJ sC 1

2 ukj2T

�
:

Admitting these propositions (see Sections 5 and 6 for their proofs), let us go on and finish the proof of
Theorem 3.1. In order to apply the above inequalities we have to regularize the bk , k D 1; 2, by setting

'k;�;m.x; �/Dmn

Z
Rn

�.m.x�y//'k;�.y; �/ dy and bk;m D

X
�

˛k;�'k;�;m;

where � is a nonnegative C1 function with support in the unit ball and whose integral is equal to 1. Note
that 'k;�;m has its support (with respect to x) in a compact set which is slightly larger that Q�� but this
has no effect on the proofs. Since we can write

@tuD iL uCTb1;m
:rxuCTb2;m

:rx NuCC1uCC2 NuCfm;

where
fm D f CTb1�b1;m

:ruCTb2�b2;m
:r Nu;

we can apply Proposition 3.2 to obtain

sup
Œ0;T �

kCmuk2s � kCmu0k
2
s C 2

Z T

0

jhCmJ sfm;CmJ suij dt

CA sup
k;�

�N .'k;�;m/
�
RT sup

Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
;

where the operator C is denoted here by Cm to indicate its dependence on m. Now, clearly, we have

�N .'k;�;m/�AmN 2

sup
1�j�N

sup
jˇj�N

kh�ijˇj@
ˇ

�
'k;�k

j
L1
�AmN 2

:

Hence,

sup
Œ0;T �

kCmuk2s � kCmu0k
2
s C 2

Z T

0

jhCmJ sf;CmJ suij dt C 2

Z T

0

jhCmJ sTb1�b1;m
ru;CmJ suij dt

C2

Z T

0

jhCmJ sTb2�b2;m
r Nu;CmJ suij dt CAmN 2

�
RT sup

Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
;

and the problem now is to estimate the third and fourth terms in the right-hand side of this inequality.
This is done in the following lemma.
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Lemma 3.4. Let Qu stand for u or Nu, and � D inff%; 1g. Then, there exists a constant A such that, for all
k 2 f1; 2g, m� 1, R� 1 and m0 �m,Z T

0

ˇ̌
hCmJ sTbk�bk;m

r Qu;CmJ sui
ˇ̌
dt

�

�
Am2N 2

m0�
C

Am03N 2

R

�
kjJ sC 1

2 ukj2T CAm03N 2

T sup
Œ0;T �

kuk2s C
A

m�
kjJ sC 1

2 Cmukj2T :

See the Appendix for the proof of this lemma. Applying this lemma yields

sup
Œ0;T �

kCmuk2s � kCmu0k
2
s C 2

Z T

0

jhCmJ sf;CmJ suij dt C
A

m�
kjJ sC 1

2 Cmukj2T

C

�
Am2N 2

m0�
C

Am03N 2

R

�
kjJ sC 1

2 ukj2T CAm03N 2

RT sup
Œ0;T �

kuk2s ;

an inequality that we can improve, thanks to Proposition 3.3, as follows:

sup
Œ0;T �

kCmuk2s � kCmu0k
2
s C 2

Z T

0

jhCmJ sf;CmJ suij dt

C
A

m�

4X
jD1

sup
�

Z T

0

jh j .x��;D/CmJ sf;CmJ suij dt C
A.1CT mN /

m�
sup
Œ0;T �

kCmuk2s

C

�
Am2N 2

m0�
C

Am03N 2

R

�
kjJ sC 1

2 ukj2T CAm03N 2

RT sup
Œ0;T �

kuk2s

� kCmu0k
2
s C 2

Z T

0

jhCmJ sf;CmJ suij dt

C
A

m�

4X
jD1

sup
�

Z T

0

jh j .x��;D/CmJ sf;CmJ suij dt C
A.1CT mN /

m�
sup
Œ0;T �

kCmuk2s

C

�
Am2N 2

m0�
C

Am03N 2

R

� 4X
jD1

sup
�

Z T

0

jh j .x��;D/J
sf;J suij dt

C

�
Am2N 2

m0�
C

Am03N 2

R

�
.1CT mN / sup

Œ0;T �

kuk2s CAm03N 2

RT sup
Œ0;T �

kuk2s :

Next, by taking m such that, for example, m� � 4A and T such that T mN � 1, we get

sup
Œ0;T �

kCmuk2s � 2kCmu0k
2
sC4

Z T

0

jhCmJ sf;CmJ suijdtC

4X
jD1

sup
�

Z T

0

jh j .x��;D/CmJ sf;CmJ suijdt

C

�
2Am2N 2

m0�
C

2Am03N 2

R

� 4X
jD1

sup
�

Z T

0

jh j .x��;D/J
sf;J suijdt

C

�
Am2N 2

m0�
C

Am03N 2

R
CAm03N 2

RT

�
sup
Œ0;T �

kuk2s ;
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and by using the second part of Proposition 3.2, we obtain

sup
Œ0;T �

kuk2s

�Am2N 2

�
m2N 2

ku0k
2
sC

Z T

0

jhCmJ sf;CmJ suijdtC

4X
jD1

sup
�

Z T

0

jh j .x��;D/CmJ sf;CmJ suijdt

�

C

�
Am4N 2

m0�
C

Am05N 2

R

� 4X
jD1

sup
�

Z T

0

jh j .x��;D/J
sf;J suijdtCC.m;m0;R;T / sup

Œ0;T �

kuk2s ;

where

C.m;m0;R;T /D
Am4N 2

m0�
C

Am05N 2

R
CAm05N 2

RT C
Am4N 2

R2
:

Finally, since m is fixed (and depends only on A), we take m0 such that Am4N 2

=m0� � 1
8

, then we take
R such that Am05N 2

=R� 1
8

and Am4N 2

=R2 �
1
8

, and last we take T such that Am05N 2

RT � 1
8

. With
these choices, we have of course C.m;m0;R;T / � 1

2
, which allows to bound supŒ0;T � kuk

2
s and to get

(10) (and also (11), thanks to Proposition 3.3) with

IT .v; w/D

Z T

0

jhC ?C v;wij dt C

4X
jD1

sup
�

Z T

0

jhC ? j .x��;D/C v;wij dt

C sup
�

Z T

0

jh j .x��;D/v; wij dt:

In fact, we have proved (10) and (11) only for T DT0 and T0 is sufficiently small. Let us show, if T0<T ,
that they hold true in the whole interval Œ0;T � where the solution u is defined. Indeed, note first that the
T0 as determined above depends only on the constant A (so, only on n, s, %, A1 and A2) but not on the
given function (or distribution) f . Next, take a T1 � T0 such that T1 D T=n1, with some integer n1 � 2.
Then, if we consider the function v.x; t/D u.x; t CT1/, we note that v is a solution (defined at least in
Œ0;T �T1�) of (8) with v.0/D u.T1/ and g.x; t/D f .x; t CT1/ instead of f .x; t/. It follows from the
above arguments that v satisfies (10) and (11) for T D T0 and hence for T D T1. Since

sup
ŒT1;2T1�

kuk2s D sup
Œ0;T1�

kvk2s �A
�
ku.T1/k

2
s C IT1

.J sg;J sv/
�
�A

�
ku.T1/k

2
s C I2T1

.J sf;J su/
�

�A
�
Aku0k

2
s CAIT1

.J sf;J su/C I2T1
.J sf;J su/

�
� .A2

CA/
�
ku0k

2
s C I2T1

.J sf;J su/
�
;

we obtain that u satisfies (10) and (11) for T D 2T1 and with the constant A2CA instead of A. Repeating
this argument, we obtain that u satisfies (10) and (11) on Œ0; n1T1� D Œ0;T � and with the constantPn1

jD1
Aj 'AT=T1 instead of A.

As for the existence, let us consider the approximating Cauchy problem�
@tuD iL uCTb1

rh."D/uCTb2
rh."D/ NuCC1uCC2 NuCf .x; t/;

u.x; 0/D u0 2H s.Rn/;
(12)

where h is a nonnegative C1 function on Rn which is equal to 1 near 0 and has a compact support.
It is easy to see, if T is such that supŒ0;T � kf ks <C1, that the above problem has a unique solution,
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denoted by u", which is in C.Œ0;T �IH s.Rn//. Indeed, the Cauchy problem (12) is clearly equivalent to
the integral equation

uD eitL u0C

Z t

0

ei.t�t 0/L
�
Tb1
rh."D/uCTb2

rh."D/ NuCC1uCC2 NuCf .x; t
0/
�

dt 0

and one can easily show that the map defined by the right-hand side of this equation is a contraction
in C.Œ0;T"�IH

s.Rn// with some T" > 0 sufficiently small, which allows one to apply the fixed-point
theorem and to get a solution u". Now, since T" does not depend on the data u0 and f , one can extend
u" to a solution of (12) on the whole interval Œ0;T �.

The idea now is to let " tend to 0. This is possible because u" satisfies the estimates (10) and (11) and
even uniformly with respect to ". Indeed, it is sufficient to remark that the Cauchy problem (12) is of the
same type as (8) because we can write

Tbk
rh."D/D Tbk;"

r;

where bk;".x; �/ D bk.x; �/h."�/ and bk;" satisfies the assumptions of Theorem 3.1 uniformly in ".
Hence, we have in particular

sup
Œ0;T �

ku"k
2
s �Aku0k

2
s CAIT .J

sf;J su"/;

and it follows from the Calderón–Vaillancourt theorem that

AIT .J
sf;J su"/�AA0 sup

Œ0;T �

ku"ks

Z T

0

kf ks dt � 1
2

sup
Œ0;T �

ku"k
2
s C

1
2
.AA0/2

�Z T

0

kf ks dt

�2

;

so that,

sup
Œ0;T �

ku"ks �Aku0ksCA

Z T

0

kf ks dt: (13)

Next, to check the convergence of u", let us consider v D u"�u"0 . It is clear that v is the solution of (12)
with u0 D 0 and

f D Tb1
r.h."D/� h."0D//u"0 CTb2

r.h."D/� h."0D// Nu"0 :

Therefore, it follows from (13) that

sup
Œ0;T �

kvks �A

Z T

0

Tb1
r.h."D/� h."0D//u"0 CTb2

r.h."D/� h."0D// Nu"0


s
dt; (14)

and from the boundedness of the Tbk
in the Sobolev spaces that

sup
Œ0;T �

kvks �Aj"� "0j

Z T

0

ku"0ksC2 dt �Aj"� "0jT sup
Œ0;T �

ku"0ksC2; (15)

that is, thanks to (13),

sup
Œ0;T �

ku"�u"0ks �Aj"� "0j

�
ku0ksC2C

Z T

0

kf ksC2 dt

�
; (16)
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which proves that .u"/ is a Cauchy sequence in C.Œ0;T �IH s.Rn// if one assumes that u0 2H sC2.Rn/

and f 2L1.Œ0;T �IH sC2.Rn//. In this case, u"! u in C.Œ0;T �IH s.Rn// when "! 0, and by passing
to the limit in (12), we obtain that u is a solution of (8). Moreover, by passing to the limit in (13), we get

sup
Œ0;T �

kuks �A

�
ku0ksC

Z T

0

kf ks dt

�
: (17)

Now, if we have only u0 2 H s.Rn/ and f 2 L1.Œ0;T �IH s.Rn//, by density of the smooth functions,
we can take sequences .uj

0
/ in H sC2.Rn/ and .f j / in L1.Œ0;T �IH sC2.Rn// such that kuj

0
�u0ks! 0

and
R T

0 kf
j � f ks dt ! 0, and we can consider the solution uj of (8) associated to the data u

j
0

and f j.
Then, uj �uk is the solution of (8) associated to the data u

j
0
�uk

0
and f j �f k. Hence, thanks to (17),

sup
Œ0;T �

kuj
�uk
ks �A

�
ku

j
0
�uk

0ksC

Z T

0

kf j
�f k

ks dt

�
;

which shows that .uj / is a Cauchy sequence in C.Œ0;T �IH s.Rn// which is then convergent to some
u 2 C.Œ0;T �IH s.Rn//. Of course, u is a solution of (8) and satisfies the estimates (10), (11) and also
(17). This achieves the proof of Theorem 3.1. �

4. The nonlinear equation

Consider the nonlinear Cauchy problem�
@tuD iL uCF.u;rxu; Nu;rx Nu/; t 2 R; x 2 Rn;

u.x; 0/D u0.x/ 2H s.Rn/;
(18)

where the function F.u; v; Nu; Nv/ is sufficiently regular in C�Cn �C�Cn and vanishes to the third order
at 0, the operator L has the form

L D
X
j�k

@2
xj
�

X
j>k

@2
xj
;

with a fixed k 2 f1; 2; : : : ; ng, H s.Rn/ is the usual Sobolev space on Rn, and s D n
2
C 2C %, % > 0.

Using Bony’s linearization formula, (18) is equivalent to�
@tuD iL uCTb1

rxuCTb2
rx NuCTa1

uCTa2
NuCR.u;rxu; Nu;rx Nu/;

u.x; 0/D u0.x/ 2H s.Rn/;
(19)

where R.u;rxu; Nu;rx Nu/ is Bony’s remainder and

b1 D @vF.u;rxu; Nu;rx Nu/; b2 D @ NvF.u;rxu; Nu;rx Nu/;

a1 D @uF.u;rxu; Nu;rx Nu/; a2 D @ NuF.u;rxu; Nu;rx Nu/:

Recall that R.u;rxu; Nu;rx Nu/ 2H 2.s�1/�n
2 .Rn/ if u 2H s.Rn/, s > n

2
C 1. Note also that it follows

from Proposition 2.9 that the bj and aj , j D 1 or 2, are in H s�1.Rn/ if u 2H s.Rn/, s > n
2
C1, and that

kbjks�1 � C.kukL1 ; krukL1/kuks; kajks�1 � C.kukL1 ; krukL1/kuks; j D 1; 2:
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Moreover, by introducing the notation

b0
1 D @vF.u0;rxu0; Nu0;rx Nu0/; b0

2 D @ NvF.u0;rxu0; Nu0;rx Nu0/;

a0
1 D @uF.u0;rxu0; Nu0;rx Nu0/; a0

2 D @ NuF.u0;rxu0; Nu0;rx Nu0/;

the above Cauchy problem is in fact equivalent to�
@tuD iL uCTb0

1
rxuCTb0

2
rx NuCTa0

1
uCTa0

2
NuC zR.u;rxu; Nu;rx Nu/;

u.x; 0/D u0.x/ 2H s.Rn/;
(20)

where

zR.u;rxu; Nu;rx Nu/D Tb1�b0
1
rxuCTb2�b0

2
rx NuCTa1�a0

1
uCTa2�a0

2
NuCR.u;rxu; Nu;rx Nu/: (21)

Clearly, the last Cauchy problem is of the same type as (8), which is studied in Theorem 3.1, and in
fact we are going to apply that theorem to�

@tuD iL uCTb0
1
rxuCTb0

2
rx NuCTa0

1
uCTa0

2
NuCf;

u.x; 0/D u0.x/ 2H s.Rn/:
(22)

This is possible because b0
1

and b0
2

satisfy the assumptions of Theorem 3.1. Indeed, it follows from the
Taylor formula and the assumptions on F that one can write for example

b0
1 D @vF.z0/D u0G1.z0/Crxu0G2.z0/C Nu0G3.z0/Crx Nu0G4.z0/; (23)

where z0 D .u0;rxu0; Nu0;rx Nu0/ and G1, G2, G3 and G4 are sufficiently regular and vanish at 0. Since
s � 1 > n

2
, we know that the Gi.z0/ are in H s�1.Rn/ and it follows from (23) and Lemma 2.4 that b0

1

satisfies the assumption (9) of Theorem 3.1; that is, one can write

b0
1 D

X
�

˛1;�'1;�;

where ˛1;� D kq�b0
1
kH s�1 , '1;� D q�b0

1
=˛1;�, and

P
� q� D 1 is a smooth partition of unity with

q�.x/D q.x��/ and supp.q/�Q�
0

. Note that we have precisely the boundX
�

kq�b0
1kH s�1 � C

�
ku0kH s�1kG1.z0/kH s�1 Ckrxu0kH s�1kG2.z0/kH s�1

CkNu0kH s�1kG3.z0/kH s�1 Ckrx Nu0kH s�1kG4.z0/kH s�1

�
;

with some positive constant C. Of course, the same is true for b0
2

. Moreover, since a0
1

and a0
2

are bounded
(they are in H s�1.Rn/), the paramultiplication operators Ta0

1
and Ta0

2
are bounded in H s.Rn/.

Now, by application of Theorem 3.1 to (22), let us consider the unique solution of (22) with f D 0

and denote it by U.t/u0.
Next, for T > 0, let us define the norms �1.w/, �2.w/, �3.w/ and �.w/ by

�1.w/D sup
Œ0;T �

kwks; �2.w/D kjJ
sC 1

2wkjT ; �3.w/D sup
Œ0;T �

k@twks�2; �.w/D max
1�i�3

�i.w/;
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the space Z by

Z D
˚
w 2 C.Œ0;T �IH s.Rn// W w.x; 0/D u0.x/ and �.w/�K

	
;

where the positive constant K is to be determined later, and, for w 2 C.Œ0;T �IH s.Rn//, the operator ‡
by

‡w.t/D U.t/u0C

Z t

0

U.t � t 0/ zR.w.t 0/;rxw.t
0/; Nw.t 0/;rx Nw.t

0// dt 0:

Let us first remark that ‡w satisfies�
@t‡w D iL‡wCTb0

1
rx‡wCTb0

2
rx‡wCTa0

1
‡wCTa0

2
‡wC zR.w;rxw; Nw;rx Nw/;

‡w.0/D u0;
(24)

and that a fixed point of ‡ will be a solution of (20), hence, a solution of (18). So, in what follows, we
are going to study �.‡w/ in order to prove that ‡ has a fixed point in the complete metric space .Z; �/.
Let us also note that since the life time T will be small, we can assume from now on that T � 1.

We start by applying Theorem 3.1 to (24). It follows from (10) and (11) that

maxf�1.‡w/
2; �2.‡w/

2
g �A.ku0k

2
s C IT .J

s zR;J s‡w//; (25)

where, for simplicity, zRD zR.w;rxw; Nw;rx Nw/ and IT .u; v/ is a finite sum of terms of the form

sup
�2Zn

Z T

0

jhG�u; vij dt;

where G� 2 Op S0
0;0

and the seminorms of its symbol are uniformly bounded with respect to �. Recall
that the constant A depends only on n, s and u0 and we remark right now a fact that will be useful later:
if we let u0 vary in a bounded subset of H s.Rn/, it follows from the linear theory that we can take the
constant A in the above inequality that depends only on that bounded set. The same remark holds for
sup� kG�kL.L2/ or the seminorms of the operators G� uniformly in �.

Thus, we have to estimate uniformly in � the sumZ T

0

jhG�J sTb1�b0
1
rxw;J

s‡wij dt C

Z T

0

jhG�J sTb2�b0
2
rx Nw;J

s‡wij dt

C

Z T

0

jhG�J sTa1�a0
1
w;J s‡wij dt C

Z T

0

jhG�J sTa2�a0
2
Nw;J s‡wij dt

C

Z T

0

jhG�J sR.w;rxw; Nw;rx Nw/;J
s‡wij dt: (26)

First, let us consider the third term. It follows from the preceding remark, the Cauchy–Schwarz inequality,
the Calderón–Vaillancourt theorem and Theorem 2.6 thatZ T

0

jhG�J sTa1�a0
1
w;J s‡wij dt �Aka1� a0

1kL1

Z T

0

kwksk‡wks dt;
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and from Proposition 2.9 that

ka1� a0
1kL1 � C.kwks/kwksCC.ku0ks/ku0ks � C.K/KCC.ku0ks/ku0ks � 2C.K/K:

Hence, Z T

0

jhG�J sTa1�a0
1
w;J s‡wij dt �AT C.K/�1.w/�1.‡w/�AT C.K/�.w/�.‡w/; (27)

with a modified constant C.K/.
The fourth term of (26) is treated in the same manner.
Now, let us estimate the first term of (26). Using a smooth partition of unity 1 D

P
�2Zn �� , with

��.x/D �.x� �/ and � having a compact support, we can write

hG�J sTb1�b0
1
rxw;J

s‡wi

D

X
�

hJ�
1
2 G�J sT��.b1�b0

1
/rxw;J

sC 1
2‡wi

D

X
�

hG�;�hx� �i
�0T��.b1�b0

1
/hx� �i

�0H�hx� �i
��0J sC 1

2w; hx� �i��0J sC 1
2‡wi;

where

G�;� D hx� �i
�0J�

1
2 G�J s

hx� �i��0 ; H� D hx� �i
��0J�s� 1

2rhx� �i�0 :

Next, it follows from the pseudodifferential composition formula and from Lemma 2.3 that G�;� is in
Op S

s� 1
2

0;0
, H� is in Op S

1
2
�s

1;0
, and that their seminorms are uniformly bounded with respect to � and �.

Going back to the first term of (26), these considerations in addition to Lemma 2.12 allow us to estimate
it as follows:Z T

0

jhG�J sTb1�b0
1
rxw;J

s‡wij dt

�

X
�

Z T

0

kG�;�hx� �i
�0T��.b1�b0

1
/hx� �i

�0H�kL.L2/

 J sC 1
2w

hx� �i�0


0

J sC 1
2‡w

hx� �i�0


0

dt

�A
X
�

Z T

0

khx� �i�0T��.b1�b0
1
/hx� �i

�0k
L.H s� 1

2 /

 J sC 1
2w

hx� �i�0


0

J sC 1
2‡w

hx� �i�0


0

dt

�A
X
�

Z T

0

k��.b1� b0
1/kL1

 J sC 1
2w

hx� �i�0


0

J sC 1
2‡w

hx� �i�0


0

dt

�A
X
�

sup
Œ0;T �

k��.b1� b0
1/kL1 kjJ

sC 1
2wkjT kjJ

sC 1
2‡wkjT :

Now, it follows from the Taylor formula that we can write

b1� b0
1 D @vF.z/� @vF.z0/

D .w�u0/G1.z0; z/Crx.w�u0/G2.z0; z/C . Nw� Nu0/G3.z0; z/Crx. Nw� Nu0/G4.z0; z/;
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where, for simplicity, z0 D .u0;rxu0; Nu0;rx Nu0/ and z D .w;rxw; Nw;rx Nw/, and the Gk are functions
of the form Z 1

0

Fk.z0C �.z� z0// d�;

where Fk is a second-order partial derivative of F. Next, it follows from the assumption on F that
Gk.0; 0/D 0 for all k, from which one deduces easily that

k��.b1� b0
1/kL1 � C.k.z0; z/kL1/ k��.z0; z/kL1 k Q��.z0; z/kL1 ;

where Q�� is similar to �� , and, by using the Sobolev injection, that is, Proposition A.5(i), that

k��.b1� b0
1/kL1 � C.k.z0; z/kL1/ k��.z0; z/kH � .Œ0;T �IH s0 / k Q��.z0; z/kH � .Œ0;T �IH s0 /

� C.K/ k��.u0; w/kH � .Œ0;T �IH s0C1/ k Q��.u0; w/kH � .Œ0;T �IH s0C1/;

where � > 1
2

and s0 > n
2

. Thus, to obtain the summability in � of k��.b1 � b0
1
/kL1 , it is sufficient to

prove that k��.u0; w/kH � .Œ0;T �IH s0C1/ is square summable in �. To this end and to get an explicit bound
for the sum, let us apply the interpolation inequality of Proposition A.5. This yields, by taking 1

2
< � < 1,

k��.u0; w/kH � .Œ0;T �IH s0C1/

�Ak��.u0; w/k
1��
L2.Œ0;T �IH s0C2/

k��.u0; w/k
�
H 1.Œ0;T �IH s00 /

�A
�
k��.u0; w/kL2.Œ0;T �IH s0C2/Ck��.u0; w/k

1��
L2.Œ0;T �IH s0C2/

k��@twk
�
L2.Œ0;T �IH s00 /

�
;

where s00 is such that .1� �/.s0C 2/C �s00 D s0C 1, that is, s00 D s0C 2� 1
�

. One can choose s0 and �
such that s00D s�2, that is, such that s0D s�4C 1

�
. In fact, if � D 1

2
C", then s0D n

2
C%�4"=.1C2"/,

which is larger than n
2

if " is small enough. With such a choice, we also have s0C2< s, so, the expressions
k��.u0; w/kL2.Œ0;T �IH s0C2/ and k��@twkL2.Œ0;T �IH s00 / are both square summable in �, which shows that
k��.u0; w/kH � .Œ0;T �IH s0C1/ is itself square summable in � and that, by applying Hölder’s inequality,X
�

k��.u0;w/k
2
H � .Œ0;T �IH s0C1/

�A
X
�

k��.u0;w/k
2
L2.Œ0;T �IH s/

CA

�X
�

k��.u0;w/k
2
L2.Œ0;T �IH s/

�1���X
�

k��@twk
2
L2.Œ0;T �IH s�2/

��
�A

�
T �1.w/

2
C.T �1.w/

2/1�� .T �3.w/
2/�

�
�AT �.w/2;

where, of course, the constant A changes from one inequality to the other. Consequently,X
�

k��.b1� b0
1/kL1 �AC.K/T �.w/2;

which allows us finally to bound the first term of (26) as follows:Z T

0

ˇ̌
hG�J sTb1�b0

1
rxw;J

s‡wi
ˇ̌
dt �AC.K/T �.w/2�2.w/�2.‡w/

�AC.K/K2T �.w/�.‡w/: (28)
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The second term of (26) is treated in the same manner.
Let us now consider the last term of (26). As above, let z stand for .w;rxw; Nw;rx Nw/. As z 2

H s�1.Rn/ D H
n
2
C1C%.Rn/, it follows from Bony’s formula, that is, Theorem 2.10, that R.z/ 2

H 2.s�1/�n
2 .Rn/DH sC%.Rn/ and that

kR.z/ksC% � C.K/kzks�1 � C.K/kwks:

Hence,Z T

0

jhG�J sR.z/;J s‡wij dt �A

Z T

0

kR.z/ksk‡wks dt �AC.K/

Z T

0

kwksk‡wks dt

�AC.K/T �1.w/�1.‡w/�AC.K/T �.w/�.‡w/: (29)

Thus, we have bounded all the terms of (26), which leads to the estimate

maxf�1.‡w/; �2.‡w/g �Aku0ksC
p

AC.K/T �.w/�.‡w/; (30)

where the constants A and C.K/ have changed of course.
It remains to estimate �3.‡w/. Recall that ‡w satisfies the Cauchy problem (24). Hence, applying

Theorem 2.6 yields

k@t‡wks�2 � k‡wksCA.kb0
1kL1 Ckb

0
2kL1/k‡wks�1

CA.ka0
1kL1 Cka

0
2kL1/k‡wks�2CA.kb1� b0

1kL1 Ckb2� b0
2kL1/kwks�1

CA.ka1� a0
1kL1 Cka2� a0

2kL1/kwks�2CkR.z/ks�2

�Ak‡wksCA
�
kb1� b0

1kL1 Ckb2� b0
2kL1

Cka1� a0
1kL1 Cka2� a0

2kL1
�
kwksCkR.z/ks�2: (31)

Now, as before, it follows from Proposition A.5 that

kbj � b0
j kL1 �Akbj � b0

j kH � .Œ0;T �IH s0 / �Akbj � b0
j k

1��
L2.Œ0;T �IH s0C1/

kbj � b0
j k
�
H 1.Œ0;T �IH s00 /

;

where j D 1; 2, � > 1
2

, s0 > n
2

and s00 is such that .1� �/.s0 C 1/C �s00 D s0. In fact, we can take
s00 D s�3, which corresponds to s0 D sC 1

�
�4D n

2
C%C 1

�
�2; so, s0 < s�2 and if � is close enough

to 1
2

, then, s0 > n
2

. Therefore, with such a choice, we have

kbj � b0
j kL1 �Akbj � b0

j kL2.Œ0;T �IH s�1/CAkbj � b0
j k

1��
L2.Œ0;T �IH s�1/

k@tbjk
�
L2.Œ0;T �IH s�3/

:

Next, applying Proposition 2.9 yields

kbj � b0
j k

2
L2.Œ0;T �IH s�1/

D

Z T

0

kbj � b0
j k

2
s�1 dt

�

Z T

0

�
C.kzkL1/kzks�1CC.kz0kL1/kz0ks�1

�2
dt � C.K/2T �1.w/

2;
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and

k@tbjk
2
L2.Œ0;T �IH s�3/

D

Z T

0

k.@vF /
0.z/@tzk

2
s�3 dt �A

Z T

0

k.@vF /
0.z/k2s�2k@tzk

2
s�3 dt

�A

Z T

0

k.@vF /
0.z/k2s�2k@twk

2
s�2 dt �AT C.K/2�3.w/

2;

which imply that

kbj � b0
j kL1 �AC.K/

p
T �1.w/CAC.K/

p
T �1.w/

1���3.w/
�
�AC.K/

p
T �.w/:

Of course, the same inequality holds for kaj �a0
j kL1 , j D 1; 2. Note that we have applied the following

classical lemma:

Lemma 4.1. If s > n
2

and jr j � s, then H r .Rn/:H s.Rn/�H r .Rn/ with continuous injection.

Finally, it follows from Theorem 2.10 and Theorem 2.11 that

kR.z/ks�2 D kR.z/kn
2
C% � kR.z/�R.z0/kn

2
C%CkR.z0/kn

2
C%

� C1.kzknC%
2

; kz0knC%
2

/kz� z0knC%
2

CC2.kz0knC%
2

/kz0knC%
2

� C1.kwknC%
2
C1
; ku0knC%

2
C1
/kw�u0knC%

2
C1
CC2.ku0knC%

2
C1
/ku0knC%

2
C1

� C.K/kw�u0knC%
2
C1
CAku0knC%

2
C1
;

and, using once again Proposition A.5, we obtain

sup
Œ0;T �

kw�u0ks0 �Akw�u0kH � .Œ0;T �IH s0 / �Akw�u0k
1��
L2.Œ0;T �IH s0C1/

kw�u0k
�
H 1.Œ0;T �IH s00 /

�Akw�u0kL2.Œ0;T �IH s0C1/CAkw�u0k
1��
L2.Œ0;T �IH s0C1/

k@twk
�
L2.Œ0;T �IH s00 /

�Akw�u0kL2.Œ0;T �IH s/CAkw�u0k
1��
L2.Œ0;T �IH s/

k@twk
�
L2.Œ0;T �IH s�2/

�A
p

T �1.w/CA
p

T �1.w/
1���3.w/

�
�A
p

T �.w/;

where s0 D nC%
2
C 1< s, � > 1

2
, s00 D nC%

2
C 2� 1

�
and s00 � s� 2 if � is close to 1

2
. Hence,

sup
Œ0;T �

kR.z/ks�2 �Aku0knC%
2
C1
CAC.K/

p
T �.w/:

Thus, we have bounded all the terms of (31) and the result is that

�3.‡w/�A�1.‡w/CAC.K/
p

T �.w/�1.w/CAku0knC%
2
C1
CAC.K/

p
T �.w/

�Aku0ksC
p

AC.K/T �.w/�.‡w/CAC.K/
p

T �.w/; (32)

where, of course, we have used (30). Therefore,

�.‡w/�Aku0ksC
p

AC.K/T �.w/�.‡w/CAC.K/
p

T �.w/

�Aku0ksC
1
2
AC.K/T �.w/C 1

2
�.‡w/CAC.K/

p
T �.w/;
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which leads to

�.‡w/� 2Aku0ksCAC.K/T �.w/C 2AC.K/
p

T �.w/;

that is, an estimate which is, by changing the constants and taking T � 1, of the form

�.‡w/�Aku0ksCAC.K/
p

T �.w/: (33)

This is the main nonlinear estimate. In fact, when u0 ¤ 0, by taking K D 2Aku0ks for example, and
then, T > 0 such that

T �

�
Aku0ks

AC.K/K

�2

D

�
1

2AC.K/

�2

;

it follows from (33) that �.‡w/�K when �.w/�K, that is, ‡.Z/�Z. When u0 D 0, it suffices to
take K > 0 and T � 1=A2C.K/2 to obtain the same result.

Let us now show that ‡ WZ!Z is a contraction mapping. In fact, the arguments are similar to the
above ones and we shall be brief. If w1; w2 2Z, then W D ‡w1�‡w2 satisfies the Cauchy problem�

@tW D iL W CTb0
1
rxW CTb0

2
rxW CTa0

1
W CTa0

2
W C zR.z1/� zR.z2/;

W .0/D 0;
(34)

where, as before, zj D .wj ;rxwj ; Nwj ;rx Nwj /, j D 1; 2. Applying Theorem 3.1 to (34) gives

maxf�1.W /2; �2.W /2g �AIT .J
s. zR.z1/� zR.z2//;J

sW /; (35)

and, consequently, we have to estimate uniformly in � the integralZ T

0

jhG�J s. zR.z1/� zR.z2//;J
sW ij dt:

It follows from (21) that

zR.z1/� zR.z2/D Tb1.z1/�b0
1
r.w1�w2/CTb1.z1/�b1.z2/rw2

CTb2.z1/�b0
2
r. Nw1� Nw2/CTb2.z1/�b2.z2/r Nw2

CTa1.z1/�a0
1
.w1�w2/CTa1.z1/�a1.z2/w2

CTa2.z1/�a0
2
. Nw1� Nw2/CTa2.z1/�a2.z2/ Nw2

CR.z1/�R.z2/; (36)

and we have to estimate the integral corresponding to each term of the above sum. Let us first consider
the terms of the third line in (36). By the same argument as that used to obtain (27), we haveZ T

0

ˇ̌˝
G�J s.Ta1.z1/�a0

1
.w1�w2/CTa1.z1/�a1.z2/w2/;J

sW
˛ˇ̌

dt �AT C.K/�.w1�w2/�.W /;

where we also applied Proposition 2.9 for the second term. Of course, we have the same estimate for the
integral corresponding to the terms of the fourth line in (36).
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As for the terms of the first line in (36), applying an argument similar to that yielding (28), one obtainsZ T

0

ˇ̌˝
G�J s.Tb1.z1/�b0

1
r.w1�w2/CTb1.z1/�b1.z2/rw2/;J

sW
˛ˇ̌

dt

�A;C.K/T
�
�.w1/

2�2.w1�w2/C�.w1�w2/.�.w1/C�.w2//�2.w2/
�
�2.W /

�AC.K/T
�
�.w1/

2
C�.w1/�.w2/C�.w2/

2
�
�.w1�w2/�.W /

�AC.K/K2T �.w1�w2/�.W /;

and the same estimate holds for the terms of the second line in (36).
Last, for the terms of the fifth line in (36), applying Theorem 2.11 and estimating as in (29), we obtainZ T

0

jhG�J s.R.z1/�R.z2//;J
sW ijdt �A

Z T

0

kz1�z2ks�1kW ks dt �AC.K/

Z T

0

kw1�w2kskW ks dt

�AC.K/T �1.w1�w2/�1.W /

�AC.K/T �.w1�w2/�.W /:

Summing up and going back to (35), we can conclude that

maxf�1.W /2; �2.W /2g �AC.K/T �.w1�w2/�.W /:

It remains to estimate �3.W /. Using the fact that W satisfies the Cauchy problem (34) and an argument
similar to that yielding (32), we obtain

�3.W /�A�1.W /CAC.K/
p

T .�.w1/�1.w1�w2/C�.w1�w2/�1.w2//CAC.K/
p

T �.w1�w2/

�A�1.W /CAC.K/
p

T .�.w1/C�.w2//�.w1�w2/CAC.K/
p

T �.w1�w2/

�
p

AC.K/T �.w1�w2/�.W /CAC.K/
p

T �.w1�w2/:

Summing up, we have obtained

�.W /�
p

AC.K/T �.w1�w2/�.W /CAC.K/
p

T �.w1�w2/:

Hence,
�.W /� 1

2
AC.K/T �.w1�w2/C

1
2
�.W /CAC.K/

p
T �.w1�w2/I

that is,
�.W /D �.‡w1�‡w2/�AC.K/

p
T �.w1�w2/;

with modified constants. This clearly implies, if T is taken small enough, that ‡ WZ!Z is a contraction
mapping and, thus, it has a unique fixed point u in Z which is a solution of (18). In fact, this is the
solution of (18) in C.Œ0;T �;H s.Rn// because the above method gives the local uniqueness and we obtain
eventually the full uniqueness by applying a classical bootstrap argument. This proves the first part of
Theorem 1.1.

The second part of Theorem 1.1 concerns the continuity of the solution operator u0 7! u and we
start its proof by remarking that this operator maps bounded subsets of H s.Rn/ into bounded subsets
of C.Œ0;T �;H s.Rn//. In fact, if B is a bounded subset of H s.Rn/, as remarked at the beginning of this
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section, the constant A and the bounds of the seminorms of the operators G� can be taken to depend only
on B; that is, if u0 2 B, the estimates proven above and satisfied by ‡ can be rewritten as

�.‡w/�A.B/ku0ksCA.B/C.K/
p

T �.w/; (37)

�.‡w1�‡w2/�A.B/C.K/
p

T �.w1�w2/; (38)

where A.B/ depends only on n, s and B, which implies that the constants K and T can be chosen
depending only on B. Hence, for all u0 2 B, the associated solutions u are all defined on the same
interval Œ0;T � and are all in the ball of radius K. As for the continuity, let B be a bounded subset of
H s.Rn/, u0;u

�
0
2 B, u;u� the respective associated solutions and w D u� u�. Then, w satisfies the

Cauchy problem�
@tw D iLwCDu�D�u�C zR� zR� D iLwCDwC .D�D�/u�C zR� zR�;

w.x; 0/D u0.x/�u�
0
.x/;

(39)

where

Dw D Tb0
1
rwCTb0

2
r NwCTa0

1
wCTa0

2
Nw; D�w D T

b
0;�

1

rwCT
b

0;�

2

r NwCT
a

0;�

1

wCT
a

0;�

2

Nw;

zRD zR.u;ru; Nu;r Nu/ zR� D zR.u�;ru�; Nu�;r Nu�/:

Of course, the b0
j , a0

j correspond to u0 whereas the b
0;�
j , a

0;�
j correspond to u�

0
. Applying Theorem 3.1

gives us the inequality

maxf�1.w/
2; �2.w/

2
g �A.B/ku0�u�0k

2
s CA.B/IT

�
J s..D�D�/u�C zR� zR�/;J sw

�
: (40)

As it can be seen easily by going back to (21), we can write

zR� zR� D Tb1.u/�b0
1
rwCTb1.u/�b1.u�/ru�CT

b
0;�

1
�b0

1

ru�

CTb2.u/�b0
2
r NwCTb2.u/�b2.u�/r Nu

�
CT

b
0;�

2
�b0

2

r Nu�

CTa1.u/�a0
1
wCTa1.u/�a1.u�/u

�
CT

a
0;�

1
�a0

1

u�

CTa2.u/�a0
2
NwCTa2.u/�a2.u�/ Nu

�
CT

a
0;�

2
�a0

2

Nu�

CR.u;ru; Nu;r Nu/�R.u�;ru�; Nu�;r Nu�/; (41)

and we also have

.D�D�/u� D T
b0

1
�b

0;�

1

ru�CT
b0

2
�b

0;�

2

r Nu�CT
a0

1
�a

0;�

1

u�CT
a0

2
�a

0;�

2

Nu�:

Using the same arguments as before to estimate the integrals corresponding to each of the above terms
yields

maxf�1.w/
2; �2.w/

2
g �A.B/ku0�u�0k

2
s CA1.B/C1.K/T

�
�.w/ku0�u�0ksC�.w/

2
�
; (42)

which becomes, after a change of the constants and assuming T � 1,

maxf�1.w/; �2.w/g �A.B/ku0�u�0ksCA.B/C.K/
p

T �.w/: (43)
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Next, using (39) and similar arguments, one can easily get

�3.w/�A.B/C.K/.ku0�u�0ksC�1.w//;

which becomes, after use of (43) and a possible change of the constants,

�3.w/�A.B/C.K/.ku0�u�0ksC
p

T �.w//:

Hence,
�.w/�A.B/C.K/ku0�u�0ksCA.B/C.K/

p
T �.w/; (44)

which, by taking T � .1=2A.B/C.K//2 (for example), leads to the Lipschitz estimate

�.w/D �.u�u�/� 2A.B/C.K/ku0�u�0ks; (45)

and this achieves the proof of Theorem 1.1.

5. Proof of Proposition 3.2

We shall only give the main steps for the convenience of the reader and refer to [Bienaimé 2014] for the
full details.

Let us start by remarking that it is sufficient to treat the case sD 0. Indeed, if vD J su and v0D J su0,
it is easy to see that u is a solution of (8) if and only if v satisfies�

@tv D iL vCTb1
:rxvCTb2

:rx NvC zC1vC zC2 NvC Qf .x; t/;

v.x; 0/D v0 2L2.Rn/;
(46)

where Qf D J sf and zCk D J sCkJ�sC ŒJ s;Tbk
:rx �J

�s , k D 1 or 2, and, thanks to the paradifferential
calculus, the zCk are bounded operators in L2.Rn/.

The idea of proof is that of [Kenig et al. 1998], inspired by [Takeuchi 1992], and consists in constructing
a pseudodifferential operator C which is bounded and invertible in L2.Rn/ and estimating supŒ0;T � kC uk0

instead of estimating directly supŒ0;T � kuk0. Since d
dt
hC u;C ui D hC @tu;C uiC hC u;C @tui and u is

a solution of (8), we obtain that
d

dt
kC uk20 D hiC L u;C uiC hC Tb1

ru;C uiC hC Tb2
r Nu;C ui

C hC C1u;C uiC hC C2 Nu;C uiC hCf;C ui

C hC u; iC L uiC hC u;C Tb1
ruiC hC u;C Tb2

r Nui

C hC u;C C1uiC hC u;C C2 NuiC hC u;Cf i; (47)

and since
hiL C u;C uiC hC u; iL C ui D 0;

we have finally

d

dt
kC uk20 D 2 Reh.i ŒC;L �CC Tb1

r/u;C uiC 2 RehC Tb2
r Nu;C ui

C 2 RehC u;Cf iC 2 Re
�
hC C1u;C uiC hC C2 Nu;C ui

�
:
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The idea of [Kenig et al. 1998] is precisely to choose C so that the operator i ŒC;L �CC Tb1
r will be

small in some sense. Here, we will make a refinement by writing b1 D b0
1
C ib00

1
with real b0

1
, b00

1
, and by

considering the operator i ŒC;L �C iC Tb00
1
r instead. This has been already used by [Bienaimé 2014]

and essentially allows one to construct a real operator C, that is, with the property C uDC Nu, which will
be convenient in certain arguments. Now, clearly,ˇ̌

2 Re
�
hC C1u;C uiC hC C2 Nu;C ui

�ˇ̌
� 2.A1CA2/kC k

2
L .L2/

kuk20;

and integrating on Œ0;T 0�, T 0 � T, yields

kC u.T 0/k22 � kC u0k
2
0C 2

ˇ̌̌̌
Re
Z T 0

0

h.i ŒC;L �C iC Tb00
1
r/u;C ui dt

ˇ̌̌̌
C 2

ˇ̌̌̌
Re
Z T 0

0

hC Tb0
1
ru;C ui dt

ˇ̌̌̌
C 2

ˇ̌̌̌
Re
Z T 0

0

hC Tb2
r Nu;C ui dt

ˇ̌̌̌
C 2

ˇ̌̌̌
Re
Z T 0

0

hC u;Cf i dt

ˇ̌̌̌
C 2.A1CA2/kC k

2
L .L2/

Z T 0

0

ku.t/k20 dt; (48)

and our task will be to estimate appropriately each of the terms in the right-hand side of this inequality.
The most difficult one is ˇ̌̌̌Z T

0

˝
.i ŒC;L �C iC Tb00

1
r/u;C u

˛
dt

ˇ̌̌̌
and C will be constructed so that this term will be small with respect to some parameters to be defined
later. To this end, let us denote by c the symbol of C and define

p.x; �/D�2�]:rxc.x; �/� c.x; �/db001.x; �/:�; (49)

where �] D .�1; : : : ; �j0
;��j0C1; : : : ;��n/ and db00

1
is such that Tb00

1
D Qb00

1
.x;D/; see (2). The problem

lies essentially in the fact that p.x; �/ is not the true principal symbol of the pseudodifferential (or
paradifferential) operator i ŒC;L �C iC Tb00

1
r since C will be merely in the class OpS0

0;0
. Nevertheless,

the constructed C will allow us to obtain good estimates.
Set c.x; �/D exp. .x; �// and  .x; �/D

P
�2Zn ˛1;��.x; �/, where the ˛1;� are the coefficients of

b1 in its decomposition with respect to the '1;�, see (9), and the �.x; �/ are defined a little later. Note
here that one can assume the ˛1;� real (and even nonnegative) without loss of generality. We can then
write

p.x; �/D c.x; �/
X
�

˛1;�

�
�2�]:rx�.x; �/� Q'1;�.x; �/:�

�
;

and this suggests considering the function

��.x; �/D
1

2

Z 1
0

Im. Q'1;�/.xC s�]; �/:� ds:

One can show that such a function is smooth and satisfies, for all multi-indices ˛; ˇ,

j@˛x@
ˇ

�
��.x; �/j �A˛;ˇ sup

ˇ0�ˇ

kh�ijˇ
0j@˛x@

ˇ0

�
'1;�kL1hx��i

jˇj
h�i�jˇj; (50)
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and, moreover,
�2�]:rx��.x; �/� Im. Q'1;�/.x; �/:� D 0: (51)

See [Kenig et al. 1998; Bienaimé 2014] for the proof. To get an even function, we replace �� by

��.x; �/D
1
2
.��.x; �/C ��.x;��//;

which satisfies the same properties as ��, and then set

�.x; �/D �

�
j�j

R

�
 

�
Rhx��i

h�i

�
��.x; �/;

where � and  are smooth (real) functions on R such that �.t/D 1 if t � 2, �.t/D 0 if t � 1,  .x/D 1

if jt j � 1,  D 0 outside some compact set and R is a large parameter that will be fixed later. One can
easily check that � 2 S0

0;0
and that its seminorms are uniformly bounded with respect to � and R. The

following lemma gives the main properties of the operator C and its symbol

c.x; �/D exp. .x; �//D exp
�X
�

˛1;��.x; �/

�
:

Lemma 5.1. (i) The symbol c.x; �/ is real and even in �.

(ii) The symbol c.x; �/ is in the class S0
0;0

. More precisely, for all ˛; ˇ 2 Nn,

j@˛x@
ˇ

�
c.x; �/j �

A˛;ˇ

Rjˇj
sup

1�j�j˛jCjˇj

sup
�

sup
˛0�˛Iˇ0�ˇ

kh�ijˇ
0j@˛

0

x@
ˇ0

�
'1;�k

j
L1
�

A˛;ˇ

Rjˇj
sup
�
�j˛jCjˇj.'1;�/:

(iii) There exist N 2 N and A> 0 such that, for all R� 1 and all v 2L2.Rn/,

kC vk0 �A sup
�
�N .'1;�/kvk0;

kvk0 �A sup
�
�N .'1;�/kC vksC

A

R
sup
�
�N .'1;�/

2
kvks:

(iv) The symbol

p.x; �/D�2�]:rxc.x; �/� c.x; �/db001.x; �/:�

is in S0
0;0

and its seminorms (of order �M ) are estimated by AR sup� �MC1.'1;�/.

Even if here the function '1;� is more general, the proof follows the same lines as that of [Bienaimé
2014, Lemmas 3.5 and 3.6] and we refer to it. These properties are sufficient to allow us to get the
following estimates:

Lemma 5.2. Let b.x; �/ be a symbol satisfying

b.x; �/D
X
�2Zn

˛�'�.x; �/; '� 2 S0
1;0;

X
�

j˛�j �A0;

x 7! '�.x; �/ is rapidly decreasing in x��;

(52)
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and let Qu stand for u or Nu. Then, there exist N 2N and A> 0 such that, for all T > 0, T 0 2 Œ0;T �, R� 1

and every H D h.x;D/ in Op S0
0;0

, the following estimates hold true:

(i)
Z T 0

0

ˇ̌
h.C Tbr � .c Qb/.x;D/r/ Qu;Hui

ˇ̌
dt �

A

R
khkC N sup

�
�N .'1;�/ sup

�
k'�kC N kjJ

1
2 ukj2T .

(ii)
Z T 0

0

ˇ̌
h.i ŒC;L �C iC Tb00

1
r/u;Hui

ˇ̌
dt �AkhkC N sup

�
�N .'1;�/

�
RT sup

Œ0;T �

kuk20C
1

R
kjJ

1
2 ukj2T

�
.

(iii)
Z T 0

0

ˇ̌
hŒC;J sTbJ�s

r� Qu;Hui
ˇ̌
dt �AkhkC N sup

�
�N .'1;�/ sup

�
k'�kC N

�
T sup
Œ0;T �

kuk20C
kjJ

1
2 ukj2

T

R

�
.

Remark. The case s ¤ 0 in (iii) is needed in the Appendix.

Proof. Using the pseudodifferential calculus, we can write the symbol e.x; �/ of the operator E D

C Tbr � .c Qb/.x;D/r as e D
P
� ˛�e�, where e� is given by

e�.x; �/D
1

.2�/n

nX
jD1

Z 1

0

Z
e�iy�@�j c.x; �C t�/@xj Q'�.xCy; �/:� dy d� dt; (53)

and we first remark that e� 2Op S1
0;0

and that using the fast decrease of Q'�.x; �/ in x�� and integrations
by parts yields the fact that e�.x; �/ is itself rapidly decreasing in x��. Next, setting E� D e�.x;D/,
we can write

hE Qu;Hui D
X
�

˛�hE� Qu;Hui D
X
�

˛�hH
�E� Qu;ui

D

X
�

˛�
˝
hx��i�0 zH hx��i��0hx��i�0 zE�hx��i

�0 Qu�;u�
˛
;

where zH D J�
1
2 H�J

1
2 , zE� D J�

1
2 E�J�

1
2 and u� D hx � �i

��0J
1
2 u. Now, it follows from the

pseudodifferential calculus (Theorem 2.1) that zH and zE� are in OpS0
0;0

and that we can estimate the
seminorms of zH and zE� by those of H and E� respectively. Moreover, it is easy to see that the symbol
of zE� inherits the fast decrease in x � � which implies, by virtue of Lemma 2.3, that the operator
hx��i�0 zE�hx��i

�0 is also in OpS0
0;0

and that its seminorms are estimated by those of E� uniformly
in �. The same property holds for the operator hx��i�0 zH hx��i��0 , as it follows also from Lemma 2.3.
This allows us to apply the Calderón–Vaillancourt theorem to obtainZ T 0

0

jhE Qu;Huijdt �
X
�

j˛�j

Z T 0

0

khx��i�0 zH hx��i��0kL .L2/khx��i
�0 zE�hx��i

�0kL .L2/ku�k
2
0 dt

�AkhkC N1 sup
�

X
j˛jCjˇj�N1

khx��i2�0@˛x@
ˇ

�
e�kL1kjJ

1
2 ukj2T

�
A

R
khkC N1 sup

�
�N2

.'1;�/sup
�
k'�kC N2kjJ

1
2 ukj2T ; (54)

which proves (i).
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To prove (ii), note first that the symbol of i ŒC;L � is given by

�2�]:rxc.x; �/C .Lxc/.x; �/

and that of iC Tb00
1
r can be written as

ic.x; �/ Qb001.x; �/:i�C
1

.2�/n

nX
jD1

Z 1

0

Z
e�iy�@�j c.x; �C t�/@xj

Qb001.xCy; �/:i� dy d� dt:

Thus, the symbol of the operator i ŒC;L �C iC Tb00
1
r is given by

.Lxc/.x; �/Cp.x; �/C ie.x; �/;

where p.x; �/ is given by (49), e D
P
� ˛�e� and e�.x; �/ is given by (53) with ˛� D ˛1;� and

'� D Im.'1;�/. Hence, applying Lemma 5.1 and the Calderón–Vaillancourt theorem yields the estimateZ T 0

0

ˇ̌˝
..Lxc/.x;D/Cp.x;D//u;Hu

˛ˇ̌
dt �ART khkC N1 sup

�
�N1

.'1;�/
2 sup
Œ0;T �

kuk20;

and applying part (i) gives the estimateZ T 0

0

jh.ie.x;D/u;Huij dt �
A

R
khkC N2 sup

�
�N2

.'1;�/
2
kjJ

1
2 ukj2T ;

which proves (ii).
To prove (iii), we first treat the case sD 0 and note that the symbol of ŒC;Tbr�DC Tbr�TbrC can

be written simply as e.x; �/� e0.x; �/, where e.x; �/ is the symbol of the operator E studied in (i) and

e0.x; �/D
1

.2�/n

nX
jD1

Z 1

0

Z
e�iy�@�j .

Qb.x; �C t�/:.�C t�//@xj c.xCy; �/ dy d� dt:

Since @�j . Qb.x; �/:�/ is of order 0, the symbol e0.x; �/ is in fact in S0
0;0

and the seminorms of e0 are
estimated by a product of seminorms of Qb and c. Hence, by using the decomposition of b as above, we getZ T 0

0

jhe0.x;D/ Qu;Huij dt �AT khkC N1 sup
�
k'�kC N2 sup

�
�N2

.'1;�/ sup
Œ0;T �

kuk20;

which, together with (54), yields (iii) in the case s D 0. If s ¤ 0, it follows from the pseudodifferential
and paradifferential calculi that J sTbJ�s D Tb# , where b# D

P
� ˛� � and  � is given by

 �.x; �/D
1

.2�/n

Z
e�iy�

h�C �is'�.xCy; �/h�i�s dy d�;

which implies that  � is also rapidly decreasing in x�� and that it is in S0
1;0

with seminorms estimated
by those of '�. This shows that the case s ¤ 0 follows from the case s D 0 and achieves the proof of
Lemma 5.2. �
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Lemma 5.3. Let b be as in the preceding lemma. Then, there exist N 2 N and A> 0 such that, for all
T > 0, T 0 2 Œ0;T � and R� 1, the following estimates hold true:

(i) If b.x; �/ is even in � , thenZ T 0

0

jhC Tbr Nu;C uij dt �A sup
�
�N .'1;�/ sup

�
k'�kC N

�
T sup

0�t�T

kuk20C
1

R
kjJ

1
2 ukjT

�
:

(ii) If b is real, thenˇ̌̌̌
Re
Z T 0

0

hC Tbru;C ui dt

ˇ̌̌̌
�A sup

�
�N .'1;�/ sup

�
k'�kC N

�
T sup

0�t�T

kuk20C
1

R
kjJ

1
2 ukjT

�
:

Proof. Since C is real, we can write

hC Tbr Nu;C ui D hTbrC Nu;C uiC hŒC;Tbr� Nu;C ui D hTbrC u;C uiC hŒC;Tbr� Nu;C ui:

Now, the integral corresponding to hŒC;Tbr� Nu;C ui is treated by Lemma 5.2(iii). As for the other term, we
note that it is of the form hTbr Nv; vi, so it suffices to study such a term. Since b.x; �/ is even in � , we have

hTbr Nv; vi D hv;Tbr Nvi D h Nv;T Nbrvi D h.T Nbr/
�
Nv; vi;

and it follows from the pseudodifferential (or paradifferential) calculus that

.T Nbr/
�
D�Tbr CE1; (55)

where E1 is of type S0
1;0

and its seminorms (up to some finite order) are estimated by those of b. Hence,

hTbr Nv; vi D �hTbr Nv; viC hE1 Nv; vi;

and hTbr Nv; vi D
1
2
hE1 Nv; vi, that is, hTbrC u;C ui D 1

2
hE1C u;C ui, and (i) follows just by applying

the Calderón–Vaillancourt theorem and Lemma 5.1.
To prove (ii), we write as before

hC Tbru;C ui D hTbrC u;C uiC hŒC;Tbr�u;C ui;

and then apply Lemma 5.2(iii) to reduce the problem to the study of RehTbrC u;C ui. Now, it follows
from (55) and the fact that b is real that we have

2 RehTbrC u;C ui D hTbrC u;C uiC hC u;TbrC ui D h.Tbr C .Tbr/
�/C u;C ui D hE1C u;C ui

and the proof ends like that of (i). The lemma is thus proved. �

It is clear now that applying Lemmas 5.1, 5.2 and 5.3 to the inequality (48) yields Proposition 3.2.

6. Proof of Proposition 3.3

By the same argument as that used in the beginning of the proof of Proposition 3.2, it is sufficient to
establish the first estimate in the case s D 0.
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The proof follows the same ideas as that of [Kenig et al. 1998; Bienaimé 2014]. The difference is that
here the Tbk

, k D 1; 2, are general paradifferential operators of order 0 instead of merely multiplication
or paramultiplication operators.

Since
@tuD iL uCTb1

:ruCTb2
:r NuCC1uCC2 NuCf;

@t NuD�iL NuCT Nb1
:r NuCT Nb2

:ruCC 1 NuCC 2uC Nf;

where the operators C k are defined by C kuD Ck Nu, one starts by remarking that the vector unknown
w D

�
u
Nu

�
satisfies the system

@tw D iHwCBwCCwCF; (56)

where

H D

�
L 0

0 �L

�
; B D

�
Tb1
r Tb2

r

T Nb2
r T Nb1

r

�
; C D

�
C1 C2

C 1 C 2

�
; F D

�
f
Nf

�
;

and the idea then is to estimate the expression h‰w;wi by means of Gårding’s inequality for systems via
Doi’s argument. Here,

‰ D

�
‰0 0

0 �‰0

�
;

and ‰0 is an appropriate pseudodifferential operator in OpS0
1;0

to be chosen a little later. By using (56),
one gets easily

@t h‰w;wi D h‰@tw;wiC h‰w; @twi

D
˝
.i Œ‰;H �CB�‰C‰BCC �‰C‰C /w;w

˛
Ch‰F; wiC h‰w;Fi; (57)

and, as one can check also easily, the principal symbol of the first-order operator

i Œ‰;H �CB�‰C‰BCC �‰C‰C

is given by

M.x; �/D

 
2�]:rx 0.x; �/�2�: Im.db1/.x; �/ 0.x; �/ 2i�:db2.x; �/ 0.x; �/

�2i�:
NQb2.x; �/ 0.x; �/ 2�]:rx 0.x; �/�2�: Im.db1/.x; �/ 0.x; �/

!
;

where  0 denotes the symbol of ‰0. Now, for  0, we shall make the following choice which follows the
idea of [Doi 1994]. Define

p.x; �/D h�i�1
nX

jD1

�
]
j h.xj / with h.t/D

Z t

0

hsi�2�0 ds;

p�.x; �/D p.x��; �/CA0

X
�02Zn

.j˛1;�0 jC j˛2;�0 j/p.x��
0; �/;

 0.x; �/D  �.x; �/D exp.�p�.x; �//:

Here, the ˛1;�0 and ˛2;�0 are the coefficients of b1 and b2 in their decompositions with respect to the
'1;�0 and '2;�0 respectively, see (9), A0 is a large constant that will be determined later and � 2 Zn
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is fixed for the moment. However, from now on, we shall write ‰� and  � instead of ‰0 and  0 to
emphasize the dependance on �. First, note that p� and  � are in S0

1;0
and that their seminorms are

uniformly bounded with respect to �. Next, with these notations, the symbol M.x; �/ can be rewritten as

M.x; �/D 2 �.x; �/

 
��]:rxp�.x; �/� �: Im.db1/.x; �/ i�:db2.x; �/

�i�:
NQb2.x; �/ ��]:rxp�.x; �/� �: Im.db1/.x; �/

!
:

Consider now the matrix Z.x; �/D�M.x; �/�V .x; �/, where

V .x; �/D
2 �.x; �/j�j

2

h�ihx��i2�0

�
1 0

0 1

�
:

Z.x; �/ is a matrix of symbols in S1
1;0

and, in order to apply Gårding’s inequality, we are going to show
that, for large � , it is a nonnegative matrix, that is, hZ.x; �/v; vi � 0 for all v 2 C2. In fact, Z.x; �/ is of
the form

2 �.x; �/

�
˛ ˇ
Ň ˛

�
;

where

˛ D �]:rxp�.x; �/�
j�j2

h�ihx��i2�0
C �: Im.db1/.x; �/ and ˇ D�i�:db2.x; �/;

and it is sufficient to show that the two eigenvalues ˛˙ jˇj of
�˛
Ň
ˇ
˛

�
are nonnegative, or, equivalently,

that ˛ � jˇj, that is,

�]:rxp�.x; �/�
j�j2

h�ihx��i2�0
C �: Im.db1/.x; �/� j� i�:db2.x; �/j: (58)

Now, the main reason for the choice of the symbol p� is that it allows to get the following inequality:

�]:rxp�.x; �/D �
]:rxp.x��; �/CA0

X
�02Zn

.j˛1;�0 jC j˛2;�0 j/�
]:rxp.x��0; �/

D

nX
jD1

�2
j

h�ihxj ��j i
2�0
CA0

X
�02Zn

.j˛1;�0 jC j˛2;�0 j/

nX
jD1

�2
j

h�ihxj ��
0
j i

2�0

�
j�j2

h�ihx��i2�0
CA0

X
�02Zn

.j˛1;�0 jC j˛2;�0 j/
j�j2

h�ihx��0i2�0
I (59)

that is,

�]:rxp�.x; �/�
j�j2

h�ihx��i2�0
�A0

X
�02Zn

.j˛1;�0 jC j˛2;�0 j/
j�j2

h�ihx��0i2�0
: (60)

Besides, we have

dbk.x; �/D
X
�02Zn

˛k;�0 Q'k;�0.x; �/; k D 1; 2;
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and it follows from Lemma 2.8 that

hx��0i2�0 j Q'k;�0.x; �/j �A.n/;

with a constant A.n/ which depends only on the dimension. Hence,

ji�:dbk.x; �/j �A.n/
X
�02Zn

j˛k;�0 j
j�j

hx��0i2�0
�
p

2A.n/
X
�02Zn

j˛k;�0 j
j�j2

h�ihx��0i2�0
; k D 1; 2;

if j�j � 1, which, together with (60), implies (58) by taking A0 �
p

2A.n/. Thus, the matrix symbol
Z.x; �/ is nonnegative, and since it is also hermitian, Z.x; �/CZ.x; �/� is also nonnegative and we can
apply Gårding’s inequality for systems:

RehZ.x;D/w;wi � �A
�
1C sup
j˛jCjˇj�N

sup
k;�0
kh�ijˇj@˛x@

ˇ

�
'k;�0kL1

�
kwk20; (61)

where the constant A depends only on A1, A2 and the dimension n and the integer N depends only on
the dimension n. Now, going back to (57), we can rewrite it as

@t h‰w;wi D
˝
.�Z.x;D/�V .x;D/CE/w;w

˛
Ch‰F; wiC h‰w;Fi;

where E is a bounded operator in L2.Rn/, and integrating it on Œ0;T � yieldsZ T

0

hV .x;D/w;wi dt D h‰w.0/; w.0/i � h‰w.T /; w.T /i

�

Z T

0

hZ.x;D/w;wi dt C

Z T

0

hEw;wi dt C

Z T

0

h‰F; wi dt C

Z T

0

h‰w;Fi dt:

Taking the real part, using (61) and estimating, we obtain

Re
Z T

0

hV .x;D/w;wi dt

�A sup
Œ0;T �

kwk20CAT
�
1C sup

k;�0
�N .'k;�0/

�
sup
Œ0;T �

kwk20C

ˇ̌̌̌Z T

0

h‰F; wi dt

ˇ̌̌̌
C

ˇ̌̌̌Z T

0

h‰w;Fi dt

ˇ̌̌̌
;

and since  �.x; �/� exp.�A/ and, for j�j � 1,

V .x; �/� e�A h�i

hx��i2�0

�
1 0

0 1

�
;

a second application of Gårding’s inequality gives us

Re
Z T

0

˝
J

1
2 hx��i�2�0J

1
2w;w

˛
dt

�A sup
Œ0;T �

kwk20
�
1CT CT sup

k;�0
�N .'k;�0/

�
C

ˇ̌̌̌Z T

0

h‰F; wi dt

ˇ̌̌̌
C

ˇ̌̌̌Z T

0

h‰w;Fi dt

ˇ̌̌̌
;

with a modified constant A. Since we can write

h‰F; wi D h‰�f;ui � h‰�f;ui
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and a similar expression for h‰w;Fi, by going back to u, we get eventuallyZ T

0

khx��i��0J
1
2 uk20 dt �A sup

Œ0;T �

kuk20
�
1CTCT sup

k;�0
�N .'k;�0/

�
C

Z T

0

jh‰�f;uijdtC

Z T

0

jh‰�f;uijdtC

Z T

0

jh‰��f;uijdtC

Z T

0

jh‰��f;uijdt;

which yields the first part of Proposition 3.3 by taking the supremum over all � 2 Zn.
As for the second estimate of Proposition 3.3, we first remark that, since C is real, C u satisfies

@tC uD iL C uCTb0
1
:rC uCTb2

:rC uCC1C uCC2C uC Qf;

where k D 1; 2, b1 D b0
1
C ib00

1
with real b0

1
, b00

1
, and

Qf D .i ŒC;L �CC Tib00
1
r/uC ŒC;Tb0

1
:r�uC ŒC;Tb2

:r� NuC ŒC;C1�uC ŒC;C2� NuCCf:

Hence, we can apply the first estimate of Proposition 3.3 to C u obtaining

kjJ sC 1
2 C ukj2T �A

�
1CT CT sup

k;�

�N .'k;�/
�

sup
Œ0;T �

kC uk2s C

4X
jD1

sup
�

Z T

0

jh‰j ;�J s Qf ;J sC uij dt; (62)

where ‰j ;� D  j .x��;D/. Thus, we are led to estimate essentially the termsZ T

0

ˇ̌˝
J s.i ŒC;L �CC Tib00

1
r/u; ‰�j ;�J sC u

˛ˇ̌
dt

C

Z T

0

ˇ̌˝
J s ŒC;Tb0

1
:r�/u; ‰�j ;�J sC u

˛ˇ̌
dt C

Z T

0

ˇ̌˝
J s ŒC;Tb2

:r� Nu; ‰�j ;�J sC u
˛ˇ̌

dt:

Indeed, since the operators ‰j ;�J s ŒC;C1�J
�s and ‰j ;�J s ŒC;C2�J

�s are bounded in L2 (and so is
J sC J�s), the corresponding terms are easily estimated by

AT sup
�
�N .'1;�/ sup

0�t�T

ku.t/k2s :

We need now for the other terms the following simple lemma:

Lemma 6.1. If a 2 Sm
0;0

, then, for any real s,

J sa.x;D/J�s
D a.x;D/C e.x;D/;

where e 2 Sm�1
0;0

and the seminorms of e are bounded by those of a.

Proof. It suffices to apply the pseudodifferential calculus and to remark that

e.x; �/D
1

.2�/n

nX
jD1

Z 1

0

Z
e�iy�@�j .h�C t�is/@xj a.xCy; �/h�i�s dy d� dt: �
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We apply the lemma successively with

a.x;D/D i ŒC;L �CC Tib00
1
r;

a.x;D/D ŒC;Tb0
1
:r�;

a.x;D/D ŒC;Tb2
:r�:

Since here mD 1, we obtain that at each time the operator e.x;D/ is bounded in L2 and that its operator
norm is estimated by the seminorms of a. Next, it follows from the pseudodifferential calculus that
‰�j ;� 2 OpS0

1;0
and their seminorms are uniformly bounded with respect to �, and, consequently, also

that ‰�j ;�J sC J�s 2 OpS0
0;0

and their seminorms are uniformly estimated by those of C . Hence, the
integrals corresponding to the operators e.x;D/ are easily estimated by

ART sup
k;�

�N .'k;�/ sup
0�t�T

ku.t/k2s :

Thus, it remains to estimate the sumZ T

0

ˇ̌˝
.i ŒC;L �CC Tib00

1
r/J su; ‰�j ;�J sC u

˛ˇ̌
dt

C

Z T

0

ˇ̌˝
ŒC;Tb0

1
:r�J su; ‰�j ;�J sC u

˛ˇ̌
d t C

Z T

0

ˇ̌˝
ŒC;Tb2

:r�J s
Nu; ‰�j ;�J sC u

˛ˇ̌
dt;

to which we apply Lemma 5.2 with S D‰�j ;�J sC J�s. We obtain eventually

4X
jD1

sup
�

Z T

0

jh‰j ;�J s Qf ;J sC uij dt

�

4X
jD1

sup
�

Z T

0

jh‰j ;�J sCf;J sC uij dt CA sup
k;�

�N .'k;�/
�
RT sup

Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
;

which, together with (62), implies the second estimate of Proposition 3.3.

Appendix

Proof of Lemma 3.4. We need the following general estimate:

Lemma A.1. Let b satisfy

b.x; �/D
X
�2Zn

˛�'�.x; �/;
X
�

j˛�j �A0;

supp.x 7! '�.x; �//�Q��; sup
�

sup
jˇj�N0

kh�ijˇj@
ˇ

�
'�kL1 <1;

(63)

where N0 is a sufficiently large integer, and let Qu stand for u or Nu. Then, there exist N 2 N and A > 0

such that, for all T > 0 and every S1 D s1.x;D/, S2 D s2.x;D/ in Op S0
0;0

, we haveZ T

0

jhS1J sTbJ�s
r Qu;S2uij dt �Aks1kC N ks2kC N sup

�
sup
jˇj�N

kh�ijˇj@
ˇ

�
'�kL1kjJ

1
2 ukj2T :
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Proof. One can write

hS1J sTbJ�s
r Qu;S2ui

D

X
�

˛�hS1J sT'�J�s
r Qu;S2ui D

X
�

˛�hS
�
2 S1J sT'�J�s

r Qu;ui

D

X
�

˛�
˝
hx��i�0J�

1
2 S�2 S1J sT'�J�s

rJ�
1
2 hx��i�0hx��i��0J

1
2 Qu; hx��i��0J

1
2 u
˛

D

X
�

˛�
˝
S�hx��i

�0T'�hx��i
�0J� Qu�;u�

˛
where

S�Dhx��i
�0J�

1
2 S�2 S1J s

hx��i��0; J�Dhx��i
��0J�s

rJ�
1
2 hx��i�0; u�Dhx��i

��0J
1
2 u:

Now, it follows from the pseudodifferential calculus (Theorem 2.1) and from Lemma 2.3 that S� and
J� are in Op S s� 1

2
0;0

and Op S
1
2
�s

0;0
respectively, and that we can estimate their seminorms uniformly in �.

Next, it follows from Lemma 2.12 that the operator norm of hx��i�0T'�hx��i
�0 acting in H s� 1

2 .Rn/

is estimated by supjˇj�N kh�i
jˇj@

ˇ

�
'�kL1 uniformly in �. Hence, the application of the Cauchy–Schwarz

inequality and the Calderón–Vaillancourt theorem allows us to obtainZ T

0

jhS1J sTbJ�s
r Qu;S2uij dt

�

X
�

j˛�jkS�kL .H s�1=2;L2/khx��i
�0T'�hx��i

�0kL .H s�1=2/kJ�kL .L2;H s�1=2/

Z T

0

ku�k
2
0 dt

�Aks1kC N ks2kC N sup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
'�kL1kjJ

1
2 ukj2T ;

which proves the lemma. �
Now, let us write Tbk�bk;m

D Tbk�bk;m0
CTbk;m0�bk;m

and apply Lemma A.1 first to b D bk � bk;m0

with S1 D S2 DCm. We obtainZ T

0

jhCmJ sTbk�bk;m0
r Qu;CmJ suij dt

D

Z T

0

jhCmJ sTbk�bk;m0
J�s
r Qv;Cmvij dt

�A sup
�
�N .'1;�;m/

2 sup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
.'k;��'k;�;m0/kL1kjJ

1
2 vkj2T ;

�A
m2N 2

m0�
sup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
'k;�kC�kjJ

1
2
Csukj2T �A

m2N 2

m0�
kjJ

1
2
Csukj2T ;

where v D J su and � D inff%; 1g. As for the study of the other term, we write

hCmJ sTbk;m0�bk;m
r Qu;CmJ sui

D hCmJ sTbk;m0�bk;m
J�s
r Qv;Cmvi

D hJ sTbk;m0�bk;m
J�s
rCm Qv;CmviC hŒCm;J

sTbk;m0�bk;m
J�s
r� Qv;Cmvi; (64)
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and then apply Lemma 5.2(iii) to the second term in (64) to obtainZ T

0

jhŒCm;J
sTbk;m0�bk;m

J�s
r� Qv;Cmvij dt

�A sup
�
�N .'1;�;m/

2 sup
�
k'k;�;m0 �'k;�;mkC N

�
T sup
Œ0;T �

kvk20C
1

R
kjJ

1
2 vkj2T

�
�Am02N 2

.m0N CmN /
�
T sup
Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
�Am02N 2CN

�
T sup
Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
:

Finally, recalling that Cm NuDCmu and applying Lemma A.1 to the first term in (64) with S1 D S2 D Id,
we getZ T

0

jhJ sTbk;m0�bk;m
J�s
rCm Qv;Cmvijdt

�Asup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
.'k;�;m0�'k;�;m/kL1kjJ

1
2 Cmvkj

2
T

�A
�

sup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
.'k;�;m0�'k;�/kL1Csup

�
sup
jˇj�N

kh�ijˇj@
ˇ

�
.'k;��'k;�;m/kL1

�
kjJ

1
2 Cmvkj

2
T

�

�
A

m0�
C

A

m�

�
sup
�

sup
jˇj�N

kh�ijˇj@
ˇ

�
'k;�kC�kjJ

1
2 Cmvkj

2
T

�

�
A

m0�
C

A

m�

�
kjJ

1
2 Cmvkj

2
T �

A

m�
kjJ

1
2 Cmvkj

2
T :

It remains to compare kjJ
1
2 Cmvkj

2
T
D kjJ

1
2 CmJ sukj2

T
with kjJ sC 1

2 Cmukj2
T

. Of course, one can write
J

1
2 CmJ suDJ sC 1

2 J�sCmJ su and it follows from Lemma 6.1 that J�sCmJ s�CmDEm is in Op S�1
0;0

and the seminorms of Em are bounded by those of Cm. Hence, since J sC 1
2 EmJ�s is in Op S

� 1
2

0;0
,

kjJ sC 1
2 Emukj2T D sup

�

Z T

0

Z
jhx��i��0J sC 1

2 Emuj2 dx dt

�

Z T

0

Z
jJ sC 1

2 Emuj2 dx dt

�A sup
�
�N .'1;�;m/

2

Z T

0

Z
jJ suj2 dx dt �AT m2N 2

sup
Œ0;T �

kuk2s

and
kjJ

1
2 Cmvkj

2
T � 2kjJ sC 1

2 Cmukj2T C 2AT m2N 2

sup
Œ0;T �

kuk2s ;

which implies thatZ T

0

jhJ sTbk;m0�bk;m
J�s
rCm Qv;Cmvij dt �

A

m�
kjJ sC 1

2 Cmukj2T CAT m2N 2

sup
Œ0;T �

kuk2s ;
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where, of course, the constant A has changed. Summing up, we have proven thatZ T

0

jhCmJ sTbk�bk;m
r Qu;CmJ suij dt

�
Am2N 2

m0�
kjJ sC 1

2 ukj2T CAm02N 2CN
�
T sup
Œ0;T �

kuk2s C
1

R
kjJ sC 1

2 ukj2T

�
C

A

m�
kjJ sC 1

2 Cmukj2T I (65)

that is, we have proven Lemma 3.4.

Anisotropic Sobolev spaces. There are several notions of anisotropic Sobolev space in the literature.
However, we have not been able to find a reference with the results we need in this paper. Therefore, we
are going to define our spaces and next prove the results we need.

We denote by .x;y/ the variable in Rn �Rn0 and by .�; �/ its Fourier dual variable.

Definition A.2. If s; s0 2 R, we denote by H s;s0.Rn � Rn0/ the space of tempered distributions u in
Rn �Rn0 such that the integral Z

Rn�Rn0
h�i2s

h�i2s0
j Ou.�; �/j2 d� d� (66)

is finite.

We call this space an anisotropic Sobolev space. Note that this is different, for example, from the
classical space H r;s of [Lions and Magenes 1968]. Clearly, H s;s0.Rn �Rn0/ is a Hilbert space when it is
provided with the obvious scalar product. We also denote by kuks;s0 the norm of u in this space and, of
course, it is equal to the square root of (66).

Additionally, note that the space H s;s0.Rn � Rn0/ in the above definition coincides with the space
H s.Rn;H s0.Rn0// and, by symmetry, with H s0.Rn0;H s.Rn//.

In this paper, we need the following two results on anisotropic Sobolev spaces. The first one is the
Sobolev injection:

Proposition A.3. If s > n
2

and s0 > n0

2
, then H s;s0.Rn�Rn0/�L1.Rn�Rn0/ with continuous injection.

Proof. If u 2H s;s0, then

Ou.�; �/D h�i�s
h�i�s0 :h�ish�is

0

Ou.�; �/I

hence, Ou 2 L2:L2 � L1 and kukL1 � Ck OukL1 � C 0kuks;s0 , where C and C 0 are constants which are
independent of u. �

The other result is an interpolation inequality:

Proposition A.4. If s D .1� �/s1C �s2 and s0 D .1� �/s0
1
C �s0

2
, where � 2 Œ0; 1�, s1; s2; s

0
1
; s0

2
2 R,

then, for any u 2H s1;s
0
1.Rn �Rn0/\H s2;s

0
2.Rn �Rn0/, we have

kuks;s0 � kuk
1��
s1;s
0
1

kuk�
s2;s
0
2

:
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Proof. Indeed, we have

kuk2s;s0 D

Z
Rn�Rn0

h�i2.1��/s1C2�s2h�i2.1��/s
0
1
C2�s0

2 j Ou.�; �/j2 d� d�

D

Z
Rn�Rn0

�
h�is1h�is

0
1 j Ou.�; �/j

�2.1��/�
h�is2h�is

0
2 j Ou.�; �/j

�2�
d� d�

�

�Z
Rn�Rn0

h�i2s1h�i2s0
1 j Ou.�; �/j2d�d�

�1���Z
Rn�Rn0

h�i2s2h�i2s0
2 j Ou.�; �/j2 d� d�

��
D kuk

2.1��/

s1;s
0
1

kuk2�
s2;s
0
2

;

where we have applied Hölder’s inequality. �

Actually, we need the above results for anisotropic Sobolev spaces on domains � in Rn �Rn0, and
since the theory of such spaces is less simple, we shall restrict ourselves to the case that arises in this
paper, that is, the case �D I �Rn where I is a bounded interval in R, and only to the case s � 0. First,
let us set, by definition,

H s;s0.�/DH s.I;H s0.Rn//;

in the sense that u.x;y/ is in H s;s0.�/ if and only if

@˛xJ s0

y u 2L2.�/ for j˛j � s

and Z
I�I�Rn

j@˛xJ s0

y u.x;y/� @˛xJ s0

y u.x0;y/j2

jx�x0j1C2�
dx dx0 dy <1 if 0< � D s� Œs� < 1:

Of course, the norm in this space is defined by

kuk2s;s0;� D
X
j˛j�s

k@˛xJ s0

y uk2
L2.�/

if s 2 N;

and

kuk2s;s0;� D
X
j˛j�Œs�

k@˛xJ s0

y uk2
L2.�/

C

Z
I�I�Rn

j@˛xJ s0

y u.x;y/� @˛xJ s0

y u.x0;y/j2

jx�x0j1C2�
dx dx0 dy otherwise.

Now, we can prove for H s;s0.�/ the results analogous to the above ones.

Proposition A.5. (i) If s > 1
2

and s0 > n
2

, then H s;s0.�/�L1.�/ with continuous injection.

(ii) If s D .1� �/s1C �s2 and s0 D .1� �/s0
1
C �s0

2
, where � 2 Œ0; 1�, s1 � 0, s2 � 0, s0

1
; s0

2
2 R, then

there exists a constant C such that, for any u 2H s1;s
0
1.�/\H s2;s

0
2.�/, we have

kuks;s0;� � Ckuk1��
s1;s
0
1
;�
kuk�

s2;s
0
2
;�
:

Proof. Since we cannot use directly the Fourier transformation, the idea is to construct a bounded linear
extension operator

P� WH
s;s0.�/!H s;s0.R�Rn/; (67)
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that is, it satisfies P�uj� D u, for all u 2 H s;s0.�/. Indeed, assume that such a P� exists. Then, for
u 2H s;s0.�/ with s > 1

2
and s0 > n

2
,

kukL1.�/ D kP�ukL1.�/ � kP�ukL1.R�Rn/ � CkP�uks;s0 � C 0kuks;s0;�;

where we have applied Proposition A.3 and the boundedness of P�, and this proves (i).
Furthermore, under the assumptions of (ii), we have

kuks;s0;� D kP�uks;s0;� � kP�uks;s0;R�Rn ;

and it is a classical fact that there exists a constant C such that, for all v 2H s.Rd /,X
j˛j�Œs�

k@˛vk2
L2.Rd /

C

Z
Rd�Rd

j@˛v.x/� @˛v.x0/j2

jx�x0jdC2�
dx dx0 � Ckvk2s I

now, applying this inequality to v.x/ D J s0

y P�u.x;y/, with d D 1, and integrating with respect to y

gives
kP�uk2s;s0;R�Rn � CkP�uk2s;s0 :

Finally, applying Proposition A.4 and the boundedness of P� yields

kuks;s0;� �
p

CkP�uks;s0 �
p

CkP�uk1��
s1;s
0
1

kP�uk�
s2;s
0
2

� C 0kuk1��
s1;s
0
1
;�
kuk�

s2;s
0
2
;�
;

which establishes (ii).
It remains to construct P� as in (67). In fact, the classical theory of Sobolev spaces already provides a

bounded linear extension operator
PI WH

s.I/!H s.R/ (68)

such that PI ujI D u for all u 2H s.I/. If u 2H s;s0.�/, let us set

P�u.x;y/D .PI /xu.x;y/:

Clearly, this defines a linear operator such that P�uj� D u. Let us show the boundedness of P� W

H s;s0.�/!H s;s0.R�Rn/. It follows from the definition that x 7! J s0

y u.x;y/ is in the Sobolev space
H s.I/ for almost all y 2 Rn. Hence, x 7! .PI /xJ s0

y u.x;y/ is in H s.R/ for almost all y 2 Rn and there
exists a constant C which depends neither on u nor on y such that

k.PI /xJ s0

y u.x;y/kH s.R/ � CkJ s0

y u.x;y/kH s.I / for a.e. y 2 Rn:

Since .PI /xJ s0

y uD J s0

y P�u, this inequality can be written more explicitly asZ
R

jJ s
xJ s0

y P�u.x;y/j2 dx � C 2
X
j˛j�Œs�

Z
I

j@˛xJ s0

y u.x;y/j2 dx

CC 2

Z
I�I

j@˛xJ s0

y u.x;y/� @˛xJ s0

y u.x0;y/j2

jx�x0j1C2�
dx dx0 for a.e. y 2 Rn:



WELL-POSEDNESS AND SMOOTHING EFFECT FOR GENERALIZED NONLINEAR SCHRÖDINGER EQUATIONS 1283

Integrating over Rn with respect to y gives

kP�uk2s;s0 � C 2
kuk2s;s0;�;

which proves the boundedness of P� and achieves the proof of the proposition. �
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