
ANALYSIS & PDE

msp

Volume 11 No. 2 2018

LAURA CLADEK

RADIAL FOURIER MULTIPLIERS IN R3 AND R4



ANALYSIS AND PDE
Vol. 11, No. 2, 2018

dx.doi.org/10.2140/apde.2018.11.467 msp

RADIAL FOURIER MULTIPLIERS IN R3 AND R4

LAURA CLADEK

We prove that for radial Fourier multipliers m : R3
→ C supported compactly away from the origin,

Tm is restricted strong type (p, p) if K = m̂ is in L p(R3), in the range 1 < p < 13
12 . We also prove an

L p characterization for radial Fourier multipliers in four dimensions; namely, for radial Fourier multipliers
m :R4

→C supported compactly away from the origin, Tm is bounded on L p(R4) if and only if K = m̂ is
in L p(R4), in the range 1< p < 36

29 . Our method of proof relies on a geometric argument that exploits
bounds on sizes of multiple intersections of 3-dimensional annuli to control numbers of tangencies
between pairs of annuli in three and four dimensions.

1. Introduction and statement of results

In this paper we study radial multiplier transformations whose symbol is compactly supported away from
the origin. These are operators Tm defined via the Fourier transform by

F[Tm f ](ξ)= m(ξ) f̂ (ξ),

where the function m : Rd
→ C is bounded, measurable, radial and supported in a compact subset of{

ξ : 1
2 < |ξ |< 2

}
.

In the cases p 6= 1, 2, it is generally believed that it is impossible to give a reasonable characterization
of all multiplier operators which are bounded on L p. However, for radial Fourier multipliers, a characteri-
zation can be obtained for an appropriate range of p. Heo, Nazarov, and Seeger [Heo et al. 2011] proved
a strikingly simple characterization of radial multipliers that are bounded on L p(Rd) in dimensions d ≥ 4
for 1< p < (2d − 2)/(d + 1).

Theorem A. Let d ≥ 2. If m : Rd
→ C is radial and supported in a compact subset of

{
ξ : 1

2 < |ξ |< 2
}
,

the multiplier operator Tm is bounded on L p(Rd) if and only if the kernel K = m̂ is in L p(Rd), in the
range 1< p < (2d − 2)/(d + 1).

The characterization in [Heo et al. 2011] was motivated by the earlier work [Garrigós and Seeger 2008],
where the authors obtained a similar characterization of all convolution operators with radial kernels
acting on the space L p

rad of radial L p functions, in the larger range 1< p < 2d/(d + 1).
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Theorem B. Let d ≥ 2. If m : Rd
→ C is radial and supported in a compact subset of

{
ξ : 1

2 < |ξ |< 2
}
,

the multiplier operator Tm is bounded on L p
rad(R

d) if and only if the kernel K = m̂ is in L p(Rd), in the
range 1< p < 2d/(d + 1).

This range 1< p< 2d/(d+1) is the optimal range for their result to hold, since for p≥ 2d/(d+1) one
may construct radial kernels in L p that have Fourier transforms which are supported compactly away from
the origin but which are also unbounded. By the same reasoning, the range 1< p< 2d/(d+1) is also the
largest possible range in which one could hope for the characterization from Theorem A to hold. Thus one
might propose the following conjecture, which we will refer to as the “radial Fourier multiplier conjecture”.

Conjecture 1.1. Let d ≥ 2. If m :Rd
→C is radial and supported in a compact subset of

{
ξ : 1

2 < |ξ |< 2
}
,

the multiplier operator Tm is bounded on L p(Rd) if and only if the kernel K = m̂ is in L p(Rd), in the
range 1< p < 2d/(d + 1).

One can appreciate the strength of this conjecture by noting that since 2d/(d+1) is the critical value for
the Bochner–Riesz conjecture, the Bochner–Riesz conjecture (and hence also the restriction and Kakeya
conjectures) would follow as a special case from Conjecture 1.1. However, the statement of Conjecture 1.1
is far more general than the Bochner–Riesz conjecture, since it makes no a priori assumptions whatsoever
on the regularity of the multiplier.

The arguments of [Heo et al. 2011] did not yield any results about radial Fourier multipliers in R3.
We will improve a key lemma of that paper in three dimensions to obtain a characterization of restricted
strong type (p, p) boundedness of compactly supported radial Fourier multipliers m : R3

→ C, in the
range 1< p < 13

12 .

Theorem 1.2. Let m be a radial Fourier multiplier in R3 supported in
{1

2 < |ξ |< 2
}

and let K =F−1
[m].

Then for 1 < p < 13
12 , if K ∈ L p then the multiplier operator Tm is restricted strong type (p, p), and

moreover,
‖K ∗ f ‖L p(R3) .p ‖K‖L p(R3)‖ f ‖L p,1(R3).

Remark 1.3. Our proof will also show that ‖K ∗ f ‖L p .p ‖K‖L p,1‖ f ‖L p , and we expect that ‖K‖L p,1

could be improved to ‖K‖L p .

We will also prove a full L p characterization for compactly supported radial Fourier multipliers in R4

in the range 1< p < 36
29 , which improves on Heo, Nazarov, and Seeger’s result.

Theorem 1.4. Let m be a radial Fourier multiplier in R4 supported in
{1

2 < |ξ |< 2
}

and let K =F−1
[m].

Then for 1< p < 36
29 , if K ∈ L p(R4), the multiplier operator Tm is bounded on L p(R4), and moreover,

‖K ∗ f ‖L p(R4) .p ‖K‖L p(R4)‖ f ‖L p(R4).

Our proofs of Theorems 1.2 and 1.4 refine the arguments of [Heo et al. 2011] while simultaneously
incorporating new geometric input. A key divergence from their arguments is the exploitation of the
underlying “tensor product structure” inherent in the problem, a notion which will become clearer later.
This, combined with a geometric argument involving sizes of multiple intersections of 3-dimensional
annuli, allows one to take advantage of improved scalar product estimates which were not used by Heo et al.
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However, since we exploit the tensor product structure of the problem, we are currently not able to deduce
any local smoothing results for the wave equation as corollaries, as was able to be done in [Heo et al. 2011].

The outline of the paper is as follows. The first portion of the paper will be devoted to the proof of
Theorem 1.2, which is less technical than the proof of Theorem 1.4. The second portion will give the
proof of Theorem 1.4. At the end, we provide as an Appendix the proof of the geometric lemma used in
the proofs of both theorems.

2. Preliminaries and reductions

We will now collect some necessary preliminary results and reductions. Versions of these results can be
found in [Heo et al. 2011], but we reproduce them here for completeness. In general, this section will
very closely follow that paper, and for convenience we choose to adopt similar notation.

Discretization and density decomposition of sets. The first step will be to discretize our problem, and in
preparation for this we will first need to introduce some notation. Let Y be a 1-separated set of points
in R3 and let R be a 1-separated set of radii ≥ 1. Let E ⊂ Y ×R be a finite set that is also a product, i.e.,
E = EY × ER , where EY ⊂ Y and ER ⊂R. (The assumption that E is a product was not used in [Heo et al.
2011], but will be crucial for our argument.)

Let
u ∈ U = {2ν : ν = 0, 1, 2, . . .}

be a collection of dyadic indices. For each k, let Bk denote the collection of all 4-dimensional balls of
radius ≤ 2k. For a ball B, let rad B denote the radius of B. Following [Heo et al. 2011], define

Rk :=R∩ [2k, 2k+1),

Ek := E ∩ (Y ×Rk),

Êk(u) := {(y, r) ∈ Ek : ∃B ∈Bk such that #(Ek ∩ B)≥ u rad B},

Ek(u)= Êk(u) \
⋃
u′∈U
u′>u

Êk(u′).

We will refer to u as the density of the set Ek(u). Note that we have the decomposition

Ek =
⋃
u∈U

Ek(u).

Let σr denote the surface measure on r S2, the 2-sphere of radius r centered at the origin. Now fix a
smooth, radial function ψ0 which is supported in the ball centered at the origin of radius 1

10 such that ψ̂0

vanishes to order 40 at the origin. Let ψ = ψ0 ∗ψ0. For y ∈ Y and r ∈R, define

Fy,r = σr ∗ψ( · − y).

For a given function c : Y ×R→ C, further define

Gu,k :=
∑

(y,r)∈Ek(u)

c(y, r)Fy,r , Gu :=
∑
k≥0

Gu,k and Gk :=
∑
u∈U

Gu,k .
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An interpolation lemma. As a preliminary tool, we will need the following dyadic interpolation lemma.

Lemma 2.1. Let 0 < p0 < p1 <∞. Let {Fj } j∈Z be a sequence of measurable functions on a measure
space {�,µ}, and let {sj } be a sequence of nonnegative numbers. Assume that for all j , the inequality

‖Fj‖
pν
pν ≤ 2 j pν M pν sj (2-1)

holds for ν = 0 and ν = 1. Then for all p ∈ (p0, p1), there is a constant C = C(p0, p1, p) such that∥∥∥∥∑
j

Fj

∥∥∥∥p

p
≤ C p M p

∑
j

2 j psj . (2-2)

The discretized L p inequality. Our goal is to prove the following proposition, which we will see implies
our main result for compactly supported multipliers.

Proposition 2.2. Let E and Ek be as above (recall that E has product structure). Let c : E → C be a
function satisfying |c(y, r)| ≤ 1 for all (y, r) ∈ E . Then for 1< p < 13

12 ,∥∥∥∥ ∑
(y,r)∈E

c(y, r)Fy,r

∥∥∥∥p

p
.p

∑
k

22k #Ek .

Using the dyadic interpolation lemma (Lemma 2.1), we obtain the following corollary.

Corollary 2.3. Let E be any measurable set of finite measure, and χE its characteristic function. Suppose
that f is a measurable function satisfying | f | ≤ χE . Then for 1< p < 13

12 , we have∥∥∥∥ ∑
(y,r)∈Y×R

γ (r) f (y)Fy,r

∥∥∥∥
p
.

( ∑
(y,r)∈Y×R

|γ (r)χE(y)|pr2
)1/p

. (2-3)

Also ∥∥∥∥∫
Rd

∫
∞

1
h(r) f (y)Fy,r dr dy

∥∥∥∥
p
.

(∫
Rd

∫
∞

1
|h(r)χE(y)|pr2 dr dy

)1/p

. (2-4)

Proof that Proposition 2.2 implies Corollary 2.3. For j ∈ Z, define the level sets

E j
:=
{
(y, r) ∈ Y ×R : 2 j−1 < |γ (r)χE(y)| ≤ 2 j}.

Notice that E j has product structure, so Proposition 2.2 implies that for 1< p < 13
12 ,∥∥∥∥ ∑

(y,r)∈E j

γ (r) f (y)Fy,r

∥∥∥∥p

p
.p 2 j p

∑
(y,r)∈E j

r2.

Now apply Lemma 2.1 with Fj =
∑

(y,r)∈E j γ (r) f (y)Fy,r and M = 1 and sj =
∑

(y,r)∈E j r2 to obtain (2-3).
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Now we prove (2-4). Let y = z+w for z ∈ Z3 and w ∈ Q0 := [0, 1)3 and r = n+ τ for n ∈ N and
0≤ τ < 1. By Minkowski’s inequality and (2-3),∥∥∥∥∫

Rd

∫
∞

1
h(r) f (y)Fy,r dr dy

∥∥∥∥
p
.
∫∫

Q0×[0,1)

∥∥∥∥∑
z∈Zd

∞∑
n=1

h(n+ τ) f (z+w)Fz+w,n+τ

∥∥∥∥
p

dw dτ

.
∫∫

Q0×[0,1)

(∑
z∈Zd

∞∑
n=1

∣∣h(n+ τ)χE(z+w)
∣∣p
(n+ τ)2

)1/p

dw dτ

.

(∫
Rd

∫
∞

1
|h(r)χE(y)|pr2 dr dy

)1/p

,

where in the last step we have used Hölder’s inequality. �

Support size estimates vs. L2 inequalities. As in [Heo et al. 2011], we will show that the functions Gu,k

either have relatively small support size or satisfy relatively good L2 bounds. We begin with a support-size
bound from that paper that improves as the density u increases.

Lemma C. For all u ∈ U , the Lebesgue measure of the support of Gu,k is . u−122k #Ek .

We will prove the following L2 inequality, which in some sense an improved version of Lemma 3.6
from [Heo et al. 2011], although the hypotheses are different since it is crucial that we assume that the
underlying set E has product structure. This inequality improves as the density u decreases. In [Heo et al.
2011], the analogous L2 inequality proved is

‖Gu‖
2
2 . u2/(d−1) log(2+ u)

∑
k

2k(d−1)#Ek, (2-5)

and when d = 3 the term u2/(d−1) is equal to u. One may check that combining (2-5) with Lemma C as in
the proof of Lemma 2.5 below yields no result in three dimensions. We use geometric methods to improve
on (2-5) in three dimensions, and our argument will rely on Lemma A.1 proved later in the Appendix.

Lemma 2.4. Let E , Ek , and Gu be as above (recall that E has product structure). Assume |c(y, r)| ≤ 1
for (y, r) ∈ Y ×R. Then for every ε > 0,

‖Gu‖
2
2 .ε u11/13+ε

∑
k

22k #Ek .

Combining Lemma C and Lemma 2.4, we obtain the following L p bound.

Lemma 2.5. For p ≤ 2, for every ε > 0,

‖Gu‖p .ε u−(1/p−12/13−ε)
(∑

k

22k #Ek

)1/p

.

Proof of Lemma 2.5 given Lemma C and Lemma 2.4. By Hölder’s inequality,

‖Gu‖p . (meas(supp Gu))
1/p−1/2

‖Gu‖2

.ε u−1/p+1/2u11/26+ε
(∑

k

22k #Ek

)1/p

.ε u12/13−1/p+ε
(∑

k

22k #Ek

)1/p

. �
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Summing over u ∈ U , we obtain Proposition 2.2. Thus to prove Proposition 2.2 it suffices to prove
Lemma 2.4.

Compactly supported multipliers. Following [Heo et al. 2011], we now show how one may deduce
Theorem 1.2 from Corollary 2.3. Suppose that m :R3

→C is a bounded, measurable, radial function with
compact support inside

{
ξ : 1

2 < |ξ |< 2
}
. Then K =F−1

[m] is radial, and so we may write K ( · )= κ(| · |)
for some κ : R→ C. Fix a radial Schwartz function η0 such that η̂0(ξ)= 1 on supp m and such that η0

has Fourier support in
{1

4 < |ξ | < 4
}
. Set η = F−1

[(ψ̂)−1η̂0]. We have K ∗ f = η ∗ψ ∗ K ∗ f . Let
K0 = Kχ{x :|x |≤1} and write K = K0+ K∞. Since ‖K0‖1 . ‖K‖p, it suffices to show that the operator
f 7→ η∗ψ ∗K∞ ∗ f is restricted strong type (p, p) with operator norm .p ‖K‖p. Let E be a measurable
set of finite measure, and suppose that | f | ≤ χE . We may write

ψ ∗ K∞ ∗ f =
∫
∞

1

∫
ψ ∗ σr ( · − y)κ(r) f (y) dy dr.

By Corollary 2.3, we have

‖η ∗ψ ∗ K∞ ∗ f ‖p .p ‖ψ ∗ K∞ ∗ f ‖p .p

(∫
|κ(r)|pr2 dr

)1/p(∫
|χE(y)|p dy

)1/p

,

which implies the result of Theorem 1.2.

3. Proof of the L2 inequality

We have shown in Section 2 that to prove our main result Theorem 1.2 it remains to prove Lemma 2.4,
and this section is dedicated to the proof of that lemma. The proof will rely on a geometric lemma about
sizes of multiple intersections of 3-dimensional annuli, which is stated and proved in the Appendix.

Estimates for scalar products. In order to obtain the desired L2 estimate, we need to examine pairwise
interactions of the form 〈Fy,r , Fy′,r ′〉. By applying Plancherel’s theorem and writing F̂y,r and F̂y′,r ′ as
expressions involving Bessel functions, the authors of [Heo et al. 2011] obtained the following estimates
for |〈Fy,r , Fy′,r ′〉|.

Lemma 3.1. For any choice of r, r ′ > 1 and y, y′ ∈ R3,

|〈Fy,r , Fy′,r ′〉|.
rr ′

1+ |y− y′| + |r − r ′|
.

The proof of this lemma used only the decay and not the oscillation of the Bessel functions. By
exploiting the oscillation of the Bessel functions, one may obtain the following improved bounds, which
are crucial for our purposes. Since we will use this lemma in three and four dimensions, we state it in
terms of dimension d, where the functions Fy,r are defined analogously in d dimensions as they are
defined previously in three dimensions.

Lemma 3.2. For any choice of r, r ′ > 1 and y, y′ ∈ Rd and any N > 0,

|〈Fy,r , Fy′,r ′〉| ≤ CN (rr ′)(d−1)/2(1+ |y− y′| + |r − r ′|)−(d−1)/2
∑
±,±

(
1+

∣∣r ± r ′± |y− y′|
∣∣)−N

.
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Proof of Lemma 3.2. We may write σ̂1 in terms of Bessel functions as σ̂1(ξ)= Bd(|ξ |), where

Bd(s)= cds−(d−2)/2 J(d−2)/2

and J denotes the standard Bessel function. This implies

σ̂r (ξ)= rd−1 Bd(r |ξ |).

Since ψ̂ is radial, we may write ψ̂(ξ)= a(|ξ |) for some rapidly decaying function a that vanishes to high
order (say 10d) at the origin. By Plancherel, we have

〈Fy,r , Fy′,r ′〉 =

∫
σ̂r (ξ)σ̂r ′(ξ)|ψ̂(ξ)|

2ei〈y′−y,ξ〉 dξ

= cd(rr ′)d−1
∫

Bd(rρ)Bd(r ′ρ)Bd(|y− y′|ρ)|a(ρ)|2ρd−1 dρ.

We will use the following well-known asymptotic expansion, which holds for |x | ≥ 1 and any M :

Bd(x)=
M∑
ν=0

(c+ν,k,dei x
+ c−ν,k,de−i x)x−ν−(d−1)/2

+ x−M EM,k,d(x)

where for any k1 ≥ 0,
|E (k1)

M,k,d(x)| ≤ C(M, k, k1, d).

Using this expansion together with the higher order of vanishing of a at the origin, one sees that there is a
fixed Schwartz function η so that we obtain for any N > 0,

〈Fy,r , Fy′,r ′〉. (rr ′)(d−1)/2(1+ |y− y′|)−(d−1)/2
∑
±,±

η(r ± r ′± |y− y′|)+ (1+ |r − r ′| + |y− y′|)−N.

In fact, we may take η to be the Fourier transform of |a( · )|2ρα(d) for some appropriate exponent α(d). �

Another preliminary reduction. Recall that our goal is to estimate the L2 norm of Gu =
∑

k≥0 Gu,k . Let
N (u) be a sufficiently large number to be chosen later (it will be some harmless constant depending on
u that is essentially O(log(2+ u))). We split the sum in k as

∑
k≤N (u) Gu,k +

∑
k>N (u) Gu,k and apply

Cauchy–Schwarz to obtain∥∥∥∥∑
k

Gu,k

∥∥∥∥2

2
. N (u)

[∑
k

‖Gu,k‖
2
2+

∑
k>k′>N (u)

|〈Gu,k′,Gu,k〉|

]
. (3-1)

We may thus separately estimate
∑

k ‖Gu,k‖
2
2 and

∑
k>k′>N (u) |〈Gu,k′,Gu,k〉|, which divides the proof of

the L2 estimate into two cases, the first being the case of “comparable radii” and the second being the
case of “incomparable radii”.

Comparable radii. We will first estimate
∑

k ‖Gu,k‖
2
2. Our goal will be to prove the following lemma.

Lemma 3.3. For every ε > 0,
‖Gu,k‖

2
2 .ε 22k(#Ek)u11/13+ε. (3-2)
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Fix k and u. We first observe that for (y, r), (y′, r ′) ∈ Ek(u), we have 〈Fy,r , Fy′,r ′〉 = 0 unless |(y, r)−
(y′, r ′)| ≤ 2k+5. To estimate ‖Gu,k‖

2
2 for a fixed k, we would thus like to bound∑

(y,r),(y′,r ′)∈Ek(u)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

for all 0≤ m ≤ k+ 4.
Now fix m ≤ k+ 4. Let Qu,k,m be a collection of almost disjoint cubes Q ⊂ R4 of side length 2m+5

such that Ek(u)⊂
⋃

Q∈Qu,k,m
Q and so that every Q has nonempty intersection with Ek(u). Let Q∗ denote

the 25-dilate of Q and Q∗u,k,m the corresponding collection of dilated cubes. Observe that

‖Gu,k‖
2
2 .

∑
0≤m≤k+4

( ∑
(y,r),(y′,r ′)∈Ek(u)

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

)
+

∑
(y,r)∈Ek(u)

‖Fy,r‖
2
2

.
∑

0≤m≤k+4

( ∑
Q∈Qu,k,m

( ∑
(y,r),(y′,r ′)∈(Ek(u)∩Q∗)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

))
+

∑
(y,r)∈Ek(u)

‖Fy,r‖
2
2. (3-3)

Now we introduce some terminology that will be useful. For a subset S ⊂ Y ×R, define its Y- and
R-projections by

SY = {y ∈ Y : ∃ (y, r) ∈ S},

SR = {r ∈R : ∃ (y, r) ∈ S}.

Also define the product-extension S× of S ⊂Y×R to be the set SY ×SR . We also define some parameters
associated with a fixed Q ∈Qu,k,m . Let NR,Q be the cardinality of the R-projection of Ek ∩ Q∗, i.e.,

NR,Q := #((Ek ∩ Q∗)R)= #{r : ∃(y, r) ∈ Ek ∩ Q∗}.

Similarly define

NY,Q := #((Ek ∩ Q∗)Y )= #{y : ∃(y, r) ∈ Ek ∩ Q∗}.

We also note the following important observation, which we will use repeatedly. Using the definition
of the sets Ek(u) and the fact that Ek has product structure, one may see that if Q ∈Qu,k,m is such that
(Ek(u)∩ Q∗) is nonempty, then

|NY,Q · NR,Q |. |Ek ∩ Q∗|. u2m. (3-4)

We remark that the product structure of the sets Ek is related to the “tensor product structure” intrinsic to
radial Fourier multipliers, mentioned in Section 1. Now with (3-3) in mind, we will prove the following
lemma.

Lemma 3.4. For each Q ∈Qu,k,m , we have the estimates∑
(y,r),(y′,r ′)∈(Ek(u)∩Q∗)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r ,Fy′,r ′〉|. NR,Q(#(Ek∩Q∗))22(k−m/2)(m log(u))max(u5/625m/6, u2m/2) (3-5)
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and ∑
(y,r),(y′,r ′)∈(Ek(u)∩Q∗)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|. 22(k−m/2)(#(Ek ∩ Q∗))u2m(NR,Q)
−1. (3-6)

We will then choose the better estimate from Lemma 3.4 depending on NR,Q and sum over all
Q ∈ Qu,k,m and then over all m ≥ ua, where a is a number to be chosen later. We will then use other
methods to deal with the case m ≤ ua, from which we will then obtain Lemma 3.3.

Proof of Lemma 3.4. We will first prove (3-5). By incurring a factor of N 2
R,Q , to estimate∑

(y,r),(y′,r ′)∈(Ek(u)∩Q∗)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

it suffices to estimate, for a fixed pair r1, r2,∑
(y,r1),(y′,r2)∈(Ek(u)×∩Q∗)
2m
≤|(y,r1)−(y′,r2)|≤2m+1

|〈Fy,r1, Fy′,r2〉|,

i.e., to restrict (y, r) and (y′, r ′) to lie in fixed rows of the product-extension of Ek(u)∩Q∗. (Our estimates
will not depend on the particular choice of r1 and r2.)

Now, referring to the estimate in Lemma 3.2, we see that for fixed y, r1, r2 we have that |〈Fy,r1, Fy′,r2〉|

decays rapidly as y′ moves away from the set {y′ : |y − y′|=|r1 − r2| or |y − y′|=r1 + r2}, which is
contained in a union of two annuli of thickness 2 and radii |r1− r2| and r1+ r2 centered at y.

Let s ≥ 0, fix t ≤ 2m+10, and define Kk(Q, s, t) to be the number of points y ∈ (Ek(u)∩ Q∗)Y such
that there are at least 2s many points y′ ∈ (Ek ∩ Q∗)Y such that y′ lies in the annulus of inner radius t and
thickness 3 centered at y. That is, define

Kk(Q, s, t) := #
{

y ∈ (Ek(u)∩ Q∗)Y : there exist at least 2s many points
y′ ∈ (Ek ∩ Q∗)Y such that

∣∣|y′− y| −
(
t + 3

2

)∣∣≤ 3
2

}
.

In view of the observation in the previous paragraph, for a given s and a fixed number t ≤ 2m+10, we
would like to prove a bound on Kk(Q, s, t). Our bound will depend on s and m but be independent of
the choice of t ≤ 2m+10. For this reason, we define the quantity

K ∗k (Q, s) := max
0≤t≤2m+10

Kk(Q, s, t),

and we will see that K ∗k (Q, s) satisfies the same bound we prove for Kk(Q, s, t). Our bound for
Kk(Q, s, t) will decay as 2s gets larger and closer to NY,Q ; in other words, “most” of the points y in
(Ek(u)∩ Q∗)Y cannot have a large proportion of other points in (Ek ∩ Q∗)Y lie in the annulus of inner
radius t and thickness 3 centered at y. If we take t = |r1− r2| or t = r1+ r2, we see that this implies that
“most” of the Fy,r with (y, r) ∈ (Ek(u)∩ Q∗)Y ×{r1} do not “interact badly” (where by badly we mean
to the worst possible extent allowed by Lemma 3.2, i.e., internal tangencies of annuli) with most of the
other Fy′,r ′ where (y′, r ′) ∈ (Ek ∩Q∗)Y ×{r2}. This will allow us to obtain (3-5), which is a good estimate
in the case that NR,Q is small.
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More precisely, we will prove

K ∗k (Q, s).max
[
u2m N 5/3

Y,Q2−2s, u2m/2 NY,Q2−s]. (3-7)

Combining this with the trivial bound K ∗k (Q, s). NY,Q yields

K ∗k (Q, s).max
[
min(u2m N 5/3

Y,Q2−2s, NY,Q),min(u2m/2 NY,Q2−s, NY,Q)
]
. (3-8)

Note that (3-7) gives decay in the number of points K ∗k (Q, s) (i.e., K ∗k (Q, s)� NY,Q) if we have that

(1) N 5/3
Y,Q2−2su2m

� NY,Q , i.e., if 2s
� N 1/3

Y,Qu1/22m/2, and also

(2) NY,Q2−su2m/2
� NY,Q , i.e., if 2s

� u2m/2.

Using Lemma 3.2, we may bound∑
(y,r),(y′,r ′)∈(Ek(u)∩Q∗)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

.
∑

r1,r2∈(Ek(u)∩Q∗)R

( ∑
y,y′∈(Ek(u)∩Q∗)Y

2m
≤|(y,r1)−(y′,r2)|≤2m+1

|〈Fy,r1, Fy′,r2〉|

)

. 22(k−m/2)
∑

r1,r2∈(Ek(u)∩Q∗)R

( ∑
0≤a≤m+10

( ∑
y∈(Ek(u)∩Q∗)Y

∑
y′∈(Ek(u)∩Q∗)Y

min±,± (1+|r1±r2±|y−y′||)≈2a

2−aN
))

. 22(k−m/2)
∑

r1,r2∈(Ek(u)∩Q∗)R

( ∑
0≤a≤m+10

2−aN
( ∑

s≥0:2s≤2NY,Q

K ∗k (Q, s)2s
))

. 22(k−m/2)N 2
Q,R

∑
s≥0:2s≤2NY,Q

K ∗k (Q, s)2s. (3-9)

Assuming (3-8) holds, we have∑
(y,r),(y′,r ′)∈(Ek(u)∩Q∗)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r ,Fy′,r ′〉|

. N 2
R,Q22(k−m/2)

∑
s≥0:2s.NY,Q

max
[
min(u2m N 5/3

Y,Q2−s, NY,Q2s),min(u2m/2 NY,Q,NY,Q2s)
]

. N 2
R,Q22(k−m/2)max

[ ∑
s≥0:2s.NY,Q

min(u2m N 5/3
Y,Q2−s,NY,Q2s),

∑
s≥0:2s.NY,Q

min(u2m/2 NY,Q,NY,Q2s)

]
(3-10)

Now, note that u2m N 5/3
Y,Q2−s

≥ NY,Q2s if and only if 2s
≤ u1/22m/2 N 1/3

Y,Q . Thus choosing the better
estimate in the term min(u2m N 5/3

Y,Q2−s, NY,Q2s) depending on s yields that∑
s≥0:2s.NY,Q

min(u2m N 5/3
Y,Q2−s, NY,Q2s). u1/22m/2 N 4/3

Y,Q .
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Note that u2m/2 NY,Q ≥ NY,Q2s if and only if 2s
≤ u2m/2. Thus choosing the better estimate in the term

min(u2m/2 NY,Q, NY,Q2s) depending on s yields that∑
s≥0:2s.NY,Q

min(u2m/2 NY,Q, NY,Q2s). log(NY,Q)NY,Q u2m/2.

It follows that the left-hand side of (3-10) is bounded by

N 2
R,Q22(k−m/2)NY,Q log(NY,Q)max(N 1/3

Y,Qu1/22m/2, u2m/2)

. N 2
R,Q22(k−m/2)NY,Q(m log(u))max(u5/625m/6, u2m/2)

. NR,Q(#(Ek ∩ Q∗))22(k−m/2)(m log(u))max(u5/625m/6, u2m/2), (3-11)

which proves (3-5). This will be a good estimate when NR,Q is small.
Thus to prove (3-5) it remains to prove (3-7). We will in fact prove (3-7) with K ∗k (Q, s) replaced

by Kk(Q, s, t), uniformly in t ≤ 2m+10. Fix t ≤ 2m+10 and let j = dlog2(t)e and cover (Ek(u)∩ Q∗)Y
by . 23(m− j) many 3-dimensional almost disjoint balls of radius 2 j+5; denote this collection of balls as
B = {Bi }. For each i , we define a collection of “special” points Ai (Q, s, t) to be the set of all points
y ∈ (Ek(u) ∩ Q∗)Y ∩ Bi such that there are ≥ 2s many points y′ ∈ (Ek ∩ Q∗)Y such that y′ lies in the
annulus of radius t and thickness 3 centered at y. That is, we define

Ak,i (Q, s, t) :=
{

y ∈ (Ek(u)∩ Q∗)Y ∩ Bi : there exist at least 2s many points
y′ ∈ (Ek ∩ Q∗)Y such that

∣∣|y′− y| −
(
t + 3

2

)∣∣≤ 3
2

}
.

Let Kk,i (Q, s, t) denote the cardinality of Ak,i (Q, s, t). Now cover each Bi with . 23( j−l) many almost
disjoint 3-dimensional balls {Bi,α}α of radius 2l for some l ≤ j . Each such ball contains at most u2l

many points of Ak,i (Q, s, t), so for a fixed i there must be & Kk,i (Q, s, t)(u2l)−1 many balls Bi,α that
contain at least one point in Ak,i (Q, s, t). Thus there must be at least & Kk,i (Q, s, t)(u2l)−1 many such
points in Bi ∩ Ak,i (Q, s, t) spaced apart by & 2l ; call this set Dk,i (Q, s, t). But by Lemma A.1, which
we prove later in the Appendix, the size of 3-fold intersections of annuli of radius t ≈ 2 j and thickness 3
spaced apart by ≈ 2l with centers lying in a ball of radius 2 j−5 is bounded above by 23( j−l) provided that
l ≥ j/2+ 20.

It follows that if l≥ j/2+20, then for each of these≈Kk,i (Q, s, t)(u2l)−1 many points p∈Dk,i (Q, s, t),
there can be

. Kk,i (Q, s, t)2(u2l)−223( j−l)

points lying inside the t-annulus centered at p that are simultaneously contained in at least two other
different t-annuli centered at points in Dk,i (Q, s, t). This implies that if NY,Q,i denotes the cardinality of
(Ek ∩ Q∗)Y ∩ B∗i , where B∗i = 10Bi , then we have

NY,Q,i & Kk,i (Q, s, t)(u2l)−12s, (3-12)

which is essentially 2s times the number of points in Dk,i (Q, s, t), provided that 2s is much bigger than
the total number of points lying inside a t-annulus centered at p that are simultaneously contained in at
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least two other different t-annuli centered at points in Dk,i (Q, s, t), i.e., provided that

Kk,i (Q, s, t)2(u2l)−223( j−l)
� 2s (3-13)

and

l ≥ j/2+ 20.

Solving for 2l in (3-13) yields

2l
� Kk,i (Q, s, t)2/523 j/5u−2/52−s/5. (3-14)

Thus choosing a minimal l such that

2l
�max

[
Kk,i (Q, s, t)2/523 j/5u−2/52−s/5, 2 j/2]

for a sufficiently large implied constant and substituting into (3-12) yields

Kk,i (Q, s, t).max
[
u2m N 5/3

Y,Q,i 2
−2s, u2m/2 NY,Q,i 2−s], (3-15)

and summing over all i and using the almost-disjointness of the B∗i gives

Kk(Q, s, t).max
[
u2m N 5/3

Y,Q2−2s, u2m/2 NY,Q2−s]. (3-16)

Taking the maximum over all 0≤ t ≤ 2m+10 proves (3-7) and hence also (3-5).
It remains to prove (3-6), which will be a good estimate in the case that NR,Q is large. For a fixed

(y, r)∈ Q∗ and a fixed y′ ∈ (Ek(u)∩Q∗)Y , there are at most two values of r ′ away from which 〈Fy,r , Fy′,r ′〉

decays rapidly. Thus using Lemma 3.2 we may estimate∑
(y,r),(y′,r ′)∈(Ek(u)∩Q∗)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

.
∑

0≤a≤m+10

( ∑
(y,r)∈(Ek(u)∩Q∗)

( ∑
y′∈(Ek(u)∩Q∗)Y

( ∑
r ′∈(Ek(u)∩Q∗)R

2m
≤|(y,r)−(y′,r ′)|≤2m+1

min±,± (1+|r±r ′±|y−y′||)≈2a

2−Na22(k−m/2)
)))

. 22(k−m/2)(#(Ek(u)∩ Q∗))NY,Q . 22(k−m/2)(#(Ek(u)∩ Q∗))u2m(NQ,R)
−1,

(3-17)
and the proof of (3-6) is complete. �

We will now use Lemma 3.4 to prove Lemma 3.3.

Proof of Lemma 3.3. Fix an a > 0 to be determined later. As in [Heo et al. 2011], we let Gk =
∑

µ Gk,µ,
where for each positive integer µ we set

Ik,µ =
[
2k
+ (µ− 1)ua, 2k

+µua),
Ek,µ = Ek ∩ (Y × Ik,µ),

Gk,µ =
∑

(y,r)∈Ek,µ

c(y, r)Fy,r and Gk,µ,r =
∑

y:(y,r)∈Ek

c(y, r)Fy,r .
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We have

‖Gk‖
2
2 .

∥∥∥∥∑
µ

Gk,µ

∥∥∥∥2

2
.
∑
µ

‖Gk,µ‖
2
2+

∑
µ′>µ+10

|〈Gk,µ′,Gk,µ〉|. (3-18)

By Cauchy–Schwarz,
‖Gk,µ‖

2
2 . ua

∑
r∈Ik,µ∩R

‖Gk,µ,r‖
2
2.

Write

Gk,µ,r =

( ∑
y:(y,r)∈Ek,µ

c(y, r)ψ0( · − y)
)
∗ (σr ∗ψ0).

By the Fourier decay of σr and the order of vanishing of ψ0 at the origin, we have

‖σ̂r ψ̂0‖∞ . r.

Since the square of the L2 norm of
∑

y:(y,r)∈Ek,µ
c(y, r)ψ0( · − y) is . #{y ∈ Y : (y, r) ∈ Ek,µ}, we have∑

µ

‖Gk,µ‖
2
2 . ua

∑
µ

∑
r∈Ik,µ∩R

‖Gk,µ,r‖
2
2 . ua22k #Ek . (3-19)

By (3-18), it remains to estimate
∑

µ′>µ+10 |〈Gk,µ′,Gk,µ〉|.
Fix ε > 0. We will use (3-5) when NR,Q ≤ 2mε min(u1/12+a/12, ua/4) and (3-6) when NR,Q ≥

2mε min(u1/12+a/12, ua/4). We write∑
(y,r),(y′,r ′)∈Ek(u)
|(y,r)−(y′,r ′)|≥ua

|〈Fy,r , Fy′,r ′〉|

.
∑

m:2m≥ua

( ∑
(y,r),(y′,r ′)∈Ek(u)
|(y,r)−(y′,r ′)|≈2m

( ∑
Q∈Qu,k,m

NR,Q≤2mε min(u1/12+a/12,ua/4)

|〈Fy,r , Fy′,r ′〉|+
∑

Q∈Qu,k,m
NR,Q≥2mε min(u1/12+a/12,ua/4)

|〈Fy,r , Fy′,r ′〉|

))
.

One sees that ∑
(y,r),(y′,r ′)∈Ek(u)
|(y,r)−(y′,r ′)|≥ua

|〈Fy,r , Fy′,r ′〉|. I + II, (3-20)

where using (3-5) when NR,Q ≤ 2mε min(u1/12+a/12, ua/4) and summing over all Q ∈ Qu,k,m and over
all m such that 2m

≥ ua we have

I := 22k(#Ek) log(u)
∑

m:2m≥ua

uε max
[
2−m/6+ε min(u11/12+a/12,u5/6+a/4),2−m/2+ε min(u13/12+a/12,u1+a/4)

]
. 22k(#Ek)uε max

[
u−a/6 min(u11/12+a/12,u5/6+a/4),u−a/2 min(u13/12+a/12,u1+a/4)

]
, (3-21)

and using (3-6) when NR,Q ≥ 2mε min(u1/12+a/12, ua/4) and summing over all Q and over all m such
that 2m

≥ ua we have

II := 22k(#Ek)uε
∑

m:2m≥ua

2−mε max(u11/12−a/12, u1−a/4).ε 22k(#Ek)uε max(u11/12−a/12, u1−a/4). (3-22)
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Combining (3-18), (3-19) and (3-20), we thus have the estimate

‖Gu,k‖
2
2 .ε 22k(#Ek)

[
ua
+ uε max

{
u−a/6 min(u11/12+a/12, u5/6+a/4), u−a/2 min(u13/12+a/12, u1+a/4)

}
+ uε max(u11/12−a/12, u1−a/4)

]
.

Choose a = 11
13 to obtain

‖Gu,k‖
2
2 .ε 22k(#Ek)u11/13+ε

for every ε > 0, which is (3-2). �

Incomparable radii. We now want to estimate
∑

k>k′>N (u) |〈Gu,k′,Gu,k〉|. Our estimate will be much
better than in the comparable radii case. In view of (3-1), we will in fact prove the following.

Lemma 3.5. Let ε > 0. For the choice N (u)= 100ε−1 log2(2+ u), we have∑
k>k′>N (u)

|〈Gu,k′,Gu,k〉|.ε
∑

k

22k #Ek . (3-23)

Fix u and k. Similar to the case of comparable radii, the first step is to cover Ek(u) by a collection
Qu,k of almost-disjoint cubes Q of side length 2k+5. By the almost-disjointness of the cubes, it is enough
to estimate |〈Gu,k′,Gu,k〉| when we restrict our points in Ek(u) and Ek′(u) to points in a fixed Q∗ and
get an estimate in terms of #(Ek ∩ Q∗), after which we may sum in Q ∈ Qu,k . So fix such a cube Q,
and let NR,Q,k denote the cardinality of (Ek ∩ Q∗)R and for a fixed k ′, let NR,Q,k′ denote the cardinality
of (Ek′ ∩ Q∗)R . Similarly, let NY,Q,k denote the cardinality of (Ek ∩ Q∗)Y and for a fixed k ′, let NY,Q,k′

denote the cardinality of (Ek′ ∩ Q∗)Y . Next, we prove a lemma that plays a role similar to Lemma 3.4 in
the comparable radii case.

Lemma 3.6. For each Q ∈Qu,k , we have the estimates∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′(u)∩Q∗

|〈FY,R, Fy,r 〉|. R2 #(Ek ∩ Q∗)u(NR,Q,k′)
−1 (3-24)

and ∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′(u)∩Q∗

|〈FY,R, Fy,r 〉|

. NR,Q,k′(#(Ek ∩ Q∗))2k(k log(u))max(u5/625k/6, u2k/2). (3-25)

Proof of Lemma 3.6. We will first prove (3-24), which will be a good estimate in the case that NR,Q,k′ is
large. For each (Y, R) ∈ (Ek(u)∩ Q∗) we need only consider y ∈ (Ek′(u)∩ Q∗)Y lying in an annulus of
width 2k′+5 built upon the sphere of radius R centered at Y in R3. Cover the intersection of this annulus
with (Ek′(u)∩ Q∗)Y by a collection C of . R22−2k′ 3-dimensional cubes C of side length 2k′+3 in R3

such that each C ∩ (Ek′(u)∩ Q∗)Y is nonempty. For each C ∈ C, let C̃ denote the 4-dimensional cube
C̃ =C×[2k′

−2k′+2, 2k′
+2k′+2

], and let C̃ denote the corresponding collection of cubes C̃ . Now note that
C ∩ (Ek′(u)∩Q∗)Y nonempty implies that (C̃ ∩Ek′ ∩Q∗)R = (Ek′ ∩Q∗)R , and also that #(C̃ ∩Ek′). u2k′,
and hence by the product structure of C̃ ∩ Ek′ ∩ Q∗,

#
(
(C̃ ∩ Ek′ ∩ Q∗)Y

)
. #(C̃ ∩ Ek′)

(
#(C̃ ∩ Ek′ ∩ Q∗)R

)−1
. u2k′(NR,Q,k′)

−1. (3-26)
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Next, note that for a fixed Y ∈ (Ek ∩ Q∗)Y , a fixed R ∈ (Ek ∩ Q∗)R , and a fixed y ∈ (Ek′ ∩ Q∗)Y ,
Lemma 3.2 gives rapid decay for |〈FY,R, Fy,r 〉| as r moves away from two possible values of r ′, that is,
when r moves far away from r ′ = R − |Y − y| and r ′ = |Y − y| − R. For these values of r ′ we have
|〈FY,R, Fy,r ′〉|. 2k′. Using (3-26) and our bound on the size of the collection C, we thus have∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′(u)∩Q∗

|〈FY,R, Fy,r 〉|

.
∑

(Y,R)∈Ek∩Q∗

(∑
C̃∈C̃

( ∑
(y,r)∈Ek′∩Q∗∩C̃

|〈FY,R, Fy,r 〉|

))

.
∑

(Y,R)∈Ek∩Q∗

(∑
C̃∈C̃

( ∑
y∈(Ek′∩Q∗∩C̃)Y

( ∑
a∈Z,a≥0

( ∑
r∈(Ek′∩Q∗)R

max (|r ′−r+|Y−y′||,|r ′+r−|Y−y||)≈2a

2−aN 2k′
))))

. R2 #(Ek ∩ Q∗)(NR,Q,k′)
−1u,

which is (3-24).
Now we prove (3-25), which is the estimate that we will use in the case that NR,Q,k′ is small. This

estimate is similar to (3-5), and the proof is very similar with only minor modifications, but we give all
the details anyways.

By incurring a factor of NR,Q,k · NR,Q,k′ , to estimate∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′(u)∩Q∗

|〈FY,R, Fy,r 〉|,

it suffices to estimate for a fixed pair r1 ∈ (Ek ∩ Q∗)R and r2 ∈ (Ek′ ∩ Q∗)R∑
(Y,r1)∈Ek∩Q∗

∑
(y,r2)∈Ek′∩Q∗

|〈FY,r1, Fy,r2〉|.

Similar to the proof of (3-5), for s ≥ 0, let N ′Y,Q,k = 2s
≤ NY,Q,k be a given dyadic number. Fix t ≤ 2k+10,

and define Kk,k′(Q, s, t) to be the number of points y ∈ (Ek(u)∩ Q∗)Y such that there are ≥ N ′Y,Q,k = 2s

many points y′ ∈ (Ek′ ∩ Q∗)Y such that y′ lies in the annulus of inner radius t and thickness 3 centered
at y. That is, define

Kk,k′(Q, s, t) := #
{

y ∈ (Ek(u)∩ Q∗)Y : there exist at least 2s many points
y′ ∈ (Ek′ ∩ Q∗)Y such that

∣∣|y′− y| −
(
t + 3

2

)∣∣≤ 3
2

}
.

Also define

K ∗k,k′(Q, s) := max
0≤t≤2k+10

Kk,k′(Q, s, t).

Note that the product structure of E implies that if both Ek ∩ Q∗ and Ek′ ∩ Q∗ are nonempty, then their
Y-projections are equal, and so (3-8) implies the bound

Kk,k′(Q, s, t).max
[
min(u2k N 5/3

Y,Q,k2−2s, NY,Q,k),min(u2k/2 NY,Q,k2−s, NY,Q,k)
]
. (3-27)
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Using Lemma 3.2, we may bound∑
(Y,R)∈(Ek(u)∩Q∗)
(y,r)∈(Ek′(u)∩Q∗)

|〈FY,R, Fy,r 〉|

.
∑

r1∈(Ek(u)∩Q∗)R
r2∈(Ek′(u)∩Q∗)R

( ∑
Y∈(Ek(u)∩Q∗)Y

y∈(Ek′∩Q∗)Y

|〈FY,r1, Fy,r2〉|

)

. 2k
∑

r1∈(Ek(u)∩Q∗)R
r2∈(Ek′(u)∩Q∗)R

( ∑
0≤a≤m+10

( ∑
Y∈(Ek(u)∩Q∗)Y

∑
y∈(Ek′∩Q∗)Y

min±,± (1+|r1±r2±|y−y′||)≈2a

2−aN
))

. 2k
∑

r1∈(Ek(u)∩Q∗)R
r2∈(Ek′(u)∩Q∗)R

( ∑
0≤a≤m+10

2−aN
( ∑

s≥0:2s≤2NY,Q,k

K ∗k,k′(Q, s)2s
))

. 2k NR,Q,k NR,Q,k′
∑

s≥0:2s≤2NY,Q,k

K ∗k,k′(Q, s)2s . (3-28)

Applying (3-27), we have∑
(Y,R)∈(Ek(u)∩Q∗)
(y,r)∈(Ek′(u)∩Q∗)

|〈FY,R,Fy,r 〉|

.NR,Q,k NR,Q,k′ 2k
∑

s≥0:2s.NY,Q,k

max
[
min(u2k N 5/3

Y,Q,k2−s, NY,Q,k2s),min(u2k/2 NY,Q,k,NY,Q,k2s)
]
. (3-29)

Now, note that u2k N 5/3
Y,Q2−s

≥ NY,Q2s if and only if 2s
≤ u1/22k/2 N 1/3

Y,Q . Also note that u2k/2 NY,Q,k ≥

NY,Q,k2s if and only if 2s
≤u2k/2. Thus choosing the better estimate in the term min(u2m N 5/3

Y,Q2−s, NY,Q2s)

depending on s and the better estimate in the term min(u2k/2 NY,Q,k, NY,Q,k2s) yields that the left-hand
side of (3-29) is bounded by

NR,Q,k NR,Q,k′ 2k NY,Q,k log(NY,Q,k)max(N 1/3
Y,Q,ku1/22k/2, u2k/2). (3-30)

Using NY,Q,k . u2k, (3-30) is bounded by

NR,Q,k NR,Q,k′ 2k NY,Q,k(k log(u))max(u5/625k/6, u2k/2)

. NR,Q,k′(#(Ek ∩ Q∗))2k(k log(u))max(u5/625k/6, u2k/2),

which completes the proof of (3-25). �

Proof of Lemma 3.5. Fix ε > 0, and set N (u)= 100ε−1 log2(2+u). We apply (3-24) when NR,Q,k′ ≥ 2k′ε

and (3-25) when NR,Q,k′ ≤ 2k′ε, and then we sum over N (u) < k ′ < k for k fixed to obtain∑
N (u)<k′<k

k fixed

∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′(u)∩Q∗

|〈FY,R, Fy′,r ′〉|

.ε R2 #(Ek ∩ Q∗)max(1, log(u)u5/62−k/6+ε, log(u)u2−k/2+ε). (3-31)
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Next we sum over Q ∈Qu,k and k > N (u) to obtain∑
k

∑
Q∈Qu,k

∑
N (u)<k′<k

k fixed

∑
(Y,R)∈Ek(u)∩Q∗

∑
(y,r)∈Ek′(u)∩Q∗

|〈FY,R, Fy′,r ′〉|.ε
∑

k

22k #Ek . (3-32)

We have thus shown that for the choice N (u)= 100ε−1 log2(2+ u), we have∑
k>k′>N (u)

|〈Gu,k′,Gu,k〉|.ε
∑

k

22k #Ek . �

Putting it together. Combining (3-1), (3-2) and (3-23), we have that for every ε > 0,

‖Gu‖
2
2 =

∥∥∥∥∑
k

Gu,k

∥∥∥∥2

2
.ε log2(2+ u)

∑
k

22k(#Ek)u11/13+ε. (3-33)

This completes the proof of Lemma 2.4 and hence the proof of Proposition 2.2. Thus we have
finished the proof of Theorem 1.2. The rest of the paper will be devoted to the (more technical) proof of
Theorem 1.4.

4. Preliminaries and reductions: part II

Similarly to Section 2, we will collect necessary preliminary results and reductions to prove Theorem 1.4.
Much of the proof of Theorem 1.4 will be similar to the proof of Theorem 1.2, but there are nontrivial
additional technical difficulties to the proof of Theorem 1.4 that will make the proof more involved. The
main reason for this is the fact that Theorem 1.4 is a full L p characterization rather than a restricted
strong type (p, p) result, and therefore we cannot simply assume that our discrete sets E have product
structure as we were able to do in the proof of Theorem 1.2. The obstacle in applying these techniques to
the 3-dimensional case is in fact the case of “incomparable radii”. While this case is very easy to deal
with in dimensions d ≥ 4, we currently do not know how to handle it in three dimensions without the
product structure assumption we are allowed to make when proving restricted strong type inequalities.

Discretization and density decomposition of sets. Again, the first step will be to discretize our problem,
and as before we will first need to introduce some notation. Let Y be a 1-separated set of points in R4

and let R be a 1-separated set of radii ≥ 1. Let E ⊂ Y ×R be a finite set, and let

u ∈ U = {2ν : ν = 0, 1, 2, . . .}

be a collection of dyadic indices. For each k, let Bk denote the collection of all 5-dimensional balls of
radius ≤ 2k. For a ball B, let rad B denote the radius of B. Following [Heo et al. 2011], define

Rk :=R∩ [2k, 2k+1),

Ek := E ∩ (Y ×Rk),

Êk(u) := {(y, r) ∈ Ek : ∃B ∈Bk such that #(Ek ∩ B)≥ u rad B},

Ek(u)= Êk(u) \
⋃
u′∈U
u′>u

Êk(u′).
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We will refer to u as the density of the set Ek(u). Note that we have the decomposition

Ek =
⋃
u∈U

Ek(u).

Let σr denote the surface measure on r S3, the 3-sphere centered at the origin of radius r . Now fix a
smooth, radial function ψ0 which is supported in the ball centered at the origin of radius 1

10 such that ψ̂0

vanishes to order 40 at the origin. Let ψ = ψ0 ∗ψ0. For y ∈ Y and r ∈R, define

Fy,r = σr ∗ψ( · − y).

For a given function γ : Y ×R→ C and finite set E ⊂ Y ×R, further define

Gγ,E
u,k :=

∑
(y,r)∈Ek(u)

γ (y, r)Fy,r , Gγ,E
u :=

∑
k≥0

Gγ,E
u,k , Gγ,E

k :=
∑
u∈U

Gγ,E
u,k .

The discretized L p inequality. We will prove the following proposition, which implies our main result
for compactly supported multipliers.

Proposition 4.1. Let 1 < p < 36
29 . Let γ : Y × R → C be a function that is a tensor product; i.e.,

γ (y, r)= γ1(y)γ2(r). For each j ∈ Z, define

Eγ, j
:= {(y, r) ∈ Y ×R : 2 j

≤ |γ (y, r)|< 2 j+1
},

Eγ, j
k := {(y, r) ∈ Y ×R : r ∈Rk, 2 j

≤ |γ (y, r)|< 2 j+1
}.

Then ∥∥∥∥ ∑
(y,r)∈Eγ, j

γ (y, r)Fy,r

∥∥∥∥p

p
.p 2 j p

∑
l≥ j

2(l− j)/5
∑

k

23k #Eγ,lk . (4-1)

Using the dyadic interpolation lemma (Lemma 2.1), we obtain the following corollary.

Corollary 4.2. Let γ : Y ×R→ C be a function that is a tensor product; i.e., γ (y, r)= γ1(y)γ2(r). Let
h :R5

→C be a function that is a tensor product; i.e., h(y, r)= h1(y)h2(r). Then for 1< p< 36
29 , we have∥∥∥∥ ∑

(y,r)∈Y×R

γ (y, r)Fy,r

∥∥∥∥
p
.p

( ∑
(y,r)∈Y×R

|γ (y, r)|pr3
)1/p

. (4-2)

Also ∥∥∥∥∫
R3

∫
∞

1
h(y, r)Fy,r dr dy

∥∥∥∥
p
.p

(∫
R3

∫
∞

1
|h(y, r)|pr3 dr dy

)1/p

. (4-3)

Proof that Proposition 4.1 implies Corollary 4.2. Apply Lemma 2.1 with Fj =
∑

(y,r)∈Eγ, j γ (y, r)Fy,r ,
M p the implied constant from (4-1), and

sj =
∑
l≥ j

2(l− j)/5
∑

k

23k #Eγ,lk

to obtain (4-2).
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Now we prove (4-3). Let y = z+w for z ∈ Z4 and w ∈ Q0 := [0, 1)4 and r = n+ τ for n ∈ N and
0≤ τ < 1. By Minkowski’s inequality and (4-2),∥∥∥∥∫

R4

∫
∞

1
h(y, r)Fy,r dr dy

∥∥∥∥
p
.p

∫∫
Q0×[0,1)

∥∥∥∥∑
z∈Z4

∞∑
n=1

h2(n+ τ)h1(z+w)Fz+w,n+τ

∥∥∥∥
p

dw dτ

.p

∫∫
Q0×[0,1)

(∑
z∈Z4

∞∑
n=1

|h2(n+ τ)h1(z+w)|p(n+ τ)3
)1/p

dw dτ

.p

(∫
R3

∫
∞

1
|h(y, r)|pr3 dr dy

)1/p

,

where in the last step we have used Hölder’s inequality. �

Support-size estimates vs. L2 inequalities. Fix a function γ : Y ×R→ C that is a tensor product, i.e.,
γ (y, r)= γ1(y)γ2(r), and fix j ∈ Z. Let

Ẽ γ, j
:= {(y, r) ∈ Y ×R : 2 j−5

≤ |γ (y, r)| ≤ 2 j+5
},

and recall the density decomposition
Ẽ γ, j

k =
⋃
u∈U

Ẽ γ, j
k (u)

defined previously. Define a function G̃γ,Eγ, j

u,k : Y ×R→ C to be the restriction of the function Gγ,Ẽ γ, j

u,k to
the set Eγ, j

k , i.e.,

G̃γ,Eγ, j

u,k (y, r)=

{
Gγ,Ẽ γ, j

u,k (y, r) if (y, r) ∈ Eγ, j
k ,

0 if (y, r) /∈ Eγ, j
k .

Similarly define
G̃γ,Eγ, j

u =

∑
k≥0

G̃γ,Eγ, j

u,k and G̃γ,Eγ, j

k =

∑
u∈U

G̃γ,Eγ, j

u,k .

Note that G̃γ,Eγ, j

k =Gγ,Eγ, j

k , and
∑

k Gγ,Eγ, j

k appears on the left-hand side of the inequality in Proposition 4.1.
Similarly to [Heo et al. 2011], we will show that the functions G̃γ,E j,γ

u,k either have relatively small support
size or satisfy relatively good L2 bounds. As in the previous part of the paper, we begin with a support-
size bound which follows immediately from the similar bound in [Heo et al. 2011] that improves as the
density u increases.

Lemma C ′. For all u ∈ U , the Lebesgue measure of the support of G̃γ,Eγ, j

u,k is . u−123k #
(⋃

l:|l− j |≤10 E
γ,l
k

)
.

We will prove the following L2 inequality, which in some sense an improved version of Lemma 3.6
from [Heo et al. 2011], although the hypotheses are different since it is crucial that we assume that the
underlying set is of the form Eγ, j, i.e., the ≈ 2 j level set of some function γ (y, r) = γ1(y)γ2(r). This
inequality improves as the density u decreases. In [Heo et al. 2011], the analogous L2 inequality proved is

‖G̃γ,Eγ, j

u ‖
2
2 . u2/(d−1) log(2+ u)22 j

∑
k

2k(d−1)#
( ⋃

l:|l− j |≤10

Eγ, j
k

)
. (4-4)
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We use geometric methods to improve on (4-4) in four dimensions, and our argument will rely on
Lemma A.1 proved later in the Appendix.

Lemma 4.3. Let Eγ, j, Eγ, j
k , and G̃γ,Eγ, j

u be as above. Then for every ε > 0,

‖G̃γ,Eγ, j

u ‖
2
2 .ε u11/18+ε 22 j

∑
l≥ j

2(l− j)/10
∑

k

23k #Eγ,lk .

Combining Lemma C ′ and Lemma 4.3, we obtain the following L p bound.

Lemma 4.4. For p ≤ 2, for every ε > 0,

‖G̃γ,Eγ, j

u ‖p .ε,p u−(1/p−29/36−ε)2 j
(∑

l≥ j

2(l− j)/10
∑

k

23k #Eγ,lk

)1/p

.

Proof of Lemma 4.4 given Lemma C ′ and Lemma 4.3. By Hölder’s inequality,

‖G̃γ,Eγ, j

u ‖p .p (meas(supp(G̃γ,Eγ, j

u )))1/p−1/2
‖G̃γ,Eγ, j

u ‖2

.ε,p u29/36−1/p+ε2 j
(∑

l≥ j

2(l− j)/10
∑

k

23k #Eγ,lk

)1/p

. �

Summing over u ∈ U , we obtain Proposition 4.1. Thus to prove Proposition 4.1 it suffices to prove
Lemma 4.3. One may deduce Theorem 1.4 from Corollary 4.2 in the same way as one deduces Theorem 1.2
from Corollary 2.3.

5. Proof of the L2 inequality: part II

We have shown in Section 4 that to prove our main result Theorem 1.4 it remains to prove Lemma 4.3,
and the goal of this section is to prove Lemma 4.3. The intuition and reasoning behind our arguments will
be loosely as follows. Unlike the previous case where we worked with characteristics functions, the level
sets Eγ, j in Lemma 4.3 are no longer product sets in Rd

×R since we no longer have the assumption
that we are working with characteristic functions. However, they are still very well structured, since
they are level sets of tensor products g(y)h(r) of functions, where y ∈ Rd and r ∈ R. The dyadic level
sets Eγ, j may be written as a sum of product sets, and if there are not too many of them (e.g., logarithmic
in the relevant parameters) then we may simply crudely sum over the total number of product sets and
proceed with the same argument as in the characteristic function case. On the other hand, if there are a
large number of such product sets, then this forces the underlying function to take on values much larger
than 2 j, and we may then control sums over the sets Eγ, j by cardinalities of sets Eγ,lk with l ≥ j .

Another preliminary reduction. Recall that our goal is to estimate the L2 norm of G̃γ,Eγ, j

u =
∑

k≥0 G̃γ,Eγ, j

u,k .
Let N (u) be a sufficiently large number to be chosen later (it will be some harmless constant depending
on u that is essentially O(log(2+ u))). We split the sum in k as

∑
k≤N (u) G̃γ,Eγ, j

u,k +
∑

k>N (u) G̃γ,Eγ, j

u,k and
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apply Cauchy–Schwarz to obtain∥∥∥∥∑
k

G̃γ,Eγ, j

u,k

∥∥∥∥2

2
. N (u)

(∑
k

‖G̃γ,Eγ, j

u,k ‖
2
2+

∑
k>k′>N (u)

|〈G̃γ,Eγ, j

u,k′ , G̃γ,Eγ, j

u,k 〉|

)
. (5-1)

We may thus separately estimate
∑

k ‖G̃
γ,Eγ, j

u,k ‖
2
2 and∑

k>k′>N (u)

|〈G̃γ,Eγ, j

u,k′ , G̃γ,Eγ, j

u,k 〉|,

which divides the proof of the L2 estimate into two cases, the first being the case of “comparable radii”
and the second being the case of “incomparable radii”.

Comparable radii. We will first estimate
∑

k ‖G̃
γ,Eγ, j

u,k ‖
2
2. Our goal will be to prove the following lemma.

Lemma 5.1. For every ε > 0,

‖G̃γ,Eγ, j

u,k ‖
2
2 .ε u11/18+ε22 j

∑
l≥ j

2(l− j)/1023k(#Eγ,lk ). (5-2)

Fix k and u. As in [Heo et al. 2011], we first observe that for (y, r), (y′, r ′) ∈ Ẽ γ, j
k (u)∩ Eγ, j

k , we have
〈Fy,r , Fy′,r ′〉 = 0 unless |(y, r)− (y′, r ′)| ≤ 2k+5. To estimate ‖G̃γ,Eγ, j

u,k ‖
2
2 for a fixed k, we would thus like

to bound
22 j

∑
(y,r),(y′,r ′)∈Ẽ γ, j

k (u)∩Eγ, j
k

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

for all 0≤ m ≤ k+ 4.
Now fix m ≤ k+ 4. Let Qu, j,k,m be a collection of almost disjoint cubes Q ⊂ R5 of side length 2m+5

such that
Ẽ γ, j

k (u)∩ Eγ, j
k ⊂

⋃
Q∈Qu,k, j,m

Q

and so that every Q has nonempty intersection with Ẽ γ, j
k (u)∩ Eγ, j

k . Let Q∗ denote the 25-dilate of Q and
Q∗u,k, j,m the corresponding collection of dilated cubes. Observe that

‖G̃γ,Eγ, j

u,k ‖
2
2. 22 j

∑
0≤m≤k+4

( ∑
(y,r),(y′,r ′)∈Ẽ γ, j

k (u)∩Eγ, j
k

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r ,Fy′,r ′〉|+
∑

(y,r)∈Ẽ γ, j
k (u)∩Eγ, j

k

‖Fy,r‖
2
2

)

. 22 j
∑

0≤m≤k+4

( ∑
Q∈Qu,k, j,m

( ∑
(y,r),(y′,r ′)∈(Ẽ γ, j

k (u)∩Eγ, j
k ∩Q∗)

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r ,Fy′,r ′〉|

)
+

∑
(y,r)∈Ẽ γ, j

k (u)∩Eγ, j
k

‖Fy,r‖
2
2

)
.

(5-3)
For each integer b ∈ Z define

Eγ, j,b
k := {(y, r) ∈ Y ×Rk : 2b−3

≤ γ1(y)≤ 2b+3, 2 j−b−3
≤ γ2(r)≤ 2 j−b+3

}.
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Note that

Eγ, j
k ⊂

⋃
b∈Z

Eγ, j,b
k ⊂ Ẽ γ, j

k .

Note also that each set Eγ, j,b
k is a product, that is, a set of the form Y × R, where Y ⊂ Y and R ⊂R. It

follows that Eγ, j,b
k ∩ Q is a product for any cube Q ⊂ Rd+1.

We also define some parameters associated with a fixed Q ∈ Qu,k, j,m and b ∈ Z. Let NR,Q,b be the
cardinality of the R-projection of Eγ, j,b

k ∩ Q∗; i.e.,

NR,Q,b := #((Eγ, j,b
k ∩ Q∗)R)= #{r : ∃(y, r) ∈ Eγ, j,b

k ∩ Q∗}.

Similarly define

NY,Q,b := #((Eγ, j,b
k ∩ Q∗)Y )= #{y : ∃(y, r) ∈ Eγ, j,b

k ∩ Q∗}.

We also note the following important observation, which we will use repeatedly. Using the definition of
the sets Ẽ γ, j

k (u) and the fact that for each b ∈ Z, the set Eγ, j,b
k has product structure, one may see that if

Q ∈Qu,k, j,m is such that Ẽ γ, j
k (u)∩ Eγ, j,b

k ∩ Q∗ is nonempty, then

|NY,Q,b · NR,Q,b|. #(Eγ, j,b
k ∩ Q∗). #(Ẽ γ, j

k ∩ Q∗). u2m. (5-4)

Now, we will organize our sets Eγ, j,b
k as follows. For a fixed m, given Q ∈Qu,k, j,m , we would like to

group together those b ∈ Z for which #(Eγ, j,b
k ∩ Q) has essentially equal cardinality and for which the

ratio NY,Q,b/NR,Q,b is essentially equal. For each pair of integers (c, d) ∈ Z2, we define

BQ,c,d := {b ∈ Z : 2c−1
≤ #(Eγ, j,b

k ∩ Q∗) < 2c, 2d−1
≤ NY,Q,b/NR,Q,b < 2d

}.

Now with (5-3) in mind, we will prove the following lemma.

Lemma 5.2. For each Q ∈Qu,k, j,m and each quadruple (c, d, c′, d ′) ∈ Z4, we have the estimates∑
(y,r)∈

⋃
b∈BQ,c,d

(Eγ, j,b
k ∩ Ẽ γ, j

k (u)∩Q∗)

(y′,r ′)∈
⋃

b∈BQ,c′,d′
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r ,Fy′,r ′〉|. 2max((c−d)/2,(c′−d ′)/2)(max(#BQ,c,d ,#BQ,c′,d ′))
2

×2max(c,c′)23(k−m/2)(m log(u))max(u5/62m,u2m/2) (5-5)

and ∑
(y,r)∈

⋃
b∈BQ,c,d

(Eγ, j,b
k ∩ Ẽ γ, j

k (u)∩Q∗)

(y′,r ′)∈
⋃

b∈BQ,c′,d′
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r ,Fy′,r ′〉|. 23(k−m/2)2max(c,c′)(max(#BQ,c,d ,#BQ,c′,d ′))
2

×u2m(2max((c−d)/2,(c′−d ′)/2))−1. (5-6)

Notice that (5-5) is the better estimate when 2max((c−d)/2,(c′−d ′)/2) is small and (5-6) is the better estimate
when 2max((c−d)/2,(c′−d ′)/2) is large. We will use (5-5) when 2max((c−d)/2,(c′−d ′)/2)

≤ u1/12 and (5-6) when
2max((c−d)/2,(c′−d ′)/2) > u1/12. This yields the following corollary.
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Corollary 5.3.
∑

(y,r)∈
⋃

b∈BQ,c,d
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

(y′,r ′)∈
⋃

b∈BQ,c′,d′
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|.ε I + II, (5-7)

where

I := 23k2max(c,c′)(max(#BQ,c,d , #BQ,c′,d ′))
2uε2mε max(u11/122−m/2, u13/122−m), (5-8)

II := 23k2max(c,c′)(max(#BQ,c,d , #BQ,c′,d ′))
2uε2mεu11/122−m/2. (5-9)

Now note that if (max(#BQ,c,d , #BQ,c′,d ′)) > 10000m log(u), then for some l such that l > j +
1

10(max(#BQ,c,d , #BQ,c′,d ′)), we have #(Q∗∩Eγ,lk )≥ 1, because this implies there must be (y, r) such that
γ (y, r)≥ 2l , where l > j+ 1

10(max(#BQ,c,d , #BQ,c′,d ′). Since 2max(c,c′). #(Q∗∩Eγ, j
k ). u2m . 2(l− j)/20,

this implies
2max(c,c′)(max(#BQ,c,d , #BQ,c′,d ′))

2 . 2(l− j)/10#(Eγ,lk ∩ Q∗).

Thus Corollary 5.3 implies the following.

Corollary 5.4.
∑

(y,r)∈
⋃

b∈BQ,c,d
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

(y′,r ′)∈
⋃

b∈BQ,c′,d′
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|. I + II, (5-10)

where

I := 23k
∑
l≥ j

2(l− j)/10#(Eγ,lk ∩ Q∗)uε2mε max(u11/122−m/2, u13/122−m), (5-11)

II : = 23k
∑
l≥ j

2(l− j)/10#(Eγ,lk ∩ Q∗)uε2mεu11/122−m/2. (5-12)

By (5-4) there are.m4 log(u)4 quadruples (c, d, c′, d ′) for which both
⋃

b∈BQ,c,d
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

and
⋃

b∈BQ,c′,d′
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩ Q∗) are nonempty, so Corollary 5.4 implies the following.

Corollary 5.5.
∑

(y,r),(y′,r ′)∈
⋃

b∈Z(E
γ, j,b
k ∩ Ẽ γ, j

k (u)∩Q∗)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|. I + II, (5-13)

where

I := 23k
∑
l≥ j

2(l− j)/10#(Eγ,lk ∩ Q∗)uε2mε max(u11/122−m/2, u13/122−m) (5-14)

II := 23k
∑
l≥ j

2(l− j)/10#(Eγ,lk ∩ Q∗)uε2mεu11/122−m/2. (5-15)

Proof of Lemma 5.2. We will first prove (5-5). Fix b ∈ BQ,c,d and b′ ∈ BQ,c′,d ′ . Set

NY,Q,b,b′ =max(NY,Q,b, NY,Q,b′)≈ 2max((c+d)/2,(c′+d ′)/2).
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It suffices to prove∑
(y,r)∈Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗

(y′,r ′)∈Eγ, j,b′
k ∩ Ẽ γ, j

k (u)∩Q∗

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|. NR,Q,b NR,Q,b′NY,Q,b,b′×23(k−m/2)(m log(u))max(u5/62m, u2m/2).

(5-16)

After incurring a factor of NR,Q,b NR,Q,b′ , to estimate the left-hand side of (5-16) it suffices to estimate
for a fixed pair r1, r2, ∑

(y,r1)∈(E
γ, j,b
k ∩ Ẽ γ, j

k (u)∩Q∗)×

(y′,r2)∈(E
γ, j,b′
k ∩ Ẽ γ, j

k (u)∩Q∗)×

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|, (5-17)

i.e., to restrict (y, r) and (y′, r ′) to lie in fixed rows of the product-extensions of (Eγ, j,b
k ∩ Ẽγ, j

k (u)∩Q∗)× and
(Eγ, j,b′

k ∩ Ẽγ, j
k (u)∩Q∗)×, respectively. (Our estimates will not depend on the particular choice of r1 and r2.)

Now, referring to the estimate in Lemma 3.2, we see that for a fixed y, r1, r2 we have that |〈Fy,r1, Fy′,r2〉|

decays rapidly as y′ moves away from the set {y′ : |y − y′| = |r1− r2| or |y − y′| = r1+ r2}, which is
contained in a union of two annuli of thickness 2 and radii |r1− r2| and r1+ r2 centered at y.

Let s≥0, fix t≤2m+10, and define K γ, j,b,b′
k (Q, s, t) to be the number of points y∈(Eγ, j,b

k ∩Ẽ γ, j
k (u)∩Q∗)Y

such that there are ≥ 2s many points y′ ∈ (Eγ, j,b′
k ∩ Q∗)Y such that y′ lies in the annulus of inner radius

t and thickness 3 centered at y. That is, define

K γ, j,b,b′
k (Q,s, t) := #

{
y ∈ (Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)Y : there exist at least 2s many points

y′ ∈ (Eγ, j,b′
k ∩Q∗)Y such that

∣∣|y′−y|−
(
t+3

2

)∣∣≤ 3
2

}
.

In view of the observation in the previous paragraph, for a given s sufficiently large but smaller than u2m, say
s>m+100, and a fixed number t ≤2m+10, we would like to prove a bound on K γ, j,b,b′

k (Q, s, t). Our bound
will depend on s and m but be independent of the choice of t≤2m+10. For this reason, we define the quantity

K γ, j,b,b′,∗
k (Q, s) := max

0≤t≤2m+10
K γ, j,b,b′

k (Q, s, t).

We will prove

K γ, j,b,b′,∗
k (Q, s).max

[
u24m/3 N 5/3

Y,Q,b,b′2
−2s, u2m/2 NY,Q,b,b′2−s], s > m+ 100. (5-18)

Combining this with the trivial bound K γ, j,b,b′,∗
k (Q, s). NY,Q,b,b′ yields

K γ, j,b,b′,∗
k (Q,s)

.max
[
min(u24m/3 N 5/3

Y,Q,b,b′2
−2s,NY,Q,b,b′),min(u2m/2 NY,Q,b,b′2−s,NY,Q,b,b′)

]
, s>m+100. (5-19)

Note that (5-18) gives decay in the number of points K γ, j,b,b′,∗
k (Q, s) (i.e., K γ, j,b,b′∗

k (Q, s)� NY,Q,b,b′)
if we have that both

(1) N 5/3
Y,Q,b,b′2

−2su24m/3
� NY,Q,b,b′ , that is, if 2s

� N 1/3
Y,Q,b,b′u

1/222m/3, and

(2) NY,Q,b,b′2−su2m/2
� NY,Q,b,b′ , that is, if 2s

� u2m/2.
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Using Lemma 3.2, we may bound∑
(y,r)∈(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

(y′,r ′)∈(Eγ, j,b′
k ∩ Ẽ γ, j

k (u)∩Q∗)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

.
∑

r1∈(E
γ, j,b
k ∩ Ẽ γ, j

k (u)∩Q∗)R

r2∈(E
γ, j,b′
k ∩ Ẽ γ, j

k (u)∩Q∗)R

( ∑
y,y′∈(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)Y

2m
≤|(y,r1)−(y′,r2)|≤2m+1

|〈Fy,r1, Fy′,r2〉|

)

. 23(k−m/2)
∑

r1∈(E
γ, j,b
k ∩ Ẽ γ, j

k (u)∩Q∗)R

r2∈(E
γ, j,b′
k ∩ Ẽ γ, j

k (u)∩Q∗)R

( ∑
0≤a≤m+10

( ∑
y∈(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)Y

∑
y′∈(Eγ, j,b′

k ∩ Ẽ γ, j
k (u)∩Q∗)Y

min±,± (1+|r1±r2±|y−y′||)≈2a

2−aN
))

. 23(k−m/2)
∑

r1∈(E
γ, j,b
k ∩ Ẽ γ, j

k (u)∩Q∗)R

r2∈(E
γ, j,b′
k ∩ Ẽ γ, j

k (u)∩Q∗)R

( ∑
0≤a≤m+10

2−aN
( ∑

s≥0:2s≤2NY,Q,b

K γ, j,b,b′,∗
k (Q, s)2s

))

. 23(k−m/2)NR,Q,b NR,Q,b′
∑

s≥0:2s≤2NY,Q,b

K γ, j,b,b′,∗
k (Q, s)2s. (5-20)

Assuming (5-19) holds, we have∑
(y,r)∈(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

(y′,r ′)∈(Eγ, j,b′
k ∩ Ẽ γ, j

k (u)∩Q∗)
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r ,Fy′,r ′〉|

. NR,Q,b NR,Q,b′23(k−m/2)
∑
s≥0

2s.NY,Q,b,b′

max
[
min(u24m/3 N 5/3

Y,Q,b,b′2
−s,NY,Q,b,b′2s),

min(u2m/2 NY,Q,b,b′,NY,Q,b,b′2s)
]

. NR,Q,b NR,Q,b′23(k−m/2)
[

m2m NY,Q,b,b′+max
{ ∑

s≥0
2s.NY,Q,b,b′

min(u24m/3 N 5/3
Y,Q,b,b′2

−s,NY,Q,b,b′2s),

∑
s≥0

2s.NY,Q,b,b′

min(u2m/2 NY,Q,b,b′,NY,Q,b,b′2s)

}]
.

(5-21)
Now, note that u24m/3 N 5/3

Y,Q,b,b′2
−s
≥ NY,Q,b,b′2s if and only if 2s

≤ u1/222m/3 N 1/3
Y,Q,b,b′ . Thus choosing

the better estimate in the term min(u24m/3 N 5/3
Y,Q,b,b′2

−s, NY,Q,b,b′2s) depending on s yields that∑
s≥0:2s.NY,Q,b,b′

min(u24m/3 N 5/3
Y,Q,b,b′2

−s, NY,Q,b,b′2s). u1/222m/3 N 4/3
Y,Q,b,b′ .
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Note that u2m/2 NY,Q,b,b′ ≥ NY,Q,b,b′2s if and only if 2s
≤ u2m/2. Thus choosing the better estimate in

the term min(u2m/2 NY,Q,b,b′, NY,Q,b,b′2s) depending on s yields that∑
s≥0:2s.NY,Q,b,b′

min(u2m/2 NY,Q,b,b′, NY,Q,b,b′2s). log(NY,Q,b,b′)NY,Q,b,b′ u2m/2.

Using that N 1/3
Y,Q,b,b′ . u1/32m/3, it follows that the left-hand side of (5-21) is bounded by

NR,Q,b NR,Q,b′23(k−m/2)NY,Q,b,b′
[
m2m
+ log(NY,Q,b,b′)max(N 1/3

Y,Q,b,b′u
1/222m/3, u2m/2)

]
. NR,Q,b NR,Q,b′23(k−m/2)NY,Q,b,b′(m log(u))max(u5/62m, u2m/2)

.max(NR,Q,b, NR,Q,b′)2max(c,c′)23(k−m/2)(m log(u))max(u5/62m, u2m/2), (5-22)

which proves (5-5). This will be a good estimate when max(NR,Q,b, NR,Q,b′) is small.
Thus to prove (5-5) it remains to prove (5-18). We will in fact prove (5-18) with K γ, j,b,b′,∗

k (Q, s)
replaced by K γ, j,b,b′

k (Q, s, t), uniformly in t ≤ 2m+10. Fix t ≤ 2m+10 and let α = dlog2(t)e and cover
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩ Q∗)Y by . 24(m−α) many 4-dimensional almost-disjoint balls of radius 2α+5; denote

this collection of balls as B= {Bi }. For each i , we define a collection of “special” points Aγ, j,b,b′
k,i (Q, s, t)

to be the set of all points

y ∈ (Eγ, j,b
k ∩ Ẽ γ, j

k (u)∩ Q∗)Y ∩ Bi

such that there are ≥ 2s many points y′ ∈ (Eγ, j,b′
k ∩ Q∗)Y such that y′ lies in the annulus of radius t and

thickness 3 centered at y. That is, we define

Aγ, j,b,b′
k,i (Q,s, t) :=

{
y ∈ (Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)Y∩Bi : there exist at least 2s many points

y′ ∈ (Eγ, j,b′
k ∩Q∗)Y such that

∣∣|y′−y|−
(
t+3

2

)∣∣≤ 3
2

}
.

Let K γ, j,b,b′
k,i (Q, s, t) denote the cardinality of Aγ, j,b,b′

k,i (Q, s, t). Now cover each Bi with.24(α−l) many al-
most disjoint 4-dimensional balls Bi,α of radius 2l for some l≤α. Each such ball contains at most u2l many
points of Aγ, j,b,b′

k,i (Q, s, t), so for a fixed i there must be at least& K γ, j,b,b′
k,i (Q, s, t)(u2l)−1 many balls Bi,α

that contain at least one point in Aγ, j,b,b′
k,i (Q, s, t). Thus there must be at least & K γ, j,b,b′

k,i (Q, s, t)(u2l)−1

many such points in Bi ∩ Aγ, j,b,b′
k,i (Q, s, t) spaced apart by & 2l ; call this set Dγ, j,b,b′

k,i (Q, s, t). But by
Corollary A.2, which we prove later in the Appendix, the size of 3-fold intersections of 4-dimensional
annuli of radius t ≈ 2α and thickness 3 spaced apart by & 2l with centers lying in a ball of radius 2α−5

is bounded above by . 23(α−l)2α provided that l ≥ α/2+ 20. This is true because for each point p
in Dk,i (Q, s, t), there will be at least & 2s many points contained in the t-annulus centered at p that
are contained in no more than two other different t annuli centered at different points p′ and p′′ in
Dk,i (Q, s, t), so the total number of points is & 2s

× card(Dk,i (Q, s, t)).
It follows that if l ≥ α/2 + 20, then for each of these ≈ K γ, j,b,b′

k,i (Q, s, t)(u2l)−1 many points
p ∈ Dγ, j,b,b′

k,i (Q, s, t), there can be

. K γ, j,b,b′
k,i (Q, s, t)2(u2l)−223(α−l)2α
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points lying inside the t-annulus centered at p that are simultaneously contained in at least two other
different t-annuli centered at points in Dγ, j,b,b′

k,i (Q, s, t). This implies that if NY,Q,b′,i denotes the cardinality
of (Eγ, j,b′

k ∩ Q∗)Y ∩ B∗i , where B∗i = 10Bi , then we have

NY,Q,b′,i & K γ, j,b,b′
k,i (Q, s, t)(u2l)−12s, (5-23)

which is essentially 2s times the number of points in Dγ, j,b,b′
k,i (Q, s, t), provided that 2s is much bigger

than the total number of points lying inside a t-annulus centered at p that are simultaneously contained
in at least two other different t-annuli centered at points in Dγ, j,b,b′

k,i (Q, s, t), i.e., provided that

K γ, j,b,b′
k,i (Q, s, t)2(u2l)−223(α−l)2α � 2s (5-24)

and

l ≥ α/2+ 20.

Solving for 2l in (5-24) yields

2l
� K γ, j,b,b′

k,i (Q, s, t)2/524α/5u−2/52−s/5. (5-25)

Since s� m, we may choose a minimal l such that

2l
�max

[
K γ, j,b,b′

k,i (Q, s, t)2/524α/5u−2/52−s/5, 2α/2
]

for a sufficiently large implied constant. Substituting into (5-23) yields

K γ, j,b,b′
k,i (Q, s, t).max

[
u24m/3 N 5/3

Y,Q,b′,i 2
−2s, u2m/2 NY,Q,b′,i 2−s], (5-26)

and summing over all i and using the almost-disjointness of the B∗i gives

K γ, j,b,b′
k (Q, s, t).max

[
u24m/3 N 5/3

Y,Q,b′2
−2s, u2m/2 NY,Q,b′2−s]. (5-27)

Taking the maximum over all 0≤ t ≤ 2m+10 proves (5-18) and hence also (5-5).
It remains to prove (5-6), which we reproduce again below for convenience:∑

(y,r)∈
⋃

b∈BQ,c,d
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

(y′,r ′)∈
⋃

b∈BQ,c′,d′
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

. 23(k−m/2)2max(c,c′)(max(#BQ,c,d , #BQ,c′,d ′))
2u2m(2max((c−d)/2,(c′−d ′)/2))−1. (5-28)

This will be a good estimate in the case that 2max((c−d)/2,(c′−d ′)/2) is large. Without loss of generality,
assume that c′− d ′ ≥ c− d. For a fixed (y, r) ∈ Q∗ and a fixed

y′ ∈ (Eγ, j,b′
k ∩ Ẽ γ, j

k (u)∩ Q∗)Y ,
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there are at most two values of r ′ away from which 〈Fy,r , Fy′,r ′〉 decays rapidly. Thus using Lemma 3.2
we may estimate∑
(y,r)∈

⋃
b∈BQ,c,d

(Eγ, j,b
k ∩ Ẽ γ, j

k (u)∩Q∗)

(y′,r ′)∈
⋃

b∈BQ,c′,d′
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

.
∑

0≤a≤m+10

( ∑
(y,r)∈

⋃
b∈BQ,c,d

(Eγ, j,b
k ∩ Ẽ γ, j

k (u)∩Q∗)

( ∑
y′∈

⋃
b∈BQ,c′,d′

(Eγ, j,b
k ∩ Ẽ γ, j

k (u)∩Q∗)Y( ∑
r ′∈
⋃

b∈BQ,c′,d′
(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩Q∗)R

2m
≤|(y,r)−(y′,r ′)|≤2m+1

min±,± (1+|r±r ′±|y−y′||)≈2a

2−Na23(k−m/2)
)))

. 23(k−m/2)(max(#BQ,c,d , #BQ,c′,d ′))
2 max

b∈BQ,c,d
(#(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩ Q∗))
× max

b′∈BQ,c,d
(#(Eγ, j,b

k ∩ Ẽ γ, j
k (u)∩ Q∗)Y )

. 23(k−m/2)(max(#BQ,c,d , #BQ,c′,d ′))
2 2max(c,c′)u2m(2(c

′
−d ′)/2)−1,

(5-29)
and the proof of (5-6) is complete. �

We will now use Lemma 5.2 to prove Lemma 5.1.

Proof of Lemma 5.1. Fix an a > 0 to be determined later. Similar to [Heo et al. 2011], we let G̃γ,Eγ, j

u,k =∑
µ G̃γ,Eγ, j

u,k,µ , where for each positive integer µ we set

Ik,µ = [2k
+ (µ− 1)ua, 2k

+µua),

Ek,µ = Y × Ik,µ,

G̃γ,Eγ, j

u,k,µ =
∑

(y,r)∈Ek,µ∩E
γ, j
k ∩ Ẽ

γ, j
k (u)

γ (y, r)Fy,r and G̃γ,Eγ, j

u,k,µ,r =
∑

y:(y,r)∈Ek,µ∩E
γ, j
k ∩ Ẽ

γ, j
k (u)

γ (y, r)Fy,r .

We have

‖G̃γ,Eγ, j

u,k ‖
2
2 .

∥∥∥∥∑
µ

G̃γ,Eγ, j

u,k,µ

∥∥∥∥2

2
.
∑
µ

‖G̃γ,Eγ, j

u,k,µ ‖
2
2+

∑
µ′>µ+10

|〈G̃γ,Eγ, j

u,k,µ′,Gγ,Eγ, j

u,k,µ 〉|. (5-30)

By Cauchy–Schwarz,

‖G̃γ,Eγ, j

u,k,µ ‖
2
2 . ua

∑
r∈Ik,µ∩R

‖G̃γ,Eγ, j

u,k,µ,r‖
2
2.

Write

G̃γ,Eγ, j

u,k,µ,r =

( ∑
y:(y,r)∈Ek,µ∩E

γ, j
k ∩ Ẽ

γ, j
k (u)

γ (y, r)ψ0( · − y)
)
∗ (σr ∗ψ0).
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By the Fourier decay of σr and the order of vanishing of ψ0 at the origin, we have

‖σ̂r ψ̂0‖∞ . r3/2.

Since ∥∥∥∥ ∑
y:(y,r)∈Ek,µ∩E

γ, j
k ∩ Ẽ

γ, j
k (u)

γ (y, r)ψ0( · − y)
∥∥∥∥2

2
. 22 j #{y ∈ Y : (y, r) ∈ Ek,µ ∩ E

γ, j
k ∩ Ẽ γ, j

(u)},

we have ∑
µ

‖G̃γ,Eγ, j

u,k,µ ‖
2
2 . ua

∑
µ

∑
r∈Ik,µ∩R

‖G̃γ,Eγ, j

u,k,µ,r‖
2
2 . 22 j ua23k #Eγ, j

k . (5-31)

By (5-30), it remains to estimate
∑

µ′>µ+10 |〈G̃
γ,Eγ, j

u,k,µ′, G̃γ,Eγ, j

u,k,µ 〉|.
Note that we have the bound∑
µ′>µ+10

|〈G̃γ,Eγ, j

u,k,µ′, G̃γ,Eγ, j

u,k,µ 〉|. 22 j
∑

m:2m
≥ua

(y,r),(y′,r ′)∈Ẽ γ, j
k (u)∩Eγ, j

k
2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

. 22 j
∑

m:2m≥ua

( ∑
Q∈Qu,k, j,m

( ∑
(y,r),(y′,r ′)∈Q∩ Ẽ γ, j

k (u)∩Eγ, j
k

2m
≤|(y,r)−(y′,r ′)|≤2m+1

|〈Fy,r , Fy′,r ′〉|

))
. (5-32)

To estimate the inner sum above, we will use Corollary 5.5. Summing over all Q ∈ Qu,k, j,m and over
all m such that 2m

≥ ua we have∑
µ′>µ+10

|〈G̃γ,Eγ, j

u,k,µ′, G̃γ,Eγ, j

u,k,µ 〉|.ε 22 j (I + II ), (5-33)

where

I := 23k
∑
l≥ j

2(l− j)/10(#Eγ,lk )uε max(u11/12−a/2, u13/12−a), (5-34)

II := 23k
∑
l≥ j

2(l− j)/10(#Eγ,lk )uεu11/12−a/2. (5-35)

Combining (5-30), (5-31) and (5-33), we thus have the estimate

‖G̃γ,Eγ, j

u,k ‖
2
2 .ε 22 j 23k

∑
l≥ j

2(l− j)/10(#Eγ,lk )(ua
+ u11/12−a/2+ε

+ u13/12−a+ε).

Choose a = 11
18 to obtain

‖G̃γ,Eγ, j

u,k ‖
2
2 .ε 22 j 23k

∑
l≥ j

2(l− j)/10(#Eγ,lk )u11/18+ε

for every ε > 0, which is (5-2). �
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Incomparable radii. We now want to estimate∑
k>k′>N (u)

|〈G̃γ,Eγ, j

u,k′ , G̃γ,Eγ, j

u,k 〉|.

Our estimate will be much better than in the comparable radii case. In fact, since d = 4, we may simply
use the estimate proved for incomparable radii in [Heo et al. 2011], which is more than sufficient for our
purposes. We restate this estimate using our notation as follows.

Lemma 5.6. Let ε > 0. For the choice N (u)= 100ε−1 log2(2+ u), we have∑
k>k′>N (u)

|〈G̃γ,Eγ, j

u,k′ ,Gγ,Eγ, j

u,k 〉|.ε 22 j
∑

k

23k
∑

l:|l− j |≤10

#Eγ,lk . (5-36)

For a proof of Lemma 5.6, see [Heo et al. 2011].

Putting it together. Combining (5-1), (5-2) and (5-36), we have that for every ε > 0,∥∥∥∥∑
k

G̃γ,Eγ, j

u,k

∥∥∥∥2

2
.ε u11/18+ε

∑
k

23k22 j
∑
l≥ j

2(l− j)/10(#Eγ,lk ). (5-37)

This completes the proof of Lemma 4.3 and hence the proof of Proposition 4.1.

Appendix: A geometric lemma

In this section we prove the geometric lemma used in the previous section.

Lemma A.1. Fix integers j, l with l ≤ j . Let 2 j−1
≤ t ≤ 2 j+1. Then the size of the intersection of three

annuli in R3 of thickness 4 and inner radius t such that the distance between the centers of any pair is at
least 2l and no greater than 2 j/10 is . 23( j−l), provided that l ≥ j/2+ 10.

We will use the following basic lemma which gives an estimate on the size of intersections of
2-dimensional annuli. This is an immediate corollary of Lemma 3.1 in [Wolff 1999].

Lemma D. Let A1 and A2 be two annuli in R2 of thickness 1 built upon circles C1 and C2 of radius R,
and let d denote the distance between the centers of C1 and C2. If d ≤ R/5, then A1 ∩ A2 is contained in
the 10-neighborhood of an arc of C1 of length . R/d.

Proof of Lemma A.1. Let A1, A2, A3 denote the three annuli. Let `1,2 denote the line through the centers
of A1 and A2, and let `1,3 denote the line through the centers of A1 and A3. Let P be any plane containing
both `1,2 and `1,3. Then A1∩ A2 is the 3-dimensional solid formed by rotating the intersection of the two
(circular) annuli A1 ∩ P and A2 ∩ P about the line `1,2. Similarly, A1 ∩ A3 is the 3-dimensional solid
formed by rotating the intersection of the two (circular) annuli A1 ∩ P and A3 ∩ P about the line `1,3.

Now, by Lemma D, A1 ∩ A2 ∩ P is contained in the 10-neighborhood of two arcs of length . 2 j−l of
the circle that A1 ∩ P is built upon. Rotating A1 ∩ A2 ∩ P about the line `1,2 to get A1 ∩ A2, this implies
that A1 ∩ A2 is the union of . 2 j−l many 10-neighborhoods of circular annuli of radius . 2 j lying in
a plane normal to the line `1,2. The same holds for A1 ∩ A3 with `1,2 replaced by `1,3. Suppose first
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x1 x2

x3

x ′3 `1,2

`1,3

y1,2 y1,3

y′1,3

Figure 1. The circles C1,C2, C3, and C ′3 in the plane P , from the proof of Lemma A.1.
The shaded-in circle is C1, the thick circle is C2, the dashed circle is C3, and the remaining
circle is C ′3.

that the angle between `1,2 and `1,3 is ≥ 2l− j−3, in radians. Then |A1∩ A2∩ A3| is bounded by . 22( j−l)

times the largest possible size of the intersection of two 10-neighborhoods of circular annuli, where the
first lies in a plane normal to `1,2 and the second lies in a plane normal to `1,3. One computes that the
largest possible size of such an intersection is . 2 j−l.

It remains to consider the case when the angle between `1,2 and `1,3 is < 2l− j−3, in radians. We now
define the following coordinates associated to the lines `1,2 and `1,3. Let x1, x2, x3 denote the centers
of A1, A2, A3 respectively. For x ∈ R3, we define the `1,2-coordinate

(x)1,2 =
〈x − x1, x2− x1〉

|x2− x1|
.

Similarly define the `1,3-coordinate

(x)1,3 =
〈x − x1, x3− x1〉

|x3− x1|
.

By interchanging the order of A1, A2, A3, we may assume without loss of generality that (x3)1,2 ≥

(x2)1,2 = 1. We will show that l ≥ j/2+ 10 implies that A1 ∩ A2 and A2 ∩ A3 are actually disjoint.
Observe that since the angle between `1,2 and `1,3 is < 2l− j−3, we have that (x3− x2)1,2 ≥ 2l−1. Now, let
x ′3 be the closest point on the line `1,2 whose distance from x1 is the same as the distance from x1 to x3.
Clearly, we also have (x ′3− x2)1,2 ≥ 2l−1. Let C3 be the circle in P with center at x3 and radius t and let
C ′3 be the circle in P with center at x ′3 and radius t . Then if y′1,3 denotes either of the two points in C1∩C ′3
and y1,2 either of the two points in C1 ∩C2, then (x ′3− x2)1,2 ≥ 2l−1 implies that (y′1,3− y1,2)1,2 ≥ 2l−2.
This is because with respect to the `1,2-coordinate, y′1,3 lies at the midpoint of x1 and x3 and y1,2 lies at
the midpoint of x1 and x2. Note that C1∩C3 is the rotation within P of C1∩C ′3 by an angle of < 2l− j−3,
where the rotation is based at x1. This implies that if y1,3 is either of the two points in C1 ∩C3, then
|y′1,3− y1,3| ≤ 2l−3. It follows that (y1,3− y1,2)1,2 ≥ (y′1,3− y1,2)1,2− |y′1,3− y1,3| ≥ 2l−2

− 2l−3
= 2l−3.
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But by Lemma D, A1∩ A2 is the rotation in R3 of a 10-neighborhood of an arc of C1 of length . 2 j−l

that contains y1,2 about `1,2, and so A1∩ A2 lives in the slab {z ∈R3
: |(z− y1,2)1,2| ≤ 2 j−l+4

}. Similarly,
A1∩A3 is the rotation in R3 of a 10-neighborhood of an arc of C1 of length. 2 j−l that contains y1,3 about
`1,3, and so A1∩ A3 lives in the half-infinite slab {z ∈R3

: (z− y1,3)1,2≥−2 j−l+4
}, and since l ≥ j/2+10,

we have j−l+4≤ l−10. Since (y1,3− y1,2)1,2≥ 2l−3, it follows that A1∩A2 and A2∩A3 are disjoint. �

Corollary A.2. Fix integers j, l with l ≤ j . Let 2 j−1
≤ t ≤ 2 j+1. Then the size of the intersection of three

annuli in R4 of thickness 4 and inner radius t such that the distance between the centers of any pair is at
least 2l and no greater than 2 j/10 is . 23( j−l)2 j , provided that l ≥ j/2+ 10.

Proof. Let P be a hyperplane in R4 containing the centers of the three annuli, and for each t ∈ R, let Pt

be the one-parameter family of hyperplanes with normals parallel to the normal to P. For each t , the
intersection of each annulus with Pt is a 3-dimensional annulus of a fixed radius depending on t that is
. 2 j and a fixed width depending on t that is . 1, and with centers spaced apart by & 2l. By Lemma A.1,
A1 ∩ A2 ∩ A3 ∩ Pt has size . 23( j−l). It follows that A1 ∩ A2 ∩ A3 has size . 23( j−l)2 j. �
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