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RADIAL FOURIER MULTIPLIERS IN R3 AND R*

LAURA CLADEK

We prove that for radial Fourier multipliers m : R* — C supported compactly away from the origin,
T,, is restricted strong type (p, p) if K = is in L?(R?), in the range 1 < p < % We also prove an
L? characterization for radial Fourier multipliers in four dimensions; namely, for radial Fourier multipliers
m : R* — C supported compactly away from the origin, 7}, is bounded on L” (R*) if and only if K =1 is
in L”(R%), in the range 1 < p < %. Our method of proof relies on a geometric argument that exploits
bounds on sizes of multiple intersections of 3-dimensional annuli to control numbers of tangencies
between pairs of annuli in three and four dimensions.

1. Introduction and statement of results

In this paper we study radial multiplier transformations whose symbol is compactly supported away from
the origin. These are operators 7;, defined via the Fourier transform by

FITu f1E) = m() F(£),

where the function m : RY — C is bounded, measurable, radial and supported in a compact subset of
{&‘:%<|§| <2}.

In the cases p # 1, 2, it is generally believed that it is impossible to give a reasonable characterization
of all multiplier operators which are bounded on L”. However, for radial Fourier multipliers, a characteri-
zation can be obtained for an appropriate range of p. Heo, Nazarov, and Seeger [Heo et al. 2011] proved
a strikingly simple characterization of radial multipliers that are bounded on L”(R?) in dimensions d > 4
forl < p<Q@d—-2)/(d+1).

Theorem A. Letd > 2. If m : R¢ — C is radial and supported in a compact subset of {é : % < || < 2},
the multiplier operator Ty, is bounded on LP(R?) if and only if the kernel K = i is in LP(RY), in the
range 1 < p < (2d —2)/(d+1).

The characterization in [Heo et al. 2011] was motivated by the earlier work [Garrigés and Seeger 2008],

where the authors obtained a similar characterization of all convolution operators with radial kernels

p

acting on the space L,

of radial L? functions, in the larger range 1 < p <2d/(d +1).
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Theorem B. Letd > 2. If m : RY — C is radial and supported in a compact subset of {S : % < |§] < 2},
the multiplier operator T,, is bounded on Lfad(le) if and only if the kernel K = is in L?(R?), in the
range 1 < p <2d/(d+1).

This range 1 < p <2d/(d+1) is the optimal range for their result to hold, since for p > 2d/(d+1) one
may construct radial kernels in L? that have Fourier transforms which are supported compactly away from
the origin but which are also unbounded. By the same reasoning, the range 1 < p <2d/(d +1) is also the
largest possible range in which one could hope for the characterization from Theorem A to hold. Thus one
might propose the following conjecture, which we will refer to as the “radial Fourier multiplier conjecture”.

Conjecture 1.1. Letd >2. If m :R? — C is radial and supported in a compact subset of {S : % < |&] < 2},
the multiplier operator Ty, is bounded on LP(R?) if and only if the kernel K = 1 is in L?(R?), in the
range 1 < p <2d/(d+1).

One can appreciate the strength of this conjecture by noting that since 2d /(d + 1) is the critical value for
the Bochner—Riesz conjecture, the Bochner—Riesz conjecture (and hence also the restriction and Kakeya
conjectures) would follow as a special case from Conjecture 1.1. However, the statement of Conjecture 1.1
is far more general than the Bochner—Riesz conjecture, since it makes no a priori assumptions whatsoever
on the regularity of the multiplier.

The arguments of [Heo et al. 2011] did not yield any results about radial Fourier multipliers in R>.
We will improve a key lemma of that paper in three dimensions to obtain a characterization of restricted

strong type (p, p) boundedness of compactly supported radial Fourier multipliers m : R*> — C, in the

13

range | < p < 3.

Theorem 1.2. Let m be a radial Fourier multiplier in R supported in {% <&l < 2} and let K = F~'[m].

13

Then for 1 < p < 35, if K € L? then the multiplier operator Ty, is restricted strong type (p, p), and

moreover,

1K * fller@sy Sp K N Le@sy Ll Lot sy

Remark 1.3. Our proof will also show that || K x fllzr S, | K|lzs1 |l fllzr, and we expect that || K| 7.1
could be improved to || K ||.».

We will also prove a full L? characterization for compactly supported radial Fourier multipliers in R*

in the range 1 < p < %, which improves on Heo, Nazarov, and Seeger’s result.

Theorem 1.4. Let m be a radial Fourier multiplier in R* supported in {% <& < 2} and let K = F~'[m].

36 if K € LP(R*), the multiplier operator T, is bounded on LP(R*), and moreover,

Then for 1 < p < 53,

1K * fllorwsy Sp 1K Lol e @e)-

Our proofs of Theorems 1.2 and 1.4 refine the arguments of [Heo et al. 2011] while simultaneously
incorporating new geometric input. A key divergence from their arguments is the exploitation of the
underlying “tensor product structure” inherent in the problem, a notion which will become clearer later.
This, combined with a geometric argument involving sizes of multiple intersections of 3-dimensional
annuli, allows one to take advantage of improved scalar product estimates which were not used by Heo et al.
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However, since we exploit the tensor product structure of the problem, we are currently not able to deduce
any local smoothing results for the wave equation as corollaries, as was able to be done in [Heo et al. 2011].

The outline of the paper is as follows. The first portion of the paper will be devoted to the proof of
Theorem 1.2, which is less technical than the proof of Theorem 1.4. The second portion will give the
proof of Theorem 1.4. At the end, we provide as an Appendix the proof of the geometric lemma used in
the proofs of both theorems.

2. Preliminaries and reductions

We will now collect some necessary preliminary results and reductions. Versions of these results can be
found in [Heo et al. 2011], but we reproduce them here for completeness. In general, this section will
very closely follow that paper, and for convenience we choose to adopt similar notation.

Discretization and density decomposition of sets. The first step will be to discretize our problem, and in
preparation for this we will first need to introduce some notation. Let ) be a 1-separated set of points
in R3 and let R be a 1-separated set of radii > 1. Let £ C ) x R be a finite set that is also a product, i.e.,
E =&y x Eg, where &y C Y and Eg C R. (The assumption that £ is a product was not used in [Heo et al.
2011], but will be crucial for our argument.)
Let
ued={2":v=0,1,2,...}

be a collection of dyadic indices. For each k, let ‘B, denote the collection of all 4-dimensional balls of
radius < 2X. For a ball B, let rad B denote the radius of B. Following [Heo et al. 2011], define
Ry := RN [2F 2K+,
E=ENY X Ry),
Exw) :=1{(y,r) € & : AB € By, such that #(& N B) > u rad B},
&) =Ex)\ | k).

u'el
u'>u

We will refer to u as the density of the set & (u). Note that we have the decomposition
&= &w.
ueld

Let o, denote the surface measure on rS?, the 2-sphere of radius r centered at the origin. Now fix a
smooth, radial function ¥y which is supported in the ball centered at the origin of radius % such that 1}0
vanishes to order 40 at the origin. Let ¢ = g * Y. For y € Y and r € R, define

Fy,r ZUr*w(' _y)
For a given function ¢ : Y x R — C, further define

Guki= Y c(3.NFy,, Gui=) Gy and Gi:=)» Gu.

(y,r)€& (u) k>0 ueld
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An interpolation lemma. As a preliminary tool, we will need the following dyadic interpolation lemma.

Lemma 2.1. Let 0 < pg < p| < o0. Let {Fj}jcz be a sequence of measurable functions on a measure
space {2, i}, and let {s;} be a sequence of nonnegative numbers. Assume that for all j, the inequality

1115 <277 MPs; 2-1)

holds for v=0and v = 1. Then for all p € (po, p1), there is a constant C = C(po, p1, p) such that

Y F
J

p
<CPMPY 20k, (2-2)
P j

The discretized L? inequality. Our goal is to prove the following proposition, which we will see implies
our main result for compactly supported multipliers.

Proposition 2.2. Let £ and &, be as above (recall that £ has product structure). Let ¢ : £ — C be a

function satisfying |c(y,r)| <1 forall (y,r) €. Thenfor1 < p < %,

> ey r)Fy,

(y,r)e€

p

2k
Sp Y2 g
p k

Using the dyadic interpolation lemma (Lemma 2.1), we obtain the following corollary.

Corollary 2.3. Let E be any measurable set of finite measure, and x g its characteristic function. Suppose

that f is a measurable function satisfying | f| < xg. Thenfor 1 < p < % we have

1/p
Y v ) Fy 5( > |y<r>xE<y)|f’r2) : (2-3)
(y,r)EYXR P (y,r)EYXR
Also
o0 o0 1/p
/ / W) f () Fyyp dr dy 5(/ / |h<r>xE(y>|Pr2drdy) . (2-4)
Rre J1 » Re J1

Proof that Proposition 2.2 implies Corollary 2.3. For j € Z, define the level sets

E={. ey xR: 27 <ly(xe(| <27}

Notice that £/ has product structure, so Proposition 2.2 implies that for 1 < p < %,

P
jp 2
Sp2 Z re.
p (y,r)e&i

H Y vOFOF.,

(y.r)egl

Now apply Lemma 2.1 with F; = Z(y,r)eg.f Yy f(y)Fy,and M =1ands; = Z(W)Eg_,- r2 to obtain (2-3).
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Now we prove (2-4). Let y=z+ w for z € 73 and w e Qp:=10,1)3 and r =n + 1 for n € N and

0 < 7 < 1. By Minkowski’s inequality and (2-3),
oo
DY h+ D) f @+ W Fewnir

\ <.
p Qox[0.D C7a =

> 1/p
S’f/ (Z Z|h(”+T)XE(Z+w)|p(n+r)2) dwdt
00x[0,1)

ze74 n=1

o) 1/p
s(fRf |h(r>xE<y>|"r2drdy> ,
4 J1

where in the last step we have used Holder’s inequality. ([

dwdrt
p

/ / W) £ (9) Fyyp dr dy
R J1

Support size estimates vs. L* inequalities. As in [Heo et al. 2011], we will show that the functions G, x
either have relatively small support size or satisfy relatively good L? bounds. We begin with a support-size
bound from that paper that improves as the density u increases.
Lemma C. For all u € U, the Lebesgue measure of the support of G, i is < u~ 122K #&;.

We will prove the following L? inequality, which in some sense an improved version of Lemma 3.6
from [Heo et al. 2011], although the hypotheses are different since it is crucial that we assume that the

underlying set £ has product structure. This inequality improves as the density u decreases. In [Heo et al.
2011], the analogous L? inequality proved is

1Gul5 S u* "D log2+u) Y 24"V, (2-5)
k

and when d = 3 the term x>/~ is equal to u. One may check that combining (2-5) with Lemma C as in
the proof of Lemma 2.5 below yields no result in three dimensions. We use geometric methods to improve
on (2-5) in three dimensions, and our argument will rely on Lemma A.1 proved later in the Appendix.

Lemma 2.4. Let £, &, and G, be as above (recall that € has product structure). Assume |c(y,r)| <1
for (v,r) € Y x R. Then for every € > 0,

2 11/13 2k
1Gul3 Seu/134 D 2% g,
k

Combining Lemma C and Lemma 2.4, we obtain the following L? bound.

Lemma 2.5. For p <2, foreverye >0,
I/p
”Gu”p SE u—(l/p—12/13—6) (Z 22k#gk> )
k

Proof of Lemma 2.5 given Lemma C and Lemma 2.4. By Holder’s inequality,

IGull, < (meas(supp G,)'/P~12[G,ll2
1/p

1/p
56M—l/p+l/2ull/26+e(222k#5k> §€u12/13—1/p+e(222k#5k> ' 0

k k
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Summing over u € U, we obtain Proposition 2.2. Thus to prove Proposition 2.2 it suffices to prove
Lemma 2.4.

Compactly supported multipliers. Following [Heo et al. 2011], we now show how one may deduce
Theorem 1.2 from Corollary 2.3. Suppose that m : R® — C is a bounded, measurable, radial function with
compact support inside {& : 3 < €] <2}. Then K = F~![m] is radial, and so we may write K () =x(|-|)
for some « : R — C. Fix a radial Schwartz function 7g such that 7y(¢) = 1 on supp m and such that
has Fourier support in {}T < |§] < 4}. Setn = F‘l[(tﬁ)_lﬁo]. We have K x f = n*1 % K * f. Let
Ko = K x{x:|x|<1) and write K = Ko+ K. Since [|Koll1 S [IK ||, it suffices to show that the operator
f = n*y %Ko f is restricted strong type (p, p) with operator norm <, || K| ,. Let E be a measurable
set of finite measure, and suppose that | f| < xr. We may write

w*Koo*fzfl /w*m- () £ () dy dr.

By Corollary 2.3, we have

p

1/p 1/
5 W % Koo fllp Sp 1 % Koo fllp Sp (f IK(r)I”rzdr> </|XE(y)|pd)’> ;

which implies the result of Theorem 1.2.

3. Proof of the L? inequality

We have shown in Section 2 that to prove our main result Theorem 1.2 it remains to prove Lemma 2.4,
and this section is dedicated to the proof of that lemma. The proof will rely on a geometric lemma about
sizes of multiple intersections of 3-dimensional annuli, which is stated and proved in the Appendix.

Estimates for scalar products. In order to obtain the desired L? estimate, we need to examine pairwise
interactions of the form (F) ,, Fy,,). By applying Plancherel’s theorem and writing I?y,r and I?ygr/ as
expressions involving Bessel functions, the authors of [Heo et al. 2011] obtained the following estimates
for [(Fy. ., Fy,)l.

Lemma 3.1. For any choice of r,r' > 1 and y, y' € R3,

rr’

Fyp, Fy,)| S :
|< v, r y,r>|N1+|y_y/|+|r_r/|

The proof of this lemma used only the decay and not the oscillation of the Bessel functions. By
exploiting the oscillation of the Bessel functions, one may obtain the following improved bounds, which
are crucial for our purposes. Since we will use this lemma in three and four dimensions, we state it in
terms of dimension d, where the functions Fy , are defined analogously in d dimensions as they are
defined previously in three dimensions.

Lemma 3.2. For any choice of r,r' > 1 and y,y' € R? and any N > 0,

— —(d— —-N
[(Fyro )l < Oy Y D24 1y =y |4 e =)Dy (14 [r e 1y —yl])
+,+
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Proof of Lemma 3.2. We may write ¢ in terms of Bessel functions as 61 (§) = B;(|¢]), where

—d-2)/2

By(s) = cqs Ja-2)2

and J denotes the standard Bessel function. This implies

&) =r" ' Ba(rlg)).
Since 1/A/ is radial, we may write 1/7(&‘) = a(|&€|) for some rapidly decaying function a that vanishes to high
order (say 10d) at the origin. By Plancherel, we have

(For Fr) = [ 6:©5 @@ P dg

= ca(rr)*™! / Ba(rp)Ba(r'p)Ba(ly = y'lp)|a(p) o~ dp.

We will use the following well-known asymptotic expansion, which holds for |x| > 1 and any M:

M
Ba(x) =) (cly ge +epp g MR L MEy ()
v=0

where for any k| > 0,
|Eyh a0l < C(M. k. ki, d).

Using this expansion together with the higher order of vanishing of a at the origin, one sees that there is a
fixed Schwartz function 5 so that we obtain for any N > 0,

(Fyr Fy o) S @YD+ 1y =y D72y " nr e £y =y D+ A+ lr =]+ ly—y'D7N
+,+

In fact, we may take 7 to be the Fourier transform of |a( - )2 p% D for some appropriate exponent o (d). [
Another preliminary reduction. Recall that our goal is to estimate the L? norm of G, = > k>0 G,k Let
N (u) be a sufficiently large number to be chosen later (it will be some harmless constant depending on

u that is essentially O (log(2 + u))). We split the sum in k as } 5,y ) Guk + 2 ¢= () Gu.x and apply
Cauchy—Schwarz to obtain

‘ Z Gu,k
k

We may thus separately estimate Zk ||GL,,k||% and Zk>k,> N ) [{Gu i, Gyk)l, which divides the proof of
the L? estimate into two cases, the first being the case of “comparable radii” and the second being the

2
5N(u>[2nGu,kn%+ > |<Gu,k/,Gu,k>|]. (3-1)
2 k

k>k'>N (u)

case of “incomparable radii”.

Comparable radii. We will first estimate ), |G, « ||%. Our goal will be to prove the following lemma.

Lemma 3.3. For every € > 0,
1G il Se 22 (HEHu'/ 13, (3-2)
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Fix k and u. We first observe that for (y, r), (¥, ') € & (u), we have (Fy ,, Fy,,/) =0 unless |(y, r) —
(v, )| < 2K+, To estimate |G, x ||§ for a fixed k, we would thus like to bound

> [{Fy.rs Fy)]

0.1, O\ e€ )
2" <|(y,r) =) <2

forall 0 <m <k +4.

Now fix m < k4 4. Let Q, ., be a collection of almost disjoint cubes Q C R* of side length om+5
such that & (1) C UQ€ Oum Q and so that every Q has nonempty intersection with & (u). Let O* denote
the 2°-dilate of Q and Q* the corresponding collection of dilated cubes. Observe that

u,k,m

1Guslz S D ( > |<Fy,r,Fy/,r/>|)+ > NF3

O<m<k+4 1), (Y, rHe€(u) (v,r)€Ek(u)
om Sl(y,r)f(y’,r’)lfz’"ﬂ

< 2 (Z( 2. I<Fy,r,chw>|>)+ I VS A E S

O<m<k+4 “Q€Quim ~(y.r).(V'.r)e(EwNQ*) (y,r)e&(u)
2" <|(y,r)=(yhr) <2t

Now we introduce some terminology that will be useful. For a subset S C ) x R, define its - and
R-projections by
Sy={ye¥:3(y,r)es},
Sg={reR:3(y,r) € S}.

Also define the product-extension S* of S C Y X R to be the set Sy x Sg. We also define some parameters
associated with a fixed Q € Q, r,m. Let Ng o be the cardinality of the R-projection of & N Q*, i.e.,

Ng,o =#((&N QO )p) =#r:3(y.r) € &N Q™)
Similarly define
Ny o :=#((&ENQYy) =#{y:3(y,r) €& N O™}

We also note the following important observation, which we will use repeatedly. Using the definition
of the sets & (u) and the fact that & has product structure, one may see that if Q € O, x ,, is such that
(& () N Q") is nonempty, then

|Ny.g - Nr.ol S1&N QT Su™ (3-4)

We remark that the product structure of the sets & is related to the “tensor product structure” intrinsic to
radial Fourier multipliers, mentioned in Section 1. Now with (3-3) in mind, we will prove the following
lemma.

Lemma 3.4. For each Q € Q, k.m, we have the estimates

> [(Fy.rs Fyr)l S Nr,o BEN Q)22 (mlog(u)) max (u/02/%, u2"/?) (3-5)

0.1, () EE N Q™)
27" <|(y,n) =y <27t
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and
> [(Fyrs Fy)| S 2262 @60 Q)u2" (Ng.g) ™" (3-6)

,r), (v rHeE@)NQ*)
2" <|(y,r)— ()| <2m !

We will then choose the better estimate from Lemma 3.4 depending on Ng o and sum over all
0 € 9Q,.x.m and then over all m > u“ where a is a number to be chosen later. We will then use other
methods to deal with the case m < u“, from which we will then obtain Lemma 3.3.

Proof of Lemma 3.4. We will first prove (3-5). By incurring a factor of N,ze, o- to estimate

> [{Fyro Fy)]

(.1, OV, rNEE )N Q™)
2" <[y, ) =<2

it suffices to estimate, for a fixed pair ry, 15,

> [{Fyorx Fy)l,

.11, (¥, r2) €(E ) *NQO™)
2 <|(y,r)—(y,r2) | <2+

i.e., to restrict (y, r) and (y’, r’) to lie in fixed rows of the product-extension of & (1) N Q* (Our estimates
will not depend on the particular choice of r; and r;.)

Now, referring to the estimate in Lemma 3.2, we see that for fixed y, 1, r, we have that [(F) ,,, Fy,,)]
decays rapidly as y’ moves away from the set {y’ : |y — y'|=|r1 — rz| or |y — y'|=r; + r2}, which is
contained in a union of two annuli of thickness 2 and radii |r; — ;| and r; 4+ 7, centered at y.

Let s > 0, fix < 2”10 and define Kx(Q, s, t) to be the number of points y € (& (u) N Q*)y such
that there are at least 2° many points y" € (£ N Q*)y such that y’ lies in the annulus of inner radius ¢ and
thickness 3 centered at y. That is, define

Ki(Q, s, 1) :=#{y € (E(u) N Q%)y : there exist at least 2° many points
y' € (§N O%)y such that ||y’ —y| — (r +3)| < 3}.

In view of the observation in the previous paragraph, for a given s and a fixed number r < 2"+10 we
would like to prove a bound on K¢ (Q, s, t). Our bound will depend on s and m but be independent of
the choice of + < 2"+1°_ For this reason, we define the quantity

Ki(Q,s) ::0 max K(Q,s,1t),

<t<2m+10

and we will see that K;(Q, s) satisfies the same bound we prove for Ki(Q,s,t). Our bound for
Ki(Q, s, t) will decay as 2° gets larger and closer to Ny, ¢; in other words, “most” of the points y in
(& (u) N Q*)y cannot have a large proportion of other points in (£ N Q*)y lie in the annulus of inner
radius ¢ and thickness 3 centered at y. If we take t = |r; — rp| or t = r; + rp, we see that this implies that
“most” of the Fy , with (y,r) € (& (u) N Q*)y x {r1} do not “interact badly” (where by badly we mean
to the worst possible extent allowed by Lemma 3.2, i.e., internal tangencies of annuli) with most of the
other Fy,» where (', r") € (& N Q*)y x {r2}. This will allow us to obtain (3-5), which is a good estimate
in the case that Ng ¢ is small.
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More precisely, we will prove
K (Q.s) < max[u2" Ny/ 327, u2"? Ny g27*]. (3-7)

Combining this with the trivial bound K} (Q, s) < Ny, ¢ yields

5/3

K{(Q. s) S max[min(u2" Ny/ 27, Ny, ), min(u2"/>Ny, 027, Ny,0)]- (3-8)

Note that (3-7) gives decay in the number of points K (Q, s) (i.e., K;(Q, s) < Ny, o) if we have that

(1) Ny/527%u2" < Ny,g. ie., if 2° > Ny/ju'/?2"/2, and also
(2) Ny.g275u2™? < Ny g, i.e., if 2° > u2™/?.

Using Lemma 3.2, we may bound

> [(Fy.ro Fy)|

(.1, (¥ r")e(E )N Q™)
27 <|(y,r) =y <2t

5 Z ( Z |<Fy,r1 ’ Fy’,r2>|)

r1.r2€EW)NQ*)R y.y' €& N0y
2 <|(y,r)— (¥, r2)| <2

cwen y (y (¥ 5 )

r1, €& )NQ*) g > 0<a<m+10 *ye(&(u)NQO*)y Y eEw)nNQ®)y
ming 1 (14|r1£rly—y'|])~2¢

S 22(k—m/2) Z ( Z 2—aN< Z KIZF(Q’ S)ZY)>

ri,ne(EW)NQO*) g~ 0<a<m+10 5§>0:25<2Ny o

SPEMANG Y KFQ. 92 (3-9)
§>0:29<2Ny o

Assuming (3-8) holds, we have

> [{Fy.ry Fyrr)]

0.1, 0 ) EENQ™)
2" <|(y,r) =y r)l<2m*!

SNR 226D N max[min(u2™ Ny/ 5275, Ny,02), min(u2"/2Ny,g. Ny,02")]
5§>0:25SNy, o

<N} 22 m2 max[ Y min@2" Ny 27 Nyo2'), Y. min(u2"Nyg, Ny,Qz-V)}
5>0:25SNy,0 5>0:25SNy,0
(3-10)
Now, note that u2mN5(Q2 ¥ > Ny,p2° if and only if 2° < u1/22’"/2N . Thus choosing the better
estimate in the term min(u2" Ny o3 027", Ny,02%) depending on s yields that

> min(u2mN/ 275, Ny 2S)<u1/22'"/2N4/3
SEOZZS,EN)/_Q
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Note that u2"/2Ny o > Ny, o2° if and only if 2° < u2™/2. Thus choosing the better estimate in the term
min(u2"/?Ny g, Ny,2°) depending on s yields that

> min@2"?Ny,g. Ny,o2") $log(Ny,o)Ny.g u2™?.
SZO:Z’VSNY,Q

It follows that the left-hand side of (3-10) is bounded by

N3 225" "D Ny o log(Ny, o) max(Ny/gu'/?2m/2, u2™/?)
< N,%,sz“*m/Z)Ny,Q(m log(u)) max (/6256 1y 2m/%)
< Nr.o(#(E N 0")22% /D (m log(u)) max (u>/025™/6, u2™/2),  (3-11)

which proves (3-5). This will be a good estimate when Ng ¢ is small.

Thus to prove (3-5) it remains to prove (3-7). We will in fact prove (3-7) with K;(Q, s) replaced
by Ki(Q, s, t), uniformly in t < 219, Fix t < 2"*10 and let j = [log,(#)] and cover (& (1) N Q*)y
by < 230"~/ many 3-dimensional almost disjoint balls of radius 2/*>; denote this collection of balls as
% = {B;}. For each i, we define a collection of “special” points A;(Q, s, t) to be the set of all points
y € (&(u) N Q*)y N B; such that there are > 2° many points y’ € (£ N Q*)y such that y’ lies in the
annulus of radius ¢ and thickness 3 centered at y. That is, we define

Ari(Q, s, 1) := {y € (& (u)N Q*)y N B; : there exist at least 2° many points
y' € (&N Q*)y such that ||y’ — y| — (t+3)| < 3}.

Let K¢ i (Q, s, t) denote the cardinality of A ;(Q, s, t). Now cover each B; with < 230G=D many almost
disjoint 3-dimensional balls {B; o}, of radius 2! for some I < j. Each such ball contains at most u2!
many points of Ay ;(Q, s, t), so for a fixed i there must be 2 K; ;(Q, s, Hw2H™! many balls B; o that
contain at least one point in Ay ;(Q, s, t). Thus there must be at least 2> Kj ;(Q, s, ) (u2hH=! many such
points in B; N Ax ;(Q, s, t) spaced apart by > 2!: call this set Dy i(Q, s, t). But by Lemma A.1, which
we prove later in the Appendix, the size of 3-fold intersections of annuli of radius ¢ &~ 2/ and thickness 3
spaced apart by ~ 2/ with centers lying in a ball of radius 2/ is bounded above by 23U ~" provided that
> j/2+20.

It follows that if / > j /2420, then for each of these ~ K ; (Q, s, Hw2H~! many points p € Dy ;(Q, s, t),
there can be

S Kei(Q, s, 027222070

points lying inside the 7-annulus centered at p that are simultaneously contained in at least two other
different z-annuli centered at points in Dy ; (Q, s, t). This implies that if Ny o ; denotes the cardinality of
(&N Q*)y N B}, where B} = 10B;, then we have

Ny.o.i = Kii(Q, s, t)(u2)~125, (3-12)

which is essentially 2° times the number of points in Dy ;(Q, s, t), provided that 2° is much bigger than
the total number of points lying inside a ¢t-annulus centered at p that are simultaneously contained in at
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least two other different #-annuli centered at points in Dy ; (Q, s, ), i.e., provided that

Kei(Q. s, 0> 222070 « 28 (3-13)
and
l>j/2+20.
Solving for 2! in (3-13) yields
2> Kii(Q, s, 1?2 Pu=2P2750, (3-14)

Thus choosing a minimal / such that
2l max[Kk,,-(Q, s, 1)2/3231/5y=2/5p=5/5, 2j/2]
for a sufficiently large implied constant and substituting into (3-12) yields
Kii(Q.s.1) Smax[u2"Ny/5 27%, u2"?Ny g ;27], (3-15)
and summing over all i and using the almost-disjointness of the B} gives
Ki(Q.s5.1) S max[u2" Ny/ 527, u2"* Ny, 27*]. (3-16)

Taking the maximum over all 0 <t < 2m+10 proves (3-7) and hence also (3-5).

It remains to prove (3-6), which will be a good estimate in the case that Ny o is large. For a fixed
(y,r) € O* and afixed y" € (& (1) N Q*)y, there are at most two values of r” away from which (Fy ,, Fy,’)
decays rapidly. Thus using Lemma 3.2 we may estimate

> [(Fy.r Fy)l

(.1, (¥, e(E (N Q™)
2 <[ (y,r)— ()| <2mFl

EL B E B )

0=a=m+10 *(y,r)eE@NQ*) *y'e(E@)NQ*)y r'e(E N0
27 <|(y,r)=(yhr) <2t
ming o (14+|r£r'£y—y'||)~2¢
S22 @#EW) N QM) Ny 0 S 22T (#(E(w) N Q)u2" (No,p) ™,
(3-17)
and the proof of (3-6) is complete. ]
We will now use Lemma 3.4 to prove Lemma 3.3.

Proof of Lemma 3.3. Fix an a > 0 to be determined later. As in [Heo et al. 2011], we let G = Zu G us
where for each positive integer © we set

Iy = [Zk +(u—Du, 2k + pu),
gk,u =& N X Ik,/L)?

Gep= Y c(y.rFy, and Geur= Y c(y.r)Fy,.
()€€ y:(y.r)e&y
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‘We have

2
1Gllz <

2 G
I

2
SY NGeulz+ Y- UGk G- (3-18)
2 2 u'>p+10

By Cauchy—Schwarz,

2 2
1Gkull3 S u® D Gkl
rely MR

Write
Gk,,wz( > c<y,r>wo<-—y>)*<or*wo>.

yi(y,r)€€k

By the Fourier decay of o, and the order of vanishing of v at the origin, we have

16 Yolloo S 7

Since the square of the L? norm of Zy:(y,r)egk# c(y,Yo(- —y)is S#y e : (y,r) € &, ), we have

D NGeulE Su®Y " > MGkpurl} Su2* 48 (3-19)
yr n rely ,NR
By (3-18), it remains to estimate 10 (G > Gk.p)l-
Fix € > 0. We will use (3-5) when Ng o < 2™¢ min(u!/12+4/12 4/4) and (3-6) when Nro =
2m€ min(u!/12+4/12 a/%) We write

> Uy Fyp)l

.r), (' r")e&(u)
|, r)=(r") | =u

S Z( 2. ( > (Fy .y Fyp)l+ » (Fy Fy,’r,”)),

m2Mm=ud N (y,r),(y\r')e&(u) 0€Qu k,m 0€Qu k,m
|(y’r)_(y/’r/)‘%2m NR,szme min(u]/12+a/l2’ua/4) NR<Q22m€ min(u|/12+a/12yua/4)
One sees that
> UFyr Py ST+, (3-20)

(.1, )€ ()
1) =G 1=u

1/124a/12

where using (3-5) when Ng ¢ < 2" min(u u®*) and summing over all Q € Q, x.» and over

all m such that 2" > u“ we have
I:= 22/{(#5}() log(u) Z uE max[z—m/6+€ min(u11/12+a/12’ u5/6+a/4)’ 2—m/2+€ min(u13/12+a/12, u1+a/4)]
m:2m>y4
< 22]( (#gk)ue max[ufa/6 min(l/t“/12+a/12, M5/6+a/4), Mfa/z min(ul3/12+a/12, ul+a/4)]’ (3_21)

1/124a/12
9

and using (3-6) when Ng ¢ > 2" min(u u®*) and summing over all Q and over all m such

that 2" > u% we have

II ::22/((#5]()1/{6 Z 2—m€ max(ull/IZ—a/IZ’ ul—a/4) ge 22/((#5]() ué max(ull/IZ—a/u’ ul—a/4)‘ (3_22)

m:2" >y
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Combining (3-18), (3-19) and (3-20), we thus have the estimate

”Gu,k”% Se 22k(#5k)[ua + ué max{u—a/ﬁ min(u11/12+a/12’ u5/6+a/4)’ u—a/z min(u13/12+a/12, u1+a/4)}

+ u€ max(u!1/12-4/12 Ml—a/4)].

Choose a = % to obtain
2 2%k 11/1
1Guklls Se 2% #EHu' /1T

for every € > 0, which is (3-2). O

Incomparable radii. We now want to estimate ) ,_, Ny {Guks Gu i)l Our estimate will be much
better than in the comparable radii case. In view of (3-1), we will in fact prove the following.

Lemma 3.5. Let € > 0. For the choice N (1) = 100e ! log, (2 +u), we have
> UGuw. Gui)l Se 2% #e. (3-23)

k>k'>N (1) k

Fix u and k. Similar to the case of comparable radii, the first step is to cover & (u) by a collection
Q,,.x of almost-disjoint cubes Q of side length 2¥*3, By the almost-disjointness of the cubes, it is enough
to estimate |{G, r’, Gy k)| when we restrict our points in & (¢#) and E(u) to points in a fixed Q* and
get an estimate in terms of #(& N Q*), after which we may sum in Q € Q, . So fix such a cube Q,
and let Ng ¢« denote the cardinality of (§ N Q*)g and for a fixed &/, let Ng ¢« denote the cardinality
of (& N Q*)g. Similarly, let Ny ¢ x denote the cardinality of (£ N Q*)y and for a fixed &/, let Ny g
denote the cardinality of (& N Q*)y. Next, we prove a lemma that plays a role similar to Lemma 3.4 in
the comparable radii case.

Lemma 3.6. For each Q € Q, x, we have the estimates

> > UFrg Fyo)| S RP#(EN Q"u(Np gi) ™ (3-24)
(Y, R)e&E(u)NQ* (y,r)e&u)NQ*
and

> > UFrg. Fyp)l

Y. R)e&(u)NQ* (y,r) €€ u)NQ* < Ng.gu#(E N Q*))zk(k log(u))max(u5/625k/6, uzk/z)_ (3-25)

Proof of Lemma 3.6. We will first prove (3-24), which will be a good estimate in the case that Ng ¢ i is
large. For each (Y, R) € (& (u) N Q*) we need only consider y € (E(u) N Q*)y lying in an annulus of
width 2K+ built upon the sphere of radius R centered at ¥ in R>. Cover the intersection of this annulus
with (E(u) N Q*)y by a collection C of < R?272" 3-dimensional cubes C of side length 2¢'+3 in R?
such that each C N (E(u) N Q*)y is nonempty. For each C € C, let C denote the 4-dimensional cube
C =C x [2¥ —2K+2 2K 1 oK' +2] "and let C denote the corresponding collection of cubes C. Now note that
C N (Ep(u) N QO*)y nonempty implies that (5 NEyNO*)r = (E N O*)g, and also that #(5 NE) < u2¥
and hence by the product structure of CNé&N o

#((CNE N QY)y) SHENENHCNENOMR) ™ Su2’(Nr gu)™" (3-26)
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Next, note that for a fixed Y € (£, N Q)y, a fixed R € (& N Q*)g, and a fixed y € (& N Q%)y,
Lemma 3.2 gives rapid decay for |(Fy g, Fy )| as r moves away from two possible values of 7/, that is,
when r moves far away from »' = R — |Y — y| and ' = |Y — y| — R. For these values of r’ we have
(Fy.r, Fy, )| S 2K Using (3-26) and our bound on the size of the collection C, we thus have

> > UFrg Byl

Y,R)e&w)NQ* (y,r)e&A(u)NQ*

s ) (Z( > |<FY,R,Fy,,>|)>

(Y,R)€ENQ* “ CeC (y.r)eEyNQ*NC

< Z (Z< Z ( Z ( Z 2_“N2k/))>>
(Y,R)eENQ* “ CeC “ye(EyNQ*NC)y “a€Z,a=0 re(EyNO*r
max ([r/—r+Y =yl | +r—[Y —y|[)~2¢

S RM#(EN QM) (Nr,00) ' u,
which is (3-24).

Now we prove (3-25), which is the estimate that we will use in the case that N ¢ x is small. This
estimate is similar to (3-5), and the proof is very similar with only minor modifications, but we give all
the details anyways.

By incurring a factor of Ng g« - Ng, ok, to estimate

>, > Frr. Fyal,
(Y,R)EE W)NQ* (y,r)€E(u)NQ*
it suffices to estimate for a fixed pair r; € (&N Q*)g and ry € (Ep N O*)r

2. > UFra. Fym)l.

Y,rpe&nQ* (y,r)eEpnQ*

Similar to the proof of (3-5), for s > 0, let N;,’ka = 2% < Ny, ¢« be a given dyadic number. Fix ¢ < 2k+10
and define Ky x(Q, s, t) to be the number of points y € ((u) N O*)y such that there are > N{,’Q’k =25
many points y' € (& N Q*)y such that y’ lies in the annulus of inner radius # and thickness 3 centered
at y. That is, define

Kiw(Q,s,t):= #{y € (& (u) N Q")y : there exist at least 2° many points
y' € (& N Q*)y such that ||y — y| — (t +3)| < 3}.
Also define
Ki(Q.5):= max Kip(Q.s.1).

OStSZk‘HO

Note that the product structure of £ implies that if both & N Q* and & N Q* are nonempty, then their
Y-projections are equal, and so (3-8) implies the bound

K (Q.s.1) < max[min(u2“Ny/5 272, Ny,g 1), min(u2"/* Ny, 042, Ny.0.0)]- (3-27)
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Using Lemma 3.2, we may bound

> UFrr Fyrl
(Y,R)e(&Em)NQO*)
s ) ( > |<FY,,1,Fy,r2>|)

(y,)eE@)NQ®)
reENQ*) g ~Ye(Ew)NQ*)y
rREEHNQ)r  ye(EyNQ™)y

2 Y (X (% > )

reEwNQ* g ~0<a<m+10 “Ye(&wm)NQO*)y ye(ENQ*)y
r&(ENQ0™)r ming o (14]r1£r£ly—y'||)a2¢
<2ty ( 3 2“N< 3 K,jjk,(Q,s)f))
reE@nNQ*)g " 0=a=m+10 §>0:25<2Ny, o
re(Ew)NQ*)r
S2%NroiNrow Y. Kip(Q.9)2'. (3-28)

§>0:2<2Ny o«
Applying (3-27), we have
> UFrr Fy)l

(Y, R)e(E(w)NQ™)
v, r)eEAu)NQ*)

<Ng.oxNr.ow2" Z max[min(u2*N; Y Q 01275 Ny, 0x2%), min(u2*> Ny o 1, Ny, 0.x2)].  (3-29)
SZOZZS<NY,QV/€

Now, note that u2kN5/3 27% > Ny, ¢2% if and only if 2° < u1/22k/2N1/3 Also note that u2*/2Ny, o x >

Ny, o x2° if and only if 2v <u2/2 Thus choosing the better estimate in the term min(u2™ N / 2_ , Ny 02%)

depending on s and the better estimate in the term min(u2*/*N Y,0.k> Ny,0.k2*) yields that the left-hand

side of (3-29) is bounded by
Nr.g. Nr.g.x 2° Ny, .k 10g(Ny, g.0) max(Ny/gy qu' /22872, 12k/2), (3-30)
Using Ny o.x S u2k, (3-30) is bounded by

Ng.ox Nr.ox 25X Ny o.x(klog(u)) max (u>/62%%/6, 42k/2)
< N, o H#(E N 0*))2% (k log(u)) max (u”/02°%/6, 42k/?),

which completes the proof of (3-25). ]

Proof of Lemma 3.5. Fix € > 0, and set N (u) = 100~ log, (2 +u). We apply (3-24) when N, g > 2~'€
and (3-25) when Ng g i < 2K'¢ and then we sum over N(u) < k' <k for k fixed to obtain

> > > UFrr Fyp)l
N(;:)ﬁ<k(’j<k (Y,R)e&(u)NQ* (y,r)e&u)NQ*
Xe
<¢ R?#(& N Q%) max(1, log(u)u/®27*/5€ log(u)u2=%/>*€).  (3-31)
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Next we sum over Q € Q, x and k > N (u) to obtain

> X > S P Fe)l S Y 2% 48, (332)

k Q€Qui Nu)<k'<k (Y,R)e&E@)NQ* (y,r)e&p(u)NO* k
k fixed

We have thus shown that for the choice N (1) = 100e ! log,(2+u), we have

Y UG, Guidl Se Y 2% #e. O

k>k'>N (u) k

Putting it together. Combining (3-1), (3-2) and (3-23), we have that for every € > 0,

2
Z Gu,k
k

This completes the proof of Lemma 2.4 and hence the proof of Proposition 2.2. Thus we have

2
||Gu”2:‘

Selogy(2+u) Y 2% @eu'/1e, (3-33)
2 k

finished the proof of Theorem 1.2. The rest of the paper will be devoted to the (more technical) proof of
Theorem 1.4.

4. Preliminaries and reductions: part I1

Similarly to Section 2, we will collect necessary preliminary results and reductions to prove Theorem 1.4.
Much of the proof of Theorem 1.4 will be similar to the proof of Theorem 1.2, but there are nontrivial
additional technical difficulties to the proof of Theorem 1.4 that will make the proof more involved. The
main reason for this is the fact that Theorem 1.4 is a full L? characterization rather than a restricted
strong type (p, p) result, and therefore we cannot simply assume that our discrete sets £ have product
structure as we were able to do in the proof of Theorem 1.2. The obstacle in applying these techniques to
the 3-dimensional case is in fact the case of “incomparable radii”. While this case is very easy to deal
with in dimensions d > 4, we currently do not know how to handle it in three dimensions without the
product structure assumption we are allowed to make when proving restricted strong type inequalities.

Discretization and density decomposition of sets. Again, the first step will be to discretize our problem,
and as before we will first need to introduce some notation. Let ) be a 1-separated set of points in R*
and let R be a 1-separated set of radii > 1. Let £ C ) x R be a finite set, and let

ued={2":v=0,1,2,...}

be a collection of dyadic indices. For each k, let B denote the collection of all 5-dimensional balls of
radius < 2K, For a ball B, let rad B denote the radius of B. Following [Heo et al. 2011], define
Ri = RN[2K, 26+,
e =ENQY X Ry),
Ex(w) :={(y,r) € & : B € By such that #(& N B) > u rad B},
&) =& )\ | JEw).

u'eld
u'>u
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We will refer to u as the density of the set & (u). Note that we have the decomposition

& = U Ec(u).

ueld

Let o, denote the surface measure on rS>, the 3-sphere centered at the origin of radius . Now fix a
smooth, radial function ¥y which is supported in the ball centered at the origin of radius % such that 1@0
vanishes to order 40 at the origin. Let ¢ = g * ¥o. For y € Y and r € R, define

Fy,r:O—r*'S/f(' _y)

For a given function y : J) x R — C and finite set £ C Y x R, further define

7€ _ & 7€ vE . _ v.€
G,y = E y(y,nFy,, GI°:= E G, i, Gy = E G,y
(y,r)e&(u) k>0 ueld

The discretized L? inequality. We will prove the following proposition, which implies our main result
for compactly supported multipliers.

36
@.
vy, 1) = y1(0)a(r). Foreach j € 7, define

Proposition 4.1. Let 1 < p < Let y : Y x R — C be a function that is a tensor product; i.e.,

e i={(r ) eYxR:2 <ly(y.nl <21,
&= eYxRireRi, ¥ <ly(r. 0 <2*).

H Y y(.nFy,

(y.r)e€ri

Then

p . .
<p2IP Y 20Dy ke, @-1)
P 1> k

Using the dyadic interpolation lemma (Lemma 2.1), we obtain the following corollary.

Corollary 4.2. Let y : YV x R — C be a function that is a tensor product; i.e., v (y,r) = y1(¥)ya2(r). Let

h : R> — C be a function that is a tensor product; i.e., h(y, r) =hi(y)ho(r). Then for 1 < p < %,

1/p
> v r)Fy, Sp( > Iy(y,r)l”r3) : 4-2)

(y.r)eYXR P (y,r)€YxR

00 00 1/p
’ / / h(y.r)Ey, dr dy 5,,(/ / |h<y,r)|Pr3drdy) . 4-3)
Rr3 J1 » R3 J1

Proof that Proposition 4.1 implies Corollary 4.2. Apply Lemma 2.1 with F; = Z(y,r)egw vy, nFy,,
M?P the implied constant from (4-1), and

sjp=y 207D p¥yel!

I1>j k

we have

Also

to obtain (4-2).
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Now we prove (4-3). Let y=z+w for z € Z* and w € Q¢ :=1[0, 1)* and r = n + 1 for n € N and

0 < 7 < 1. By Minkowski’s inequality and (4-2),
oo
D) han+T)hi @+ w) Fogunie

00
/ / h(yar)Fy,rdrdy Sp //
R*J1 p Qox[0,1) 774 n=1

o0 1/p
<p // (ZZ|h2(n+r)h1(z+w)|1’(n+r)3> dwdt
Qox[0,1)

zeZ4 n=1

00 1/p
< (// |h<y,r>|Pr3drdy) ,
R3 J1

where in the last step we have used Holder’s inequality. (I

dwdt
)4

Support-size estimates vs. L* inequalities. Fix a function y : ) x R — C that is a tensor product, i.e.,
y(y,r) =y1(")y2(r), and fix j € Z. Let

E = (1) e ¥ xRS <y (y.r)] < 2P,

and recall the density decomposition
gl =& w
uel
defined previously. Define a function G nyl Y xR — C to be the restriction of the function G,’;sz to
the set £/, i.e., .
e o it edl,

G v . -
if (y,r) ¢ &

Similarly define
CrEM _ N G SvET N mr.end
Gro =) G/ and G =) G .
k>0 ueld

Note that G7'*"'=G7*"", and 3", GI'*"" appears on the left-hand side of the inequality in Proposition 4.1.
Similarly to [Heo et al. 2011], we will show that the functions GZ/f” either have relatively small support
size or satisfy relatively good L? bounds. As in the previous part of the paper, we begin with a support-
size bound which follows immediately from the similar bound in [Heo et al. 2011] that improves as the
density u increases.

Lemma C’. Forall u € U, the Lebesgue measure of the support of GZf” is < “7123k#(U1;|1_j|510 5{’1).

We will prove the following L? inequality, which in some sense an improved version of Lemma 3.6
from [Heo et al. 2011], although the hypotheses are different since it is crucial that we assume that the
underlying set is of the form £/, i.e., the ~ 2/ level set of some function y(y, r) = y1(y)y>(r). This
inequality improves as the density u decreases. In [Heo et al. 2011], the analogous L? inequality proved is

||6Z’5N ||§ < y2/@=n log(2 + u)22j Z 2k(d—l)#< U 5]1/,1')_ (4-4)
k L:|l—j|<10
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We use geometric methods to improve on (4-4) in four dimensions, and our argument will rely on
Lemma A.1 proved later in the Appendix.

Lemma 4.3. Let £V, S,Z/ o ,and éﬁ:’gw be as above. Then for every € > 0,

G 13 S w! 119402 3000010 57 gk
1> k

Combining Lemma C’ and Lemma 4.3, we obtain the following L” bound.

Lemma 4.4. For p <2, forevery e >0,

. i ] I/p
||GZ’£N ”p ge,p u—(l/p—29/36—6)2J (Z 2(1—‘/)/10 Z 23k#8]1/’l) )
1>j k

Proof of Lemma 4.4 given Lemma C' and Lemma 4.3. By Holder’s inequality,

IGYE™ ||, <, (meas(supp(GL-E ))Y/P= 12| G |

) ) 1/p
,Se,p u29/36—1/pteq (Z 2(1—1)/102231(#5]1/,1) ' 0
1> k

Summing over u € U, we obtain Proposition 4.1. Thus to prove Proposition 4.1 it suffices to prove
Lemma 4.3. One may deduce Theorem 1.4 from Corollary 4.2 in the same way as one deduces Theorem 1.2
from Corollary 2.3.

5. Proof of the L? inequality: part II

We have shown in Section 4 that to prove our main result Theorem 1.4 it remains to prove Lemma 4.3,
and the goal of this section is to prove Lemma 4.3. The intuition and reasoning behind our arguments will
be loosely as follows. Unlike the previous case where we worked with characteristics functions, the level
sets £/ in Lemma 4.3 are no longer product sets in R? x R since we no longer have the assumption
that we are working with characteristic functions. However, they are still very well structured, since
they are level sets of tensor products g(y)h(r) of functions, where y € R? and r € R. The dyadic level
sets £/ may be written as a sum of product sets, and if there are not too many of them (e.g., logarithmic
in the relevant parameters) then we may simply crudely sum over the total number of product sets and
proceed with the same argument as in the characteristic function case. On the other hand, if there are a
large number of such product sets, then this forces the underlying function to take on values much larger
than 2/, and we may then control sums over the sets £%*/ by cardinalities of sets 5,1/ ! with 1 >7j.

Another preliminary reduction. Recall that our goal is to estimate the L2 norm of G = > k=0 égf”
Let N (u) be a sufficiently large number to be chosen later (it will be some harmless constant depending

on u that is essentially O (log(2 + u))). We split the sum in k as ZkSN(u) Gnyl + ZbNW Gwa and
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apply Cauchy—Schwarz to obtain

12 . . .
~ ’g%J ~ ’5}/,1 ~ ’g}/,] ~ ,SVJ
Y Gy 2,§N(u)<z IGre 13+ > UGLe .Gy >|). (5-1)
k

k k>k'>N(u)

. ~y £V
We may thus separately estimate ) _, ||G2:f ' ||§ and

Sy, EV <y gV
Y WG Gl
k>k'>N(u)

which divides the proof of the L? estimate into two cases, the first being the case of “comparable radii”
and the second being the case of “incomparable radii”.

Comparable radii. We will first estimate ) _, || 55?” ||%. Our goal will be to prove the following lemma.

Lemma 5.1. For every € > 0,

” GZ:iyj ||% S_,e u11/18+€22j Z 2(l*j)/1023k(#51i/,l). (5_2)
I>j
Fix k and u. As in [Heo et al. 2011], we first observe that for (y, r), (¥, r') € gz’j(u) ﬂé‘,ﬁ”j, we have
(Fy,r, Fy,7) =0 unless |(y, r) — (v/, r')] < 25%5. To estimate |[G7'§ |13 for a fixed k, we would thus like
to bound
2% > [(Fyrs Fy)l

.1, o) eED ynel
2m<|(y,r) = ()| <2m !

forallO <m <k +4.

Now fix m <k +4. Let Q, j x.m be a collection of almost disjoint cubes Q C R’ of side length 2>
such that

glwne’c |J o
QEQu.k,j,m

and so that every Q has nonempty intersection with g ,1/ J )N 5,1/ 7, Let Q* denote the 2°-dilate of Q and

ek im the corresponding collection of dilated cubes. Observe that
~Y.EV 2~ H2) 3
s T (L wemar X in)
0=m=k+4 () 1) ()& nel (. eEl wnel

2M <|(y,r)— ()| <2mH!

<22 Z ( Z ( Z |<Fy,r,Fy¢,/>|>+ Z IIFy,rH%)-

O=m=k+4 “Q€Qukjm (y,r),(v,r)eE)! wnel no*) (y,r)eEl el
21 <|(y,r)—(,r) <2 H

(5-3)
For each integer b € Z define

E7 =) €Y xR 2P () =27, 270 < () <2770,
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Note that
e c| et c &
beZ
Note also that each set 5,1’ Jbis a product, that is, a set of the form Y x R, where Y C Y and RC R. It
follows that 8,1/ b Q is a product for any cube Q C R4+,

We also define some parameters associated with a fixed Q € Q, « jn» and b € Z. Let Ng o 5, be the
cardinality of the R-projection of £/" N 0*; i.e.,

Nr..p :=#(E "N Q"R =#{r: 30, 1) € "N 07).
Similarly define
Ny.op = #(E" N0y =#y: 30, 1) € 7N 0",
We also note the following important observation, which we will use repeatedly. Using the definition of

the sets & ,Z */(u) and the fact that for each b € Z, the set 8,1’ Jb has product structure, one may see that if
Q € Qu k,j,m 1s such that gZ’J(u) N Eg’]’b N Q* is nonempty, then

INy.0- Nr.osl SHE "N 0% SHED N 0" Su2™ (5-4)

. . ib . .
Now, we will organize our sets 5,1’ 7 as follows. For a fixed m, given Q € Q, « j.m,» we would like to

g%jvb

group together those b € Z for which #(£;”""" N Q) has essentially equal cardinality and for which the

ratio Ny, o »/NR, o, 18 essentially equal. For each pair of integers (c, d) € 72, we define
Boea ={beZ: 27" <#E" N Q% <2 2971 < Ny.o.»/Nr.gw < 2%).
Now with (5-3) in mind, we will prove the following lemma.

Lemma 5.2. For each Q € Qy k j.m and each quadruple (c,d, c’,d’) € 7%, we have the estimates

> [(Fy,r, Fy,r)| S 2mXC DD (max(#B .0, #B0,c,a))’

31€Uses,y, o ENE (0NQ")
0r€Upes,y o EPNEL wynQ*)
27 <|(y,r) () <27

x 2max(€.3E=m/D) (1 log () max (2", u2"/?)  (5-5)

and

> [(Fyry Fyr )| S 236m20maxC) (max #B o.a, #B0.c 1))’

(y,neuhegg.c,d<€Z”"fﬁ"(u>ﬂQ*> x 2™ (Qmx(e=d)/2.(=d)/2=1 - (5.6)
0 r€Uses,, , , €T NEN 0NQ")
2 <] (y,r)— ()| <2 H!

Notice that (5-5) is the better estimate when 2max((c=d)/2.('=d")/2) 5 small and (5-6) is the better estimate
when 2max((c=d)/2.('=d")/2) j¢ large. We will use (5-5) when pmax((c=d)/2.(c'=d")/2) < 1/12 gpq (5-6) when

pmax((e=d)/2.(c'=d")/2) 5 ;y1/12 Thjs yields the following corollary.
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Corollary 5.3. Z (Fyr, Fy )| Se I +11, 5-7)

31€Upes,y o € NE (0NQ")
o'reUpes, , , ENEN )N

Q.c.d
27 <|(y.r) = ()] <27
where
[ := 230" (max (#B . c.q, #Bg..a) u 2" max (u'/1227m/2, 13/12p=m), (5-8)
1 = 232" (max(#Bg.c.a, #B0.c.a)) u 2" w1 /12272, (5-9)

Now note that if (max(#Bg ¢4, #Bo.c.a’)) > 10000m log(u), then for some [ such that / > j +
%(max(#BQ,c’d, #B0.¢.a')), we have #(Q* ﬂS,f’l) > 1, because this implies there must be (y, r) such that
y(y.r) = 2!, where | > j+ 5 (max(#Bg.c.a, #Bg.c.a). Since 2m%¢<) <#(0*NEVY) Suam <20=D/%,
this implies

20X (max(#B.c.a, #Bo.c.a))? S 20 10%EN 1 Q).

Thus Corollary 5.3 implies the following.

Corollary 5.4. > (Fyr, Fy )| ST+, (5-10)

veUres,y, 4 € NE N0
o r)GUbeB) o (5””mgk”(u)mQ*)
27 (o) = () <2

where
I = 231{ Z 2([7]')/10#(5]371 ) Q*)uezme max(ull/122fm/2’ u13/1227m)’ (5_11)
I>j
=3

By (5-4) there are Sm* log(u)* quadruples (¢, d, ¢', d") for which both Uy, ., (6] TPAEYT ()N 0¥)
and UbE By ,d,( grd by neé ,1/ J (u) N Q) are nonempty, so Corollary 5.4 implies the following.

Corollary 5.5. > (Fy.r Fy,) | ST+, (5-13)

), (o EUper (€L NEL )N Q*)
2 <|(y,r)— ()| <2t

where
I = 23/( Z 2(1—]')/10#(5,1’71 N Q*)uezme max(ull/l22—m/2, ul3/122—M) (5_14)
=3
[>j

Proof of Lemma 5.2. We will first prove (5-5). Fix b € Bg .4 and b’ € By 4. Set

Ny, 0.5 = max(Ny,g p, Ny, g ) A2 2™ (HD/2EHDD),
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It suffices to prove

> [{Fy.rs Fy)l S Nk.0.sNr. .o Ny.g o x 2267 (m log(u)) max (2", u2™/?).

(y.ne€l M nEN o (5-16)
(y’,r’)e:‘,‘ky‘j’b/ﬂg}:"/(u)ﬂQ*
2 < (y,r)— () <2 !
After incurring a factor of Ng o »Nr, o,, to estimate the left-hand side of (5-16) it suffices to estimate
for a fixed pair ry, rp,
> {Fy.ro Fy)l, (5-17)
.re@E nE wnor
OhreE Y nEL wnon
2" <|(y, )= (<2
i.e., torestrict (v, r) and (y/, ¥') to lie in fixed rows of the product-extensions of (SV b gy &y J (w)NQO*)* and
(& erd 4 N g}: J ()N Q*)*, respectively. (Our estimates will not depend on the particular choice of r and r.)
Now referring to the estimate in Lemma 3.2, we see that for a fixed y, r1, r» we have that [(Fy ., Fy,)|
decays rapidly as y’ moves away from the set {y" : |y — y'| = |rj —rz2| or |y — ¥'| = r1 +r2}, which is
contained in a union of two annuli of thickness 2 and radii |r; — rp| and ry 4 r, centered at y.
Lets >0, fix t <219 and define KV Jobb (Q s, 1) to be the number of points y € (&; &y j’hﬂgZ’j(u)ﬂQ*)y
such that there are > 2* many points y’ € (] g 4 N O*)y such that y’ lies in the annulus of inner radius
¢t and thickness 3 centered at y. That is, deﬁne

K”bb(Q s, 1) _#{ye( grb g{’j(u)ﬂQ*)y:there exist at least 2° many points
Y € (€77 NQ")y such that ||y’ —y|—(1+3)| < 3].

In view of the observation in the previous paragraph, for a given s sufficiently large but smaller than 2", sa
s >m+100, and a fixed number ¢ < 2"+1% we would like to prove a bound on KZ’J’b’b(Q, s, 1). Our bound
will depend on s and m but be independent of the choice of ¢ < 2”10, For this reason, we define the quantity
KPP0, 5) = max  KITPY(Q. s b).
0§t§2m+10

We will prove

5/%

K” b, $) < max[u24’”/3N ,2_2s, u2"?Ny g pp27*], s >m+100. (5-18)

Combining this with the trivial bound K J ’b’b/’*(Q, $) S Ny,g.p.p yields

K[ 700(Q.)
< max[min@2*"ANY/J 27, Ny g ). min(2"* Ny, g 27" Ny,0p.)]. 5 >m+100. (5-19)
. : . Y, j.b,b . v, j,b,b'x
Note that (5-18) gives decay in the number of points K (0Q,s) (e, K} (Q,s) < Ny,0.bp)
if we have that both
(1) Ny/o 2 2 u2¥3 & Ny g p . that is, if 20 > Ny/p) /222, and

(2) Ny.g.by27u2™? & Ny b1, that is, if 2° > u2™/2.



RADIAL FOURIER MULTIPLIERS IN R3 AND R* 491

Using Lemma 3.2, we may bound

> [(Fy.r. Fy,)|
(v.eE " EL wno*)
OreE M N n o)
2 <] (3r)= () =27

S Z < Z |<Fy,r1a Fy’,r2>|>

rne@ & 0NN vy e NE wneMy
e nE ngHg 2" SI0r=(r)|<2"

e T LEALEL B )

e nE wnohg 05a=m 0 e nE winny  ye@! Y nE wney

e NEN wno*)k minz + (14|r ry]y—y'|])~20
- - ,J.b. b,
R )
rl E(E{'j’hﬁgz’j WNO*)r 0<a<m+10 §>0:2<2Ny o1

ok
reE " nE 0N

SBEMDN 0y Nrow Y. KPPPTHQ092 (5-20)
.YZO:2S§2Ny’va

Assuming (5-19) holds, we have

Z |<Fy,r» Fy’,ﬂ)l
.eE T NEL wng*)
O\ reEr Y nEM wyno*)
2’"5\(y,r)f(y’,r’)ISZ”’“
5 NR’Q,bNR’Q’b/Z‘Q)(k_m/Z) Z max[min(u24m/3N;’%,b’b/2_s, NY’Q’b’b/ZS),

>0 : m/2 K
2S§1SV;,QJ;,1;/ min(u2 / Ny,0.b.'s Ny, 0,662 )]

5NR,Q,bNR,Q,b/23<"—m/2>[mz'"Ny,Q,b,b/+maX{ Y min@2* ANy 27 Ny gs2),

s>0
2SNy, 0.0

Z min(u2m/2Ny,Q,b,b/,Ny,Q,b,b’Zs)}]-

s>0
2SNy g.bp

(5-21)
Now, note that u24’"/3N)5,/(32 b2 " = Ny gpp2° if and only if 2° < ul/222’"/3N)1,/(32 - Thus choosing

the better estimate in the term min(u2*"/ 3N)5,/ g b2 s Ny 0.b»2°) depending on s yields that

S min@2* PNy, 270 Ny.gww2) Su PN L
SZOZZ“VSNy_QYth/
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Note that u2"/2Ny o p.»» > Ny.g.».»2° if and only if 2° < u2"/2 Thus choosing the better estimate in
the term min(u2™/ ZNY,Q,b,b/, Ny, 0,b,»2°) depending on s yields that

> min@2™*Ny.g by Ny.g.sr2") S10g(Ny.0.5.0)Ny.g.bs u2".

szO:ngNy_QYbe/
Using that N5, , ,, < u!/32"/3, it follows that the left-hand side of (5-21) is bounded by

NR .0, bNR 0, b’2 3= m/Z)N Y,0.,b,b' [m2 + IOg(Ny 0,b, b’) maX(NY 0.b, pY 1/222m/3’ u2’"/2)]
< Nr.0sNr. 02> ™D Ny o p.p(m log(u)) max (/2™ u2™/?)
<max(Ng. g5, Nr..p) 2" D 23E=m/D) (1 10g (1)) max (u/02", u2™'?), (5-22)

which proves (5-5). This will be a good estimate when max(Ng g5, Nr,0,»7) is small.

Thus to prove (5-5) it remains to prove (5-18). We will in fact prove (5-18) with K,’;’j’b’b/’*(Q, s)
replaced by K,l/’j’b’b/(Q, s, 1), uniformly in ¢ < 2"*10, Fix t < 2"+10 and let & = [log,(¢)] and cover
(& &ritn ,7: o/ (u) N 0%y by < 240"=% many 4-dimensional almost-disjoint balls of radius 2%*>; denote
this collection of balls as B = {B;}. For each i, we define a collection of “special” points A,’;’f ’b’b/(Q, s, 1)

to be the set of all points
ye@nE wn oMy B

such that there are > 2° many points y’ € (EZ b A 0*)y such that y’ lies in the annulus of radius ¢ and
thickness 3 centered at y. That is, we define

AZ:l'j’b’bl(Q’ s.):={ye (5{’j’bmg{’j(u)ﬂ Q*)yNB; : there exist at least 2° many points
yrA
y € (&7 NQ%)y such that ||y’ —y|—(t+3)| < 3}.

Let K ,3/ ’ij ’h’b/(Q, s, t) denote the cardinality of A,}:lj ’h’b/(Q, s, t). Now cover each B; with < P many al-
most disjoint 4-dimensional balls B; , of radius 2/ for some ! < «. Each such ball contains at most 2/ many
points of A}’; J0Y(0 s, 1), so for a fixed i there must be at least 2K S0V 0 s D@2 many balls B; ,
that contain at least one point in AV +J:b. b(Q s, t). Thus there must be at least = K; . ] b, b,(Q s, ) w2hH~!
many such points in B; N Ay J:b b(Q s, t) spaced apart by > 2/; call this set Dy b b(Q s,t). But by
Corollary A.2, which we prove later in the Appendix, the size of 3-fold 1ntersect10ns of 4-dimensional
annuli of radius # ~ 2% and thickness 3 spaced apart by > 2! with centers lying in a ball of radius 2%
is bounded above by < 23@=D2¢ provided that / > «/2 + 20. This is true because for each point p
in Dy ;(Q, s, 1), there will be at least > 2° many points contained in the ¢-annulus centered at p that
are contained in no more than two other different ¢ annuli centered at different points p’ and p”
Dy.i(Q, s, 1), so the total number of points is = 2° x card(Dy; (Q, s, 1)).

It follows that if / > «/2 4+ 20, then for each of these = K, ” bb(Q s, H)w2hH™! many points
pe D” b0 5, 1), there can be

S KL, s, 0 w2 2¥e o
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points lying inside the 7-annulus centered at p that are simultaneously contained in at least two other
different 7-annuli centered at points in DZ lj bk (Q, s, t). This implies that if Ny, ¢ ,; denotes the cardinality

of (Elz/’j’b/ N Q*)y N B}, where B = 10B;, then we have
Ny.owi 2 KU (0, s, @212, (5-23)

which is essentially 2° times the number of points in D}:lj ’b’b(Q, s, 1), provided that 2° is much bigger
than the total number of points lying inside a z-annulus centered at p that are simultaneously contained

in at least two other different ¢-annuli centered at points in D};’ij ’b’b/(Q, s, t), i.e., provided that
KL, s, 022223 Do « 20 (5-24)
and
[ >a/2+20.
Solving for 2! in (5-24) yields
21 > K]z,ij,b,b/(Q’ s, t)2/524a/5u—2/52—s/5' (5_25)

Since s >> m, we may choose a minimal / such that
2> max[K,l”f’b’bl(Q 5, 1)2/52%/5,=2/59=5/5 2a/2]
,l k) ’ b

for a sufficiently large implied constant. Substituting into (5-23) yields

KPP0, 5.0 S max[u2 AN 273, u2™ 2Ny 9.1i27), (5-26)

N
and summing over all i and using the almost-disjointness of the B} gives

5/3

K70, 5, 1) S max[u2*"* N .

w27 u2" Ny 270 (5-27)

Taking the maximum over all 0 < ¢ < 2"*+10 proves (5-18) and hence also (5-5).
It remains to prove (5-6), which we reproduce again below for convenience:

> [{Fy.ro Fy)|
vNeUpesy o € NE (0N Q")
0'reUpes,, o EPEN wno®)
2" <|(y.r)— () <2

5 23(k—m/2) 2max(c,c’) (max(#BQ,c,d7 #BQ,C’,d’))zuzm (Zmax((c—d)/l, (C’—d’)/Z))—l' (5_28)

This will be a good estimate in the case that 2max((c=d)/2.('=d")/2) jq Jarge. Without loss of generality,
assume that ¢’ —d’ > ¢ —d. For a fixed (y, r) € Q* and a fixed

e
Yy e & nEwyn 0y,
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there are at most two values of 7" away from which (F, ,, Fy,s) decays rapidly. Thus using Lemma 3.2

we may estimate

> [{Fy.ro Fyp)]
0 eUpesy o €T NET )N
0'r1eUpes,, o 0 € NEL 000"
27 <|(nr) () <27

S| )3 ( )3

0=a=m+10 "y neUpes,y , , ENE 0NQY) yeUpes,, , , € NEL @NQy

Z 2—Na23(k—m/2))>)

e
r/eUbeng v &’ mg{ T wNO0*)k
2M <|(y,r)— ()| <2m !
ming = (14+]rr/£|y—y'|| ) ~2¢

L d

5 73(k—m/2) (max(#Bg c.q, #BQ,C’,d’))2 hgllgax (#(SZ,j’b N gl){/u/ w)NO*)
Q,c,d

x max #ETTNE w)n 0*)y)
b/EBQ,E’d

S, 23(k—m/2) (max(#BQ’c,d, #BQ,c’,d’))z 2max(c,c’)u2m (2(Cl—d/)/2)—1’
(5-29)
and the proof of (5-6) is complete. ]

We will now use Lemma 5.2 to prove Lemma 5.1.
Proof of Lemma 5.1. Fix an a > 0 to be determined later. Similar to [Heo et al. 2011], we let égf” =

~y EV e
> Gy .. » Where for each positive integer u we set

I = 1254 (= Du, 25 + ),

gk,ﬂ = y X Ik,l,ba
Sy EV Sy E
Gu,k,,u = Z V(y7r)Fy,r and Gu,k,u,r = Z y(y,r)Fy’r.
(1) L NENTNEY () yi(p. ) €& W NETNEY (u)
‘We have
. 112 . ) )
NV,gy’] 2 Ny’gVJ NV,ng] 2 ~ngy’] y,g%]
IGE 13D Gl SONG 5+ D UGE Gl (5-30)
2 2 14 w>pu+10

By Cauchy—Schwarz,

~y.EV 2 ~y i 0
Gk 12 S 0 Z 1G ki ll2-
rely MR

Write
Gl = ( 3 v (5. P — y)) % (0, % Vo).

y:(y. )€€ W NELT NEY (u)
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By the Fourier decay of o, and the order of vanishing of g at the origin, we have

~ 7 3/2
16, Polloo < 732

Since
H > vy V(- =y | S2#yeY: (. €& NET NE" ),
Y€ wNEN NED () 2
we have
~y, EVJ ~y EVJ ; k L
Z 1Y 13 S u Z Z G N3 S 22 w2 He) . (5-31)
2 K rely AR

ay’g%j ay’g%j

By (5-30), it remains to estimate } ., 10 (G, s G,k )

Note that we have the bound
~y,EVI Sy £V 2
SN GO Y [E Ful
/'L/>”“+10 mIZmzua

.)€l wynel’
2" <|(y,r) =<2

< 3 ( 3 ( » |<F},,,,Fy,,r,>|)). (5-32)

m:2">ut * Q€Qy k. jm (y,r),(y’,r')EQﬁg,f,/’j (u)m‘,’ky‘j
2" <|(y, )= (| <2

To estimate the inner sum above, we will use Corollary 5.5. Summing over all Q € Q, x ;. » and over
all m such that 2™ > u“ we have

~y EVI gy £V ;
Y UGy Gl Se 22U+ 1), (5-33)
w>u+10
where

=3k Z 2(1—j)/10(#511/,1)ue max(ull/IZ—a/Z’ u13/12—a)’ (5-34)
I>j

T = 23k Z2(l—j)/10(#g]z/,l)ueu11/12—a/2' (5-35)
I=j

Combining (5-30), (5-31) and (5-33), we thus have the estimate
||55f” ||% <. 22j3k Zz(l—j)/lo(#gli/,l)(ua + ylV/12-a/2+e + ul3/12—a+e).
1>j
Choose a = % to obtain
||§L’:]f” 12 <, 2%i2% Z 2(lfj)/10(#g]z/,l)ull/18+e
I>j

for every € > 0, which is (5-2). [l
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Incomparable radii. We now want to estimate
<y, EVI Sy £V
Y. WG Gl
k>k'>N(u)

Our estimate will be much better than in the comparable radii case. In fact, since d = 4, we may simply
use the estimate proved for incomparable radii in [Heo et al. 2011], which is more than sufficient for our
purposes. We restate this estimate using our notation as follows.

Lemma 5.6. Let € > 0. For the choice N (1) = 100e ! log, (2 +u), we have
~y, EVJ EV i 1
Y OUGETTGUT S 2 Y 2 Y el (5-36)
k>k'>N (1) k LI—jl<10

For a proof of Lemma 5.6, see [Heo et al. 2011].

Putting it together. Combining (5-1), (5-2) and (5-36), we have that for every € > 0,

E : SyEVI
Gu,k

2
<yl Z 23kn2j Z 2(1—,')/10(#5/1/,1)‘ (537)
k 2

k >

This completes the proof of Lemma 4.3 and hence the proof of Proposition 4.1.

Appendix: A geometric lemma

In this section we prove the geometric lemma used in the previous section.

Lemma A.1. Fix integers j,1 withl < j. Let 271 <t < 2/%\ Then the size of the intersection of three
annuli in R3 of thickness 4 and inner radius t such that the distance between the centers of any pair is at
least 2" and no greater than 27 /10 is < 23U=D provided that 1 > j/2 + 10.

We will use the following basic lemma which gives an estimate on the size of intersections of
2-dimensional annuli. This is an immediate corollary of Lemma 3.1 in [Wolff 1999].

Lemma D. Let A| and A, be two annuli in R> of thickness 1 built upon circles C and C; of radius R,
and let d denote the distance between the centers of C| and C,. If d < R/5, then A1 N A, is contained in
the 10-neighborhood of an arc of C1 of length < R/d.

Proof of Lemma A.1. Let Ay, Ay, A3 denote the three annuli. Let £1 ; denote the line through the centers
of Aj and A,, and let £; 3 denote the line through the centers of A| and A3. Let P be any plane containing
both £ 7 and £; 3. Then A N A; is the 3-dimensional solid formed by rotating the intersection of the two
(circular) annuli A1 N P and A, N P about the line ¢ ». Similarly, A; N A3 is the 3-dimensional solid
formed by rotating the intersection of the two (circular) annuli A N P and A3 N P about the line ¢; 3.
Now, by Lemma D, A; N A, N P is contained in the 10-neighborhood of two arcs of length < 2/~ of
the circle that A; N P is built upon. Rotating A; N A2 N P about the line £ 5 to get A; N A,, this implies
that A; N A; is the union of < 2/~/ many 10-neighborhoods of circular annuli of radius < 2/ lying in
a plane normal to the line ¢; ;. The same holds for A} N Az with ¢ > replaced by £¢; 3. Suppose first
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Figure 1. The circles C;, C,, C3, and Cg in the plane P, from the proof of Lemma A.1.
The shaded-in circle is Cy, the thick circle is C», the dashed circle is C3, and the remaining
circle is Cj.

that the angle between £ and £1 3 is > 2/~/73, in radians. Then |A| N A, N A3] is bounded by <2201
times the largest possible size of the intersection of two 10-neighborhoods of circular annuli, where the
first lies in a plane normal to £; » and the second lies in a plane normal to £ 3. One computes that the
largest possible size of such an intersection is < 2/~

It remains to consider the case when the angle between ¢; , and ¢; 3 is < 2!=i=3 in radians. We now
define the following coordinates associated to the lines £; > and £; 3. Let x{, x2, x3 denote the centers
of Ay, A», Az respectively. For x € R3, we define the £1 2-coordinate

(x —x1, X2 —x1)

(xX)12=
|xo — x1]

Similarly define the ¢; 3-coordinate

(x —x1,x3 —x1)

)13 =
lx3 — x1]

By interchanging the order of A;, Ay, A3, we may assume without loss of generality that (x3);2 >
(x2)12 = 1. We will show that [ > j/2 4 10 implies that A; N A, and A, N A3 are actually disjoint.
Observe that since the angle between £; > and £ 3 is < 2!=i=3 we have that (x3 — X212 > 2!=1 Now, let
xé be the closest point on the line £; ; whose distance from x; is the same as the distance from x; to x3.
Clearly, we also have (xg —Xx2)12 > 2!=1 Let C; be the circle in P with center at x3 and radius 7 and let
C; be the circle in P with center at x3 and radius 7. Then if y] 5 denotes either of the two points in C; N Cj3
and y; , either of the two points in C; N Ca, then (x§ —x2)12 > 2/~ implies that (yi3 —y12)12 =272
This is because with respect to the £; >-coordinate, y{’3 lies at the midpoint of x| and x3 and y;  lies at
the midpoint of x; and x,. Note that C; N Cs is the rotation within P of C; N C} by an angle of < 2/=/73,
where the rotation is based at x;. This implies that if y; 3 is either of the two points in C; N C3, then
V13— Y13l < 273, It follows that (y1.3 — y1.2)12 > (V] 3 — Y1.2)1.2 — V13— Y13l = 2172 2173 =213,
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But by Lemma D, A N A is the rotation in R? of a 10-neighborhood of an arc of C; of length < 2/~/
that contains y » about £; 5, and so A; N A; lives in the slab {z € R?: |(z — y1.2)1.2] < 2/7/**}. Similarly,
AN Aj is the rotation in R? of a 10-neighborhood of an arc of C; of length <2/~ that contains y; 3 about
£1.3, and so AN Aj lives in the half-infinite slab {z € R*: (z —y1.3)1.2 > —2/ 7!}, and since [ > j/2+10,
we have j —I+4 <1—10. Since (y1.3—y1.2)1,2 > 2/ 73, it follows that A} N A, and A, N Aj are disjoint. [J

Corollary A.2. Fix integers j, 1 withl < j. Let 2/=' <t < 2/%1. Then the size of the intersection of three
annuli in R* of thickness 4 and inner radius t such that the distance between the centers of any pair is at
least 2" and no greater than 27 /10 is < 23U=D2J  provided that | > j/2 + 10.

Proof. Let P be a hyperplane in R* containing the centers of the three annuli, and for each 7 € R, let P,
be the one-parameter family of hyperplanes with normals parallel to the normal to P. For each ¢, the
intersection of each annulus with P; is a 3-dimensional annulus of a fixed radius depending on ¢ that is
< 2/ and a fixed width depending on 7 that is < 1, and with centers spaced apart by > 2'. By Lemma A.1,
AN AN A3 N P; has size < 230D Tt follows that A; N Ay N A3 has size < 230027, O
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