msp



ANALYSIS AND PDE
Vol. 6, No. 1, 2013

dx.doi.org/10.2140/apde.2013.6.221

A GLUING FORMULA FOR THE ANALYTIC TORSION
ON SINGULAR SPACES

MATTHIAS LESCH

To my family

We prove a gluing formula for the analytic torsion on noncompact (i.e., singular) Riemannian manifolds.
Let M = U Uypy, My, where M is a compact manifold with boundary and U represents a model of
the singularity. For general elliptic operators we formulate a criterion, which can be checked solely
on U, for the existence of a global heat expansion, in particular for the existence of the analytic torsion
in the case of the Laplace operator. The main result then is the gluing formula for the analytic torsion.
Here, decompositions M = M Uy M, along any compact closed hypersurface ¥ with M, M, both
noncompact are allowed; however a product structure near Y is assumed. We work with the de Rham
complex coupled to an arbitrary flat bundle F; the metric on F is not assumed to be flat. In an appendix
the corresponding algebraic gluing formula is proved. As a consequence we obtain a framework for
proving a Cheeger-Miiller-type theorem for singular manifolds; the latter has been the main motivation
for this work.

The main tool is Vishik’s theory of moving boundary value problems for the de Rham complex which
has also been successfully applied to Dirac-type operators and the eta invariant by J. Briining and the
author. The paper also serves as a new, self-contained, and brief approach to Vishik’s important work.
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1. Introduction

The Cheeger—Miiller theorem [Cheeger 1979a; Miiller 1978; 1993] on the equality of the analytic and
combinatorial torsion is one of the cornerstones of modern global analysis. To extend the theorem to
certain singular manifolds is an intriguing open challenge.
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In his seminal work, Cheeger [1979b; 1983] initiated the program of “extending the theory of the
Laplace operator to certain Riemannian spaces with singularities”. Since then a lot of work on this
program has been done. It is impossible to give a proper account here, but let us mention [Briining and
Seeley 1988; 1987], Melrose [1993] and collaborators, and Schulze [1991] and collaborators. While the
basic spectral theory (index theory, heat kernel analysis) for several types of singularities (cones [Lesch
1997], cylinders [Melrose 1993], cusps [Miiller 1983], edges [Mazzeo 1991]) is fairly well understood, an
analogue of the Cheeger—Miiller theorem has not yet been established for any type of singular manifold,
except compact manifolds with boundary.

We will not solve this problem in this paper. However, we will provide a framework for attacking the
problem.

To describe this we must go back a little. Let M be a Riemannian manifold (boundaryless but not
necessarily compact; also the interior of a manifold with boundary is allowed) and let P° be an elliptic
differential operator acting on the sections I'°(E) of the Hermitian vector bundle £. We consider P° as
an unbounded operator in the Hilbert space L2(M, E) of L2-sections of E. Moreover, we assume P° to
be bounded below; for example, P® = D? D for an elliptic operator D. Fix a bounded below self-adjoint
extension P > —C > —oo0.

We know that e ~*% is an integral operator with a smooth kernel k, (x, y) which on the diagonal has a
pointwise asymptotic expansion

o0
j —dim M
ke(x, x) ~,\OE aj(x)tjﬂrdP . (1-1)
Jj=0

This asymptotic expansion is uniform on compact subsets of M and hence if, e.g., M is compact, it may
be integrated over the manifold to obtain an asymptotic expansion for the trace of e~*F. For general
noncompact M one cannot expect the operator e ~*¥ to be of trace class. Even if it is of trace class and
even if the coefficients a; (x) in (1-1) are integrable, integration of (1-1) does not necessarily lead to an
asymptotic expansion of Tr(e™*%). It is therefore a fundamental problem to give criteria which ensure
that e "% is of trace class and such that there is an asymptotic expansion

Tr(e~*P) ~ N0 Z dgr 1% logk t. (1-2)
Ra—o00
0<k=<k(a)
It is not realistic to find such criteria for arbitrary open manifolds. Instead one looks at geometric
differential operators on manifolds with singular exits which occur in geometry. A rather generic
description of this situation can be given as follows: suppose that there is a compact manifold M; C M
and a “well understood” model manifold U such that

M =U Uy, My. (1-3)

We list a couple of examples for U which are reasonably well understood and which are of geometrical
significance:
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1. Smooth boundary. U = (0,€) x Y is a cylinder with metric dx> 4+ gy over a smooth compact
boundaryless manifold Y. Then M is just the interior of a compact manifold with boundary. To this
situation the theory of elliptic boundary value problems applies. Heat trace expansions are established,
for example, for all well-posed elliptic boundary value problems associated to Laplace-type operators
[Grubb 1999].

2. Isolated asymptotically conical singularities. U = (0, €) x Y with metric dx? 4+ x2gy (x). Then M
is a manifold with an isolated (asymptotically) conical singularity. This is the best understood case of
a singular manifold; it is impossible here to do justice to all the scientists who contributed. So we just
reiterate that its study was initiated by Cheeger [1979b; 1983].

3. Simple edge singularities. In the hierarchy of singularities of stratified spaces, which are in general of
iterated cone type, this is the next simple class after isolated conical ones: simplifying a little, U is of the
form (0, €) x F x B with metric dx? 4+ x2gr(x) + gg(x). The heat trace expansion and the existence of
the analytic torsion for this class of singularities has been established recently by Mazzeo and Vertman
[2012].

4. Complete cylindrical ends. This case is at the heart of Melrose’s celebrated b-calculus [1993]. An
exact b-metric on (0, €) x Y is of the form dx?/x? + gy. Making the change of variables x = e¢™”
we obtain a metric cylinder (—loge, 0o) x Y with metric dy? + gy. M is then a complete manifold.
Therefore, the Laplacian, for example, is essentially self-adjoint. However, it is not a discrete operator
and hence its heat operator is not of trace class.

5. Cusps. Cusps occur naturally as singularities of Riemann surfaces of constant negative curvature. A
cusp is given by U = (0, 00) x Y with metric dx? + ¢~ 2*gy. Then M has finite volume. As in the
previous case, however, the Laplacian is not a discrete operator. In this situation (and also in the previous
one) one employs methods from scattering theory. There has been seminal work on this by Werner Miiller
[1992].

The results of this paper apply to situations where the operator P is discrete (has compact resolvent).
This is the case in the examples 1-3 above, but not in 4 and 5. Nevertheless we are confident that our
method can be extended to relative heat traces and relative determinants, for example, for surfaces of
finite area.

To explain our results without becoming too technical, suppose that for Py = P U and Py = P | M;
(of course suitable extensions have to be chosen for Py and P;) we have proved expansions (1-2). Then
in terms of a suitable cut-off function ¢ which is 1 in a neighborhood of M one expects to hold:

Principle 1.1 (Duhamel’s principle for heat asymptotics; informal version). If Py and P; are discrete
with trace-class heat kernels then so is P and

Tr(e™'P) = Tr(pe ™ P1) + Tr((1 — )e V) + O(Y) ast— 0+, forall N. (1-4)

We reiterate that the heat operator is a global operator. On a closed manifold its short-time asymptotic
expansion is local in the sense that the heat trace coefficients are integrals over local densities as described
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above. This kind of local behavior cannot be expected on noncompact manifolds. However, Principle 1.1
shows that the heat trace coefficients localize near the singularity; they may still be global on the singularity
as is the case, for example, for Atiyah—Patodi—Singer boundary conditions [Atiyah et al. 1975].
Principle 1.1 is a folklore theorem which appears in various versions in the literature. In Section 3
below we will prove a fairly general rigorous version of it (Corollary 3.7).
Once the asymptotic expansion (1-2) is in place one obtains, via the Mellin transform, the meromorphic
continuation of the ¢-function

o0
(Pis):= Y. A= %S) / S7UTe((I = Ty p)e ") dt. (1-5)
Aespec(P)\{0} 0
Let us specialize to the de Rham complex. Suppose that we have chosen an ideal boundary condition
(essentially this means that we have chosen closed extensions for the exterior derivative) (D, D) for the
de Rham complex such that the corresponding extensions A; = D;.‘ Dj + Dj_,4 Dj’."_1 of the Laplace
operators satisfy (1-2). Then we can form the analytic torsion of (D, D):

1 od
log (D, D) := 5 D=1/ -
Jj=0

§(Aj:s). (1-6)
§s=0

For a closed manifold the celebrated Cheeger—Miiller theorem [Cheeger 1979a; Miiller 1978] relates
the analytic torsion to the combinatorial torsion (Reidemeister torsion).

In terms of the decomposition (1-3) the problem of proving a CM-type theorem for the singular
manifold M decomposes into the following steps.

(1) Prove that the analytic torsion exists for the model manifold U'.
(2) Compare the analytic torsion with a suitable combinatorial torsion for U'.

(3) Prove a gluing formula for the analytic and combinatorial torsion and apply the known Cheeger—
Miiller theorem for the manifold with boundary M.

A gluing formula for the combinatorial torsion is more or less an algebraic fact due to Milnor; see also
the Appendix. The following theorem, which follows from our gluing formula, solves (3) under a product
structure assumption:

Theorem 1.2. Let M be a singular manifold expressed as (1-3) and assume that near 0M1 all structures
are product. Then for establishing a Cheeger—Miiller theorem for M it suffices to prove it for the model
space U of the singularity.

The theorem basically says that, under product assumptions, one gets step (3) for free. Otherwise the
specific form of U is completely irrelevant. We conjecture that the product assumption in Theorem 1.2
can be dispensed with. This would follow once the anomaly formula of Briining and Ma [2006] were
established for the model U of the singularity; this would allow us to compare the analytic torsion
for (U, g) to the torsion of (U, g1), where g; is product near dM; and coincides with g outside a
relatively compact collar.
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The theorem is less obvious than it sounds since torsion invariants are global in nature. However, we
will show here that under minimal technical assumptions the analytic torsion satisfies a gluing formula.
That the combinatorial torsion satisfies a gluing formula is a purely algebraic fact (see Appendix). The
blueprint for our proof is a technique of moving boundary conditions due to Vishik [1995] who applied it
to prove the Cheeger—Miiller theorem for compact manifolds with smooth boundary. Briining and the
author [Briining and Lesch 1999] applied Vishik’s moving boundary conditions to generalized Atiyah—
Patodi—Singer nonlocal boundary conditions and to give an alternative proof of the gluing formula for
the eta-invariant. We emphasize, however, that the technical part of the present paper is completely
independent of (and in our slightly biased view simpler than) [Vishik 1995]. Also we work with the
de Rham complex coupled to an arbitrary flat bundle F. Besides the product structure assumption we do
not impose any restrictions on the metric 2¥ on F; in particular 4F is not assumed to be flat.

We note here that in the context of closed manifolds gluing formulas for the analytic torsion have been
proved in [Vishik 1995; Burghelea et al. 1999], and recently [Briining and Ma 2013]. In contrast our
method applies to a wide class of singular manifolds.

Some more comments on conic singularities, the most basic singularities, are in order: let (N, g) be
a compact closed Riemannian manifold and let CN = (0, 1) x N with metric dx? + x2g be the cone
over N. We emphasize that sadly near ICN = {1} x N we do not have product structure. Let g; be a
metric on CN that is product near {1} x N and that coincides with g near the cone tip.

Vertman [2009] gave formulas for the torsion of the cone (CN, g) in terms of spectral data of the cone
base. What is still not yet understood is how these formulas for the analytic torsion can be related to a
combinatorial torsion of the cone, at least not in the interesting odd-dimensional case. For CN even-
dimensional, Hartmann and Spreafico [2010] express the torsion of (CN, g) in terms of the intersection
torsion introduced by A. Dar [1987] and the anomaly term of Briining and Ma [2006]. If it were also
possible to apply the latter to the singular manifold CN to compare the torsion of the metric cone (CN, g)
to that of the cone (CN, g,), where the metric near {1} x N is modified to a product metric, then one
would obtain a (very sophisticated) new proof of Dar’s theorem that for an even-dimensional manifold with
conical singularities the analytic and the intersection torsions both vanish.! It would be more interesting,
of course, to have this program worked out in the odd-dimensional case.

The paper is organized as follows. Section 2 serves to introduce some terminology and notation. In a
purely functional analytic context we discuss self-adjoint operators with discrete dimension spectrum;
this terminology is borrowed from Connes and Moscovici’s celebrated paper [1995] on the local index
theorem in noncommutative geometry. For Hilbert complexes [Briining and Lesch 1992] whose Laplacians
have discrete dimension spectrum one can introduce the analytic torsion. We state a formula for the
torsion of a product complex (Proposition 2.3) and in Section 2B we collect some algebraic facts about
determinants and the torsion of a finite-dimensional Hilbert complex. The main result of the section
is Proposition 2.4 which, under appropriate assumptions, provides a variation formula for the analytic
torsion of a one-parameter family of Hilbert complexes.

1 For this to hold one needs to assume that the metric on the twisting bundle F is also flat.
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In Section 3 we discuss the gluing of operators in a fairly general setting: we assume that we
have two pairs (M;, PJQ), j = 1,2, consisting of Riemannian manifolds M j’" and elliptic operators Pjp
such that each M; is the interior of a manifold M; with compact boundary Y (M is not necessarily
compact). Let W =Y x (—c, ¢) be a common collar of ¥ in M; and in M, such that 0M; =Y x {1} and
dM, =Y x{—1} and such that Plo coincides with P20 over W. Then Pjp give rise naturally to a differential
operator P = Pf) U P20 on M := (M;\ (Y x(0,¢))) Uyx{oy (M2 \ (Y x (—c,0))). Without becoming
too technical here we will show in Proposition 3.5 that certain semibounded symmetric extensions Pj,
j=172,0f Pjp satisfying a noninteraction condition (3-18) give rise naturally to a semibounded self-
adjoint extension of P°. Furthermore, if the P; have discrete dimension spectrum outside W (compare
the paragraph before Corollary 3.7), then the operator P has discrete dimension spectrum and up to
an error of order O(¢*°) the short-time heat trace expansion of P can be calculated easily from the
corresponding expansions of P;.

We also prove similar results for perturbed operators of the form P; + V;, where V; is a certain non-
pseudodifferential operator; such operators will occur naturally in Section 5, our main technical section.

In Section 4 we describe the details of the gluing situation, review Vishik’s moving boundary conditions
for the de Rham complex in this context, and introduce various one-parameter families of de Rham
complexes. The main technical result of the paper is Theorem 4.1 which analyzes the variation of the
torsions of these various families of de Rham complexes. The proof of Theorem 4.1 occupies the whole
Section 5. The proof is completely independent of Vishik’s original approach. The main feature of our
proof is a gauge transformation a la Witten of the de Rham complex which transforms the de Rham
operator, originally a family of operators with varying domains, onto a family of operators with constant
domain; this family can then easily be differentiated by the parameter.

Theorem 6.1 in Section 6 then finally is the main result of the paper, whose proof, thanks to Theorem 4.1,
is now more or less an exercise in diagram chasing.

The Appendix contains the analogues of our main results for finite-dimensional Hilbert complexes.

The paper has a somewhat lengthy history. The material of Sections 4 and 5, in the context of smooth
manifolds only, was developed in the summer of 1999, while I was on a Heisenberg fellowship in Bonn.
In light of the negative feedback received at conferences I felt that the subject was dying and abandoned it.

In recent years there has been revived interest in generalizing the Cheeger—Miiller theorem to manifolds
with singularities [Mazzeo and Vertman 2012; Vertman 2009; Miiller and Vertman 2011; Hartmann
and Spreafico 2010]. I noticed that my techniques (an adaption of Vishik’s work [1995] plus simple
observations based on Duhamel’s principle) do not require the manifold to be closed. The bare minimal
assumptions required for the analytic torsion to exist (“discrete dimension spectrum”; see Section 2) and a
mild but obvious noninteraction restriction on the choice of the ideal boundary conditions (Definition 3.4)
for the de Rham complex actually suffice to prove a gluing formula for the analytic torsion. Since a more
concise and more accessible account of the long and important paper [Vishik 1995] is overdue anyway,
I eventually made a final effort to write up this paper, in part because Werner Miiller and Boris Vertman
had been pushing me to do so.
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2. Operators with meromorphic ¢ -function

Let ¥ be a separable complex Hilbert space, T a nonnegative self-adjoint operator in # with p-summable
resolvent for some 1 < p < co. The summability condition implies that 7" is a discrete operator; that is,
the spectrum of T consists of eigenvalues of finite multiplicity with +o0 being the only accumulation
point. Moreover,

Tr(e 7)) = Z e~ = dimker T + O(e_t)“) ast — 0o (2-1)
Aespec T
and
Tr(e'T) = O(t™P) ast— 0+. (2-2)

Here A1 := min(spec T \ {0}) denotes the smallest nonzero eigenvalue of 7.
As a consequence, the {-function

1 o0
(Ti= Y =g [T I =) T @-3)
Aespec(T)\{0} §)Jo

is a holomorphic function in the half plane fs > p; 1y 7 denotes the orthogonal projection onto ker 7.

Definition 2.1. Following [Connes and Moscovici 1995] we say that T" has discrete dimension spectrum if
£(T; 5) extends meromorphically to the complex plane C such that on finite vertical strips |I'(s)¢(T';5)| =
O(|s|™N), |Js| — oo, for each N. Denote by X (T) the set of poles of the function I'(s)¢(7'; s).

It then follows that for fixed real numbers a < b there are only finitely many poles in the strip a < s < b.
Moreover, as explained, e.g., in [Briining and Lesch 1999, Section 2], the discrete dimension spectrum
condition is equivalent to the existence of an asymptotic expansion

Tre™T) ~isor ) dar 1%logtt. (2-4)
aE—X
0<k<k(a)
Furthermore, there is the following simple relation between the coefficients of the asymptotic expansion
and the principal parts of the Laurent expansion at the poles of I'(s)¢(T'; s):
agr(—D*k!  dimker T
TE(Tis) ~ Y = — :
k+1
s, (s +a) S
0<k=<k(x)

(2-5)

2A. Hilbert complexes and the analytic torsion. We use the convenient language of Hilbert complexes
as outlined in [Briining and Lesch 1992]. Recall that a Hilbert complex (D, D) consists of a sequence of
Hilbert spaces H;, 0 < j < N, together with closed operators D; mapping a dense linear subspace D; C H;
into Hj 1. The complex property means that actually ran Dj C D; 41 and Dj 0 D; = 0. We say that a
Hilbert complex has discrete dimension spectrum if all its Laplace operators Aj = D]’." Dj+Dj_4 D]’."_1
do have discrete dimension spectrum in the sense of Definition 2.1. Note that since A; has compact
resolvent, (D, D) is automatically a Fredholm complex, by [loc. cit., Theorem 2.4]. For a Hilbert complex
(D, D) which is Fredholm, the finite-dimensional cohomology group H/ (D, D) = ker D j/ran Dj_y is



228 MATTHIAS LESCH

the quotient space of the Hilbert space ker D; by the closed subspace ran D;_; and therefore is naturally
equipped with a Hilbert space structure. From the Hodge decomposition [Briining and Lesch 1992,
Corollary 2.5]

H; =ker Dj Nker D}"_l @®ran D;j_; @ran D} =ker A; ®@ran Dj_; @ran D, (2-6)

one then sees that the natural isomorphism HI (D, D) :=ker Aj = ker Dj Nker D;."_l — HJ(D, D) is
an isometric isomorphism. We will always tacitly assume that the cohomology groups are equipped with
this natural Hilbert space structure.

Recall the Euler characteristic

X(D.D):=>» (1)) dim H/ (D, D) =Y "(~1)/ dimker A;. (2-7)
Jj=0 j=0
The discrete dimension spectrum assumption implies the validity of the McKean—Singer formula
X(D.D) = (=1)) Tr(e™"™) fort>0. (2-8)
Jj=0
Definition 2.2. Let (D, D) be a Hilbert complex with discrete dimension spectrum. The analytic torsion
of (D, D) is defined by

1 .od
log T'(D. D) := 5 Z(—l)’fg

j=0

§(Aj39).
=0

N

If £(Aj;s) has a pole at s = 0 then by % ls=0¢(Aj;s) we understand the coefficient of s in the Laurent
expansion at 0.
Obviously log T (D, D) can be defined under the weaker assumption that the function

1 i
F(D. Dis) =5 ) (=1 j5(4)15) (2-9)
j=0
extends meromorphically to C.
The analytic torsion can also be expressed in terms of the closed and coclosed Laplacians: put

Aja:=AjranDj_; = DJ-_ID;-"_1 Mran Dj_j, (2-10)
Ajcd i=Aj rranDJ’-k :DJ’-"DJ- rranD}". (2-11)
Note that by definition Ag . = 0 and Ap ¢ = 0 act on the trivial Hilbert space {0}; recall that N is
the length of the Hilbert complex. By the Hodge decomposition (2-6) the operators A ¢ and Aj . are

invertible. Moreover,
Ajy1,aDj | ran D]’-k =DjAj ca. (2-12)

Hence the eigenvalues of A . and A  coincide including multiplicities. Putting for the moment
Aj = Tr(e™"AJ.a) = Tr(e™"Ai-1.«a) for j > 1 and Ao := 0 we therefore have

Tr(e™*27) —dim H/ (D, D) = Tr(e ") 4 Tr(e " 2iet) = A; + A1, (2-13)
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and hence

> (=1 j(Tr(e™") —dim H/ (D, D))

j=0 ) ) .
=Y DA+ i) =) (=) ja; = (=1 (j - D4
Jjz0 j=0 j=0
= (=) Tr(e A7y = = Y (= 1) Tr(e ™A ), (2-14)
Jjz0 j=0

To avoid cumbersome distinction of cases we understand that Tr(e?20.«!) = 0.

Proposition 2.3. Let (D', D), (D”, D) be two Hilbert complexes with discrete dimension spectrum. Let
(D, D) := (D', DY&(D", D") be their tensor product. Denote by A, A", A the Laplacians of (D', D'),
(D", D"), (D, D), respectively.

Then the function F(D, D;s) := % jzo(—l)jjé‘(Aj;s) extends meromorphically to C. More pre-
cisely, in terms of the corresponding function for the complexes (D', D), (D", D"") we have the equations

x(D, D) = x(D', D')- x(D", D), (2-15)
F(D,D;s)=x(D',D")-F(D",D";s)+ x(D",D"y- F(D', D'; s); (2-16)

in particular
log T(D, D) = x(D', D')-1og T(D", D) + x(D", D") -log T (D', D). (2-17)

Proof. This is an elementary calculation; compare [Vishik 1995, Proposition 2.1] and [Ray and Singer
1971, Theorem 2.5]. Since
— / "
A= P AjoI+1®A4]
i+j=k
we have
ker(Ar =)= @ @ ker(A]—1) @ker(A] —1"). (2-18)
MAN=M i+ j=k

This proves (2-15), which follows also from the Kiinneth theorem for Hilbert complexes [Briining and
Lesch 1992, Corollary 2.15]. Furthermore,

Z(—l)kk Tre '8k

k=0
ZZ(_l)kk Z Z e—l)\. e—tk — Z (_1)l+](l+]) Z e—tk e—t)»
k>0 i+j=k )\ especA] i,j=0 ) €specA
A/ especA” A" especA’
(e e ) (S e ) (L e ) (Seniime ). 2o
i>0 j>0 j>0 i>0

The claim now follows from (2-3) and the McKean—Singer formula (2-8) applied to A’, A}’ . O
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Next we state an abstract differentiability result (compare [Dai and Freed 1994, Appendix; Bohn 2009,
Appendix D]J).

Proposition 2.4. Let (@9, D9), where 0 € J C R, be a one-parameter family of Hilbert complexes with
discrete dimension spectrum. Let A? = (D]‘?)*DJTO + Dje_1 (Dj‘?_l)* be the corresponding Laplacians.
Assume that
(1) Hp(D?, D) (1) =Y j5o(=1)7 ) Te(e A7) is differentiable in (¢, 0) € (0, 00) x J and
d
g Hr (DY, D% (1) = o Tr(P —14%) (2-20)
with some operator P in H = ;o Hj with P(I + Ae)_N bounded for some N ;
2) AYisa graph smooth family of self-adjoint operators with constant domain and dim ker A? indepen-
dent of 0,
(3) there is an asymptotic expansion
Te(Pe ") ~, o4 > a1 logk e, (2-21)
aE—X
0<k<k(a)
which is locally uniformly in 0 and with ag « depending smoothly on 6
4) ag x =0 for k > 0; that is, in the asymptotic expansion (2-21) there are no terms of the form t° logk t
fork > 0.
Then 0 +— log T(D?, DY) is differentiable and

d 6 no 1 —tA? 1 —tA? 1.6 1 6
70 logT(D”, D7) = —5 tL_{lS/JIr Tr(Pe )+ 5 tL_I)lXIOTr(Pe ) = —3ago + 5 Tr(P | ker A”).

Here LIM;_;, stands, as usual, for the constant term in the asymptotic expansion as t — a. In (1) we
have used the abbreviation A? := D jzoA?-

Proof. Assumptions (2) and (3) of Proposition 2.4 guarantee that in the following we may interchange
differentiation by s and by 6:

d
2" loe T(DY, DY) =
g o8 ( )=

F(s)/ 5~ IZ( 1)’] Tr(e™" A7 _ kerAe)dt
s=0

d9 ds
Jj=0

d
—T P —tA?
~ds s= OF(S)/ (Pe at
:_i —/ ts_lTr(Pe_tAg)dt
ds|s=oT'(s) Jo
o d s ago Tr(P | ker A?)
= r (R et ) LS

= —ad, + Tr(P | ker AY). (2-22)
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Assumption (1) was used in the second equality and assumptions (3), (4) were used in the penultimate

equality. Without assumption (4) the higher derivatives of the function 1/ I'(s) at s = 0 would cause

additional terms. Assumption (2) guarantees in particular that Tr(IT, . ,¢) is independent of 6. O
J

2B. Torsion of a finite-dimensional Hilbert complex. This subsection mainly serves the purpose of
fixing some notation. Let H;, H; be finite-dimensional Hilbert spaces. For a linear map T : H; — H»
we put

Det(T) := det(T*T)"/2. (2-23)

It T:H — H,, S: Hy — Hj are linear maps then obviously Det(7'S)) = Det(T") Det(.S). Further-
more, given orthogonal decompositions H; = Hj(l) @ Hj(z), J = 1,2, such that with respect to these

decompositions we have
Ty Tis
T = 2-24
( 0 T ) ’ ( )

then Det(7") = Det(7T}) Det(T2)

d dy—1
Let0 — C? = C! —> .25 C" = 0 be a finite-dimensional Hilbert complex. Then the torsion
of this complex satisfies

log T(C*.d) =) (~1)? logDet(d), : kerd,” — imd,) =:log 7(C*. d). (2-25)
p=0
Needless to say each finite-dimensional Hilbert complex is automatically a Hilbert complex with discrete
dimension spectrum. In fact, since the zeta function is entire in this case, for the Laplacian of the complex
the set X (A) defined in Definition 2.1 then equals the set of poles of the I'-function, {0,—1,—-2,...}.
The following two standard results about the torsion and the determinant will be needed at several
places. The first one is elementary; the second one is due to Milnor [1966].

Lemma 2.5. Let (C*,d¥), k =1, 2, be finite-dimensional Hilbert complexes and o (C*, d') — (CX*, d?)
be a chain isomorphism. Then

log 7(CF,d") =logt(C},d?) + Z(—l)j log Det(c; : Clj — Czj)
Jj=0

— (=1)/ logDet(a; « : H/(C{.d") — H/(C}.d?)). (2-26)
j=0

Proof. For complexes of length 2 the formula follows directly from (2-24). Then one proceeds by
induction on the length of the complexes C;, C,. We omit the elementary but a little tedious details. [J

Proposition 2.6 [Milnor 1966, Theorem 3.1/3.2]. Let 0 — C; — C P €y = 0 be an exact sequence
of finite-dimensional Hilbert complexes and let

%:0— H°(Cy) -2 HO(C) HO(CZ)—>H (Cy) = - (2-27)
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be their long exact cohomology sequence. Then
log 7(C*,d) =log t(Cf,d") +log t(C},d?) + log t(%)

> (=1l 10gr(0 > ¢/ 5 ¢ L CJ —0). (228
Jj=0
In fact the proposition as stated is a combination of [Milnor 1966, Theorem 3.2] and Lemma 2.5. The
last term in (2-28) does not appear in [Milnor 1966, Theorem 3.2] since there one is given preferred
bases of Cy, C, C, which are compatible. In our Hilbert complex setting the preferred bases are the
orthonormal ones. The last term in (2-28) makes up for the fact that in general it is not possible to choose
orthonormal bases of C;, C, C, which are compatible in the sense of [loc. cit.]. For a proof in the more
general von Neumann setting see [Burghelea et al. 1999, Theorem 1.14].
For future reference we note that for the acyclic complex (0 — Clj 2ci s Czj — 0) of length 2 on
the right of (2-28) it follows from the definition (2-25) that

log ‘C(O — Clj ¢l f) Czj — O) = %logDet(Clj 4 Clj) —%logDet(Czj & Czj) (2-29)

Finally, we remind the reader of the (trivial) fact that if in Proposition 2.6 the complex C equals
Cy & C;, « the inclusion and B the projection onto the second summand, then log 7(#) = 0 and
log 7(C*,d) =logt(C},d") +logt(C},d?).

3. Elementary operator gluing and heat kernel estimates on noncompact manifolds

3A. Standing assumptions. Let M™ be a Riemannian manifold of dimension m; it is essential to note
that M™ is not necessarily complete; see Figure 1. Furthermore, let Py : I'°(M, E) — I'°(M, E)
be a second-order formally self-adjoint elliptic differential operator acting on the compactly supported
sections, ['J°(M, E), of the Hermitian vector bundle E. We assume that P is bounded below and we fix

singular ends

boundary conditions

conic end M&Y interact YeM\M
cone tip l
not part
of M
collar (—c,0) x Y
some .\
: boundary conditions at
singular .- .
Y and on singular ends
end -
do not interact
end with elliptic

boundary condition
(but boundary component not part of M)

Figure 1. Example of a singular manifold.
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once and for all a bounded below self-adjoint extension P of Py in the Hilbert space of square-integrable
sections L2(M, E), for example, the Friedrichs extension.

Later on we will need a class of operators which is slightly more general than (pseudo)differential
operators. For our purposes it will suffice to consider an auxiliary operator

V:HS (M, E)— H5.L (M, E), (3-1)

comp

which for each real s maps the space H (M, E) of sections, which are locally of Sobolev class s,
continuously into the space of compactly supported sections of Sobolev class s — 1; see [Shubin 2001,
Section 1.7]. We assume that V' is symmetric with respect to the L2-scalar product on E; that is,
(V/.g) = (f.Vg) for f € H\(M.E). g € L3, (M. E).

Finally, we assume that V' is confined to a compact subset ¥ C M in the sense that

M,V = VM, =0, (3-2)

for any smooth function vanishing in a neighborhood of . Equation (3-2) implies that V' commutes
with M, for any smooth function which is constant in a neighborhood of 3. Our main example is the
operator A? defined after (5-8) below.

In view of (3-1) and the ellipticity of Py, the operator V is P-bounded with arbitrarily small bound;
thus P + V is self-adjoint and bounded below as well.

With regard to the mapping property (3-1) of V' we introduce the space Op% (M, E) of linear operators A
mapping H}} = continuously into Hcsojn‘; and whose Schwartz kernel K 4 is compactly supported. Obvious
examples are pseudodifferential operators with compactly supported Schwartz kernel, but also certain
Fourier integral operators. The point is that elements in Op,. are not necessarily pseudolocal. Note that V'
is in Opl(M, E).

The set-up outlined in this Section 3A will be in effect during the remainder of Section 3.

3B. Heat kernel estimates for P + V.

Lemma 3.1. For all s > 0 we have D(P + V)* = D(P%). Furthermore, the operator e "*‘P+V) t > 0,
has a smooth integral kernel.

Proof. By complex interpolation [Taylor 1996, Section 4.2] it suffices to prove the first claim for s =k € N
where it follows easily by induction exploiting the elliptic regularity for P and (3-1).
Consequently, e’ (P+V) js a self-adjoint operator which maps L2(M, E) into
() D+ V)F) = [ D(PH). (3-3)
k=0 k=0
and the latter is contained in ['*°(M, E) by elliptic regularity. This implies smoothness of the kernel
of e~ (PHV), O

Proposition 3.2. Ler A € Op2(M, E), B € Opé’ (M, E) with compactly supported Schwartz kernels
K4, Kp. Denote by mj : M x M — M, j = 1,2, the projections onto the first and second factor and
suppose that w5 (supp K4) Ny (supp Kp) = & and m,(supp K4) NH = &. (For I, see Section 3A.)
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Then Ae " P+V) B is a trace class operator and
| 4¢P Bl = 0G%), 10+ (3-4)

Here O(t™) is an abbreviation for O(tV) for any N; the O-constant may depend on N. Further-
more, || - || denotes the trace norm on the Schatten ideal of trace class operators.

Proof. (Compare [Lesch 1997, Section 1.4].) Since the Schwartz kernels are compactly supported it
suffices to prove that for all real ¢, 8 and all N > 0 we have

|4e " PTI B 5= 0N), t—0+. (3-5)
Here, || - [|o,g stands for the mapping norm between the Sobolev spaces
H®(ny(supp Kp). E) and  HP (x, (supp K). E).

The O-constant may depend on 4, B, o, 8, N.
Equation (3-5) follows from Duhamel’s formula by a standard bootstrapping argument as follows: note
first that the mapping properties of A, B and P + V imply that, for real o,

14e~" P+ Blly g qp = O(1), 1 —0+. (3-6)
Assume by induction that, for fixed /, N, for all 4, B satisfying our assumptions and for all real «,
14e Pt B o gy = 0C™). -0+ (3-7)
Fix plateau functions y, ¢, ¥ € CZ°(M ) with the following properties:

(1) ¢ =1 in a neighborhood of 7, (supp K 4) and suppp NH = @.
(2) ¥ =1 in a neighborhood of 7 (supp Kp).
(3) x =1 in a neighborhood of supp ¢ and supp y NH = &.

(4) supp x Nsupp ¥ = .

Then
||Ae_t(PJrV)B||a,a—a—b+l+1/2 = ||A<P€_t(P+V)WB||a,a—a—b+l+1/2
< Cilloe ™ Py o pabiirise. (3-8)
From
@1+ P+ V)pe ' FHy = [Py, gle ™" FH Py, (3-9)

where [ Py, ¢] denotes the commutator between the differential expression Py and multiplication by ¢,
we infer

t
pe Py =/ xe CIEE Py, ple =Py ds; (3-10)
0
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here we have used the assumptions on the supports of x, ¥, ¢ and (3-2). In the displayed formulas we
wrote, to save some space, X, ¥, ¢ for the multiplication operators My, My, My,.
For & = o — b we now find

t
loe ™ P lg gy < fo e P gy sr gt W0 @le ™ TNl o1y ds.
(3-11)
Since [Py, ¢] is in Opé we find, using (3-7),

I[Po, ¢le Py |lg.5-141 = OGY) ass— 0+. (3-12)

Furthermore, denoting by C a constant such that P > —C + 1,

||Xe_u(P+V)X||&—1+1,&+l+%
a+i—1 3 _a+i+1/2
SIPHVHCO) T2 Klla—1421,0 I(PHVHCO) e FH D oo [ x(PHVHC)T 2 g ppy- B-13)

The first and the third factors on the right are bounded while for the second factor we have, by the spectral
theorem,

I(P+V 4+ C)3 4 PN 50 = 0w™>/*) asu— 0+. (3-14)

Thus

t
loe™ P g g 111172 < Co / (=) 4N ds = oV, 1 -0+, (3-15)

0
Thus we have improved the parameters / and N in (3-7) by % and 1, respectively, and therefore the result
follows by induction. O

Proposition 3.3. Under the standing assumptions of Section 3A, let ¢, Y € C°° (M) with supp ¢ Nsupp ¥
being compact (the individual supports of ¢ or ¥ may be noncompact!) such that do, dyr are compactly
supported and that supp dp NH = & = supp dy N K. Furthermore, assume that multiplication by ¢ and
by ¥ preserves D(P 4+ V) = D(P).

Then for t > 0 the operator e ™" P+V)yr is trace class and

lpe™ TPl = 0270, 1= 0+, (3-16)
If supp ¢ N supp ¥ = & then the right-hand side can be improved to O(t*°), t — 0+.

Here O(:~/270) is an abbreviation for O(r~"/27€) for any € > 0; the O-constant may depend on €.

Proof. Assume first that additionally i is compactly supported. Again applying Duhamel we find
t
oot PHV)y, = / =PI P oS PHV)y 1o (3-17)
0

Now apply Lemma 3.1 and Proposition 3.2 to the operator [Py, ¢le P+ If supp ¢ N supp ¢ # &
then the trace norm estimate is a simple consequence of Sobolev embedding and the established mapping
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M,
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A N
4 N .
Y possibly
* K, =~ noncompact

possibly @

noncompact <~ K,
end

@ end
o

U= (—c,c)xY
tubular neighborhood of Y

Figure 2. The gluing situation.

properties. If supp ¢ Nsupp ¥ = @ then Proposition 3.2 implies ||[Py, ¢le *P || = O(*°) and
the claim follows in this case.

Since e 1 (P+V) g self-adjoint the roles of ¢, ¥ may be interchanged by taking adjoints and hence the
proposition is proved if ¢ or ¥ is compactly supported. The general case now follows from (3-17) since
the compactness of supp d¢ implies the compactness of the support of the Schwartz kernel of [ Py, ¢]. O

3C. Operator gluing. Now we assume that we have two triples (M, Pjp, Vi), j = 1,2, consisting of
Riemannian manifolds M j'” and operators Pjp, V; satisfying the standing assumptions of Section 3A.
Furthermore, we assume that each Mj is the interior of a manifold AM; with compact boundary Y (it is
essential that M j is not necessarily compact). Let U =Y x (—c, ¢) be a common collar of Y in M; and
in M5, such that 0M; =Y x {1} and 0M, =Y x {—1}.
We assume that the sets #; corresponding to V; (cf. (3-2)) lie in M; \ U and that P10 coincides with P20
over U. Then the P;) gives rise naturally to a differential operator P® = P? U P on

M = (M;\ (Y x(0,¢))) Uy xgo; (M2 \ (Y x (—c,0))),

and the V; to an operator V = V; + V; € Opé (M, E), where E is the bundle obtained by gluing the
bundles £ and E, in the obvious way (due to (3-2) the operators V7, V; extend to M in a natural way).

Definition 3.4. By C°(M;) we denote the space of those smooth functions ¢ € C°° (M) such that ¢ is
constant in a neighborhood of M; \ U and ¢ = 0 in a neighborhood of 8]\7j; see Figure 3.

graph of p € C°(M)

singular end

Figure 3. Schematic sketch of a function in C;7°(M). The line indicates the manifold A/;
to the left are the possible noncomplete ends. On the right there is the collar U.
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A function ¢ € C°(M;) extends by 0 to a smooth function on M.

Proposition 3.5. Let P;, j = 1,2, be closed symmetric extensions of P;) which are bounded below and
Sfor which

(pD(PJf") C D(Pj) forall p € C°(M;). (3-18)
For a fixed pair of functions ; € C°(Mj), j = 1,2, put
D(P):={feDP) | i f€DP)), j=12}= Comp(U E)+ @1 D(P1) +@2D(P2). (3-19)

D(P) is indeed independent of the particular choice of ¢j and the operator P which is defined by
restricting PO, = (P°)* to D(P) is self-adjoint and bounded below. V is P-bounded with arbitrarily
small bound and hence P + V is self-adjoint and bounded below as well.

Furthermore, if for fixed j € {1,2} we have ¢, ¥ € Cg°(M;) satisfying (3-18), then the operator
e TPtV yr et (PHV)yr s trace class and its trace norm is O(t>) as t — 0+.

Remark 3.6. 1. It is not assumed that e’ (P +V)w or e~ ! 3 +V)w is of trace class individually!

2. Equation (3-18) says that the “boundary conditions™ at the exits of M and M, are separated. We
illustrate this with an example: let My = (—1,1), My = (—1,1), U= (-1,1), M =(=1,1), and let
PIO = Pg = —d?/dx? = A be the Laplacian on functions. Let Pf “ be the Laplacian A on M; with
periodic boundary conditions. These boundary conditions are not separated and indeed for ¢ € C*° (— 1, %)
with ¢(x) =1 for x < —l and ¢(x) =0 for x > % the space (pD(Pfer) equals @Hz([ -1, %]) and this
is not contained in D (P} er)

However, for any pair of self-adjoint extensions P; of Pjp, Jj =1, 2, with separated boundary conditions
at the ends of the intervals M; one has ¢ D(P;) C D(Pj); that is, the condition (3-18) is satisfied and

Proposition 3.5 applies to this pair.

Proof. Since H ) the second equality in (3-19), the symmetry of P and the

COmp(U E) C D(P? i min
independence of ‘D(P) of the particular choice of ¢; are easy consequences of (3-18).
To prove self-adjointness let /€ D(P*). We claim that for ¢; € C°(My) we have ¢ f € D(PY).

Indeed for g € D(P;) we have

(1 /. Prg) = (/.91 P1g) = (f.[¢y. Plg) + (f. PP, g). (3-20)

Since suppdg; C U is compact and since [¢;, P{)] is a compactly supported first-order differential
operator on U we find

=([P).o1lf + o1 P* f.g). (3-21)

proving @1 f* € D(P). In view of (3-18) we see, by choosing another plateau function ¥ € C° (M)
with ¥ ¢; = ¢, that ¢1 /' € D(Py). In the same way we conclude ¢, f* € D(P,) for ¢, € C;°(M3) and
thus f € D(P).

To prove the trace class property and the trace estimate we choose another plateau function x € C° (M)
such that x = 1 in a neighborhood of supp ¥ with x —y € C2°(Mj); hence x also satisfies (3-18).
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Consider first K; := ye !BtV — ye P+ y, K, (=0 and
@+ P+ V)K; =[P, yle " EitVy —[ PO y]e™! P+ )y, (3-22)

Here we have used that multiplication by x commutes with V' and V;; see (3-2). Propositions 3.2 and 3.3
now imply that K; is trace class for ¢ > 0 and that || K; || = O(¢°°) as t — 0+. Consequently

Ixpe " EitVy — xoe Pyl < 9lloo | Kellw = O(™).

To (1—x)@e t®itVy—(1—x)pe " P+V)yr we can apply Proposition 3.3 since (supp ¥)Nsupp(1—x) =
@& and the proof is complete. O

Finally, we discuss heat expansions. Under the assumptions of Proposition 3.5 assume that P; + V;
has discrete dimension spectrum outside U. By this we understand that for ¢ € C°(M;) the operator
et (Pi+Vi) s trace class and that there is an asymptotic expansion of the form (2-4) with agx = agi (¢).
Then:

Corollary 3.7. Under the additional assumption of discrete dimension spectrum for Pj + V; outside U
the operator P + V has discrete dimension spectrum and for any ¢ € C°(My) we have

Tr(e"P)) = Tr(pe P+ 4 Tr((1 — @)e P22y L 0(r°)  ast — 0+. (3-23)
Proof. This is immediate from Proposition 3.5 and the discrete dimension spectrum assumption. O

We add, however, a little more explanation since the term “discrete dimension spectrum outside U”’
might lead to some confusion: since X N U = & (cf. (3-2) and the second paragraph of this section, on
page 236) for f € I'°(U, E) we have (P + V) f = Pf. The classical interior parametric elliptic calculus
(see [Shubin 2001], for example) then implies that for ¢ € C°(U) there is an asymptotic expansion

Tr(pe " PT) ~ 0 Y aj(Pg) /72, (3-24)
j=0

where a;j (P, ¢) = fM aj(x, P)p(x)dx and a; (x, P) are the local heat invariants of P. Thus over any
compact subset in the interior of M \ ¥ the discrete dimension spectrum assumption follows from standard
elliptic theory and hence is a nonissue. Rather it is a condition on the behavior of P on noncompact
“ends” and a condition on V over K.

3D. Ideal boundary conditions with discrete dimension spectrum. The remarks of Section 3C extend
to ideal boundary conditions of elliptic complexes in a straightforward fashion. Let X be a Riemannian
manifold which is the interior of a Riemannian manifold X with compact boundary Y, and let U =
(—c,0) x Y be a collar of the boundary. Since X is allowed to be noncompact it is not excluded that
away from U there are “ends” of X which can be completed by adding another boundary component;
see Figure 1.

As an example which illustrates what can happen consider a compact manifold Z with boundary,
where 0Z =Y, U Y, U Y3 consists of the disjoint union of three compact closed manifolds Y;, j = 1,2, 3.
Attach a cone C(Y3) = Y3 x (0, 1) with metric dr? + rzgy3 to Y3 (and smooth it out near Y3 x {1}).
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Then put X :=(Z \ (Y1 UY3)) Uy, C(Y3) and X :=(Z\Y,) Uy, C(Y3). Then Y; plays the role of Y’
above, but X is not compact. Compare Figure 1 on page 232.

When introducing closed extensions (that is to say, boundary conditions) for elliptic operators on X it
is important that the boundary conditions at ¥ and Y, on the one hand, and on the cone on the other, do
not interact in order to ensure (3-18) holds.

Leaving this example behind, let (I'>°(E), d) be an elliptic complex and let (D, D) be an ideal
boundary condition for (I'?°(E), d) —that is, a Hilbert complex such that D;, j = 1,2, is a closed
extension of d;.

We say that the ideal boundary condition (D, D) has discrete dimension spectrum outside U if the
Laplacians Aj = DJ’." Dj+ Dj_4 DJ’."_1 have discrete dimension spectrum outside U'; cf. the paragraph
before Corollary 3.7. Then Proposition 3.5 and Corollary 3.7 hold for the Laplacians.

More concretely, let X, Y be as before and let (F, V) be a flat bundle over X. Assume that we are
given an ideal boundary condition (D, D) of the de Rham complex (2°(X; F), d) with values in the flat
bundle F with discrete dimension spectrum over the open set X \ U, U = (—c¢, 0) x Y. Fix a smooth
function ¢ € C*°(—c, 0) which is 1 near —c and 0 near 0 and extend it to a smooth function on X in the
obvious way.

We then define the absolute and relative boundary conditions at Y as follows:

D/ (X F) := ¢D(Dj) + (1 —9)D(d}j max), D/ (X,Y; F):=@D(D;)+ (1 —9)D(dj,min). (3-25)

The Laplacians of the maximal and minimal ideal boundary conditions are, near Y, realizations of local
elliptic boundary conditions (see, e.g., [Gilkey 1995, Section 2.7]). This, together with Proposition 3.5
and Corollary 3.7 applied to M1 = X, My, =Y x(—¢,0), U =Y x (—c,—c/2), implies that the Hilbert
complexes (D(X; F),d) and (D(X,Y; F), d) are Hilbert complexes with discrete dimension spectrum.

4. Vishik’s moving boundary conditions

4A. Standing assumptions. We discuss here Vishik’s [1995] moving boundary conditions for the de Rham
complex in our slightly more general setting. Let X be a (not necessarily compact or complete!)
Riemannian manifold; see Figure 1. Furthermore, let (F, V) be a flat bundle with a (not necessarily flat)
Hermitian metric 2. We assume furthermore that X contains a compact separating hypersurface ¥ C X
such that in a collar neighborhood W = (—c, ¢) x Y all structures are product. In particular we assume
that VF is in temporal gauge on W; that is, V¥ } W = 7*V¥ for a flat connection V¥ on F } Y, where
7 denotes the natural projection map W — Y. In other words X is obtained by gluing two manifolds
with boundary X * along their common boundary ¥ where all structures are product near Y; compare
Figure 2.
We make the fundamental assumption that

we are given ideal boundary conditions (D*, D¥) of the twisted de Rham
complexes (2°(X °*; F), d) which have discrete dimension spectrum over 4-1)
Ut :=X*\W. Weput X := X 1T XT.
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4B. Some exact sequences and the main deformation result. As explained in Section 3D we therefore
have the following Hilbert complexes with discrete dimension spectrum: D*(X*; F) (absolute boundary
condition at Y), D*(X Y. F ) (relative boundary condition at Y'), D*(X; F) (continuous transmission
condition at Y'). By construction we have the exact sequences of Hilbert complexes

0——= D*(X~,Y; F)~2= D*(X; F) _r D(XT; F) —=0, (4-2)
0——= DXt Y; F)—— D*(X*; F) D*(Y;F) —=0, (4-3)
0——= DX, Y:F)®D(XT,Y; F)M;p-(x; F) —=D*(Y; F) — 0. (4-4)

Here oy are extensions by 0, f is the pullback (i.e., restriction) to X T, y. is the natural inclusion of the
complex D*(X *, ¥; F) with relative boundary condition at Y into the complex D*(X *; F) with absolute
boundary condition, and i+ : ¥ <> X is the inclusion map. Finally ro = “/Tz(i_";a) +i*w) = \/Elj*:a)
forw € D*(X; F).

It is a consequence of standard trace theorems for Sobolev spaces that i} : D*(X . F)—> D*(Y; F)
is well-defined; see, for example, [Paquet 1982; Lions and Magenes 1972; Briining and Lesch 2001,
Section 1]. To save some space we have omitted the operator D from the notation in the complexes in
(4-2), (4-3), and (4-4). Clearly, the complex differential is always the exterior derivative on the indicated
domains.

Each of the complexes (4-2)—(4-4) induces a long exact sequence in cohomology. We abbreviate these
long exact cohomology sequences by

KXY, X, XN F), %(XT,Y).XE Y. F), #(X.Y)UXT,Y),X,Y;F),

respectively. The long exact cohomology sequences of the complexes (4-2), (4-3), (4-4) are exact
sequences of finite-dimensional Hilbert spaces and therefore their torsion 7 (#(---)) is defined; cf. (2-25).
The Euler characteristics — see (2-7) — of the complexes in (4-2)—(4-4) are denoted by x(X Y. F ),
X(XE:F), x(X: F), x(Y; F), etc.

Next we introduce parametrized versions of the exact sequences (4-2) and (4-4). The idea is due to
Vishik [1995] who applied it to give a new proof of the Ray—Singer conjecture for compact smooth
manifolds with boundary. Namely, for 6 € R consider the following ideal boundary condition of the
twisted de Rham complex on the disjoint union X" = X~ II X *:

@é(}(; F):={(1,02) €D/ (X F)®D/ (XT; F) | cos§ -i*w; =sin6 -ifw,}. (4-5)

We will see that for each real 6 the complex (D (X; F), d) is indeed a Hilbert complex with discrete
dimension spectrum. In fact near Y it is a realization of a local elliptic boundary value problem for
the de Rham complex on the manifold X, and away from Y we may apply Corollary 3.7 and our
assumption (4-1) that the Hilbert complexes (D*, D*) have discrete dimension spectrum over X\ W.

For 6 = 0 we have Dy (X; F) =D*(X™,Y; F) & D*(XT; F), and for & = /4 we see that the total
Gauss-Bonnet operators d + d* of the complexes D 4(X; F) and D(X; F) coincide (see [Vishik 1995,
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Proposition 1.1, p. 16]). Hence the family of complexes (Dg (X F), d %) interpolates in a sense between
the direct sum D*(X~,Y; F) @ D*(X*; F) and the complex D*(X; F) on the manifold X
The parametrized versions of (4-2), (4-4) are then

0 —— D*(X™,Y; F)2s Dy (X; F) —> D*(XT; F) — 0, (4-6)
0——= D (X, Y; F) & DX+, ¥; HEE Do (X; F) 2 D(Y: F) — 0, (4-7)

where agw = (w, 0) is extension by 0, Bg (w1, ws) = w, is restriction to X ¥, y+ @ y_ (w1, w2) = (w1, ®3)
is inclusion and rg (w1, wz) = sinf -i*w; +cos 0 - i wy. We denote by #Hy((X ™, Y), X, X*;F)and
Ho((X—,Y)U(XT,Y), X,Y; F) be the corresponding long exact cohomology sequences.

We denote the cohomology groups of the complex Dg (X'; F) by H, J (X; F); the corresponding space
of harmonic forms will be denoted by H J (X; F). For the next result we need some more notation.
Let 7 be a Hilbert space and let 7' : % — ¥ be a bounded linear operator. For a finite-dimensional
subspace V C # we write Tr(T | V) for Tr(Py T Py) where Py is the orthogonal projection onto V.
If ej, j,...,n,is an orthonormal basis of V' then

n

Te(T }V) = (Tej.ej). (4-8)

j=1

We will apply this to 8g on the space Hej (X:;F). Ifej, j,...,n, is an orthonormal basis of ﬁé (X F)
then

Te(Bo VX P = Dol 1 B =3 [ ey nsey. (49)
j=1 j=1

After these preparations we are able to state our main technical result. It is inspired by Lemma 2.2 and
Section 2.6 in [Vishik 1995].

Theorem 4.1. The functions
0> log T(Dy(X; F)), logt(#He(X™,Y), X, X1 F)), logr(#He((X—,Y)UXT,Y), X, Y;F))

are differentiable for 0 < 0 < 7 /2. Moreover, for 0 <0 < /2,

d . )
S0 T(Dy(X; F) = [~ S (1) Te(By | H (X3 P+ X(X 5 F)] —tan-x(Y: F), (4-10)

Jj=0
d . ,
S log T(Hg(X ™. ¥). XX F)) = — [—;)(—1)1 Te(Bo I HJ (X: ) + x(X T F)). (-1D)
i1og t(He(X—,V)UXTF,Y), X, Y; F)) = i1og T(Dy(X; F)). (4-12)

do do
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Furthermore, with #g standing for either #g(X~,Y), X, X T; F) or #g (X, Y)U(XT,Y), X, Y F),
the map
0 —log T(Dy(X: F)) —log t(¥y) (4-13)

is differentiable for 0 < 0 < 7 /2.
The proof of Theorem 4.1 will occupy Section 5.

5. Gauge transforming the parametrized de Rham complex a la Witten

Consider the manifold X as described in Section 4. Recall that in the collar W := (—c,c) x Y of Y all
structures are assumed to be product. We introduce W := (—¢, 0] x Y 1[0, ¢) x Y. Furthermore, let
S W — W (¢, p) — (—t, p) be the reflection map at Y. Finally, we introduce the map

T:Q'(WM F) = Q* (W, F), T(w1,w3):=(S*wy,—S*w). (5-1)

T is a skew-adjoint operator in L2(W, A*T*W ® F) with T? = —I. Note furthermore that T
commutes with the exterior derivative d. We denote by DY (on XU or W) the closed extension of the
exterior derivative with boundary conditions as in (4-5) along Y. More precisely, D? acts on the domain

'Dé(W; F):= {(a)l,a)z) € D(d},max) } cosf -i*w; =sinf -i_T_a)z}. (5-2)

The operator family has varying domain. In order to obtain variation formulas for functions of DY
we will apply the method of gauge-transforming DY onto a family with constant domain; compare, for
instance, [Douglas and Wojciechowski 1991] and [Lesch and Wojciechowski 1996].

We choose a cut-off function ¢ € C°((—c,¢) x Y') with ¢ = 1 in a neighborhood of {0} x ¥ and
which satisfies p(—t, p) = ¢(t, p), (¢, p) € (—c,c) x Y. Then we introduce the gauge transformation

Dy := 99T = cos(0p) I +sin(0p) T : QX (W F) — Q* (W, F). (5-3)

Since e??&-PT = | for 2| sufficiently close to ¢, ®g extends in an obvious way to a unitary transformation
of L2(A*T* X, F) which maps smooth forms to smooth forms.

Lemma 5.1. For 6, Q’ € R the operator ®y maps @é,(X; F) onto ®£+o,(X; F), and accordingly
@é,(Wm; F) onto Dé+9,(W°“t; F). Furthermore,

@3 DO 0y = DY 4 0 ext(dy)T. (5-4)
Proof. It obviously suffices to prove the lemma for W, Consider (w1, w;) € Dé,(WC‘"; F). Then
iZPg(wy, w3) =cosb -i*wy +sinb -ifw,, (5-5)
iy Pp(w1,w3) =cost -i*wy —sinb -ifw;. (5-6)
A direct calculation now shows
cos(0 + 0') i*Pp (w1, ) = sin(0 + 0") i Pg(w;, w2), (5-7)

proving the first claim. The formula (5-4) follows since T' commutes with exterior differentiation. [
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Note that D™/* + 6 ext(d¢)T is a deformed de Rham operator acting on smooth differential forms
on the smooth manifold X (respectively, W). T is not a differential operator. However, the reflection
map S allows us to identify (—c,0) x ¥ with (0, ¢) x Y and hence sections in a vector bundle £ over
(—¢,0)xY 11(0, c)x Y may be viewed as sections in the vector bundle E@® S™* E over (0, ¢)xY . Therefore,
since supp(d¢) is compact in (—c,0) x Y LI (0,¢) x Y, T may be viewed as a bundle endomorphism
acting on the bundle (A*T*(0,¢) X Y) ® (F @ F). In particular employing the classical interior
parametric elliptic calculus, as, for example, in [Shubin 2001], we infer that the Laplacian corresponding
to D™/* 40 ext(dg)T has discrete dimension spectrum over any such compact neighborhood of supp(d¢)
which does have positive distance from ¢ x Y.

From now on let

DY := D™/* 4+ 9 ext(do)T, (5-8)
with domain ®5=n/4(X; F) and A? = (D?)*D? + D?(DY)* the corresponding Laplacian. On the
collar (—c, c) x Y the operator A? is of the form P + V as discussed in Section 3A, where P is the
form Laplacian and V = A — A is induced by 6 ext(d¢@)T. The subset % of (3-2) is the support of d¢.

The operator A? is now obtained as in (3-19) by gluing the domains of the form Laplacians of the given
de Rham complexes on X *. Proposition 3.5 and Corollary 3.7 now give:

Theorem 5.2. The Hilbert complexes Dy (X; F) defined in (4-5) are Hilbert complexes with discrete
dimension spectrum.

Theorem 5.3. For 0 <6 < r/2 the Hilbert complexes Dy (X ; F) satisfy (1)~(4) of Proposition 2.4. More
precisely,

Aty ) =1 A > 1) Tr(Boe ™)) (5-9)
and 7=0
S (1) Te(Boe ™) = x(X+1 F) —sin 6 (Y3 F) + 0(), (5-10)
j=0
ast — 0-4+.

5A. Proof of Theorem 5.3. Note that
d
d—@D”/“ = ext(dg)T =[d, ¢T). (5-11)
Let us reiterate that although [d, ¢ T'] is strictly speaking not a Oth-order differential operator it may be
viewed as one over (A*T*(0,¢) x Y) ® (F @ F), which implies that it lies in Op® (W) C Op2(X°").
We remind the reader of the definition of the closed and coclosed Laplacians in (2-10), (2-11). We find
d d X ~ ~ X
. Tr(e—tAi,ca) = Tr(e_tA?:.ccl) =— Tr(((Dg)t ext(dp)T + (ext(d@)T)th)e_’Az,ccl)
= —t Tr((DF) ext(do)T + (ext(dgo)T)’Dg)e—mﬁ.m), (5-12)

where in the last line we have used that &y commutes with ext(d¢)T .
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Next let (en)nen be an orthonormal basis of ran(Dg)* consisting of eigenvectors of Ag’ oo O eigen-
values A, > 0. Then (e, = )»;1/ 2e,,),, is an orthonormal basis of ran Dg consisting of eigenvectors of
Ag Tl (see (2-10), (2-11) and thereafter). Equation (5-12) gives

d
= Tr(e ™M) = — Xn:((dg)’ ext(dp)Te Arcciey, ) — 1t Xn}e—m%wen, (d9)" ext(dg) Ten)

= —2th (Z((dg)’ ext(dg)Te By, e,,>). (5-13)

n
Stokes’ theorem and the boundary conditions will allow us to rewrite the individual summands of the last
sum. To this end let w, n € D(Ag). Then since dg is compactly supported in the interior of W we
have

((df) ext(d)Tw,n) = (ext(dg)Tw, dn) = (dp A Tw, dn) = (d(pTw), dn) — (pTdw, dn)
=/ To A%dn+ (pTw,d dn) — (pTdw, dn). (5-14)
aXcut

Here, % denotes the natural isometry A°T*M ®@ F — N""PT*M ® F T. In the last equality we have
applied Stokes’ theorem on the manifold with boundary X *'. Note that ¢ Tw is a compactly supported
(locally of Sobolev class at least 2) form on X .

The boundary of X" consists of two copies of ¥ with opposite orientations. To calculate the integral
in the last equation we orient Y as the boundary of X *. Then using that w and 7 satisfy the boundary
conditions (4-5) at Y we find

/ Ta)/\>T<dr]=/ ii(Tw/\%dn)—if(Tw/\%dn)z—/ iXo ANiTEdy+ilo NiZEdy
dxeu Y Y

2
= —(tan 6 +c0t9)/ i (w A Fdn) = —— / dw A Fdn+ (—1)®lw A dxdn
1% sin20 \ Jx+
2 t
__sin29(<dw’dn)X+_(w’d dn)xy+). (5-15)

Here (-,-)y+ denotes the L2-scalar product of forms over X *.
Plugging into (5-14) gives

((d)) ext(d)Tw.n) = (pTw.d"dn) — (pTdw, dn) (dw,dn)x+ —(w,d"dn)x+). (5-16)

~ sin 29(

Similarly,

((ext(d(p)T)tha), n) = {(d'dw,pTn) — (dw, pTdn) (do,dn)xy+ —(®,d"dn)x+). (5-17)

2
sin 20
We now apply (5-16) to the summands on the right of (5-13) and find using (2-12)
YN YN —tA? .~
((dg) ext(d)Te™ Arsiey, eq) = (pTe " Ari Al jen, en) = (@Te  Breranl | (3,.8,)
2

_ ] - - _ 6
— g ((Boe™ v Al Ly En. o) = (Boe T B0 AY cen.en)). (5-18)
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and summing over n gives

d
— Tr(e_tAf:.ccl) — —2t.‘)‘i(Tr(<pTe_tA19ncclAf, ) —Tr((pTe_tAz+l.clA0+l’cl))

d@ ,ecl P
4t YN A0
+ T R(Tr(Bg AGyy qe™ Brere) —Tr(BoA], e~ Ar))
sin 26
d 0 )
= 2[— T —tA el — T —tA +1.c)). 5_19
dt sin29( t(Bge” Pret) —Tr(Bge™ rt1)) (5-19)

Here we have used that, since ¢ 7 is skew-adjoint, Tr(¢T4) is purely imaginary for every self-adjoint
trace class operator 4 and similarly that since B¢ is self-adjoint that Tr(89A) is real. Consequently,
using (2-14),

d . d . LA d . A
S Hr (DR (X F)) = -2 3 (=) Tr(e™ ) = =20 —— 0 B (1) Te(Bge ™). (5-20)

Jj=0 Jj=0

Finally, for calculating the asymptotic expansion (5-10) as ¢ — 0+ we may again invoke Corollary 3.7.
The asymptotic expansion (5-10) on X" differs from the corresponding expansion for the double
— XTI X by an error term O(¢*); here —X + stands for X ™ with the opposite orientation. However,
on the double —X+ 11 Xt we may write down the heat kernel for Af, explicitly in terms of the heat
kernels for A, with relative and absolute boundary conditions at Y [Vishik 1995, (2.118), p. 60]. Namely,
let A7, A7 be the Laplacians of the relative and absolute de Rham complexes on X * as in (3-25) and
denote by E? 714 their corresponding heat kernels. Let S be the reflection map which interchanges the
two copies of X+ in —X T L1 X *. Its restriction to W is the reflection map S defined before (5-1) and
hence denoting it by the same letter is justified.

Finally, let E f (x, y) be the heat kernel of AZ/ fon—XTUX * that is, the Laplacian with continuous
transmission boundary conditions at Y. The absolute/relative heat kernels are given in terms of E7 by

EP*=(EF +S*oEP) ' X1, EP" =(EP-S*oEP) | X™. (5-21)
More generally, we put for x, y € — X+t LI X +:

EP(x,y) +cos(20)(S*o EP)(x,y) ifx,yeXT,

5-22
sinQO)E? (x, y) ifxe(=X1), yeXxt. ( )

EP?(x,p) :={

One immediately checks that £ f 9 is the heat kernel of Ag on —X* II X*. Consequently
Tr(Bge"27) = Tr(Bp EP) + c0s(20) Tr(S* o EP) = cos?(0) Tr(EP?) + sin?(9) Tr(EPT).  (5-23)

In view of our standing assumptions (Section 4A) the complexes D*(X T, Y; F) and D*(X T; F) are
Fredholm complexes, so the McKean—Singer formula (2-8) holds and hence taking alternating sums yields

Z(—l)j Tr(Bge 27 ) = cos? 8-y (X +1 F)+sin0-x (X T,V F) = (X +: F)—sin0-x (Y F), (5-24)
j=0
and the proof of (5-10) is complete. In the last equality we used that x(X T F) = x(X T, Y; F)+x(Y; F);
this formula follows from the exact sequence (4-4). O
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5B. Proof of Theorem 4.1.

Proof of (4-10). Combining Proposition 2.4 and Theorem 5.3 we find

d L[]
70 log T(Dp(X; F))

—4 . )
s1n29 (X2 F) —sin® 6 x(Y F>>+——T (Z(—l)fﬁe M H] (X F))

n26 5
Jj=0

2
" sin26 ( Z( 1)/ Tr(Bg FHJ (X:F) 4+ x(X*: F)) —tanf-x(Y; F),  (5-25)
>0
which is the right-hand side of (4-10). 0

Proof of (4-11) and (4-12). Let 0 < 0,60’ < 7/2 and consider the following commutative diagram
(cf. (4-6)):

0 — D*(X~ YF)—>D‘(X F)—=D*(XT;F) ——0

Jid l% , Ld)é’fe/ (526)
0= DX~ Y: F) e Do (X1 F) L2 Do(X+: F) — =0,

where ¢g ¢ and q); o are Hilbert complex isomorphisms, defined by

tan 0 tan 9

— +
¢0,9/((’01’w2) - (a)l’ ma)Z)v ¢9’9/( 2) tan 9/

Hence we obtain a cochain isomorphism between the long exact cohomology sequences of the upper and
lower horizontal exact sequences (F omitted to save horizontal space):

L HR(xY) 20 Hk(X) S HM(X ) 2 HKY(XY)--
jid lcbe o x jd);g, lid (5-27)
CHRY X ) 2 g (X) 20 gk (x—) 20 gE L (XY -
Let eq, ..., e, be an orthonormal basis of H6],C (X; F). Then
Det($f 5 ) = Det((¢g,or i bo,6,x€j)} j=1): (5-28)
hence
d logDet(¢pk ., )> =T d ¢ + d ¢ '
—_— (0] c , = 1r —_— ’ x€j, €j e, —— /7 x€i
d@/ o0—o g 9,0 % dG/ o—8 9,0 , k1 J 1 de, 0'—g 0,0 k¢ l’j:1

2 < 2
-9 e =D
sin 26 ;)(,396],81) sin 26

Te(Bg M HE(X; F));  (5-29)
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see (4-8). Furthermore, since qbgr g is multiplication by tan 6/tan 6" we have

tan § \ XX P
Det(¢g g ,) = ( _— 9,) : (5-30)
and hence
2
— logDet(¢pt,, )2 =—-2—— x(X; F). 5-31
40’ | 5r—g ogle (¢9,9 ,*) sin 20 x( ) ( )

By Lemma 2.5 we have
log (e (X, Y), X, XT; F)) —logt(#e (X, Y), X, X F))
= L logDet(pg,o +)* — 3 log Det(¢;9/,*)2; (5-32)

combined with (5-29) and (5-31) we therefore find (4-11).
That the left-hand side of (4-12) equals the right-hand side of (4-10) is proved analogously. One just
has to replace the commutative diagram (5-26) by

J’_
0—>D’(X_,Y;F)@@'(XJF,Y;F)uD'(X F)—>D Y;F)——0
lid€9¢;_9/ jd’e.e/ LW@.@’ (5-33)
0—=DX~.Y: F)® D (X*.¥: F) 225 D2 (X F) 22w Do (Y F) — 0,
where Vg g/ (w) = Smg/a) See also (A-20) and thereafter. O

Proof of the differentiability of (4-13) at 0. The problem is that the dimensions of the cohomology groups
Hoj (X; F) may jump at 0; note that the isomorphism ¢y ¢/ defined after (5-27) between D (X; F) and
Dy, (X F) is defined only for 0 < 6, 0’ < /2. By our standing assumptions of Section 4A (see also
Section 3D), D*(X~,Y; F) and D*(X ; F) are Hilbert complexes with discrete dimension spectrum.
Hence we may choose a > 0 such that a is smaller than the smallest nonzero eigenvalues of the Laplacians
of D*(X~,Y; F)and D*(X*,Y; F). Furthermore, we denote by Hg the orthogonal projection onto

HY (X:F):= @D ker(Aj—)). (5-34)
0<A<a
Since for 6 = 0 the complex D (X; F) is canonically isomorphic to the direct sum D*(X ™, Y; F) &
D*(X*; F) and since the gauge-transformed Laplacian A? of Dy (X F) in view of (5-8) certainly
depends smoothly on 6 there exists a 8y > 0 such that the projection Hg depends smoothly on 6 for
0 <0 < 6. In particular,
rank IT) = dim H,_ (X F)

is constant for 0 < 6 < 6.

(He' ,(X: F),d) is a finite-dimensional Hilbert complex and the orthogonal projections Hg give rise
to a natural orthogonal decomposition of Hilbert complexes

Dy (X: F) = (Hy ,(X: F),d) ®Dj_,(X; F). (5-35)
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By construction of IT2 we have
log T(Dy(X: F)) =logt(Hy ,(X: F).d) +1og T(Dg ,(X: F)), (5-36)
and 0 — log T(ﬂé,a (X; F)) is differentiable for 0 < 6 < 6.
Since surjectivity is an open condition we conclude that the sequence
O—>H*(X_,Y;F)&>H;’Q(X;F)&H*(X+;F)—>O (5-37)
is exact for 0 < 6 < 6; < 6y. Here, oy is defined in the obvious way while
Bo := orthogonal projection onto H*(X; F) of w | X . (5-38)

Note that the differentials of the left and right complexes vanish and hence so do their torsions. The
space of harmonics of the middle complex equals the space of harmonics of the complex D (X; F)
and hence the cohomology of the middle complex is (isometrically) isomorphic to the cohomology of
Dy (X F). One immediately checks that the long exact cohomology sequence of (5-37) is exactly the
exact cohomology sequence #((X~,Y), X, X T; F). Hence Proposition 2.6 yields

log T(Hy ,(X: F)) =log t(¥((X . Y). X, X F))

- Z logt(0 > HP(X™,Y; F) it H} (X:F) Py HP(XT;F)—0). (5-39)
p=0

This shows the differentiability of the difference log r(Hg‘a(X; F))—logt(#(X~,Y), X, X", F)) at
6 = 0. In view of (5-36) the claim is proved. O
6. The gluing formula

We can now state and prove the main result of this paper. The standing assumptions (Section 4A) are still
in effect. Furthermore, we will use freely the notation introduced in Section 4B.

Theorem 6.1. For the analytic torsions of the Hilbert complexes D*(X*,Y; F), D*(X*; F), D*(X; F)
we have the following formulas:

log T(D*(X: F)) =log T(D*(X™,Y; F))+log T(D*(X*; F))
+log T(#((X™,Y), X, Xt F))—1log2- x(Y; F), (6-1)
log T(D*(X " F)) =1ogT(D*(X~.Y:F))+logT(D*(Y;F))+logt(#((X.Y). X .Y F)), (6-2)
log T(D*(X; F)) =log T(D*(X~,Y; F))+1log T(D*(XT,Y; F))
+log T(#(X ", Y)U(XT,Y), X,Y; F)) +1log T(D*(Y; F)). (6-3)

6A. Proof of Theorem 6.1. In the course of the proof we will make heavy use of Theorem 4.1.
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Proof of (6-1). As noted after (4-5) we have for 6 = 0 that Dy _ (X; F) =D*(X™,Y; F)® DX F)
and that for 6 = /4 the complexes Dy _ /4 (X; F) and D*(X; F) are isometric. Hence we have
log T(D*(X; F)) —log T(D*(X~,Y; F))—log T(D*(Xt; F))
=log T(D;TM(X; F)) —log T(Dy_o (X F))
=log (D} 4 (X: F)) —1og t(Hra((X ™. Y), X. X +: F)) —log T(Dj_o(X: F))
+log7(Ho—o(X . ¥), X, X1 F)) +log v (#z/a(X~.Y). X. XTI F)).  (6-4)

Recall that for 6 = 0 the complex Dy, _  (X; F) is just the direct sum complex D*(X ™, ¥ FY@D* (Xt F)
and hence log T(#g—o((X~.Y), X, XT; F)) = 0 (see also the sentence after (2-29)). Furthermore,
log (¥, /4((X7,Y), X, X1 F)) =logt(#((X,Y), X, X™T; F)); hence by Theorem 4.1

/4
. :/ —tan 0d6 x(Y; F) —|—logr(%((X_, Y), X, XT; F))
0
=—Llog2 x(Y; F) +logt(#((X~,Y), X, X+ F)), (6-5)

and we arrive at (6-1). O

Proof of (6-2). Consider € > 0 and apply the proved equation (6-1) to the manifold X[ := X~ Uy|[0, €]x Y.
Then
logT(D*(X;: F)) =logT(D*(X™,Y; F))+1log T(D*([0,€] x Y; F))
— 1log2 x(Y; F) +log t(#((X..Y), X;.[0,€]x Y: F)). (6-6)
For the cylinder [0, €] x Y it is well-known (it also follows easily from Proposition 2.3) that
X([0,€]xY; F) =x(Y; F) = x(Y) rank F, (6-7)
log T(D*([0, €] x Y; F)) =1log T(D*(Y: F)) x([0, €]) + x(Y; F) log T(D*([0, €])
=log T(D*(Y; F)) + §log(2¢) x(Y; F). (6-8)
Hence
logT(D*(X; ; F)) =1og T(D*(X™,Y; F)) +1og T(D*(Y; F))
+ Lloge x(Y; F) +log t(H((X:,Y), X7,[0,€] x Y; F)). (6-9)

In the sequel we will, to save some space, omit the bundle F from the notation in commutative diagrams.
Our first commutative diagram is

e HR (X, Y) e HR () — P 5RO, x YY) — -
|ve |ve | (6-10)

i~ HY(X™,Y) —— HF(X™) Hk(Y)

The first row is the long exact cohomology sequence of (4-2) for X7 = X~ Uy [0, €] x Y instead of X;
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the second row is the long exact cohomology sequence of (4-2) for X = X~ Uy X *. The map v is a
diffeomorphism X~ — X obtained as follows: choose a diffeomorphism f : [-c, 0] — [—c, €] such that
f(x) = x for x near —c and f(x) = x + € for x near 0. Then . is obtained by patching the identity on
X7\ [—¢,0]x Y and f xidy. Furthermore y.:Y — [0,€] X Y, p — (€, p).

For a harmonic form @ € D(dg max) N D(dk—1,max)™) C Qk([0,€] x Y; F) one has @ = 7*x*(w)
(7 :]0,€] x Y — Y the projection) and thus

/ a)/\;ka):e/ XeoAF o, (6-11)
[0,e]xY Y

Therefore the determinant (in the sense of (2-23)) of x¥ on the cohomology is given by 2 X(V3F),
Consequently by Lemma 2.5

log t(%((XE_, Y), X;.[0,e]xY; F)) = log t(%((X_, Y),X,Y; F)) — % logex(Y; F)
+logDet(yS : H*(X~,Y;F) > H*(X_,Y: F))
—logDet(y) : H*(X;; F) —> H*(X; F)). (6-12)

Summing up (6-9), (6-12)

log T(D*(X.; F))=log T(D*(X,Y: F))+1log T(D*(Y; F))+log t(#((X,Y), X ",Y: F))
+logDet(y) : H* (X, Y:F) > H*(X",Y: F))
—logDet(y : H*(X_: F) > H* (X F)). (6-13)

As € — 0 the determinants of

VX H (XT,Y;F)—> H*(X",Y:F)), resp., ¥ :H"(X7:F)— H*(X";F))
tend to 1 and we obtain (6-2). O

Proof of (6-3). We note that 7(Hg (X~ Y)U(XT.Y), X, Y F))|,_, = t(#(XT.Y), XT.Y: F));
hence by (4-12) and (4-13)

log T(Dy_/4(X; F))—log (e (X, Y)U(XT,Y), X, Y; F)|g—r/a
=log T(Dy_o(X; F)) —log r(‘?f’ﬁg((X_, Y)UXT,Y), X, Y; F))‘9=0
=log T(D*(X™.Y; F))+1log T(D*(X; F))—log t(%((X T, Y), XT.Y: F))
=1log T(D*(X™,Y:F))+1log T(D*(XT,Y; F)) +log T(D*(Y; F)), (6-14)

where in the last equality we have used the proved identity (6-2). O

Appendix: The homological algebra gluing formula

We present here the analogues of Theorems 6.1 and 4.1 for finite-dimensional Hilbert complexes. This
applies, for example, to the cochain complexes of a triangulation twisted by a unitary representation of
the fundamental group; see, e.g., [Miiller 1993, Section 1].
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Let (C*,d J ), j = 1,2, be finite-dimensional Hilbert complexes. Let (B*, d) be another such Hilbert
complex and assume that we are given surjective homomorphisms of cochain complexes

rj:(Cj,d?) — (B,d), j=1,2. (A-1)

We denote by Cj , C C; the kernel of rj, by o : C; — C; @ C; the inclusion and by 8 : C; & C, — C,
the projection onto the second factor.
For ¢ € R we define the following homological algebra analogue of the complex Dj (X; F) of (4-5)
by putting
(C1 @9 C2) :={(£1.62) € C] @ CJ |cosO -ri& =sin6 -ryf5}. (A-2)

(C1®yCr,d =d' ®d?) is a subcomplex of (C; BC,, d' ®d?). For § =0 we have C; $gC, = Cir9C
and for 6 = 7/4 we have a homological algebra analogue of the complex D§ (X; F).

Furthermore, we have the following analogues of the exact sequences (4-3), (4-6), (4-7) (note that the
exact sequences (4-2), (4-4) are special cases of the exact sequences (4-6), (4-7)):

Vi rj
0—Cj,—Cj— B—0, (A-3)
ag Beo
0—>Ci,—Ci®pC, — C,—0, (A-4)
J’_
0—>Cr, ®Cy, —2Ci g Cy —> B —0. (A-5)

Here, y; is the natural inclusion, Bg = B | C1 @9 Ca, () = (£,0), and ry(&1, &) =sinb -r; & +
cos 8 -r2&,. Denote by #(Cj »,Cj, B), #(Cy ,,Cy @9 Ca, Ca), #(Cy , & Ca,r, C; ©g C3, B) the long
exact cohomology sequences of (A-3), (A-4), (A-5), respectively.

Since all complexes are finite-dimensional we have Lemma 2.5 and Proposition 2.6 at our disposal.
The latter applied to (A-3) immediately gives the analogue of (6-2):

log7(Cy) =logt(Cy ) +log t(B) +log t(#(C ., Cy, B)). (A-6)

The other claims of Theorems 6.1 and 4.1 have exact counterparts in this context as summarized in the
following:

Theorem A.2. (1) The functions
0 > logt(C1 @9 C2), log t(#(Cy r, C1 B9 C2, C2)), logt(H#(Cr,r & Ca,p, C1 g Ca, B))

are differentiable for 0 < 0 < 7 /2. Moreover, for 0 <0 < /2,

108 t(CaC) = (= 1) (B L T (Crma o+
j>0

70 — S (1) Tr(Bg | (C1 @ C)’ )),

Jj=0
(A7)

d 2 . .
70108 T(H(Cr,r. C186C2, (7)) = m(—]z(—l)’ Tr(Bg I H’ (C1€B(9C2))+X(Cz)), (A-8)

j =0
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and

d
T log 7(#(Cy,, ®Cs ., C1 B9 C2, B))

2 ; )
= Sno0 (—;)(—1)] Tr(Bg | H' (C1 @9 C2)) +X(C2)) —tan0x(B). (A-9)
Furthermore, 1=
0 1~ log T(Cy &g C2) —log(¥g) (A-10)

is differentiable for 0 < 0 < 7 /2. Here, #g stands for either

H(C1,p . Crdg Cr, Cy) or H(Ci, @ Ch,y. Cp g Gy, B).

(2) Under the additional assumption that the rj are partial isometries we have

d
70 log 7(Cy &g C2) = 70 log T(#(C1,r & Ca,r, C1 B9 €2, B)) (A-11)
and
log 7(Cy @9 C2) =1log 7(Cy,r) +1og T(Ca ) +1og T(H(C,r & Ca . C1 B9 C, B)) (A-12)
=log 7(Cy,r) +1og T(C2) +1og T(H(Cy,r, C1 B9 C2, C)) +1ogcos 6 x(B). (A-13)
When comparing the last formula with Theorem 6.1 one should note that for 6 = /4 we have
1 6 = log — > log2
ogcos§ =log — = —5 log 2.
g g NG 3 108

Proof. For 0 < 6,0’ < /2 we have the cochain isomorphism (cf. (5-26))

tan 6
$0,00 : C1 B9 C2 > C1 By C2, (61,62) > (51, —& ) (A-14)
hence by Lemma 2.5

log T(Cy @ C2) =log T(Cy By C2) — Y _(—1) log Det(¢g,gr | H' (Cy B C2))
j=0
+ Y (1) logDet(gg,o I (C1 B9 C2)7). (A-15)
Jj=0
Taking d/d6’ at 6’ = 6 yields (A-7).
Next we look at the analogues of (5-26) and (5-27):

0 Cl,r % C @9C2&-C2ﬁ0
jid ld’”’ l";“' (A-16)
g/ ﬂg/
0 Cir Ci bg C; — Cy, — 0,

where q~59,9/(§) ttjng/é and at the corresponding isomorphism between the long exact cohomology
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sequences

QY ﬂ K3 )
- HR(Cy ) =5 HR(Cy @9 Cy) —5 HF(Cy)) —2= HF(Cy,) -
lid Ld’g 0/ lq?e 0/ % jid (A-17)

Bor
L HR(CL) 2 HR(C @ Cy) L HR(Cy) e HR(CL) -

Following the argument after (5-27) we find that

eyl log Det j, 2:—2 T H]C ), A-18
do’ |g—p og Det(®,57,.) sin 20 1(Be I H' (Cy &9 (2)) ( )
do’ |g—g 0,0" . sin 26 2°

and hence with Lemma 2.5 applied to (A-17) we arrive at (A-8).
The analogue of (5-33) is

@
0—=C1, ®C, 222 Cl @y G, —>B—>0
lid ®Po.0/ l%,e’ Lwe gr=100 54 (A-20)
4

(07214 o/
0—>C1,r€9C2,r ——C; ¢y C; —= B ——=0.

We apply Lemma 2.5 to the induced isomorphism of the long exact cohomology sequences and find

log 7 (#(Cy,r @ C3,r, Cy @9 Ca, B)) —log t(¥#(Cy,, @ Ca,p, C1 Dgr Ca, B))
=— (-1)/ logDet(¢g,0,x : H — H’)+ > (~1)/ logDet(¢g,0',x : H — H’)
Jjz0 Jj=0

+ Y (—1)7 logDet(Wg g« : HY — HY), (A-21)
Jj=0

where H/ is shorthand for the respective cohomology groups. Since q§9,9, and ¢yg ¢/ are multiplication

operators we have

; ~ tan 0
> (=1 logDet(gp s : H — H') = x(C2,r) log —. (A-22)
j=0

. 9
> (=1)/ log Det(Wp,p1 - H' — HY) = X(B) log — sin o (A-23)

Jj=0

and together with (A-18) we obtain
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d
i log 7(#(Cy,r ® C3,.C1 @9 C2. B))
2

- sin 20

cos O

sin 6

(—Z(—l)f Te(Be | HY (C1 @4 Cz))+X(C2,r))— X(B). (A-24)

Jj=0
Taking into account that x(C5 ) = x(Cz) — x(B) (see (A-3)) and that

cos 6 2 an 0
— = —tan
sinf  sin26 ’

we find (A-9).
Next we apply Proposition 2.6 to the exact sequence (A-4) and get

log 7(Cy ®g C2) =log ©(Cy,r) +log T(Ca) +1og T(#(Cy,r, C1 By C2, (2))
+3 > (=1)/ logDet(BB* : € — C3). (A-25)
j=0

Here we have used (2-29) and that « is a partial isometry and thus o«*« = id. Analogously, we infer
from (A-5) that

log 7(Cy ©g C3) =log t(Cy,r) +1og T(Ca,p) + log t(#(C1,r & Cs,r, C1 D9 C2, B))
1 j x. pj j
+3 > (=1)/ logDet(rgry : B/ — B7). (A-26)
Jj=0
From (A-25) and (A-26) one deduces the differentiability statement (A-10).

Finally we discuss the case that the maps r;, j = 1, 2 are partial isometries. Then for ({1, §2) € C; @ (2,
n € B we calculate

(ro(£1,&2),b) =sin 6 - (r1&1,b) +cos 8 - (ry&5,b) = {(£1,&2), (sin b -rl*b,cose -r;‘b)). (A-27)

If r1 and r; are partial isometries then (sin¢ -r{'b,cos 6 - r;b) € C1 @4 C; and hence it equals r (b).
Consequently rgryb = (sin? 6 4 cos? 0)b = b and thus Det(rgry : B/ — BJ) = 1. Therefore (A-26)
reduces to (A-12).

Similarly, one calculates

Det(BB* : C2j — Czj) = (1 4 tan?)~dim Bj; (A-28)
then (A-13) follows from (A-25). O
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