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ON THE BOGOLYUBOV–RUZSA LEMMA

TOM SANDERS

Our main result is that if A is a finite subset of an abelian group with jACAj 6 KjAj, then 2A� 2A

contains an O.logO.1/ 2K/-dimensional coset progression M of size at least exp.�O.logO.1/ 2K//jAj.

1. Introduction

Croot and Sisask [2010] introduced a fundamental new method to additive combinatorics and, although
they have already given a number of applications, our present purpose is to give another. Specifically,
we shall prove the following.

Theorem 1.1 (Bogolyubov–Ruzsa lemma for abelian groups). Suppose that G is an (discrete) abelian
group and A;S�G are finite nonempty sets such that jACS j6K minfjAj; jS jg. Then .A�A/C.S�S/

contains a proper symmetric d.K/-dimensional coset progression M of size exp.�h.K//jACS j. More-
over, we may take d.K/DO.log6 2K/ and h.K/DO.log6 2K log 2 log 2K/.

We should take a moment to justify the name, which is slightly nonstandard. Bogolyubov’s lemma
(the idea for which originates in [Bogolyubov 1939]) is usually stated for sets of large density in the
ambient group, rather than small doubling, and asserts that the fourfold sumset of a thick set contains a
large Bohr set.

Ruzsa [1994], on his way to proving Freı̆man’s theorem, showed that a set with small doubling could
be sensibly embedded into a group where it is thick. He then applied Bogolyubov’s lemma and proceeded
to show that a Bohr set contains a large generalised arithmetic progression which could then be pulled
back. In doing all this he implicitly proved the first version of Theorem 1.1 in Z — although, with
different bounds — and this motivates the name.

This result has many variants (although the form given above seems to be a fairly useful one) and
in light of this the history is not completely transparent. Certainly most proofs of Freı̆man’s theorem
broadly following the model of [Ruzsa 1994] will implicitly prove a result of this shape. With this in
mind the extension from Z to arbitrary abelian groups is due to Green and Ruzsa [2007], and the first
good bounds to Schoen [2011] for certain classes of groups.

There are many applications of results of this type, particularly since their popularisation by Gowers
[1998], and we shall deal with a number of these in Section 11 at the end of the paper. To help explain
the main ideas we include a discursive sketch of the paper after the next section, which simply sets some
notation.
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2. Notation

The main tool used in the paper is Fourier analysis on groups for which the classic reference is [Rudin
1990]. We deal almost exclusively with finite groups in the paper, but to be complete we shall need
slightly more generality.

Suppose that G is a locally compact topological group. We write C.G/ for the space of continuous
complex-valued functions on G. More generally if R�C we write C.G;R/ for the continuous R-valued
functions on G.

The group structure on G induces an action of G on C.G/ called translation. In particular if x 2 G

and f 2 C.G/ then we write

�x.f /.y/ WD f .yx/ for all y 2G: (2-1)

We also write M.G/ for the space of regular Borel measures on G and can extend � to these in the
natural way: for x 2G and � 2M.G/, �x.�/ is the measure induced by

C.G/! C.G/I f 7!

Z
f .x/ d�.yx/:

The group structure on G is reflected in M.G/ in a fairly natural way and we define the convolution of
two measures �; � 2M.G/ to be the measure �� � induced by

C.G/! C.G/I f 7!

Z
f .xy/ d�.x/ d�.y/:

There is a family of privileged measures on G called Haar measures. These are the translation-invariant
measures on G: � 2M.G/ is a Haar measure on G if �x.�/D � for all x 2G.

Given a Haar measure � on G we can extend � in the obvious way from (2-1) to define the right
regular representation � W G ! Aut.L2.�//. More than this we can define the convolution of two
functions f;g 2L1.�/ by

f �g.x/ WD

Z
f .y/g.y�1x/ d�.y/ for all x 2G:

There are two particularly useful instances of Haar measure depending on the topology on G: if G is
compact we write �G for the Haar probability measure on G, while if G is discrete we write ıG for the
Haar counting measure on G, which assigns mass 1 to each element of G.

Of course, if G is finite it is both discrete and compact so one has both probability measure and
counting measure to choose from. The measures are multiples of each other as �G is just the measure
assigning mass jGj�1 to each element of G. More generally given a finite set X we write �X for the
measure assigning mass jX j�1 to each x 2X .

When it is relevant we shall indicate whether we are taking a finite group G to be compact or discrete
by declaring the group either compact, so that �G is to be used, or discrete so that ıG is to be used. The
reader should be aware that this has the effect of changing the normalisations in convolutions.
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The above all works for general finite groups G, but when G is also abelian convolution operators can
be written in a particularly simple form with respect to the Fourier basis which we now recall.

We write yG for the dual group, that is the finite abelian group of homomorphisms 
 WG! S1, where
S1 WD fz 2 C W jzj D 1g. Given � 2M.G/ we define y� 2 `1. yG/ by

y�.
 / WD

Z

 d� for all 
 2 yG;

and extend this to f 2L1.�G/ by yf WD 1fd�G . It is easy to check that 1�� �D y� � y� for all �; � 2M.G/

and 1f �g D yf � yg for all f;g 2L1.�G/.

3. A sketch of the argument

Assuming the hypotheses of Theorem 1.1 our objective will be to show that there is a large, low-
dimensional coset progression M correlated with ACS , meaning such that

k1ACS ��Mk`1.G/ > 1� o.1/:

This is essentially the statement of Theorem 10.1 later, and Theorem 1.1 can be derived from it by a
simple pigeonholing argument.

A simplified argument: the case of good modelling. We shall assume that we have good modelling in
the sense of [Green and Ruzsa 2007], meaning that we shall assume that the sets A and S have density
K�O.1/ in the ambient group. This can actually be arranged in the two cases of greatest interest: Fn

2
and

Z and facilitates considerable simplifications.
A very useful observation in [López and Ross 1975] is that because the support of�A��S is contained

in ACS we have the identity

h1ACS ���S ; �Ai D 1:

Now, suppose we had a coset progression M over which 1ACS � ��S was in some sense invariant,
meaning

k1ACS ���S ��M � 1ACS ���Sk`p.G/ 6 �k1ACSk`p.G/: (3-1)

Then Hölder’s inequality and the López–Ross identity tell us that

jh1ACS ���S ��M ; �Ai � 1j6 �k1ACSk`p.G/k�Ak`p=.p�1/.G/ 6 �K1=p;

and it follows by averaging that ACS is correlated with M provided that � �K�1=p.
The traditional Fourier analytic approach to finding an M such that (3-1) holds is not particularly

efficient, but recently Croot and Sisask showed that there is, at least, a set Z such that we have (3-1)
with Z in place of M and

�G.Z/> exp.�O.��2p log K//�G.A/:
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Moreover, they noted by the triangle inequality that one can endow Z with the structure of a k-fold
sumset, so that we have (3-1) with kX in place of M and

�G.X /> exp.�O.k2��2p log K//�G.A/D exp.�O.k2 log2 K//�G.A/; (3-2)

where the third term is by optimising the choice of p � log K given that � �K�1=p.
What we actually end up with after all this is a set X with density as described in (3-2) such that

h1ACS ���S ��
.k/
X
; �Ai> 1� o.1/: (3-3)

Now, by the usual sorts of applications of Plancherel’s theorem and Cauchy–Schwarz we find that most
of the Fourier mass of the inner product is concentrated on those characters in Spec1=2.1X / provided
2k �K, and so we choose k � log K.

With most of the Fourier mass supported on Spec1=2.1X /, it follows that the integrand in (3-3) corre-
lates with any set which approximately annihilates Spec1=2.1X /. It remains to show that the approximate
annihilator of Spec1=2.1X /— that is the Bohr set B with Spec1=2.1X / as its frequency set — contains a
large coset progression.

We can now apply Chang’s theorem to get that B is low-dimensional and then the usual geometry of
numbers argument tells us that this Bohr set contains a large coset progression, and the result is proved.

Extending the argument: the case of bad modelling. We now drop the assumption of good modelling,
and the argument proceeds in essentially the same way up until the application of Chang’s theorem above.

In this case Chang’s theorem does not provide good bounds. Instead what we do is note that the set
X satisfies a relative polynomial growth condition

jnX j6 nO.log4 K /
jX j for all n> 1:

This lets us produce a Bohr set containing X which behaves enough like a group for a relative version
of Chang’s theorem to hold, whilst at the same time X is much denser in the Bohr set than it would be
in the modelling group.

Since we are not using modelling what we have just done does not actually give us a Bohr set of low
dimension, but rather a Bohr set of size comparable to X which has a lower order of polynomial growth
on a certain range. It turns out that the usual argument that shows a low-dimensional Bohr set contains
a large coset progression can be adapted relatively easily to this more general setting and this gives us
our final ingredient.

These arguments are spread over the paper as follows. The simplified argument up to (3-3) is es-
sentially contained in Section 4. Then, in Section 5, we record the basic properties of Bohr sets we
need before Section 6, which has the relative version of Chang’s theorem, and Section 7, which puts
the material together to take a set satisfying a relative polynomial growth condition and produce a large
Bohr superset.

After the material on Bohr sets we have Section 8 which records some standard covering lemmas and
then Section 9 where we show how to find a large coset progression in a Bohr set with relative polynomial
growth. Finally the argument is all put together in Section 10.
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4. Freı̆man-type theorems in arbitrary groups

In this section we are interested in Freı̆man-type theorems in arbitrary, possibly nonabelian, groups.
There has been considerable work towards such results, although often with restrictions on the type of
nonabelian groups considered, or rather weak bounds. We direct the reader to [Green 2009] for a survey,
but our interest is narrower, lying with a crucial result of Tao [2010, Proposition C.3] which inspires the
following.

Proposition 4.1. Suppose that G is a (discrete) group, A;S � G are finite nonempty sets such that
jAS j 6 K minfjAj; jS jg, and k 2 N is a parameter. Then A�1ASS�1 contains X k where X is a
symmetric neighbourhood of the identity with size ı.k;K/jAS j. Moreover, we may take ı.k;K/ >
exp.�O.k2 log2 2K//.

Note that this result is a very weak version of Theorem 1.1 but for any group, not just abelian groups,
and despite its weaknesses, its generality makes it useful in some situations.

Proposition 4.1 was essentially proved in [Croot and Sisask 2010, Theorem 1.6] with weaker K-
dependence in the bound, using the pD 2 version of their Lemma 4.3 below. It turns out that we shall be
able to show the above bound by coupling the large p case of their result with the López–Ross identity.

The key proposition of this section, then, is the following.

Proposition 4.2. Suppose that G is (discrete) a group, A;S;T � G are finite nonempty sets such that
jAS j 6 KjAj and jTS j 6 LjS j, and k 2 N and � 2 .0; 1� are a pair of parameters. Then there is a
symmetric neighbourhood of the identity X �G with

jX j> exp.�O.��2k2 log 2K log 2L//jT j

such that
j�A�1 � 1AS ��S�1.x/� 1j6 � for all x 2X k :

The main ingredient in the proof of this is the following result, which is essentially due to Croot and
Sisask [2010, Proposition 3.3]. To prove it they introduced the idea of sampling from physical space
rather than Fourier space — sampling in Fourier space can be seen as the main idea in Chang’s theorem.
Not only does this work in settings where the Fourier transform is less well behaved, but it also runs
much more efficiently, which leads to the superior bounds.

We include the proof since it is the pivotal ingredient of this paper, and we frame it in such a way as
to emphasise the parallels with Chang’s theorem.

Lemma 4.3 (Croot–Sisask). Suppose that G is a (discrete) group, f 2 `p.G/ for p > 2 and S;T � G

are nonempty with jST j6KjS j. Then there is a t 2T and a set X �T t�1 with jX j> .2K/�O.��2p/jT j

such that
k�x.f ��S / �f ��Sk`p.G/ 6 �kf k`p.G/ for all x 2X:

Proof. Let z1; : : : ; zk be independent uniformly distributed S -valued random variables, and for each
y 2G define Zi.y/ WD �z�1

i
.f /.y/�f ��S .y/. For fixed y, the variables Zi.y/ are independent and



632 TOM SANDERS

have mean zero, so it follows by the Marcinkiewicz–Zygmund inequality and Hölder’s inequality that



 kX
iD1

Zi.y/





p

Lp.�k
S
/

6O.p/p=2
Z � kX

iD1

jZi.y/j
2

�p=2

d�k
S6O.p/p=2kp=2�1

kX
iD1

Z
jZi.y/j

p d�k
S :

Summing over y and interchanging the order of summation we get

X
y2G





 kX
iD1

Zi.y/





p

Lp.�k
S
/

6O.p/p=2kp=2�1

Z kX
iD1

X
y2G

jZi.y/j
p d�k

S : (4-1)

On the other hand,�X
y2G

jZi.y/j
p

�1=p

D kZik`p.G/ 6 k�z�1
i
.f /k`p.G/Ckf ��Sk`p.G/ 6 2kf k`p.G/

by the triangle inequality. Dividing (4-1) by kp and inserting the above and the expression for the Zis
we get Z X

y2G

ˇ̌̌̌
1

k

kX
iD1

�z�1
i
.f /.y/ �f ��S .y/

ˇ̌̌̌p
d�k

S .z/DO.pk�1
kf k2`p.G//

p=2:

Pick k D O.��2p/ such that the right-hand side is at most .�kf k`p.G/=4/
p and write L for the set

of x 2 S � � � � � S (where the Cartesian product is k-fold) for which the integrand above is at most
.�kf k`p.G/=2/

p; by averaging �k
S
.Lc/6 2�p and so �k

S
.L/> 1� 2�p > 1

2
.

Now, � WD f.t; : : : ; t/ W t 2 T g has L�� ST � � � � �ST , whence jL�j6 2Kk jLj and so

h1� � 1��1 ; 1L�1 � 1Li`2.G�����G/ D k1L � 1�k
2
`2.G�����G/

> j�j2jLj=2Kk ;

by the Cauchy–Schwarz inequality since the adjoint of g 7! 1L � g is g 7! 1L�1 � g and similarly for
g 7! g � 1�.

By averaging it follows that at least j�j2=2Kk pairs .z;y/ 2��� have 1L�1 � 1L.zy�1/ > 0, and
hence there is some t 2 T such that there is a set X � T t�1 of size at least jT j=2Kk elements with
1L�1 � 1L.x; : : : ;x/ > 0 for all x 2X .

Thus for each x 2 X there is some z.x/ 2 L and y.x/ 2 L such that y.x/i D z.x/ix. But then by
the triangle inequality we get

k�x�1.f ��S / �f ��Sk`p.G/

6




�x�1

�
1

k

kX
iD1

�z.x/�1
i
.f /

�
�f ��S






`p.G/

C





�x�1

�
1

k

kX
iD1

�z.x/�1
i
.f / �f ��S

�




`p.G/

:

However, since �x is isometric on `p.G/ we see that



�x.f ��S /�f ��S






`p.G/

6




 1

k

kX
iD1

�y.x/�1
i
.f /�f ��S






`p.G/

C





 1

k

kX
iD1

�z.x/�1
i
.f /�f ��S






`p.G/

;
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and we are done since z.x/;y.x/ 2L. �

The important thing to note about the Croot–Sisask lemma is that the p-dependence of the size of
the set X is very good. The natural Fourier analytic analogue (essentially given in [Bourgain 1990], and
clearly exposited in [Sisask 2009]) gives an exponentially worse bound. To make use of this strength we
use the aforementioned López–Ross identity.

Proof of Proposition 4.2. We apply Lemma 4.3 to the function f WD 1AS and with the set S�1 (so that
jS�1T �1j6LjS�1j) to get a set X with jX j> .2L/O.�

�2k2p/jT j such that

k�x.1AS ��S�1/� 1AS ��S�1k`p.G/ 6
�k1ASk`p.G/

ek
for all x 2X:

Since � is isometric on `p.G/ and �1G
is the identity we may certainly assume that X is a symmetric

neighbourhood of the identity. Furthermore, by the triangle inequality we have

k�x.1AS ��S�1/� 1AS ��S�1k`p.G/ 6 �e�1
k1ASk`p.G/ for all x 2X k :

Now for any (real) function g we have

�A�1 �g.x/��A�1 �g.1G/D �A�1 � .�x.g/�g/.1G/D h�A; �x.g/�gi:

Thus by Hölder’s inequality we have

j�A�1 �g.x/��A�1 �g.1G/j6 k�Ak`p0 .G/k�x.g/�gk`p.G/:

Putting g D 1AS ��S�1 we conclude that

j�A�1 � 1AS ��S�1.x/��A�1 � 1AS ��S�1.1G/j6
�k�Ak`p0 .G/k1ASk`p.G/

e

6 �jAj
1=p0 jAS j1=p

ejAj
6 �K

1=p

e

for all x 2X k . Putting p WD 2C log K we get the conclusion. �

Proof of Proposition 4.1. We simply take T DA, LDK and � D 1
2

in Proposition 4.2. �

5. Basic properties of Bohr sets

Following [Bourgain 2008] we use a slight generalisation of the traditional notion of Bohr set, letting
the width parameter vary according to the character. The advantage of this definition is that the meet of
two Bohr sets in the lattice of Bohr sets is then just their intersection.

Throughout the section we let G be a finite (compact) abelian group. A set B is called a Bohr set if
there is a frequency set � of characters on G, and a width function ı 2 .0; 2�� such that

B D fx 2G W j1� 
 .x/j6 ı
 for all 
 2 �g:
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Technically the same Bohr set can be defined by different frequency sets and width functions; we make
the standard abuse that when we introduce a Bohr set we are implicitly fixing a frequency set and width
function.

There is a natural way of dilating Bohr sets which will be of particular use to us. For a Bohr set B and
� 2RC we denote by B� the Bohr set with frequency set � and width function1 �ı so that, in particular,
B D B1 and more generally .B�/�0 D B��0 .

Given two Bohr sets B and B0 we define their intersection to be the Bohr set with frequency set �[� 0

and width function ı ^ ı0. A simple averaging argument (see [Tao and Vu 2006, Lemma 4.20] but also
the end of Lemma 4.3) can be used to see that the intersection of several Bohr sets is large.

Lemma 5.1 (intersections of Bohr sets). Suppose that .B.i//k
iD1

is a sequence of Bohr sets. Then

�G.
Vk

iD1B.i//>
Qk

iD1 �G.B
.i/

1=2
/:

Proof. Let � WD f.x; : : : ;x/ 2Gk W x 2Gg and S WD B
.1/

1=2
� � � � �B

.k/

1=2
. ThenZ

1� � 1��1S � 1�S d�Gk D

Z
.1� � 1S /

2d�Gk > �Gk .�/2�Gk .S/2 (5-1)

by Cauchy–Schwarz. The integrand on the left-hand side is at most �Gk .�/�Gk .S/ and it is supported
on the set of x 2���D� such that 1S � 1�S .x/ > 0. But if 1S � 1�S .y; : : : ;y/ > 0 then

y 2
Tk

iD1 .B
.i/

1=2
�B

.i/

1=2
/�

Tk
iD1 B

.i/
1
D .

Vk
iD1B.i//1:

Hence

�Gk .supp 1� � 1��1S � 1�S /6 �G..
Vk

iD1B.i//1/�Gk .�/;

and inserting this in (5-1) we get

�G..
Vk

iD1B.i//1/�Gk .�/2�Gk .S/> �Gk .�/2�Gk .S/2:

The result follows after some cancelation and noting that �Gk .S/ is just the right-hand side of the
inequality in the statement of the lemma. �

Note that if B is a Bohr set whose frequency set has one element, and whose width function is the
constant function 2 then there is an easy lower bound for �G.B�/ as the length of a certain arc on a
circle:

�G.B�/>
1

�
arccos.1� 2�2/> 1

�
minf�; 2g: (5-2)

From this we immediately recover the usual lower bound on the size of a Bohr set with a larger frequency
set from this and the preceding lemma.2

1Technically width function 
 7!minf�ı
 ; 2g.
2To recover the bound in [Tao and Vu 2006, Lemma 4.20] some adjustments need to be made as our definition of a Bohr set

is in terms of 
 .x/ being close to 1 rather than arg 
 .x/ being close to 0.
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Bourgain [1999] developed the idea of Bohr sets as approximate substitutes for groups, and since then
his techniques have become an essential tool in additive combinatorics. To begin with we define the
entropy of a Bohr set B to be

h.B/ WD log
�G.B2/

�G.B1=2/
:

A trivial covering argument shows that B2 can be covered by exp.h.B// translates of B, and if B is
actually a subgroup then h.B/ D 0. It is often desirable to have a uniform bound on h.Bı/ for all
ı 2 .0; 2�, and such a bound is called the dimension of B in other work. Here, however, it is crucial that
we do not insist on this.

We shall be particularly interested in Bohr sets which grow in a reasonably regular way because they
will function well as approximate groups. In light of the definition of entropy (which encodes growth
over a fixed range) we say that a Bohr set B is C -regular if

1

1CC h.B/j�j
6
�G.B1C�/

�G.B/
6 1CC h.B/j�j

for all � with j�j6 1=C h.B/. Crucially such Bohr sets are commonplace.

Lemma 5.2. There is an absolute constant CR such that if B is a Bohr set then there is some � 2 Œ1; 2�
such that B� is CR-regular.

The proof is by a covering argument and follows [Tao and Vu 2006, Lemma 4.24], for example. From
now on we say that a Bohr set B is regular if it is CR-regular.

Finally, we write ˇ� for the probability measure induced on B� by �G , and ˇ for ˇ1. These measures
function as approximate analogues for Haar measure, and the following useful lemma of Green and
Konyagin [2009] shows how they can used to describe a sensible version of the annihilator of a Bohr set.

Lemma 5.3. Suppose that B is a regular Bohr set. Then

f
 W j y̌.
 /j> �g � f
 W j1� 
 .x/j DO.h.B/��1�/ for all x 2 B�g:

Proof. First, suppose that j y̌.
 /j> � and y 2 B�. Then

j1� 
 .y/j� 6 j
Z

 .x/ dˇ.x/�

Z

 .xCy/ dˇ.x/j6

�G.B1C� nB1��/

�G.B1/
DO.h.B/�/

provided � 6 1=CRh.B/. The result is proved. �

6. The large spectrum and Chang’s theorem

Given a probability measure �, a function f 2L1.�/ and a parameter � 2 .0; 1� we define the �-spectrum
of f w.r.t. � to be the set

Spec�.f; �/ WD f
 2 yG W j.fd�/^.
 /j> �kf kL1.�/g:

This definition extends the usual one from the case �D�G . We shall need a local version of a result of
Chang [2002] for estimating the “complexity” or “entropy” of the large spectrum.
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Given a set of characters ƒ and a function ! Wƒ!D WD fz 2 C W jzj6 1g we define

p!;ƒ WD
Y
�2ƒ

.1CRe!.�/�/;

and call such a function a Riesz product forƒ. It is easy to see that all Riesz products are real nonnegative
functions. They are at their most useful when they also have mass close to 1: the set ƒ is said to be
K-dissociated w.r.t. � if Z

p!;ƒ d�6 exp.K/ for all ! Wƒ!D:

In particular, being 0-dissociated w.r.t. �G is the usual definition of being dissociated. This relativised
version of dissociativity has a useful monotonicity property.

Lemma 6.1 (monotonicity of dissociativity). Suppose that �0 is another probability measure, ƒ is K-
dissociated w.r.t. �, ƒ0 �ƒ and K0 >K. Then ƒ0 is K0-dissociated w.r.t. �0 ��.

Conceptually the next definition is inspired by the discussion of quadratic rank Gowers and Wolf give
in [Gowers and Wolf 2011]. The .K; �/-relative entropy of a set � is the size of the largest subsetƒ��
such that ƒ is K-dissociated w.r.t. �.

Lemma 6.2 (Chang bound [Sanders 2012, Lemma 4.6]). Suppose that 0 6� f 2L2.�/ and write Lf WD

kf kL2.�/kf k
�1
L1.�/

. Then the set Spec�.f; �/ has .1; �/-relative entropy O.��2 log 2Lf /.

The proof of this goes by a Chernoff-type estimate, the argument for which follows [Green and Ruzsa
2007, Proposition 3.4], and then the usual argument from [Chang 2002].

Although Chang’s theorem cannot be significantly improved (see [Green 2003; 2004] for a discussion),
there are some small refinements and discussions of their limitations in [Shkredov 2006; 2007; 2008].

Low entropy sets of characters are majorised by large Bohr sets, a fact encoded in the following
lemma. The proof is a minor variant of [Sanders 2012, Lemma 6.3].

Lemma 6.3 (annihilating dissociated sets). Suppose that B is a regular Bohr set and � is a set of
characters with .�; ˇ/-relative entropy k. Then there is a set ƒ of size at most k and some

�D�.�=.1C h.B//.kC log 2��1//

such that for all 
 2� we have

j1� 
 .x/j DO.k�C �0��1h.B�// for all x 2 B�0 ^B0� ; �
0; � 2 RC

where B0 is the Bohr set with constant width function 2 and frequency set ƒ.

Proof. Let L WD dlog2 3k2.kC 1/��1e, the reason for which choice will become apparent, and define

ˇC WD ˇ1CL� �ˇ� � � � � �ˇ�;

where ˇ� occurs L times in the expression. By regularity (of B) we can pick � 2 .�.�=.1Ch.B//L/; 1�
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such that B� is regular and we have the pointwise inequality

ˇ 6
�G.B1CL�/

�G.B/
ˇC 6 .1C �=3/ˇC:

It follows that if ƒ is �=2-dissociated w.r.t. ˇC then ƒ is �-dissociated w.r.t. ˇ, and hence ƒ has size at
most k. From now on all dissociativity will be w.r.t. ˇC.

We put �i WD i�=2.kC 1/ and begin by defining a sequence of sets ƒ0; ƒ1; : : : iteratively such that
ƒi is �i-dissociated. We let ƒ0 WD ∅ which is easily seen to be 0-dissociated. Now, suppose that we
have defined ƒi as required. If there is some 
 2�nƒi such that ƒi [f
 g is �iC1-dissociated then let
ƒiC1 WDƒi [f
 g. Otherwise, terminate the iteration.

Note that for all i 6 kC1, if the set ƒi is defined then it is certainly �=2-dissociated and so jƒi j6 k.
However, if the iteration had continued for kC 1 steps then jƒkC1j> k. This contradiction means that
there is some i 6 k such that ƒ WD ƒi is �i-dissociated and ƒi [ f
 g is not �iC1-dissociated for any

 2� nƒi .

It follows that we have a set ƒ of at most k characters such that for all 
 2� nƒ there is a function
! Wƒ!D and � 2D such thatZ

p!;ƒ.1CRe �
 / dˇC > exp.�iC1/:

Now, suppose that 
 2�. If 
 2ƒ then the conclusion is immediate, so we may assume that 
 2�nƒ.
Then, since ƒ is �i-dissociated, we see thatˇ̌̌̌Z

p!;ƒ
 dˇC
ˇ̌̌̌
> exp.�iC1/� exp.�i/>

�

2.kC 1/
:

Applying Plancherel’s theorem we get

�

2.kC 1/
6
ˇ̌̌̌ X
�2Span.ƒ/

1p!;ƒ.�/ y̌C.
 ��/
ˇ̌̌̌
6 3k sup

�2Span.ƒ/
j y̌�.
 ��/j

L:

Given the choice of L there is some � 2 Span.ƒ/ such that j y̌�.
 ��/j> 1
2

. By Lemma 5.3 we see that


 �� 2 f
 0 W j1� 
 0.x/j DO.�00h.B�// for all x 2 .B�/�00g:

On the other hand, by the triangle inequality if � 2 Span.ƒ/ then

� 2 f
 0 W j1� 
 0.x/j6 k� for all x 2 B0�g;

and the result follows from a final application of the triangle inequality. �

7. Containment in a Bohr set

The object of this section is to show the following result.
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Proposition 7.1. Suppose that G is a finite (compact) abelian group, d > 1 and X is a finite subset of G

with �G.nX /6 nd�G.X / for all n> 1 and � 2 .0; 1� is a parameter. Then there is a regular Bohr set B

such that

X �X � B� and �G.B2/6 exp.O.d log 2d��1//�G.X /:

What is important here is that given a set of relative polynomial growth we have produced a Bohr
set which contains the original set, and which has controlled growth over a fixed range of dilations.
Extending this range down to zero can be done but involves considerable additional work as well as
being unnecessary for our arguments.

The next lemma is the key ingredient that provides us with an appropriate Bohr set. The idea originates
with [Green and Ruzsa 2007, Lemma 2.3], but the lemma we record is more obviously related to [Tao
and Vu 2006, Proposition 4.39].

Lemma 7.2. Suppose that G is a finite (compact) abelian group, A;S �G have

�G.ACS/6K�G.A/ and j11ACS .
 /j> .1� �/�G.ACS/:

Then j1� 
 .s/j6
p

23K� for all s 2 S �S .

Proof. By hypothesis there is a phase ! 2 S1 such thatZ
1ACS!
d�G D j

11ACS .
 /j> .1� �/�G.ACS/:

It follows that Z
1ACS j1�!
 j

2d�G D 2

Z
1ACS .1�!
/ d�G 6 2��G.ACS/;

and so if y0;y1 2 S thenZ
1Aj1�!
.yi/
 j

2d�G 6
Z

1ACS j1�!
 j
2d�G 6 2��G.ACS/:

However, the Cauchy–Schwarz inequality tells us that

j1� 
 .y0�y1/j
2 6 2.j1�!
.y0/
 .x/j

2
Cj1�!
.y1/
 .x/j

2/

for all x 2G, whence Z
1Aj1� 
 .y0�y1/j

2d�G 6 23��G.ACS/;

and the result follows. �

To prove the proposition we use an idea from [Schoen 2003], first introduced to Freı̆man-type problems
in [Green and Ruzsa 2007]. The essence is that if we have sub-exponential growth of a set then we
can apply the Cauchy–Schwarz inequality and Parseval’s theorem in a standard way to get a Fourier
coefficient of very close to maximal value.
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Proof of Proposition 7.1. By the pigeonhole principle there is some lDO.d log 2d/ such that �G.lX /6
2�G..l � 1/X /. We let B0 be the Bohr set with width function the constant function 1

2
and frequency

set � WD Spec1��.1lX / where we pick � WD 2�10�2.
It follows by Lemma 7.2 applied to AD .l � 1/X and S DX that

j1� 
 .x/j6
p

23:2:� D �=8 for all x 2X �X and 
 2 Spec1��.1lX /;

and hence that X �X � B0
�=4

.
It remains to show that the Bohr set is not too large. Begin by noting thatZ

.1
.k/

lX
/2d�G >

1

�G.k.lX //

�Z
1
.k/

lX
d�G

�2

> �G.lX /
2k�1

.kl/d
; (7-1)

where 1
.k/

lX
denotes the k-fold convolution of 1lX with itself, and the inequality is Cauchy–Schwarz and

then the hypothesis. On the other hand, by Parseval’s theoremX

 62Spec1��.1lX /

jb1lX .
 /j
2k 6 ..1� �/�G.lX //

2k�2
X

2 yG

jb1lX .
 /j
2

6 exp.��.k�//�G.lX /
2k�1 6 �G.lX /

2k�1

2.kl/d

for some k DO.d��1 log 2d��1/. In particular, from (7-1) we haveX

 62Spec1��.1lX /

jb1lX .
 /j
2k 6 1

2

Z
.1
.k/

lX
/2d�G :

It then follows from Parseval’s theorem and the triangle inequality thatX

2Spec1��.1lX /

jb1lX .
 /j
2k
D

X

2 yG

jb1lX .
 /j
2k
�

X

 62Spec1��.1lX /

jb1lX .
 /j
2k

>
Z
.1
.k/

lX
/2d�G �

1

2

Z
.1
.k/

lX
/2d�G D

1

2

Z
.1
.k/

lX
/2d�G :

On the other hand by the triangle inequality j y̌0.
 /j> 1
2

if 
 2 � since ı 6 1
2

, whence

X

2 yG

jb1lX .
 /j
2k
j y̌0.
 /j2 > 1

4

X

2Spec1��.1lX /

jb1lX .
 /j
2k > �G.lX /

2k�1

8.kl/d
:

But, by Parseval’s theorem and Hölder’s inequality we haveX
jb1lX .
 /j

2k
j y̌0.
 /j2 D

Z
.1
.k/

lX
�ˇ0/2d�G

6 k1.k/
lX
� 1

.k/

�lX
kL1.G/kˇ

0
�ˇ0kL1.G/ D

�G.lX /
2k

�G.B0/
;
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and so
�G.B

0/6 .kl/d�G.lX /6 exp.O.d log 2d��1//�G.X /:

Finally we apply Lemma 5.2 to get a regular Bohr set B with B2 � B0
1

and B� � B0
�=4

so the result is
proved. �

8. Covering and growth in abelian groups

Covering lemmas are a major tool in additive combinatorics and have been since their development in
[Ruzsa 1999]. This was further extended in [Green and Ruzsa 2006], and such lemmas play a pivotal
role in the nonabelian theory as was highlighted by Tao [2008a], where we do not have many other
techniques.

While the most basic form of covering lemmas do work in the nonabelian setting, there is a refined
argument due to Chang [2002] that does not port over so easily.

Lemma 8.1 (Chang’s covering lemma [Tao and Vu 2006, Lemma 5.31]). Suppose that G is an (discrete)
abelian group and A;S � G are finite sets with jnAj 6KnjAj for all n > 1 and jACS j 6 LjS j. Then
there is a set T with jT j DO.K log 2KL/ such that3

A� Span.T /CS �S:

We shall also need the following slight variant which provides a way in abelian groups to pass from
relative polynomial growth on one scale to all scales.

Lemma 8.2 (variant of Chang’s covering lemma). Suppose that G is an (discrete) abelian group and
A;S � G are finite sets with jkAC S j < 2k jS j. Then there is a set T � A with jT j < k such that
A� Span.T /CS �S .

Proof. Let T be a maximal S -dissociated subset of A, that is a maximal subset of A such that

.�:T CS/\ .� 0:T CS/D∅ for all � ¤ � 0 2 f0; 1gT :

Now suppose that x0 2AnT and write T 0 WDT [fx0g. By the maximality of T there are elements �; � 0 in
f0; 1gT

0

such that .�:T 0CS/\.� 0:T 0CS/¤∅. Now if �x0D�
0
x0 then .� jT :TCS/\.� 0jT :TCA/¤∅,

contradicting the fact that T is S -dissociated. Hence, without loss of generality, �x0 D 1 and � 0x0 D 0,
whence

x0 2 � 0jT :T � � jT :T CS �S � Span.T /CS �S:

We are done unless jT j> k; assume it is and let T 0 � T be a set of size k. Denote f�:T 0 W � 2 f0; 1gT
0

g

by P and note that P � kA, whence

2k
jS j D jP CS j6 jkACS j< 2k

jS j:

This contradiction completes the proof. �

3Recall that Span.T / WD f
P

t2T �t :t W � 2 f�1; 0; 1gt g.
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Although this is a result in abelian groups, it has many parallels with Milnor’s proof [1968] establishing
the dichotomy between polynomial growth and exponential growth in solvable groups.

The above lemma is particularly useful for controlling the order of relative polynomial growth through
the next result, an idea introduced in [Green and Ruzsa 2006].

Lemma 8.3. Suppose that G is an (discrete) abelian group, X � G and 2X �X � Span.T /CX �X

for some set T of size k. Then

j.nC 1/X �X j6 .2nC 1/k jX �X j for all n> 1:

Proof. By induction it is immediate that

.nC 1/X �X � n Span.T /CX �X;

and it is easy to see that jn Span.T /j6 .2nC 1/k from which the result follows. �

9. Lattices and coset progressions

The geometry of numbers seems to play a pivotal role in proofs of Freı̆man-type theorems, and we
direct the reader to [Tao and Vu 2006, Chapter 3.5] or [Green 2002b] for a much more comprehensive
discussion.

Recall that ƒ is a lattice in Rk if there are linearly independent vectors v1; : : : ; vk such that ƒ D
v1ZC � � � C vkZ; we call v1; : : : ; vk a basis for ƒ. Furthermore, a set K in Rk is called a convex body
if it is convex, open, nonempty and bounded.

We require the following application of John’s theorem and Minkowski’s second theorem, which
provides us with a way of producing a generalised arithmetic progression from some sort of “convex
progression”.4

Lemma 9.1 [Tao and Vu 2006, Lemma 3.33]. Suppose that K is a symmetric convex body and ƒ is
a lattice, both in Rd . Then there is a proper d -dimensional progression P in K \ƒ such that jP j >
exp.�O.d log 2d//jK\ƒj.

The exp.�O.d log d// factor should not come as a surprise: consider packing a d -dimensional cube
(playing the role of the generalised progression) inside a d -dimensional sphere.

The question remains of how to find a “convex progression”, and to do this Ruzsa [1994] introduced
an important embedding. Suppose that G is a (discrete) finite abelian group and � � yG. Then we define
a map

R� WG! C.�;R/

x 7!R�.x/ W �! RI 
 7!
1

2�
arg.
 .x//;

4A more formal notion of convex progression is introduced by Green [2002b], where a detailed discussion and literature
survey may be found.
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where the argument is taken to lie in .��; ��. Note that R� preserves inverses, meaning that R�.�x/D

�R�.x/, and furthermore if5

kR�.x1/kC.�;R/C � � �C kR�.xd /kC.�;R/ <
1
2
;

then
R�.x1C � � �Cxd /DR�.x1/C � � �CR�.xd /:

This essentially encodes the idea that R� behaves like a Freı̆man morphism.6 We shall use this embed-
ding to establish the following proposition.

Proposition 9.2. Suppose that G is a finite abelian group, d 2 N and B is a Bohr set such that

�G.B.3dC1/ı/ < 2d�G.Bı/ for some ı < 1
4
.3d C 1/:

Then Bı contains a proper coset progression M of dimension at most d satisfying the estimate ˇı.M /D

exp.�O.d log 2d//.

Proof. We write � for the frequency set of B and note that we may assume that L WD
T
fker 
 W 
 2 �g

is trivial. Indeed, if it is nontrivial we may quotient out by it without impacting the hypotheses of the
proposition; we call the quotiented Bohr set B0 and note that BıDB0

ı
CL from which the result follows.

To start with note that if x 2 B� then

kR�.x/kC.�;R/ 6
1

2�
arccos.1� �2=2/6 2�;

and so since 2.3d C 1/ı < 1
2

we have that if x1; : : : ;x3dC1 2 Bı then

R�.x1C � � �Cx3dC1/DR�.x1/C � � �CR�.x3dC1/: (9-1)

By hypothesis we then have

j.3d C 1/R�.Bı/j D jR�..3d C 1/Bı/j6 j.3d C 1/Bıj

6 jB.3dC1/ıj< 2d
jBıj D 2d

jR�.Bı/j:

Apply the variant of Chang’s covering lemma in Lemma 8.2 to the set R�.Bı/ (which is symmetric
since R� preserves inverses and Bı is symmetric) to get a set X �R�.Bı/ with jX j6 d such that

3R�.Bı/� Span.X /C 2R�.Bı/:

Writing V for the real subspace of C.�;R/ generated by X we see that dim V 6 d and (by induction)
that

nR�.Bı/� V C 2R�.Bı/

for all n. Now, suppose that v 2 2R�.Bı/. It follows that

n:v 2 2nR�.Bı/� V C 2R�.Bı/:

5Recall that if X is a normed space then k � kX denotes the norm on that space, so that kf kC.�;R/ D kf kL1.�/.
6We direct the unfamiliar reader to [Tao and Vu 2006, Chapter 5.3].
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for all naturals n. Since 2R�.Bı/ is finite we see that there are two distinct naturals n and n0 and some
element w 2 2R�.Bı/ such that n:v; n0:v 2 V Cw. It follows that .n� n0/:v 2 V whence v 2 V since
V is a vector space and n¤ n0. We conclude that R�.Bı/� V .

Let E be the group generated by Bı which is finite, and note that H WDR�.E/CC.�;Z/ is a closed
discrete subgroup of C.�;R/, where C.�;Z/ is the group of Z-valued functions on � . Since H is a
closed discrete subgroup of C.�;R/ contained in V , it is also a closed discrete subgroup of V . Since V

is certainly generated by R�.Bı/ and H � R�.Bı/ we see that ƒ WD H \ V has finite covolume and
so is a lattice in V .

Let � be the unique solution to j1� exp.2� i�/j D � in the range
�
0; 1

2

�
, and write Q� for the �-cube

in C.�;R/, which is a symmetric convex body in C.�;R/, and so K WD V \Q� is a symmetric convex
body in V . Now, by Lemma 9.1 the set K \ƒ contains a proper d -dimensional progression P of size
exp.�O.d log 2d//jK\ƒj.

To see this note that by (9-1), R� jBı is a Freı̆man 2-homomorphism. Now, if x1;x2;x3;x4 2 Bı

satisfy

R�.x1/CR�.x2/DR�.x3/CR�.x4/

then

R�.x1Cx2�x3�x4/DR�.x1/CR�.x2/CR�.�x3/CR�.�x4/D 0:

However, R�.x/D 0 if and only if 
 .x/D 1 for all 
 2� , which is to say if and only if x 2L. Since L is
trivial we conclude that x1Cx2Dx3Cx4 and hence that R� is injective on Bı, and R�1

�
WR�.Bı/!Bı

is a Freı̆man 2-homomorphism.
On the other hand, by (9-1) R� WBı!R�.Bı/ is a Freı̆man 2-homomorphism, and therefore also a

Freı̆man 2-isomorphism; hence its inverse R�1
�
WR�.Bı/! Bı is one as well.

Since Bı DR�1
�
.K \ƒ/, we are done by, for example, [Tao and Vu 2006, Proposition 5.24], which

simply says that the image of a proper coset progression under a Freı̆man isomorphism of order at least
2 is a proper coset progression of the same size and dimension; in particular R�1

�
.P / is a proper coset

progression of size exp.�O.d log 2d//jBıj and dimension at most d . �

10. Proof of the main theorem

The result driving Theorem 1.1 is the following which brings together all the ingredients of the paper.

Theorem 10.1. Suppose that G is a finite abelian group, A;S � G have jAC S j 6 K minfjAj; jS jg,
and � 2 .0; 1� is a parameter. Then there is a proper coset progression M with

dim M DO.��2 log6 2��1K/ and jM j>
�

�

2 log K

�O.��2 log6 2��1K /

jACS j;

such that for any probability measure � supported on M we have

k1ACS ��k`1.G/ > 1� � and k1A ��k`1.G/ > .1� �/
jAj

jACS j
:
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Proof. We start by thinking of G as discrete and using counting measure. By Plünnecke’s inequality
[Tao and Vu 2006, Corollary 6.28] there is a nonempty set S 0 � S such that

jACACS 0j6
�

K minfjAj; jS jg
jS j

�2

jS 0j6K2 jAjjS
0j

jS j
6K2

jAj:

Note, in particular, that since jACAC S 0j > jAj we have jS 0j > jS j=K2 from the second inequality.
Applying the inequality again we get a nonempty set A0 �A such that

jA0C .ACS 0/C .ACS 0/j6K4
jA0j;

and it follows that
j.ACS 0/C .ACS 0/j6K4

jACS 0j: (10-1)

Now we apply Proposition 4.2 with T D A to get a symmetric neighbourhood of the identity X such
that

jX j> exp.�O.��2k2 log2 2K//jACS j

since jAj> jACS j=K, and

j��A � 1ACS 0 ���S 0.x/� 1j6 �=4 for all x 2 kX: (10-2)

In the first instance it follows that kX � .ACS 0/�.ACS 0/. On the other hand, by the Plünnecke–Ruzsa
estimates [Tao and Vu 2006, Corollary 6.29] applied to (10-1) we have

j4l..ACS 0/� .ACS 0//j6K32l
jACS 0j D exp.O.l log KC ��2k2 log2 K//jX j;

and hence
j4lkX j6 exp.O.l log 2KC ��2k2 log2 2K//jX j:

We put l D d��2k2 log 2Ke, so that

j.3kl C 1/X j6 j4klX j6 2kl:O.k�1 log 2K /
jX j:

Hence we can pick k such that

1C log ��1K 6 k DO.log 2��1K/ and j.3kl C 1/X j< 2kl
jX j:

By the variant of Chang’s covering lemma in Lemma 8.2 there is some set T of size at most kl D

O.��2 log4 2��1K/ such that 3X � Span.T /C 2X , and hence (by Lemma 8.3)

j.nC 2/X /j6 nO.��2 log4 2��1K /
j2X j for all n> 1:

On the other hand j2X j6 2kl jX j, and so (rescaling the measure to think of G as compact) we have

�G.nX /6 nO.��2 log4 2��1K /�G.X / for all n> 1:

Now, by Proposition 7.1 applied to the set X there is a d D O.kl log 2kl��1/ (which we may also
assume is at least 1) and a regular Bohr set B such that

X �X � B�=2 and �G.B2/6 exp.d/�G.X /:
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Let c be the absolute constant in the following technical lemma and note that since X is a neighbourhood
of the identity, X � B and ˇ.X /> exp.�d/.

We apply Chang’s theorem relative to B to get that Specc.1X ; ˇ/ D Specc.�X / has .1; ˇ/-relative
entropy

r DO.c�2 log 2k1X kL2.ˇ/k1X k
�1
L1.ˇ/

/DO.d/:

It follows from Lemma 6.3 that there is a set of characters ƒ of size r and a �D�.1=.1Ch.B//r/ such
that for all 
 2 Specc.�X / we have

j1� 
 .x/j DO.�r C �0rh.B/h.B�// for all x 2 B�0 ^B0� ;

where B0 is the Bohr set with width function the constant function 2 and frequency set ƒ. Provided
� > � we see that

�G.X /6 �G.B�=2/6 �G.B1=2/ and �G.B2�/6 �G.B2/6 exp.d/�G.X /;

and so it follows that h.B/; h.B�/6 d . It follows that �D�.1=d2/ and

j1� 
 .x/j DO.�d C �0d3/ for all x 2 B�0 ^B0� and 
 2 Specc.�X /:

Pick �0 D�.�=d3K2/ and � D�.�=K2d/ such that B00 WD B�0 ^B0� has

j1� 
 .x/j6 �=4K2 for all x 2 B00 and 
 2 Specc.�X /:

In particular

�0; � D�.1=K2 dO.1//:

For each � 2 ƒ write B.�/ for the Bohr set with frequency set f�g and width function the constant
function 2, thus B0� D

V
�2ƒB

.�/
� . By Lemma 5.1 we see that

�G.B
00
�/> �G.B��0=2/

Y
�2ƒ

�G.B
.�/

��=2
/:

On the other hand, since B.�/ has a frequency set of size 1 we see (from (5-2)) that

�G.B
.�/
�0 />

1

�
minf�0; 2g:

Now, if ��0=2> � we have

�G.B
00
�/> .��=2�/r�G.X /;

and on the other we have �G.B/6 exp.d/�G.X /. Let t > 1 be a natural such that

.16�.3t C 1/��1/r exp.d/ < 2t and t DO.d log 2dK/:

Then if � 2
�

1
8
.3t C 1/; 1

4
.3t C 1/

�
we have

�G.B
00
.3tC1/�/ < 2t�G.B

00
�/:
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We now apply Proposition 9.2 to get that B00� contains a proper coset progression M of dimension at
most t and size .2t/�O.t/�G.X /. The result is proved on an application of the next lemma provided
such a choice of � is possible. This can be done if � can be chosen such that

�0

8.3t C 1/
> �;

which can be done with �D�.�O.1/K�O.1//, and working this back gives that t DO.��2 log6 2��1K/

and the result. �

The next lemma is here simply to avoid interrupting the flow of the previous argument, and the hy-
potheses are set up purely for that setting. The proof is simply a series of standard Fourier manipulations.

Lemma 10.2. There is an absolute constant c > 0 such that if G is a finite abelian group, A;S;X � G

have jAC S j 6 K minfjAj; jS jg, S 0 � S has jS 0j > jS j=K2, k > log ��1K is a natural number such
that

j��A � 1ACS 0 ���S 0.x/� 1j6 �=4 for all x 2 kX;

and M is a set such that

j1� 
 .x/j6 �=4K2 for all x 2M and 
 2 Specc.�X /; (10-3)

then for any probability measure � supported on M we have

k1ACS ��k`1.G/ > 1� � and k1A ��k`1.G/ > .1� �/
jAj

jACS j
:

Proof. Integrating the first hypothesis we get

jh��A � 1ACS 0 ���S 0 ; �
.k/
X
i � 1j6 �=4;

where �.k/
X

denotes the k-fold convolution of �X with itself. By Fourier inversion we haveˇ̌̌̌X

2 yG

11ACS 0.
 /c�A.
 /b�S 0.
 /c�X .
 /k � 1

ˇ̌̌̌
6 �=4: (10-4)

The triangle inequality, Cauchy–Schwarz and Parseval’s theorem in the usual way tell us thatX

2 yG

ˇ̌11ACS 0.
 /c�A.
 /b�S 0.
 /
ˇ̌
6�G.ACS 0/kc�Ak`2. yG/

kb�S 0k`2. yG/
D

�G.ACS 0/p
�G.A/�G.S 0/

6K2: (10-5)

Then, by the triangle inequality, for any probability measure � supported on M we have

jy�.
 /� 1j6 �=4K2 for all 
 2 Specc.�X /: (10-6)

We conclude that

E WD
ˇ̌
h1ACS 0 ��;�A ��S 0 ��

.k/
X
��i � 1

ˇ̌
D

ˇ̌̌̌X

2 yG

11ACS 0.
 /y�.
 /c�A.
 /b�S 0.
 /c�X .
 /k y�.
 /� 1

ˇ̌̌̌
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is at most S1CS2CS3, where

S1 WD

ˇ̌̌̌ X

 62Specc.�X /

11ACS 0.
 /c�A.
 /b�S 0.
 /c�X .
 /k.jy�.
 /j
2
� 1/

ˇ̌̌̌
;

S2 WD

ˇ̌̌̌ X

2Specc.�X /

11ACS 0.
 /c�A.
 /b�S 0.
 /c�X .
 /k.jy�.
 /j
2
� 1/

ˇ̌̌̌
;

S3 WD

ˇ̌̌̌X

2 yG

11ACS 0.
 /c�A.
 /b�S 0.
 /c�X .
 /k � 1

ˇ̌̌̌
:

By the triangle inequality and (10-5) we see that

S1 6 sup

 62Specc.�X /

jc�X .
 /j
k
�

X

2 yG

j11ACS 0.
 /c�A.
 /b�S 0.
 /j6 ckK2 6 �=4

for a suitable choice of c D�.1/, since k > log ��1K; by (10-5) and (10-6) we see that

S2 6 2 sup

2Specc.�X /

jy�.
 /� 1j �
X

2 yG

ˇ̌11ACS 0.
 /c�A.
 /b�S 0.
 /
ˇ̌
6 2.�=4K2/K2 6 �=2I

and finally by (10-4) we see that S3 6 �=4, so that E 6 �. It follows from this that

h1ACS 0 ��;�A ��S 0 ��
.k/
X
��i> 1� �;

and hence by averaging that

k1ACS 0 ��kL1.G/ > 1� � and k1A ��kL1.G/ > .1� �/
�G.A/

�G.ACS 0/
:

The lemma is proved. �

It is worth making a couple of remarks before continuing. First, Theorem 10.1 can be extended to
infinite abelian groups by embedding the sets there in a finite group via a sufficiently large Freı̆man
isomorphism. This is the finite modelling argument of [Green and Ruzsa 2007, Lemma 2.1], but we
shall not pursue it here.

The expected �-dependence in Theorem 10.1 may be less clear than the K-dependence. The argument
we have given works equally well for the so-called popular difference set in place of 1ACS , that is the
set

D.A;S/ WD fx 2G W 1A � 1S .x/> c�=Kg

for sufficiently small c. On the other hand Wolf [2010], developing the niveau set construction of Ruzsa
[1987; 1991], showed that even finding a large sumset in such popular difference sets is hard, and it
seems likely that her arguments can be adapted to cover the case of D.A;S/ containing a proportion
1� � of a sumset.
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Understanding this, even in the model setting of G D Fn
2
, would be of great interest since a better

�-dependence would probably yield better analysis of inner products of the form h1A � 1S ; 1T i which
are of importance in, for example, Roth’s theorem [Roth 1953; 1952].

We are now in a position to prove Theorem 1.1 by an easy pigeonhole argument.

Proof of Theorem 1.1. Freı̆man 2-embed the sets A and S into a finite group (via, for example, the
method of [Green and Ruzsa 2007, Lemma 2.1]); if we can prove the result there then it immediately
pulls back.

Apply Theorem 10.1 with � D 1
2
.1C
p

2/ to get a proper d -dimensional coset progression M . Note
that we may assume the progression is symmetric by translating it and possibly shrinking it by a factor
of exp.d/; this has no impact on the bounds. Thus we put

M DH Cfx1:l1C � � �Cxd :ld W jli j6Li for all 16 i 6 dg

where L1; : : : ;Ld 2 N, H 6G and x1; : : : ;xd 2G. Write

M� WDH Cfx1:l1C � � �Cxd :ld W jli j6 �Li for all 16 i 6 dg;

and note that jM1j6 exp.O.d//jM1=2j. On the other hand if j�6 1
2

we have

M1=2 �M1=2C� � � � � �M1=2Cj� DM1;

so it follows that there is some �D�.1=d/ and i 6 j DO.d/ such that jM1=2Ci�j6 21=2jM1=2C.i�1/�j.
Since � D �.1=d/ we easily have that jM�j D exp.�O.d log d//jM1j. On the other hand if we apply
the conclusion of Theorem 10.1 with

�D
1M1=2Ci�

C 1M1=2C.i�1/�

jM1=2Ci�jC jM1=2C.i�1/�j

we get an element x such that

j.xCACS/\M1=2Ci�jC j.xCACS/\M1=2C.i�1/�j

is at least
.1� �/.jM1=2Ci�jC jM1=2C.i�1/�j/:

But then if z 2M� we get

1ACS � 1�.ACS/.z/D 1xCACS � 1�.xCACS/.z/

> 1.xCACS/\M1=2Ci�
� 1�.xCACS/\M1=2C.i�1/�

.z/

>
ˇ̌
.xCACS/\M1=2Ci�

ˇ̌
C
ˇ̌
zC ..xCACS/\M1=2C.i�1/�/

ˇ̌
�
ˇ̌
..xCACS/\M1=2Ci�/[ .zC ..xCACS/\M1=2C.i�1/�//

ˇ̌
>
ˇ̌
.xCACS/\M1=2Ci�

ˇ̌
C
ˇ̌
.xCACS/\M1=2C.i�1/�

ˇ̌
� jM1=2Ci�j

> .1� .1C
p

2/�/jM1=2C.i�1/�j> 0;

and it follows that .A�A/C .S �S/ contains M�. Tracking through the bounds we get the result. �
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11. Concluding remarks and applications

To begin with we should remark that in the case when G has bounded exponent or is torsion-free, we can
get slightly better bounds and the argument is much simpler because of the presence of a good modelling
lemmas. In the first case we get the following result, a proof of which (in the case G D Fn

2
) is contained

in the Appendix as it is so short.

Theorem 11.1 (Bogolyubov–Ruzsa lemma for bounded exponent abelian groups). Suppose G is an
abelian group of exponent r and A;S �G are finite nonempty sets such that jACS j6K minfjAj; jS jg.
Then .A�A/C .S �S/ contains a subspace V of size exp.�Or .log4 2K//jACS j.

In the second, the material of Sections 5–9 can be replaced by similar but more standard arguments
because of the following modelling lemma.

Lemma 11.2 (modelling for torsion-free abelian groups [Ruzsa 2009, Theorem 3.5]). Suppose that G

is a torsion-free abelian group, A � G is a finite nonempty set and k > 2 is a natural. Then for every
q > jkA�kAj there is a set A0 �A with jA0j> jAj=k such that A0 is Freı̆man k-isomorphic to a subset
of Z=qZ.

Theorem 11.3 (Bogolyubov–Ruzsa lemma for torsion-free abelian groups). Suppose that G is a torsion-
free abelian group and A;S � G are finite nonempty sets such that jAC S j 6 K minfjAj; jS jg. Then
.A�A/C .S �S/ contains a proper symmetric d.K/-dimensional coset progression M of size

exp.�h.K//jACS j:

Moreover, we may take d.K/DO.log4 2K/ and h.K/DO.log4 2K log 2 log 2K/.

Returning to Theorem 1.1 it is easy to see that we must have d.K/; h.K/D�.log K/ by considering
a union of

p
K coset progressions of dimension log2

p
K, and even achieving this bound may be hard

without refining the definition of a coset progression. (See the comments of Green in [Tao 2008b] for a
discussion of this.)

The paper [Schoen 2011] was a major breakthrough in proving the first good bounds for (a slight
variant of) Theorem 1.1; it was essentially shown that one could take

d.K/; h.K/DO.exp.O.
p

log K///

for torsion-free or bounded-exponent abelian groups.
Indeed, it should be clear that while we do not use [Schoen 2011] directly in the proof of Theorem 1.1,

it has had a considerable influence on the present work and the applications which now follow are from
the end of that paper as well.

Freı̆man’s theorem. As an immediate corollary of Theorem 1.1 and Chang’s covering lemma we have
the following.

Theorem 11.4 (Freı̆man’s theorem for abelian groups). Suppose that G is an (discrete) abelian group
and A�G is finite with jA˙Aj6KjAj. Then A is contained in a d.K/-dimensional coset progression
M of size at most exp.h.K//jAj. Moreover, we may take d.K/; h.K/DO.K logO.1/ 2K/.
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By considering a union of K dissociated translates of a coset progression it is easy to see that we must
have d.K/; h.K/D�.K/, so the result is close to best possible.

Green and Ruzsa [2007] provided the first bounds of d.K/; h.K/DO.K4Co.1//, and the peppering
of their work throughout this paper should indicate the importance of their ideas.

Schoen [2011] improved the bounds to O.K3Co.1// and to O.K1Co.1// for certain classes of groups,
and in [Cwalina and Schoen 2010] the structure is further elucidated with particular emphasis on getting
good control on the dimension.

The U 3-inverse theorem. Theorem 1.1 can be inserted into the various U 3-inverse theorems of Tao and
Green [2008] for finite abelian groups of odd order, and Samorodnitsky [2007] (see also [Wolf 2009])
for Fn

2
to improve the bounds there. In particular one gets the following.

Theorem 11.5 (U 3.Fn
2
/-inverse theorem). Suppose that f 2 L1.Fn

2
/ has kf kU 3.Fn

2
/ > ıkf kL1.Fn

2
/.

Then there is a quadratic polynomial q W Fn
2
! F2 such that

jhf; .�1/qiL2.Fn
2
/j> exp.�O.logO.1/ 2ı�1//kf kL1.Fn

2
/:

In fact the connection between good bounds in results of this type and good bounds in Freı̆man-type
theorems is quite clearly developed by Green and Tao [2010] and Lovett [2010].

Long arithmetic progressions in sumsets. The question of finding long arithmetic progressions in sets
of integers is one of central interest in additive combinatorics. The basic question has the following form:
suppose that A1; : : : ;Ak � f1; : : : ;N g all have density at least ˛. How long an arithmetic progression
can we guarantee that A1C � � �CAk contain?

For one set this is addressed by the notoriously difficult Szemerédi’s theorem [1969; 1975], where
the best quantitative work is that of Gowers [1998; 2001]; for two sets the longest progression is much
longer with the state of the art due to Green [2002a]; for three sets or more the results get even stronger
with the work of Freı̆man, Halberstam and Ruzsa [Freı̆man et al. 1992]; and finally for eight sets or more,
longer again by the recent work of Schoen [2011].

Theorem 1.1 yields an immediate improvement for the case of four sets or more.

Theorem 11.6. Suppose that A1; : : : ;A4 � f1; : : : ;N g all have density at least ˛. Then A1C � � � CA4

contains an arithmetic progression of length N O.log�O.1/ 2˛�1/.

Proof. Since jAiCAj j6 2˛�1jAi j for all i; j we have, by averaging, that there is a symmetric set A of
density ˛O.1/ such that A1; : : : ;A4 each contains a translate of A. In particular, the longest progression
in A�ACA�A is contained in a translate of A1CA2CA3CA4.

Now, by Theorem 1.1 the set A�ACA�A contains an O.logO.1/ ˛�1/-dimensional coset progres-
sion M of size exp.�O.logO.1/ ˛�1//N . Since Z is torsion-free the progression is just a generalised
progression which certainly contains a 1-dimensional progression of length jM j1= dim M . The result is
proved. �

It is not clear that this result gives the best possible conclusion for k sets as k tends to infinity, but if one
were interested in this no doubt some improvement could be squeezed out by delving into the main proof.
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ƒ.4/-estimate for the squares. Inserting Theorem 1.1 into a result from [Chang 2004] (itself developed
from an argument of Bourgain in [Johnson and Lindenstrauss 2001]) yields the following ƒ.4/-estimate
for the squares.

Theorem 11.7. Suppose that n1; : : : ; nk are naturals. ThenZ ˇ̌̌̌ kX
iD1

exp.2� i n2
i �/

ˇ̌̌̌4
d� DO.k3 exp.��.log�.1/ 2k///:

This is essentially equivalent to inserting Theorem 1.1 into the proof of [Schoen 2011, Theorem 8]
and Gowers’ [1998] version of the Balog–Szemerédi lemma [1994]. In any case a conjecture of Rudin
[1960] suggests that the bound O.k2Co.1// is likely to be true, and the above is not even a power-type
improvement on the trivial upper bound of k3.

The Konyagin–Łaba theorem. Theorem 1.1 inserted into the argument at the end of [Schoen 2011]
yields the following quantitative improvement to a result from [Konyagin and Łaba 2006].

Theorem 11.8 (Konyagin–Łaba theorem). Suppose that A is a set of reals and ˛ 2 R is transcendental.
Then

jAC˛:Aj D exp.�.log�.1/ 2jAj//jAj:

What is particularly interesting here is that there is a simple construction which shows that there are
arbitrarily large sets A with jAC˛:Aj D exp.O.

p
log jAj//jAj.

Appendix: Proof of Theorem 11.1

Our objective in this appendix is to prove the following result.

Theorem A.1. Suppose that G WD Fn
2
, and A � G has density ˛ > 0. Then there is a subspace V 6 G

with cod V DO.log4 2˛�1/ such that V � 4A.

We have distilled this argument out because it is short and just uses the two ingredients of the Croot–
Sisask lemma and Chang’s theorem. For the reader interested in a little more motivation the sketch after
the introduction may be of more interest.

In the rather special setting of Fn
2

it is known from [Green and Ruzsa 2007, Proposition 6.1] that if
jACAj6KjAj then A is Freı̆man 8-isomorphic to a set A0 of density K�O.1/ in some Fm

2
, from which

we get the following corollary of Theorem A.1.

Corollary A.2. Suppose that G WD Fn
2
, and A�G has jACAj6KjAj. Then there is a subspace V 6G

with jV j> exp.�O.log4 2K//jAj such that V � 4A.

In this setting the result of Croot and Sisask is the following.

Lemma A.3 (Croot–Sisask). Suppose that G WD Fn
2
, f 2 Lp.G/ and A � G has density ˛ > 0. Then

there is an a 2A and a set T with �G.T /> .˛=2/O.�
�2p/ such that

k�t .f ��A/ �f ��AkLp.G/ 6 �kf kLp.G/ for all t 2 T:
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Additionally we have:

Lemma A.4 (Chang’s theorem). Suppose that G WD Fn
2

and A�G has density ˛ > 0. Then

cod Spec�.�A/
?
DO.��2 log 2˛�1/:

Proof of Theorem A.1. We begin by noting that

h12A � 1A; 1Ai D h12A; 1A � 1Ai D ˛
2: (A-1)

By the Croot–Sisask lemma applied with f WD 12A we get a set T � G with �G.T / > .˛=2/O.k
2p/

such that

k�t .12A � 1A/� 12A � 1AkLp.G/ 6 ˛=4ke for all t 2 T:

By the triangle inequality this gives

k�t .12A � 1A/� 12A � 1AkLp.G/ 6 ˛=4e for all t 2 kT;

and so on integrating (and applying the triangle inequality again) we have

k12A � 1A ��
.k/
T
� 12A � 1AkLp.G/ 6 ˛=4e:

By Hölder’s inequality we get

jh12A � 1A ��
.k/
T
; 1Ai � h12A � 1A; 1Aij6 ˛˛1C1=.p�1/=4e:

Choosing p D 1C log˛�1 and inserting (A-1) we have

jh12A � 1A ��
.k/
T
; 1Ai �˛

2
j6 ˛2=4;

and so by the triangle inequality

h12A � 1A ��
.k/
T
; 1AiLp.G/ > 3˛2=4:

Now, put V WD Spec1=2.�T /
? and g WD 12A � 1A ��

.k/
T

, so that

ˇ̌
hg; 1Ai � hg ��V ; 1Ai

ˇ̌
D

ˇ̌̌̌ X

 62V?

b12A.
 /jc1A.
 /j
2
y�T .
 /

k

ˇ̌̌̌
6 ˛2�k 6 ˛2=8;

by Parseval’s theorem, the definition of V and by taking k DO.log 2˛�1/ a sufficiently large natural. It
follows by the triangle inequality that

h12A � 1A ��
.k/
T
��V ; 1Ai> ˛

2=2;

and so, by averaging, that k12A ��V kL1.G/ >
1
2

. We conclude that 4A contains V by the pigeon-hole
principle and the result is proved on applying Chang’s theorem to see that

cod V DO.log 2�G.T /
�1/DO.log4 2˛�1/: �
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