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DIMENSION OF THE MINIMUM SET FOR THE REAL AND COMPLEX
MONGE–AMPÈRE EQUATIONS IN CRITICAL SOBOLEV SPACES

TRISTAN C. COLLINS AND CONNOR MOONEY

We prove that the zero set of a nonnegative plurisubharmonic function that solves det.@N@u/�1 in Cn and is
in W 2;n.n�k/=k contains no analytic subvariety of dimension k or larger. Along the way we prove an analo-
gous result for the real Monge–Ampère equation, which is also new. These results are sharp in view of well-
known examples of Pogorelov and Błocki. As an application, in the real case we extend interior regularity
results to the case that u lies in a critical Sobolev space (or more generally, certain Sobolev–Orlicz spaces).

1. Introduction

In this paper we investigate the dimension of the singular set for the real and complex Monge–Ampère
equations, assuming critical Sobolev regularity.

We first discuss the real case. It is well known that convex (e.g., viscosity) solutions to det D2uD 1

are not always classical solutions. Pogorelov constructed examples in dimension n� 3 of the form

u.x0;xn/D jx
0
j
2� 2

nf .xn/

that solve det D2uD 1 in jxnj< � for some � > 0 and some smooth, positive f . This example is C 1;˛

for ˛ � 1� 2
n

, and W 2;p for p < n.n�1/
2

. Furthermore, this solution is not strictly convex, and it vanishes
on fx0 D 0g.

On the other hand, it is known that strictly convex solutions are smooth. The proof of this fact is
closely related to the solution of the Dirichlet problem, which has a long history, beginning with work
of Pogorelov [1971a; 1971b; 1973; 1978], Cheng and Yau [1976; 1977] and Calabi [1958]. Cheng
and Yau [1976] solved the Minkowski problem on the sphere, and in [Cheng and Yau 1977] proved the
existence of solutions to the Dirichlet problem which are smooth in the interior and Lipschitz up to the
boundary. P. L. Lions [1983; 1985] gave an independent proof of this result. Caffarelli, Nirenberg and
Spruck [Caffarelli et al. 1984] and Krylov [1983] established the existence of solutions smooth up to the
boundary, provided the boundary data are C 3;1. Trudinger and Wang [2008] proved optimal boundary
regularity results, where the optimality comes from earlier examples of Wang [1996].

Remark 1.1. In the case nD 2 it is a classical result of Alexandroff [1942] that solutions to det D2u� 1

are strictly convex.
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In view of the above discussion, to show interior regularity for det D2uD 1 it is enough to show strict
convexity. (We remark that interior estimates generally depend on the modulus of strict convexity). Urbas
[1988] showed strict convexity when u is in C 1;˛ for ˛ > 1� 2

n
, or in W 2;p for p> n.n�1/

2
. (Note that for

these values of p, W 2;p embeds into C 1;˛ for ˛ > 1� 2
n�1

, so neither result implies the other). Caffarelli
[1990b] showed that if 1 � det D2u < ƒ and u is not strictly convex, then the graph of u contains an
affine set with no interior extremal points, and if det D2u � 1, then the dimension of any affine set in
the graph of u is strictly smaller than n

2
[Caffarelli 1993]; see also [Mooney 2015]. These results led

to interior C 2;˛ and W 2;q estimates for solutions with linear boundary data, when det D2u is strictly
positive and C ˛, resp. C 0 [Caffarelli 1990a]. Finally, in [Mooney 2015] the second author showed that if
det D2u� 1, then u is strictly convex away from a set of Hausdorff .n�1/-dimensional measure zero,
and that this is optimal by example (even when det D2uD 1).

In view of the Pogorelov example, the C 1;˛ hypothesis in [Urbas 1988] is sharp, and the W 2;p

hypothesis is nearly sharp. In this paper we show interior regularity for the borderline case p D n.n�1/
2

.
Our result in the real case is:

Theorem 1.1. Assume that u is a convex solution to det D2u � 1 in B1 � Rn, and let 0 < k < n
2

. If
u 2W 2;p.B1/ for some p � n

2k
.n�k/, then the dimension of the set where u agrees with a tangent plane

is at most k � 1.

Remark 1.2. In particular, if u 2W 2;n.n�1/
2 , then it is strictly convex. We in fact show that u is strictly

convex if �u lies in Orlicz spaces that are slightly weaker than L
n.n�1/

2 (see Section 3), strengthening
the result from [Urbas 1988]. Our result is sharp in view of the Pogorelov example.

As a consequence, we can extend interior estimates to the borderline case p D n.n�1/
2

(see Section 5).
Interior estimates of this kind are often important in geometric applications, where one does not control
the boundary data.

Remark 1.3. There are analogues of the Pogorelov example that vanish on sets of dimension k for any
k < n

2
and are not in W 2; n

2k
.n�k/ [Caffarelli 1993]. These show that Theorem 1.1 is also sharp in the

case k > 1.

We now discuss the complex case. Like in the real case, there exist singular Pogorelov-type examples
of the form

u.z0; zn/D jz
0
j
2� 2

nf .zn/

for n� 2, such that det.@N@u/ is a strictly positive polynomial [Błocki 1999].

Remark 1.4. In fact, there are analogues of this example that vanish on sets of complex dimension k for
any k < n. Furthermore, these singular examples are global.

Less is known about interior regularity for the complex Monge–Ampère equation det.@N@u/D 1. Błocki
and Dinew [2011] showed that if u 2W 2;p for some p > n.n� 1/, then u is smooth. This result relies
on an important estimate of Kołodziej [1996]. The same result is true provided �u is bounded; see, e.g.,
[Wang 2012]. In this case the point is that the operator becomes uniformly elliptic, and by its concavity
an important C 2;˛ estimate of Evans and Krylov applies; see, e.g., [Caffarelli and Cabré 1995]. Thus far,
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there does not seem to be a geometric condition analogous to strict convexity that guarantees interior
regularity.

However, if u is nonnegative then something can be said about analytic structures in the minimum
set. A classical theorem of Harvey and Wells [1973] says that the minimum set of a smooth, strictly
plurisubharmonic function is contained in a C 1, totally real submanifold. Dinew and Dinew [2016]
recently showed that if det.@N@u/ has a positive lower bound and u 2 C 1;˛ for ˛ > 1� 2k

n
, or C ˇ for

ˇ > 2� 2k
n

in the case k > n
2

, then the minimum set of u contains no analytic subvarieties of dimension k

or larger. We investigate the same situation assuming Sobolev regularity. In the complex case, our main
result is:

Theorem 1.2. Assume that u is a nonnegative plurisubharmonic function satisfying det.@N@u/� 1 in the
viscosity sense in B1 � Cn, and let 0 < k < n. If �u 2 Lp for some p � n

k
.n� k/, then the zero set

fuD 0g contains no analytic subvarieties of dimension k or larger.

Remark 1.5. We recall that det.@N@u/� 1 in the viscosity sense if u is continuous in B1, and whenever a
quadratic polynomial P of the form A Njizi Nzj CRe.Q.z1; : : : ; zn// such that A is a positive semidefinite
Hermitian matrix touches u from above in B1, then det.@N@P /� 1.

Remark 1.6. Since W 2; n
k
.n�k/ embeds into C 1;1� 2k

n�k , this result is different from that in [Dinew and
Dinew 2016]. It is sharp in view of Pogorelov-type examples.

Remark 1.7. It is not known whether all singularities of solutions to det.@N@u/ D 1 arise as analytic
subvarieties, or that they occur on a complex analogue of the agreement set with a tangent plane. Thus,
Theorem 1.2 does not immediately imply smoothness of solutions to det.@N@u/D 1 when u 2W 2;n.n�1/

(unlike in the real case).

The critical Sobolev spaces arise naturally in geometric applications. For example, in complex
dimension 2 the L2 norm of the Laplacian is a scale invariant, monotone quantity whose concentration
controls, at least qualitatively, the regularity of functions with Monge–Ampère mass bounded below.
In this sense, Theorem 1.2 can be seen as a step toward understanding the regularity and compactness
properties of sequences of (quasi)-PSH functions with lower bounds for the Monge–Ampère mass, which
arise frequently in Kähler geometry.

The proof of Theorem 1.1 relies on two key observations. The first is that u grows at least like dist2�
2k
n

away from a zero set of dimension k. The second is that the W 2; n
2k
.n�k/ norm is invariant under the

rescalings that fix the k-dimensional zero set, and preserve functions with this growth. By combining
these observations with some convex analysis, we show that the mass of .�u/

n
2k
.n�k/ is at least some

fixed positive constant in each dyadic annulus around the zero set.
In the complex case the strategy is similar, but an important difficulty is that we don’t have convexity.

We overcome this in two ways. First, using subharmonicity along complex lines, we can say that u grows
at a certain rate from its zero set at many points. Second, we use a dichotomy argument: either the
mass of jD2uj

n.n�k/
k is at least a small constant in an annulus around the zero set, or it is very large and

concentrates close to the zero set. Using that the W 2;n.n�k/
k norm is bounded, we can rule out the second

case and proceed as before.
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The paper is organized as follows. In Section 2 we prove some estimates from convex analysis that are
useful in the real case. We then prove an analogue in the general setting that is useful in the complex
case. In Section 3 we prove Theorem 1.1. In Section 4 we prove Theorem 1.2. Finally, in Section 5 we
give some applications of Theorem 1.1 to interior estimates for the real Monge–Ampère equation.

2. Preliminaries

Here we prove some useful functional inequalities. The first inequality is from convex analysis. This will
be used to prove Theorem 1.1. We then prove a certain analogue in the general setting. This will be used
to prove Theorem 1.2.

Estimate from convex analysis.

Lemma 2.1. Let n � 2 and let w be a nonnegative convex function on B2 � Rn, with w.0/ D 0 and
sup@B1

w � 1. Then there is some positive constant c.n/ such thatZ
B2nB1

�w dx > c.n/:

Proof. By integration by parts, we haveZ
B2nB1

�w dx D

Z
@B2

@rw ds�

Z
@B1

@rw ds;

where @r denotes radial derivative. By convexity, @rw is increasing on radial lines. We conclude thatZ
B2nB1

�w dx �
1

2

Z
@B2

@rw ds:

Assume that the maximum of w on @B1 is achieved at en. By convexity, w � 1 in B2\fxn � 1g; hence
@rw >

1
2

on @B2\fxn � 1g. Since @rw � 0, the conclusion follows. �

As a consequence, the Sobolev regularity of a convex function whose maximum on @Br grows like rq

is no better than that of rq:

Lemma 2.2. Assume that w is a nonnegative convex function on B1 � Rn (n � 2) such that w.0/D 0

and sup@Br
w � rq for some q 2 Œ1; 2/ and all r < 1. ThenZ

B1nBr

.�w/
n

2�q dx � c.n; q/jlog r j

for some c.n; q/ > 0 and all r 2
�
0; 1

2

�
.

Remark 2.3. We take q � 1 since convex functions are locally Lipschitz.

Proof. Fix � < 1
2

and let w�.x/D ��qw.�x/. Note that the L
n

2�q norm of �w is invariant under such
rescalings. We conclude from this observation and Lemma 2.1 thatZ

B2�nB�

.�w/
n

2�q dx D

Z
B2nB1

.�w�/
n

2�q dx � c.n; q/:

The estimate follows by summing this inequality over dyadic annuli. �
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Remark 2.4. One can refine this estimate to Orlicz norms. Let F W Œ0;1/! Œ0;1/ be a convex function
with F.0/D 0. By Lemma 2.1 we have

1

jB2rnBr j

Z
B2r nBr

�u dx > c.n/rq�2:

Using Jensen’s inequality and summing over dyadic annuli, we obtainZ
B1

F.�u=�/ dx �

1X
kD1

jB2�knB2�k�1 jF
�
c.n/2�k.q�2/=�

�
:

In particular, the Orlicz norm k�ukLF .B1/
is equal to1 ifZ 1

1

t�
n

2�q F.t/
dt

t
D1:

Examples F.t/ that agree with t
n

2�q jlog t j�p for t large and 0� p � 1 satisfy this condition, and give
weaker norms than L

n
2�q . For a reference on Orlicz spaces, see, e.g., [Simon 2011].

Estimate without convex analysis. The following estimate is a certain analogue of Lemma 2.1, in the
general setting.

Lemma 2.5. Let w be a nonnegative function on B2 � Rn with w.0/ D 0, and let p > n
2

. Then there
exists c0 > 0 depending on n, p such that for all � 2 .0; 1/, there exists some ı.�; n;p/ such that either�Z

B2nB�

jD2wjp dx

�1
p

� ı sup
@B1

w;

or �Z
B2�

jD2wjp dx

�1
p

� c0�
n
p
�2 sup

@B1

w:

Proof. After multiplying by a constant we may assume that sup@B1
w D 1. Assume that the first case is

not satisfied. Then by the Sobolev–Poincaré and Morrey inequalities we have

kw� lkL1.B2nB�/ < C.n;p; �/ ı

for some linear function l . Take ı so small that the right side is less than 1
8

.
By the hypotheses onw, we have l.0/> 1

2
. Indeed, after a rotation we have l.en/>

7
8

and l.�2en/��
1
8

.
Let Qw.x/D .w� l/.�x/. Then j Qwj< 1

8
in B2nB1, and furthermore, Qw.0/ <�1

2
. It follows again from

standard embeddings that �Z
B2

jD2
Qwjp dx

�1
p

> c0.n;p/:

Scaling back, we obtain the desired inequality. �
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3. Proof of Theorem 1.1

We recall some estimates on the geometry of solutions to det D2u� 1. The first says that the volume of
sublevel sets grows at most as fast as for the paraboloids with Hessian determinant 1:

Lemma 3.1. Assume det D2u� 1 in a convex subset of Rn containing 0, with u� 0 and u.0/D 0. Then

jfu< hgj< C.n/h
n
2

for all h> 0.

The proof follows from the affine invariance of the Monge–Ampère equation and a quadratic barrier;
see, e.g., [Mooney 2015], Lemma 2:2.

Using Lemma 3.1 we can quantify how quickly u grows from a singularity. Below we fix n� 3 and
0< k < n

2
, and we write .x;y/ 2 Rn with x 2 Rn�k and y 2 Rk.

Lemma 3.2. Assume that det D2u� 1 in fjxj< 1g\ fjyj< 1g � Rn, with u� 0 and uD 0 on fx D 0g.
Then for all r < 1 we have

inf
y

sup
jxjDr

u.x;y/ > c.n/r2� 2k
n :

Proof. Take c D c.n/ small and assume by way of contradiction that for some r0 the conclusion is false.
Set hD cr

2� 2k
n

0
. Then for some y0 we have

fy D y0g\
˚
jxj<.c�1h/

n
2

1
n�k

	
� fu< hg:

Since fu< hg is convex, it contains the convex hull of the set on the left and ˙en. We conclude that

jfu< hgj � Qc.n/.c�1h/
n
2;

which contradicts Lemma 3.1 for c small. �

The main theorem follows from the growth established in Lemma 3.2 and the convex analysis estimate
Lemma 2.2.

Proof of Theorem 1.1. Assume that u agrees with a tangent plane on a set of dimension k. After
subtracting the tangent plane, translating and rescaling, we may assume that u� 0 on fjxj< 1g\fjyj< 1g,
and that uD 0 on fx D 0g. By Lemma 3.2, we also have that

inf
fjyj<1g

sup
jxjDr

u.x;y/� c.n/r2� 2k
n :

Apply Lemma 2.2 on the slices fy D const.g, taking q D 2� 2k
n

and replacing n by n� k, and integrate
in y to conclude that Z

fjyj<1g\fr<jxj<1g

.�u/
n

2k
.n�k/ dx � c.n; k/jlog r j:

Taking r ! 0 completes the proof. �
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Remark 3.3. By Remark 2.4, one obtains the same result if �u is in the (weaker) Orlicz space LF for
any convex F W Œ0;1/! Œ0;1/ satisfying F.0/D 0 andZ 1

1

t�
n.n�k/

2k F.t/
dt

t
D1: (1)

4. Proof of Theorem 1.2

We first prove an analogue of Lemma 3.2. We fix n� 2 and 0< k < n, and we use coordinates .z; w/2Cn

with z 2 Cn�k and w 2 Ck.

Lemma 4.1. Assume that det.@N@u/� 1 in fjzj< 1g\ fjwj< 1g � Cn in the viscosity sense, with u� 0

and uD 0 on fz D 0g. Then for all r < 1 we have

sup
jwj< 1

4

sup
jzjDr

u.z; w/� c.n/r2� 2k
n :

Proof. Take c D c.n/ small and assume by way of contradiction that for some r0 the conclusion is false.
Let hD cr

2� 2k
n

0
. Since u is subharmonic on the slices fw D const.g, by the maximum principle we have˚

jwj< 1
4

	
\
˚
jzj< .c�1h/

n
2.n�k/

	
� fu< hg:

(Note that the volume of the set on the left is much larger than hn for c small.) The proof then proceeds
as in the real case. For c small, the convex quadratics Qt D 2h.16jwj2 C .c�1h/�

n
n�k jzj2/C t are

supersolutions that lie strictly above u on @
�˚
jwj< 1

4

	
\fjzj< r0g

�
for t � 0. For some t � 0, Qt touches

u from above somewhere inside this set, contradicting that u is a viscosity subsolution. �

Proof of Theorem 1.2. Assume that the minimum set of u contains an analytic subvariety of dimension k.
After a biholomorphic transformation and a rescaling, we may assume that u� 0 on fjzj< 1g\fjwj< 1g

and uD 0 on fz D 0g (see, e.g., [Dinew and Dinew 2016, Theorem 32] for details) and that

kuk
W

2;
n.n�k/

k .fjwj<1g\fjzj<1g/
D C0 <1:

(Here we used elliptic theory: �u controls D2u in Lp for 1< p <1.)
For any r < 1

2
we define

ur .z; w/D
1

r2� 2k
n

u.rz; w/:

We claim that there exist �; ı > 0 small depending on n, k, C0 (but not r ) such thatZ
fjwj<1g\f�<jzj<2g

jD2
z ur j

n.n�k/
k jdzj jdwj> ı: (2)

Here D2
z denotes the Hessian in the z-variable. We first indicate how to complete the proof given the

claim. The invariance of this norm under the rescalings used to obtain ur gives thatZ
fjwj<1g\f. �

2
/r<jzj<rg

jD2uj
n.n�k/

k jdzj jdwj> ı
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for all r < 1. By summing this over the annuli fjwj< 1g\
˚�
�
2

�kC1
< jzj<

�
�
2

�k	 we eventually contradict
the upper bound on the W 2;n.n�k/

k norm of u.
We now prove the claim. By Lemma 4.1, there exists some .z0; w0/ 2 fjzj D 1g \

˚
jwj < 1

4

	
with

ur .z0; w0/� c.n/ > 0. Let
M.w/D ur .z0; w/:

Since M.w/ is positive and subharmonic, we have by the mean value inequality thatZ
fjwj<1g

M.w/ jdwj> c.n/ > 0: (3)

By Lemma 2.5, for all � small, there exists ı.n; k; �/ such that either�Z
f�<jzj<2g

jD2
z ur .z; w/j

n.n�k/
k jdzj

� k
n.n�k/

� ıM.w/

or �Z
fjzj<2g

jD2
z ur .z; w/j

n.n�k/
k jdzj

� k
n.n�k/

� c.n; k/��
2.n�k/

n M.w/:

Let A� be the set of w such that the first case holds. We conclude from the scale-invariance of the norm
we consider that

C0 � c.n; k/

Z
Ac
�

�Z
fjzj<2g

jD2
z ur j

n.n�k/
k jdzj

� k
n.n�k/

jdwj � c.n; k/��
2.n�k/

n

Z
Ac
�

M.w/ jdwj:

By taking �.n; k;C0/ small, we conclude that the mass of M.w/ in Ac
� is less than its mass in A�. We

conclude from the estimate (3) that�Z
fjwj<1g\f�<jzj<2g

jD2
z ur j

n.n�k/
k jdzj jdwj

� k
n.n�k/

� c.n;k/ı

Z
A�

M.w/ jdwj � c.n;k/ı.n;k;C0/: �

Remark 4.2. To justify the above computations, on the slices fwD const.gwe use that, for almost everyw
in fjwj < 1g, the restrictions fw.z/ WD u.z; w/ are in W 2;n.n�k/

k .fjzj< 1g/ with D2
zfw D D2

z u. � ; w/.
To see this, let fuj g be a sequence of smooth functions approximating u in W 2;n.n�k/

k .B1/, and apply
the Fubini theorem to juj �ujC jruj �rujC jD2uj �D2uj.

Remark 4.3. Theorem 1.2 actually implies a slightly more general result. Namely, if u is plurisubharmonic
on B1 and satisfies det @N@u� 1, and �u 2Lp for some p � n

k
.n� k/, then u cannot be pluriharmonic

when restricted to any analytic set of dimension greater than or equal to k. This follows from Theorem 1.2
and the proof of Theorem 35 in [Dinew and Dinew 2016].

5. Applications

As a consequence of Theorem 1.1 we obtain interior estimates for the real Monge–Ampère equation
depending on the W 2;p norm of the solution for any p � n.n�1/

2
. This extends a result of Urbas [1988]

to the equality case p D n.n�1/
2

.
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Remark 5.1. In fact, we obtain interior estimates depending on certain Orlicz norms that are slightly
weaker than L

n.n�1/
2 .

We recall the definition of sections of a convex function. Let u be a convex function on B1 � Rn. If l

is a supporting linear function to u at x 2 B1, we set

S l
h.x/D fu< l C hg\B1:

Lemma 5.2. Assume that det D2u � 1 in B1 � Rn, and that kukW 2;p.B1/
< C0 for some p � n.n�1/

2
.

Then there exists h0 > 0 depending only on n, p and C0 such that

S l
h0
.x/b B1

for all x 2 B 1
2

and supporting linear functions l at x.

Proof. The result follows from a standard compactness argument using the closedness of the condition
det D2u � 1 under uniform convergence, the lower semicontinuity of the W 2;p norm under weak
convergence and Theorem 1.1. �

Remark 5.3. The conclusion is the same if k�ukLF .B1/
< C0 for some F satisfying condition (1) for

k D 1, and in addition, e.g., kukW 2;2.B1/
< C0. The argument is by compactness again, but one has to

work harder to extract a limit whose Hessian has bounded Orlicz norm. Rather than using weak W 2;2

convergence of a subsequence fukg, invoke the Banach–Saks theorem and use the strong convergence in
W 2;2 of Cesàro means 1

N

PN
kD1 uk . The convexity of F then implies that the Hessian of the limit has

bounded Orlicz norm.
(In order to use Banach–Saks we need control of �u in Lp for some p > 1, which does not follow

from bounded Orlicz norm. This is the reason for the second condition).

Interior, e.g., C 2;˛ estimates and W 2;q estimates in terms of kukW 2;n.n�1/=2.B1/
follow, where the

estimates also depend on n, ˛ and the C ˛ norm (resp. n, q and the modulus of continuity) of det D2u.
Indeed, by Lemma 5.2 we have S l

h0
.x/bB1 for some universal h0 and all x 2B 1

2
. Since det D2u also

has an upper bound (depending on the C ˛ norm or modulus of continuity of det D2u), we have the
lower volume bound jS l

h0
.x/j> ch

n
2

0
for compactly contained sections [Caffarelli 1990b]. Combining this

with the diameter estimate diam.S l
h0
.x// < 2, we see that the eigenvalues of the affine transformations

normalizing these sections (taking B1 to their John ellipsoids) are bounded above and below by positive
universal constants. The estimates follow by applying Caffarelli’s results [1990a] in the normalized
sections, scaling back, and doing a covering argument.
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