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We construct for every integer n > 1 a complex manifold of dimension n which is exhausted by an
increasing sequence of biholomorphic images of Cn (i.e., a long Cn), but does not admit any nonconstant
holomorphic or plurisubharmonic functions. Furthermore, we introduce new holomorphic invariants of
a complex manifold X , the stable core and the strongly stable core, which are based on the long-term
behavior of hulls of compact sets with respect to an exhaustion of X . We show that every compact
polynomially convex set B ⊂ Cn such that B = B◦ is the strongly stable core of a long Cn; in particular,
holomorphically nonequivalent sets give rise to nonequivalent long Cn’s. Furthermore, for every open set
U ⊂ Cn there exists a long Cn whose stable core is dense in U . It follows that for any n > 1 there is a
continuum of pairwise nonequivalent long Cn’s with no nonconstant plurisubharmonic functions and no
nontrivial holomorphic automorphisms. These results answer several long-standing open problems.

1. Introduction

A complex manifold X of dimension n is said to be a long Cn if it is the union of an increasing sequence
of domains X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂

⋃
∞

j=1 X j = X such that each X j is biholomorphic to the complex
Euclidean space Cn . It is immediate that any long C is biholomorphic to C. However, for n > 1, this
class of complex manifolds is still very mysterious. The long-standing question, whether there exists a
long Cn which is not biholomorphic to Cn , was answered in 2010 by E. F. Wold [2010], who constructed
a long Cn that is not holomorphically convex, hence not a Stein manifold. Wold’s construction is based
on his examples of non-Runge Fatou–Bieberbach domains in Cn (see [Wold 2008]; an exposition of both
results can be found in [Forstnerič 2011, Section 4.20]). In spite of these interesting examples, the theory
has not been developed since. In particular, it remained unknown whether there exist long C2’s without
nonconstant holomorphic functions, and whether there exist at least two nonequivalent non-Stein long C2’s.

We begin with the following result, which answers the first question affirmatively.

Theorem 1.1. For every integer n > 1 there exists a long Cn without any nonconstant holomorphic or
plurisubharmonic functions.

Theorem 1.1 is proved in Section 3. It contributes to the line of counterexamples to the classical union
problem for Stein manifolds: is an increasing union of Stein manifolds always Stein? For domains in Cn

this question was raised by Behnke and Thullen [1934], and an affirmative answer was given in [Behnke
and Stein 1939]. Some progress on the general question was made by Stein [1956] and Docquier and
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Grauert [1960]. The first counterexample was given in any dimension n ≥ 3 by J. E. Fornæss [1976]; he
found an increasing union of balls that is not holomorphically convex, hence not Stein. The key ingredient
in his proof is a construction of a biholomorphic map 8 :�→8(�)⊂ C3 on a bounded neighborhood
� ⊂ C3 of any compact set K ⊂ C3 with nonempty interior such that the polynomial hull of 8(K ) is
not contained in 8(�). (A phenomenon of this type was first described by Wermer [1959].) Fornæss
and Stout [1977] constructed an increasing union of three-dimensional polydiscs without nonconstant
holomorphic functions. Fornæss [1978] gave a counterexample to the union problem in dimension 2.
Increasing unions of hyperbolic Stein manifolds were studied further by Fornæss and Sibony [1981] and
Fornæss [2004]. Wold [2010] constructed the first example of a non-Stein long C2. For the connection
with Bedford’s conjecture, see the survey [Abbondandolo et al. 2013].

Another question that has been asked repeatedly over a long period of time is whether there exist
infinitely many nonequivalent long Cn’s for any or all n> 1. Up to now, only two different long C2’s have
been known, namely the standard C2 and a non-Stein long C2 constructed by Wold [2010]. In dimension
n > 2 one can get a few more examples by considering Cartesian products of long Ck’s for different
values of k. In this paper, we introduce new biholomorphic invariants of a complex manifold, the stable
core and the strongly stable core (see Definition 1.5), which allow us to distinguish certain long Cn’s
from one another. In our opinion, this is the main new contribution of the paper from the conceptual
point of view. With the help of these invariants, we answer the above mentioned question affirmatively by
proving the following result.

Recall that a compact subset B of a topological space X is said to be regular if it is the closure of its
interior, B = B◦.

Theorem 1.2. Let n > 1. To every regular compact polynomially convex set B ⊂ Cn we can associate
a complex manifold X (B), which is a long Cn containing a biholomorphic copy of B, such that every
biholomorphic map 8 : X (B)→ X (C) between two such manifolds takes B onto C. In particular, for
every holomorphic automorphism 8 ∈ Aut(X (B)), the restriction 8|B is an automorphism of B. We can
choose X (B) such that it has no nonconstant holomorphic or plurisubharmonic functions.

It follows that the manifold X (B) can be biholomorphic to X (C) only if B is biholomorphic to C . Our
construction likely gives many nonequivalent long Cn’s associated to the same set B. A more precise
result is given by Theorem 1.6 below.

By considering the special case when B is the closure of a strongly pseudoconvex domain, Theorem 1.2
shows that the moduli space of long Cn’s contains the moduli space of germs of smooth strongly
pseudoconvex real hypersurfaces in Cn . This establishes a surprising connection between long Cn’s and
the Cauchy–Riemann geometry. It has been known since Poincaré’s paper [1907] that most pairs of
smoothly bounded strongly pseudoconvex domains in Cn are not biholomorphic to each other, at least not
by maps extending smoothly to the closed domains. It was shown much later by C. Fefferman [1974]
that the latter condition is automatically fulfilled. (For elementary proofs of Fefferman’s theorem, see
[Pinchuk and Khasanov 1987; Forstnerič 1992].) A complete set of local holomorphic invariants of a
strongly pseudoconvex real-analytic hypersurface is provided by the Chern–Moser normal form; see
[Chern and Moser 1974]. Most such domains have no holomorphic automorphisms other than the identity



A LONG C2 WITHOUT HOLOMORPHIC FUNCTIONS 2033

map. (For surveys of this topic, see, e.g., [Baouendi et al. 1999; Forstnerič 1993].) Hence, Theorem 1.2
implies the following corollary.

Corollary 1.3. For every n > 1 there is a continuum of pairwise nonequivalent long Cn’s with no
nonconstant holomorphic or plurisubharmonic functions and no nontrivial holomorphic automorphisms.

We now describe the new biholomorphic invariants alluded to above, the stable core and the strongly
stable core of a complex manifold. Their definition is based on the stable hull property defined below,
which a compact set in a complex manifold may or may not have. Given a pair of compact sets K ⊂ L in
a complex manifold X , we write

K̂O(L) = {x ∈ L : | f (x)| ≤ sup
K
| f | for all f ∈ O(L)}, (1-1)

where O(L) is the algebra of holomorphic functions on neighborhoods of L .

Definition 1.4 (the stable hull property). A compact set K in a complex manifold X has the stable hull
property (SHP) if there exists an exhaustion K1 ⊂ K2 ⊂ · · · ⊂

⋃
∞

j=1 K j = X by compact sets such that
K ⊂ K1, K j ⊂ K ◦j+1 for every j ∈ N, and the increasing sequence of hulls K̂O(K j ) stabilizes, i.e., there is
a j0 ∈ N such that

K̂O(K j ) = K̂O(K j0 )
for all j ≥ j0. (1-2)

Obviously, SHP is a biholomorphically invariant property: if a compact set K ⊂ X satisfies condition
(1-2) with respect to some exhaustion (K j ) j∈N of X , then for any biholomorphic map F : X → Y the
set F(K )⊂ Y satisfies (1-2) with respect to the exhaustion L j = F(K j ) of Y . What is less obvious, but
needed to make this condition useful, is its independence of the choice of the exhaustion; see Lemma 4.1.

Definition 1.5. Let X be a complex manifold.

(i) The stable core of X , denoted SC(X), is the open set consisting of all points x ∈ X which admit a
compact neighborhood K ⊂ X with the stable hull property.

(ii) A regular compact set B ⊂ X is called the strongly stable core of X , denoted SSC(X), if B has the
stable hull property, but no compact set K ⊂ X with K ◦ \ B 6=∅ has the stable hull property.

Clearly, the stable core always exists and is a biholomorphic invariant, in the sense that any biholomor-
phic map X→ Y maps SC(X) onto SC(Y ). In particular, every holomorphic automorphism of X maps
the stable core SC(X) onto itself. The strongly stable core SSC(X) need not exist in general; if it does,
then its interior equals the stable core SC(X) and SSC(X)= SC(X). In (ii), we must restrict attention to
regular compact sets since otherwise the definition would be ambiguous.

Theorem 1.6. Let n > 1.

(a) For every regular compact polynomially convex set B ⊂ Cn (i.e., B = B◦) there exists a long Cn ,
X (B), which admits no nonconstant plurisubharmonic functions and whose strongly stable core
equals B: SSC(X (B))= B.

(b) For every open set U ⊂ Cn there exists a long Cn , X , which admits no nonconstant holomorphic
functions and satisfies SC(X)⊂U and U = SC(X).
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In Theorem 1.6 we have identified the sets B,U ⊂Cn with their images in the long Cn , X =
⋃
∞

k=1 Xk ,
by identifying Cn with the first domain X1 ⊂ X .

Assuming Theorem 1.6, we now prove Theorem 1.2.

Proof of Theorem 1.2. Let B be a regular compact polynomially convex set in Cn for some n > 1. By
Theorem 1.6 there exists a long Cn , X = X (B), whose strongly stable core is B. Assume that F ∈Aut(X).
Then F(B) has SHP (see Definition 1.4). Since B is the biggest regular compact subset of X with
SHP (see (ii) in Definition 1.5), we have that 8(B) ⊂ B. Applying the same argument to the inverse
automorphism 8−1

∈ Aut(X) gives 8−1(B)⊂ B, and hence B ⊂8(B). Both properties together imply
that 8(B)= B, and hence 8|B ∈ Aut(B).

In the same way, we see that a biholomorphic map X (B)→ X (C) between two long Cn’s, furnished
by part (a) in Theorem 1.6, maps B biholomorphically onto C . Hence, if B is not biholomorphic to C ,
then X (B) is not biholomorphic to X (C). �

Theorem 1.6 is proved in Section 4. We construct manifolds with these properties by improving the
recursive procedure devised by Wold [2008; 2010]. The following key ingredient was introduced in [Wold
2008]; it will henceforth be called the Wold process (see Remark 3.2).

Given a compact holomorphically convex set L ⊂ C∗ × Cn−1 with nonempty interior, there is a
holomorphic automorphism ψ ∈ Aut(C∗×Cn−1) such that the polynomial hull ψ̂(L) of the set ψ(L)
intersects the hyperplane {0}×Cn−1. By precomposing ψ with a suitably chosen Fatou–Bieberbach map
θ : Cn ↪→ C∗×Cn−1, we obtain a Fatou–Bieberbach map φ = ψ ◦ θ : Cn ↪→ Cn such that, for a given
polynomially convex set K ⊂ Cn with nonempty interior, we have that φ̂(K ) 6⊂ φ(Cn).

At every step of the recursion we perform the Wold process simultaneously on finitely many pairwise
disjoint compact sets K1, . . . , Km in the complement of the given regular polynomially convex set B⊂Cn ,
chosen such that

⋃m
j=1 K j ∪ B is polynomially convex, thereby ensuring that polynomial hulls of their

images φ(K j ) escape from the range of the injective holomorphic map φ : Cn ↪→ Cn constructed in the
recursive step. At the same time, we ensure that φ is close to the identity map on a neighborhood of B,
and hence the image φ(B) remains polynomially convex. In practice, the sets K j will be small pairwise
disjoint closed balls in the complement of B whose number will increase during the process. We devise
the process so that every point in a certain countable dense set A = {a j }

∞

j=1 ⊂ X \ B is the center of a
decreasing sequence of balls whose O(Xk)-hulls escape from each compact set in X ; hence none of these
balls has the stable hull property. This implies that B is the strongly stable core of X .

To prove part (b), we modify the recursion by introducing a new small ball B ′ ⊂U \ B at every stage.
Thus, the set B acquires additional connected components during the recursive process. The sequence
of added balls Bl is chosen such that their union is dense in the given open subset U ⊂ Cn , while the
sequence of sets K j on which the Wold process is performed densely fills the complement X \U . It
follows that the stable core of the limit manifold X =

⋃
∞

k=1 Xk is contained in U and is everywhere dense
in U .

By combining the technique used in the proof of Theorem 1.1 (see Section 3) with those in [Forstnerič
2012, proof of Theorem 1.1], one can easily obtain the following result for holomorphic families of long
Cn’s. (Compare with [Forstnerič 2012, Theorem 1.1].) We leave out the details.
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Theorem 1.7. Let Y be a Stein manifold, and let A and B be disjoint finite or countable sets in Y . For
every integer n>1 there exists a complex manifold X of dimension dim Y+n and a surjective holomorphic
submersion π : X→ Y with the following properties:

• the fiber X y = π
−1(y) over any point y ∈ Y is a long Cn;

• X y is biholomorphic to Cn if y ∈ A;

• X y does not admit any nonconstant plurisubharmonic function if y ∈ B.

If the base Y is Cp, then X may be chosen to be a long Cp+n .

Note that one or both of the sets A and B in Theorem 1.7 may be chosen everywhere dense in Y . The
same result holds if A is a union of at most countably many closed complex subvarieties of Y and the set
B is countable.

Several interesting questions on long Cn’s remain open; we record some of them.

Problem 1.8. (A) Does there exist a long C2 which admits a nonconstant holomorphic function, but is
not Stein?

(B) To what extent is it possible to prescribe the algebra O(X) of a long Cn?

(C) Does there exist a long Cn for any n > 1 which is a Stein manifold different from Cn?

(D) Does there exist a long Cn without nonconstant meromorphic functions?

(E) What can be said about the (non)existence of complex analytic subvarieties of positive dimension in
non-Stein long Cn’s?

In dimensions n > 2, an affirmative answer to problem (A) is provided by the product X =Cp
× Xn−p

for any p = 1, . . . , n − 2, where Xn−p is a long Cn−p without nonconstant holomorphic functions,
furnished by Theorem 1.1. Note that O(Cp

× Xn−p)∼= O(Cp) is the algebra of functions coming from
the base. Indeed, any example furnished by Theorem 1.7, with Y = Cp as base (p ≥ 1) and B dense
in Cp, is of this kind.

Regarding question (D), note that the Fatou–Bieberbach maps φk : C
n ↪→ Cn used in our constructions

have rationally convex images, in the sense that for any compact polynomially convex set K ⊂ Cn its
image φk(K ) is a rationally convex set in Cn; this gives rise to nontrivial meromorphic functions on the
resulting long Cn’s.

Since every long Cn is an Oka manifold [Lárusson 2010; Forstnerič 2011, Proposition 5.5.6, p. 200], the
results of this paper also contribute to our understanding of the class of Oka manifolds, that is, manifolds
which are the most natural targets for holomorphic maps from Stein manifolds and reduced Stein spaces.

Note that every long Cn is a topological cell according to a theorem of Brown [1961]. Furthermore, it
was shown by Wold [2010, Theorem 1.2] that, if X =

⋃
∞

k=1 Xk is a long Cn and (Xk, Xk+1) is a Runge
pair for every k ∈ N, then X is biholomorphic to Cn . Since the Runge property always holds in the C∞

category, i.e., for smooth diffeomorphisms of Euclidean spaces, his proof can be adjusted to show that
every long Cn is also diffeomorphic to R2n . Hence, Theorems 1.2 and 1.6 imply the following corollary.
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Corollary 1.9. For every n > 1 there exists a continuum of pairwise nonequivalent Oka manifolds of
complex dimension n which are all diffeomorphic to R2n .

In Section 5 we show that Cn for any n> 1 can also be represented as an increasing union of non-Runge
Fatou–Bieberbach domains.

2. Preliminaries

In this section, we introduce the notation and recall the basic ingredients.
We denote by O(X) the algebra of all holomorphic functions on a complex manifold X . For a compact

set K ⊂ X , O(K ) stands for the algebra of functions holomorphic in open neighborhoods of K (in the
sense of germs on K ). The O(X)-convex hull of K is

K̂O(X) = {x ∈ X : | f (x)| ≤ sup
K
| f | for all f ∈ O(X)}.

When X = Cn , the set K̂ = K̂O(Cn) is the polynomial hull of X . If K̂O(X) = K , we say that K is
holomorphically convex in X ; if X = Cn then K is polynomially convex. More generally, if K ⊂ L are
compact sets in X , we define the hull K̂O(L) by (1-1).

Given a point p ∈ Cn , we denote by B(p; r) the closed ball of radius r centered at p.
We shall frequently use the following basic result; see, e.g., [Stout 1971; 2007] for the first part (which

is a simple application of E. Kallin’s lemma) and [Forstnerič 1986] for the second part.

Lemma 2.1. Assume that B ⊂ Cn is a compact polynomially convex set. For any p1, . . . , pm ∈ Cn
\ B

and for all sufficiently small numbers r1 > 0, . . . , rm > 0, the set
⋃m

j=1 B(p j , r j )∪ B is polynomially
convex. Furthermore, if B is the closure of a bounded strongly pseudoconvex domain with C 2 boundary,
then any sufficiently C 2-small deformation of B in Cn is still polynomially convex.

The key ingredient in our proofs is the main result of the Andersén–Lempert theory as formulated by
Forstnerič and Rosay [1993, Theorem 1.1]; see Theorem 2.3 below. We use it not only for Cn , but also
for X = C∗×Cn−1. The result holds for any Stein manifold which enjoys the following density property
introduced by Varolin [2001]. (See also [Forstnerič 2011, Definition 4.10.1].)

Definition 2.2. A complex manifold X enjoys the (holomorphic) density property if every holomor-
phic vector field on X can be approximated, uniformly on compacts, by Lie combinations (sums and
commutators) of C-complete holomorphic vector fields on X .

By [Andersén 1990; Andersén and Lempert 1992], the complex Euclidean space Cn for n > 1 enjoys
the density property. More generally, Varolin proved that any complex manifold X = (C∗)k ×Cl with
k+ l ≥ 2 and l ≥ 1 enjoys the density property [Varolin 2001]. For surveys of this subject, see for instance
[Forstnerič 2011, Chapter 4; Kaliman and Kutzschebauch 2011].

Theorem 2.3. Let X be a Stein manifold with the density property, and let

8t :�0→�t =8t(�0)⊂ X, t ∈ [0, 1]
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be a smooth isotopy of biholomorphic maps of �0 onto Runge domains�t ⊂ X such that80= Id�0 . Then,
the map81 :�0→�1 can be approximated uniformly on compacts in�0 by holomorphic automorphisms
of X.

This is a version of [Forstnerič and Rosay 1993, Theorem 1.1] in which Cn is replaced by an arbitrary
Stein manifold with the density property; see also [Forstnerič 2011, Theorem 4.10.6]. For a detailed
proof of Theorem 2.3, see [Forstnerič and Rosay 1993, Theorem 1.1] for the case X = Cn and [Ritter
2013, Theorem 8] for the general case (which follows the one in [Forstnerič and Rosay 1993] essentially
verbatim).

3. Construction of a long Cn without holomorphic functions

In this section, we prove Theorem 1.1. We begin by recalling the general construction of a long Cn; see
[Wold 2010] or [Forstnerič 2011, Section 4.20].

Recall that a Fatou–Bieberbach map is an injective holomorphic map φ :Cn ↪→Cn such that φ(Cn)(Cn;
the image φ(Cn) of such a map is called a Fatou–Bieberbach domain. Every complex manifold X which
is a long Cn is determined by a sequence of Fatou–Bieberbach maps φk : C

n
→ Cn (k = 1, 2, 3, . . .).

The elements of X are represented by infinite strings x = (xi , xi+1, . . .), where i ∈ N and for every
k = i, i + 1, . . . we have xk ∈ Cn and xk+1 = φk(xk). Another string y = (y j , y j+1, . . .) determines the
same element of X if and only if one of the following possibilities holds:

• i = j and xi = yi (and hence xk = yk for all k > i);

• i < j and y j = φ j−1 ◦ · · · ◦φi (xi );

• j < i and xi = φi−1 ◦ · · · ◦φ j (y j ).

For each k ∈N, let ψk :C
n ↪→ X be the injective map sending z ∈Cn to the equivalence class of the string

(z, φk(z), φk+1(φk(z)), . . .). Set Xk = ψk(C
n) and let ιk : Xk ↪→ Xk+1 be the inclusion map induced by

left shift (xk, xk+1, xk+2, . . .) 7→ (xk+1, xk+2, . . .). Then

ιk ◦ψk = ψk+1 ◦φk, k = 1, 2, . . . . (3-1)

Recall that a compact set L in a complex manifold X is said to be holomorphically contractible if
there exist a neighborhood U ⊂ X of L and a smooth 1-parameter family of injective holomorphic maps
Ft : U → U (t ∈ [0, 1)) such that F0 is the identity map on U , Ft(L) ⊂ L for every t ∈ [0, 1], and
limt→1 Ft is a constant map L 7→ p ∈ L .

The first part of the following lemma is the key ingredient in the construction of the sequence (φk)k∈N

determining a long Cn as in Theorem 1.1. The same construction gives the second part, which we include
for future applications. We write C∗ = C \ {0}.

Lemma 3.1. Let K be a compact set with nonempty interior in Cn for some n > 1. For every point
a ∈ Cn there exists an injective holomorphic map φ : Cn ↪→ Cn such that the polynomial hull of the set
φ(K ) contains the point φ(a). More generally, if L ⊂ Cn is a compact holomorphically contractible set
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disjoint from K such that K ∪ L is polynomially convex, then there exists an injective holomorphic map
φ : Cn ↪→ Cn such that φ(L)⊂ φ̂(K ) and φ̂(K ) \φ(Cn) 6=∅.

Proof. To simplify the notation, we consider the case n = 2; it will be obvious that the same proof applies
in any dimension n ≥ 2. We follow Wold’s construction [2008; 2010] up to a certain point, adding a new
twist at the end.

Let M be a compact set in C∗×C enjoying the following properties:

(1) M is a disjoint union of two smooth, embedded, totally real discs.

(2) M is holomorphically convex in C∗×C.

(3) the polynomial hull M̂ of M contains the origin (0, 0) ∈ C2.

A set M with these properties was constructed by Stolzenberg [1966]; it has been reproduced in [Stout
1971, pp. 392–396; Wold 2008, Section 2; Forstnerič 2011, Section 4.20].

Choose a Fatou–Bieberbach map θ : C2 ↪→ C∗×C whose image θ(C2) is Runge in C2. For example,
we may take the basin of an attracting fixed point of a holomorphic automorphism of C2 which fixes
{0} × C; see [Rosay and Rudin 1988] for explicit examples. Replacing the set K by its polynomial
hull K̂ , we may assume that K is polynomially convex. Since θ(C2) is Runge in C2, the set θ(K ) is
also polynomially convex, and hence O(C∗×C)-convex. By [Wold 2008, Lemma 3.2], there exists a
holomorphic automorphism ψ ∈ Aut(C∗×C) such that

ψ(M)⊂ θ(K ◦).

The construction of such an automorphism ψ uses Theorem 2.3 applied to the manifold X = C∗×C. We
include a brief outline.

By shrinking each of the two discs in M within themselves until they become very small and then
translating them into K ◦ within C∗×C, we find an isotopy of diffeomorphisms ht :M=M0→Mt ⊂C∗×C

(t ∈ [0, 1]), where each Mt = ht(M) is a totally real O(C∗×C)-convex submanifold of C∗×C, such that
M1 ⊂ K ◦. Since C∗×C has the holomorphic density property (see [Varolin 2001]), each diffeomorphism
ht can be approximated uniformly on M (and even in the smooth topology on M) by holomorphic
automorphisms of C∗×C. This is done in two steps. First, we approximate ht by a smooth isotopy of
biholomorphic maps ft :U0→Ut from a neighborhood U0 of M0 onto a neighborhood Ut of Mt ; this is
done as in [Forstnerič and Løw 1997]. Since the submanifold Mt is totally real and O(C∗×C)-convex for
each t ∈ [0, 1], we can arrange that the neighborhood Ut is Runge in C∗×C for each t ∈ [0, 1]. Hence,
Theorem 2.3 furnishes an automorphism ψ ∈ Aut(C∗ × C) which approximates the diffeomorphism
h1 : M→ M1 sufficiently closely such that ψ(M) ⊂ B. It follows that the injective holomorphic map
φ̃ =ψ−1

◦ θ :C2 ↪→C∗×C satisfies M ⊂ φ̃(K ◦). Note that K ′ := φ̃(K ) is a compact O(C∗×C)-convex
set which contains M in its interior. Therefore, its polynomial hull K̂ ′ contains a neighborhood of M̂ ,
and hence a neighborhood V ⊂ C2 of the origin (0, 0) ∈ C2. We may assume that V ∩ K ′ =∅.

Let a ∈C2. If φ̃(a)∈ K̂ ′, then we take φ= φ̃ and we are done. If this is not the case, we choose a point
a′ ∈ V ∩ (C∗×C) and apply Theorem 2.3 to find a holomorphic automorphism τ ∈ Aut(C∗×C) which
is close to the identity map on K ′ and satisfies τ(φ̃(a))= a′. Such τ exists since the union of K ′ with a
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single point of C∗×C is O(C∗×C)-convex, so it suffices to apply the cited result to an isotopy of injective
holomorphic maps which is the identity near K ′ and which moves φ̃(a) to a′ in C∗×C \ K ′. Assuming
that τ is sufficiently close to the identity map on K ′, we have M ⊂ τ(K ′), and hence a′ ∈ M̂ ⊂ τ̂ (K ′).
Clearly, the map φ = τ ◦ φ̃ : C2

→ C∗×C satisfies φ(a) ∈ φ̂(K ). This proves the first part of the lemma.
The second part is proved similarly. Since the set L ′ := θ(L)⊂C∗×C is holomorphically contractible

and K ′ ∪ L ′ is O(C∗×C)-convex, there exists an automorphism τ ∈ Aut(C∗×C) which approximates
the identity map on K ′ and satisfies τ(L ′) ⊂ V ∩ (C∗ × C). (To find such τ , we apply Theorem 2.3
to a smooth isotopy ht : U → ht(U ) ⊂ C∗ ×C (t ∈ [0, 1]) of injective holomorphic maps on a small
neighborhood U ⊂C∗×C of K ′∪ L ′ such that h0 is the identity on U , ht is the identity near K ′ for every
t ∈ [0, 1], and h1(L ′) ⊂ V . On the set L ′, ht first squeezes L ′ within itself almost to a point and then
moves it to a position within V . Clearly, such an isotopy can be found such that ht(K ′∪L ′)= Kt ∪ht(L ′)
is O(C∗×C)-convex for all t ∈ [0, 1].) If τ is sufficiently close to the identity on K ′, then the polynomial
hull τ̂ (K ′) still contains V , and hence τ(L ′) ⊂ V ⊂ τ̂ (K ′). The map φ = τ ◦ φ̃ : C2

→ C∗ ×C then
satisfies the desired conclusion. �

Proof of Theorem 1.1. Pick a compact set K ⊂Cn with nonempty interior and a countable dense sequence
{a j } j∈N in Cn . Set K1 = K̂ . Lemma 3.1 furnishes an injective holomorphic map φ1 : C

n
→ Cn such that

φ1(a1) ∈ φ̂1(K1)=: K2. (3-2)

Applying Lemma 3.1 to the set K2 and the point φ1(a2) ∈ Cn gives an injective holomorphic map
φ2 : C

n ↪→ Cn such that
φ2(φ1(a2)) ∈ φ̂2(K2)=: K3.

From the first step we also have φ1(a1) ∈ K2, and hence φ2(φ1(a1)) ∈ K3.
Continuing inductively, we obtain a sequence φ j : Cn ↪→ Cn of injective holomorphic maps for

j = 1, 2, . . . such that, setting 8k = φk ◦ · · · ◦φ1 : C
n ↪→ Cn , we have

8k(a j ) ∈ 8̂k(K ) for all j = 1, . . . , k. (3-3)

In the limit manifold X =
⋃
∞

k=1 Xk (the long Cn) determined by the sequence (φk)
∞

k=1, the O(X)-hull
of the initial set K ⊂ Cn

= X1 ⊂ X clearly contains the set 8k(K )⊂ Xk+1 for each k = 1, 2, . . . . (We
have identified the k-th copy of Cn in the sequence with its image ψk(C

n)= Xk ⊂ X .) It follows from
(3-3) that the hull K̂O(X) contains the set {a j } j∈N ⊂ Cn

= X1. Since this set is everywhere dense in Cn ,
every holomorphic function on X is bounded on X1 = Cn , and hence constant. By the identity principle,
it follows that the function is constant on all of X .

The same argument shows that the plurisubharmonic hull K̂Psh(X) of K contains the set A1 := {a j } j∈N⊂

Cn∼= X1, and hence every plurisubharmonic function u∈Psh(X) is bounded from above on A1. Since A1 is
dense in X1, it follows that u is bounded from above on X1. (This is obvious if u is continuous; the general
case follows by observing that u can be approximated from above, uniformly on compacts in X1 ∼= Cn ,
by continuous plurisubharmonic functions.) It follows from Liouville’s theorem for plurisubharmonic
functions that u is constant on X1.
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In order to ensure that u is constant on each copy Xk ∼= Cn (k ∈ N) in the given exhaustion of X , we
modify the construction as follows. After choosing the first Fatou–Bieberbach map φ1 : C

n ↪→ Cn such
that φ1(a1) ∈ φ̂1(K ) (see (3-2)), we choose a countable dense set A′2 = {a

′

2,1, a′2,2, . . .} in Cn
\ φ1(C

n)

and set A2 = φ1(A1)∪ A′2 to get a countable dense set in X2 ∼= Cn . Next, we find a Fatou–Bieberbach
map φ2 : C

n ↪→ Cn such that the first two points φ1(a1), φ1(a2) of the set φ1(A1), and also the first point
a′2,1 of A′2, are mapped by φ2 into the polynomial hull of φ2(φ1(K )). We continue inductively. At the
k-th stage of the construction we have chosen a Fatou–Bieberbach map φk : C

n ↪→ Cn , and we take
Ak+1 = φk(Ak)∪ A′k+1, where A′k+1 is a countable dense set in Cn

\φk(Ak). In the manifold X we thus
get an increasing sequence A1 ⊂ A2 ⊂ · · · whose union A :=

⋃
∞

k=1 Ak is dense in X and such that
every point of A ends up in the hull K̂O(Xk) = K̂Psh(Xk) for all sufficiently big k ∈ N. (See the proof of
Theorem 1.6 for more details in a related context.) Hence, the plurisubharmonic hull K̂Psh(X) contains
the countable dense subset A of X . We conclude as before that any plurisubharmonic function on X is
bounded on every Xk ∼= Cn , and hence constant. �

Remark 3.2 (Wold process). The key ingredient in the proof of Lemma 3.1 is the method, introduced
by E. F. Wold [2008], of stretching the image of a compact set in C∗ ×Cn−1 by an automorphism of
C∗ × Cn−1 so that its image swallows a compact set M whose polynomial hull in Cn intersects the
hyperplane {0}×Cn−1. This is called the Wold process. A recursive application of this method, possibly
at several places simultaneously and with additional approximation of the identity map on a certain other
compact polynomially convex set (see Lemma 4.3), causes the hulls of the respective sets to reach out of
all domains Xk ∼= Cn in the exhaustion of X .

4. Construction of manifolds X (B)

In this section, we construct long Cn’s satisfying Theorems 1.2 and 1.6.
We begin by showing that the stable hull property of a compact set in a complex manifold X (see

Definition 1.4) is independent of the choice of exhaustion of X by compact sets.

Lemma 4.1. Let X =
⋃
∞

j=1 K j , where K j ⊂ K ◦j+1 is a sequence of compact sets. Let B be a compact set
in X. Assume that there exists an integer j0 ∈ N such that B ⊂ K j0 and

B̂O(K j ) = B̂O(K j0 )
for all j ≥ j0. (4-1)

Then B satisfies the same condition with respect to any exhaustion of X by an increasing sequence of
compact sets.

Proof. Set C := B̂O(K j0 )
. Let (L l)l∈N be another exhaustion of X by compact sets satisfying L l ⊂ L◦l+1

for all l ∈ N. Pick an integer l0 ∈ N such that C ⊂ L l0 . Since both sequences K ◦j and L◦l exhaust X , we
can find sequences of integers j1 < j2 < j3 < · · · and l1 < l2 < l3 < · · · such that j0 ≤ j1, l0 ≤ l1, and

K j0 ⊂ L l1 ⊂ K j1 ⊂ L l2 ⊂ K j2 ⊂ L l3 ⊂ · · · .

From this and (4-1) we obtain

C = B̂O(K j0 )
⊂ B̂O(Ll1 )

⊂ B̂O(K j1 )
= C ⊂ B̂O(Ll2 )

⊂ B̂O(K j2 )
= C ⊂ · · · .
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It follows that B̂O(Ll j )
= C for all j ∈ N. Since the sequence of hulls B̂O(Ll ) is increasing with l, we

conclude that
B̂O(Ll ) = C for all l ≥ l1.

Hence, B has the stable hull property with respect to the exhaustion (L l)l∈N of X . �

Remark 4.2. If a complex manifold X is exhausted by an increasing sequence of Stein domains
X1 ⊂ X2 ⊂ · · · ⊂

⋃
∞

j=1 X j = X (this holds for example if X is a long Cn or a short Cn , where the latter
term refers to a manifold exhausted by biholomorphic copies of the ball), then we can choose an exhaustion
K1 ⊂ K2 ⊂ · · · ⊂

⋃
∞

j=1 K j = X such that K j is a compact set contained in X j and (̂K j )O(X j )
= K j for

every j ∈N. If K is a compact set contained in some K j0 , then clearly K̂O(K j ) = K̂O(X j ) for all j ≥ j0. In
such case, K has the stable hull property if and only if the sequence of hulls K̂O(X j ) stabilizes. This notion
is especially interesting for a long Cn . Imagining the exhaustion X j ∼= Cn of X as an increasing sequence
of universes, the stable hull property means that K only influences finitely many of these universes in a
nontrivial way, while a set without SHP has nontrivial influence on all subsequent universes. �

We shall need the following lemma, which generalizes [Wold 2008, Lemma 3.2].

Lemma 4.3. Let n > 1. Assume that B is a compact polynomially convex set in Cn , K1, . . . , Km are
pairwise disjoint compact sets with nonempty interiors in Cn

\ B such that B∪
(⋃m

j=1 K j
)

is polynomially
convex, and β ⊂ Cn

\
(
B ∪

(⋃m
j=1 K j

))
is a finite set. Then there exists a Fatou–Bieberbach map

φ : Cn ↪→ Cn satisfying the following conditions:

(i) φ̂(B)= φ(B);

(ii) φ̂(K j ) 6⊂ φ(C
n) for all j = 1, . . . ,m;

(iii) φ(β)⊂ φ̂(K1).

Furthermore, we can choose φ such that φ|B is as close as desired to the identity map.

Proof. For simplicity of notation we give the proof for n = 2; the same argument applies for any n ≥ 2.
By enlarging B slightly, we may assume that it is a compact strongly pseudoconvex and polynomially

convex domain in Cn . Choose a closed ball B ⊂ C2 containing B in its interior. Let 3⊂ C2
\B be an

affine complex line. Up to an affine change of coordinates on C2 we may assume that 3= {0}×C.
As in the proof of Lemma 3.1, we find an injective holomorphic map θ1 : C

2 ↪→ C∗×C whose image
is Runge in C2, and hence the set θ1(B) is polynomially convex. Since B is contractible, we can connect
the identity map on B to θ1|B by an isotopy of biholomorphic maps ht : B→ Bt (t ∈ [0, 1]) with Runge
images in C∗×C. Theorem 2.3 furnishes an automorphism θ2 ∈ Aut(C∗×C) such that θ2 approximates
θ−1

1 on θ1(B). The composition θ = θ2 ◦ θ1 : C
2 ↪→ C∗×C is then an injective holomorphic map which

is close to the identity on B. Assuming that the approximation is close enough, the set B ′ := θ(B) is
polynomially convex in view of Lemma 2.1.

Set K =
⋃m

j=1 K j , K ′j = θ(K j ) for j = 1, . . . ,m, and K ′ = θ(K ) =
⋃m

j=1 K ′j . Note that the set
B ′ ∪ K ′ = θ(B ∪ K )⊂ C∗×C is O(C∗×C)-convex.

Choose m pairwise disjoint copies M1, . . . ,Mm ⊂ (C
∗
×C) \ B ′ of Stolzenberg’s [1966] compact set

M described in the proof of Lemma 3.1. Explicitly, each set Mj is O(C∗×C)-convex and its polynomial
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hull M̂j intersects the complex line {0} ×C (which lies in the complement of θ(C2)). By placing the
sets Mj sufficiently far apart and away from B ′, we may assume that the compact set B ′ ∪

(⋃m
j=1 Mj

)
is

O(C∗×C)-convex. Pick a slightly bigger compact set B ′′ ⊂ θ(C2), containing B ′ in its interior, such that
the sets B ′′ ∪

(⋃m
j=1 K ′j

)
and B ′′ ∪

(⋃m
j=1 Mj

)
are still O(C∗×C)-convex.

We claim that for every ε > 0 there is an automorphism ψ ∈ Aut(C∗×C) such that

(a) |ψ(z)− z|< ε for all z ∈ B ′′, and

(b) ψ(Mj )⊂ K ′j for j = 1, . . . ,m.

To obtain such a ψ , we apply the construction in the proof of Lemma 3.1 to find an isotopy of smooth
diffeomorphisms

ht : M =
m⋃

j=1

Mj → M t
= ht(M)⊂ C∗×C, t ∈ [0, 1],

such that h0= Id |M , the set M t
=
⋃m

j=1 ht(Mj ) consists of smooth totally real submanifolds, B ′′∩M t
=∅

for all t ∈ [0, 1], B ′′ ∪M t is O(C∗×C)-convex for all t ∈ [0, 1], and h1(Mj )⊂ K ′j
◦ for j = 1, . . . ,m. It

follows that h1 can be approximated uniformly on M by a holomorphic automorphism ψ ∈ Aut(C∗×C)

which at the same time approximates the identity map on B ′′. (For the details in a similar context, see
[Forstnerič and Rosay 1993, proof of Theorem 2.3] or [Forstnerič 2011, proof of Corollary 4.12.4].) The
injective holomorphic map

φ := ψ−1
◦ θ : C2 ↪→ C∗×C

then approximates the identity map on a neighborhood of B and satisfies Mj ⊂ φ(K j ) for j = 1, . . . ,m.
It follows that

φ̂(K j )∩ ({0}×C) 6=∅ for all j = 1, . . . ,m.

If the approximation ψ |B ′′ ≈ Id in (a) is close enough, then the set φ(B)= ψ−1(B ′) is still polynomially
convex by Lemma 2.1. Clearly, φ satisfies properties (i) and (ii), and property (iii) can be achieved by
applying Lemma 3.1. �

Proof of Theorem 1.6(a). Let B be the given regular compact polynomially convex set in Cn . To begin
the induction, set B1 := B ⊂ Cn

= X1 and choose a pair of disjoint countable set

A1 = {al
1 : l ∈ N} ⊂ Cn

\ B1, A1 = Cn
\ B◦1 ,

01 = {γ
l
1 : l ∈ N} ⊂ Cn

\ (A1 ∪ B1), 01 = Cn
\ B◦1 .

Let B(a1
1, r1) denote the closed ball of radius r1 centered at a1

1 . By choosing r1 > 0 small enough we may
ensure that B(a1

1, r1)∩ B1 =∅, γ 1
1 /∈ B(a1

1, r1)∪ B1, and the set B(a1
1, r1)∪ B1 is polynomially convex

(see Lemma 2.1). Lemma 4.3 furnishes an injective holomorphic map φ1 : C
n ↪→ Cn such that the set

B2 := φ1(B1)⊂ Cn is polynomially convex, while the compact set

C1
1,1 := φ1(B(a1

1, r1))⊂ Cn

satisfies
Ĉ1

1,1 \φ1(C
n) 6=∅ and φ1(γ

1
1 ) ∈ Ĉ1

1,1.
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We proceed recursively. Suppose that for some k ∈ N we have found

• injective holomorphic maps φ1, . . . , φk : C
n ↪→ Cn ,

• compact polynomially convex sets B1, B2, . . . , Bk+1 in Cn such that Bi+1 = φi (Bi ) for i = 1, . . . , k,

• countable sets A1, . . . , Ak ⊂ Cn such that for every i = 1, . . . , k we have

Ai ⊂ Cn
\ Bi , Ai = Cn

\ B◦i , Ai = φi−1(Ai−1)∪ {al
i : l ∈ N}

(where we set A0 =∅),

• countable sets 01, . . . , 0k ⊂ Cn such that for every i = 1, . . . , k we have

0i ⊂ Cn
\ Ai ∪ Bi , 0i = Cn

\ B◦i , 0i = φi−1(0i−1)∪ {γ
l
i : l ∈ N}

(where we set 00 =∅), and

• numbers r1 > · · ·> rk > 0

such that, setting for all (i, l) ∈ N2 with 1≤ i + l ≤ k+ 1

bl
k,i := φk−1 ◦ · · · ◦φi (al

i ) ∈ Ak if (i, l) 6= (k, 1), b1
k,k := a1

k ,

βl
k,i := φk−1 ◦ · · · ◦φi (γ

l
i ) ∈ 0k if (i, l) 6= (k, 1), β1

k,k := γ
1
k ,

the following conditions hold for all pairs (i, l) ∈ N2 with i + l ≤ k+ 1:

(1k) the closed balls B(bl
k,i , rk) are pairwise disjoint and contained in Cn

\ Bk , and

{βl
k,i : i + l ≤ k+ 1} ∩

⋃
i+l≤k+1

B(bl
k,i , rk)=∅

(since Ak ∩0k =∅, the latter condition holds provided rk > 0 is small enough);

(2k) the set
⋃

i+l≤k+1 B(bl
k,i , rk)∪ Bk is polynomially convex;

(3k) the set (φk−1 ◦ · · · ◦φi )
−1(B(bl

k,i , rk)) is contained in B(al
i , ri/2k);

(4k) the set C l
k,i := φk(B(bl

k,i , rk)) satisfies Ĉ l
k,i \φk(C

n) 6=∅;

(5k) {φk(β
l
k,i ) : i + l ≤ k+ 1} ⊂ Ĉ1

k,1.

We now explain the inductive step. We begin by adding to φk(Ak) countably many points in
Cn
\ (φk(Ak)∪ Bk+1) to get a countable set

Ak+1 = φk(Ak)∪ {al
k+1 : l ∈ N} ⊂ Cn

\ Bk+1

such that
Ak+1 = Cn

\ B◦k+1.

In the same way, we find the next countable set

0k+1 = φk(0k)∪ {γ
l
k+1 : l ∈ N} ⊂ Cn

\ (Ak+1 ∪ Bk+1)
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such that
0k+1 = Cn

\ B◦k+1.

For every pair of indices (i, l) ∈ N2 with i + l ≤ k+ 2, we set

bl
k+1,i := φk ◦ · · · ◦φi (al

i ) ∈ Ak+1 if (i, l) 6= (k+ 1, 1), b1
k+1,k+1 := a1

k+1,

βl
k+1,i := φk ◦ · · · ◦φi (γ

l
i ) ∈ 0k+1 if (i, l) 6= (k+ 1, 1), β1

k+1,k+1 := γ
1
k+1.

Choose a number rk+1 with 0< rk+1< rk and so small that the following conditions hold for all (i, l)∈N2

with i + l ≤ k+ 2:

(1k+1) the closed balls B(bl
k+1,i , rk+1) are pairwise disjoint and contained in Cn

\ Bk+1, and

{βl
k+1,i : i + l ≤ k+ 2} ∩

( ⋃
i+l≤k+2

B(bl
k+1,i , rk+1)∪ Bk+1

)
=∅;

(2k+1) the set
⋃

i+l≤k+2 B(bl
k+1,i , rk+1)∪ Bk+1 is polynomially convex;

(3k+1) the set (φk ◦ · · · ◦φi )
−1(B(bl

k+1,i , rk+1)) is contained in B(al
i , ri/2k+1).

Lemma 4.3 gives a Fatou–Bieberbach map φk+1 :C
n ↪→Cn such that the compact set Bk+2 :=φk+1(Bk+1)

is polynomially convex, while the compact sets

C l
k+1,i := φk+1(B(bl

k+1,i , rk+1)), i + l ≤ k+ 2

satisfy the following conditions:

(4k+1) Ĉ l
k+1,i \φk+1(C

n) 6=∅ for all (i, l) ∈ N2 with i + l ≤ k+ 2;

(5k+1) {φk+1(β
l
k+1,i ) : i + l ≤ k+ 2} ⊂ Ĉ1

k+1,1.

This completes the induction step and the recursion may continue.
Let X =

⋃
∞

k=1 Xk be the long Cn determined by the sequence (φk)
∞

k=1. Since the set Bk ⊂ Cn is
polynomially convex and Bk+1 = φk(Bk) for all k ∈ N, the sequence (Bk)k∈N determines a subset
B = B1 ⊂ X such that

B̂O(Xk) = B for all k ∈ N. (4-2)

This means that the initial compact set B ⊂ Cn
= X1 has the stable hull property in X .

By the construction, the countable sets Ak ⊂ Cn
\ Bk satisfy φk(Ak)⊂ Ak+1 for each k ∈N, and hence

they determine a countable set A ⊂ X \ B. Furthermore, since Ak = Cn
\ B◦k for every k ∈ N, it follows

that A= X \B◦. Similarly, the family (0k)k∈N determines a countable set 0⊂ X \B such that 0= X \B◦.
We now show that B is the biggest regular compact set in X with the stable hull property. Note that

condition (4k), together with the fact that each set C l
k,i contains one of the sets C l ′

k+1,i ′ in the next generation
according to condition (3k+1) (and hence it contains one of the sets C l ′

k+ j,i ′ for every j = 1, 2, . . .), implies

(̂C l
k,i )O(Xk+ j+1)

\ Xk+ j 6=∅ for all j = 0, 1, 2, . . . . (4-3)
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Thus, none of the sets C l
k,i has the stable hull property. Our construction ensures that the centers of

these sets form a dense sequence in X \ B, consisting of all points in the set A determined by the family
(Ak)k∈N, in which every point appears infinitely often. Furthermore, condition (3k) shows that every
compact set K ⊂ X with K ◦ \ B 6=∅ contains one (in fact, infinitely many) of the sets C l

k,i . In view of
(4-3), it follows that there is an integer k0 ∈ N (depending on K ) such that

K̂O(Xk+1) 6⊂ Xk for all k ≥ k0.

This means that K does not have the stable hull property. It follows that the set B is the strongly stable
core of X .

Finally, condition (5k) ensures that the O(X)-hull of a compact ball centered at the point a1
1 ∈ A

contains the countable set 0 ⊂ X determined by the family {0k}k∈N. Since 0 is dense in X \ B, it
follows that the manifold X does not admit any nonconstant plurisubharmonic function. (See the proof of
Theorem 1.1 for the details.)

This proves part (a) of Theorem 1.6. �

Proof of Theorem 1.6(b). Let U ⊂ Cn be an open set. Pick a regular compact polynomially convex set B
contained in U . We modify the recursion in the proof of part (a) by adding to B a new small closed ball
B ′⊂U \B at every stage. In this way, we inductively build an increasing sequence B= B1

⊂ B2
⊂· · ·⊂U

of compact polynomially convex sets whose union B :=
⋃
∞

k=1 Bk
⊂U is everywhere dense in U , and a

sequence of Fatou–Bieberbach maps φk : C
n ↪→ Cn such that, writing

Bk
1 = Bk and Bk

j+1 = φ j (Bk
j ) for all j, k ∈ N,

the following two conditions hold:

(i) Bk
= Bk−1

∪Bk for all k > 1, where Bk is a small closed ball in U \ Bk−1;

(ii) the set Bk
j is polynomially convex for all j, k ∈ N.

At the k-th stage of the construction we have already chosen Fatou–Bieberbach maps φ1, . . . , φk , but we
can nevertheless achieve condition (ii) for all j = 1, . . . , k+ 1 by choosing the ball Bk sufficiently small.
Indeed, the image of a small ball by an injective holomorphic map is a small strongly convex domain, and
hence the polynomial convexity of the set Bk

j for j = 1, . . . , k+ 1 follows from Lemma 2.1. For values
j > k+ 1, (ii) is achieved by the construction in the proof of Lemma 4.3; indeed, each of the subsequent
maps φk+1, φk+2, . . . in the sequence preserves polynomial convexity of Bk

k+1.
By identifying the sets U and Bk

= Bk
1 (considered as subsets of Cn

= X1) with their images in the
limit manifold X =

⋃
∞

k=1 Xk , we thus obtain the following analogue of (4-2):

(̂Bk)O(X j ) = Bk for all j, k ∈ N.

This means that each set Bk (k ∈ N) lies in the stable core SC(X). Since
⋃
∞

k=1 Bk is dense in U by the
construction, we have that U ⊂ SC(X).

On the other hand, writing U1 =U and Uk+1 := φk ◦ · · · ◦φ1(U ) for k = 1, 2, . . . , the balls B(bl
k,i , rk)

chosen at the k-th stage of the construction (see the proof of part (a)) are contained in Cn
\U and, as
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k increases, they include more and more points from a countable dense set A ⊂ X \U , which is built
inductively as in the proof of part (a). By performing the Wold process on each of the balls B(bl

k,i , rk)

(see condition (4k) above) at every stage, we can ensure that none of the points of A belongs to the stable
core SC(X). Since SC(X) is an open set by the definition and A = X \U , we conclude that SC(X)⊂U .
We have seen above that U ⊂ SC(X), and hence SC(X)=U .

It remains to show that X can be chosen such that it does not admit any nonconstant holomorphic
function. By the same argument as in the proof of part (a), we can find a countable dense set 0⊂ X\(A∪U )
which is dense in X \U and is contained in the O(X)-hull of a certain compact set in X \U . It follows
that every plurisubharmonic function f on X is bounded above on 0, and hence on 0 = X \U . If U is
compact, the maximum principle implies that f is also bounded on U ; hence it is bounded on X and
therefore constant. If U is not relatively compact then we are unable to make this conclusion. However,
we can easily ensure that X \U contains a Fatou–Bieberbach domain; indeed, it suffices to choose the
first Fatou–Bieberbach map φ1 : C

n
→ Cn in the sequence determining X such that Cn

\φ1(C
n) contains

a Fatou–Bieberbach domain �. In this case, every holomorphic function f ∈ O(X) is bounded on 0, and
hence on �, so it is constant on �∼= Cn . Therefore it is constant on X by the identity principle.

This proves part (b) and hence completes the proof of Theorem 1.6. �

5. An exhaustion of C2 by non-Runge Fatou–Bieberbach domains

In this section, we show the following result (see also [Boc Thaler 2016, Section 4.4]).

Proposition 5.1. Let n > 1. There exists an increasing sequence X1 ⊂ X2 ⊂ · · · ⊂
⋃
∞

k=1 Xk = Cn of
Fatou–Bieberbach domains in Cn which are not Runge in Cn .

We shall construct such an example by ensuring that all Fatou–Bieberbach maps φk : C
n ↪→ Cn in the

sequence (see Section 3) have non-Runge images, but they approximate the identity map on increasingly
large balls centered at the origin. For this purpose, we shall need the following lemma.

Lemma 5.2. Let B and B be a pair of closed disjoint balls in Cn (n > 1). For every ε > 0 there exists a
Fatou–Bieberbach map φ : Cn ↪→ Cn satisfying the following conditions:

(a) ‖φ|B − Id‖< ε;

(b) ‖φ−1
|B − Id‖< ε;

(c) φ(B) is not polynomially convex.

Proof. Pick a slightly bigger ball B ′ containing B in the interior such that B ′ ∩ B = ∅. By an affine
linear change of coordinates, we may assume that B ′ ⊂ C∗×Cn−1. Choose a Fatou–Bieberbach map
θ : Cn ↪→ C∗×Cn−1 such that θ |B ′ is close to the identity. (See the proof of Lemma 4.3.) Theorem 2.3
provides a ψ ∈ Aut(C∗×Cn−1) which approximates the identity map on θ(B ′) and such that ψ(θ(B))
is not polynomially convex (in fact, its polynomial hull intersects the hyperplane {0} × Cn−1). The
composition φ = ψ ◦ θ : Cn ↪→ C∗×Cn−1 then satisfies condition (a) on B ′, and condition (c). If φ is
sufficiently close to the identity on B ′, then it also satisfies condition (b) since B ⊂ B ′◦. �
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Proof of Proposition 5.1. Let Bk = B(0, k)⊂ Cn denote the closed ball of radius k centered at the origin.
Choose an integer n1 ∈N and a small ball B1 disjoint from Bn1 . Let φ1 :C

n
→Cn be a Fatou–Bieberbach

map satisfying the following conditions:

(1) ‖φ1− Id‖< ε1 on Bn1 ;

(2) ‖φ−1
1 − Id‖< ε1 on Bn1 ;

(3) φ(B1) is not polynomially convex.

Suppose inductively that for some k ∈ N we have already found Fatou–Bieberbach maps φ1, . . . , φk ,
integers n1 < n2 < · · ·< nk , and balls B j

⊂ Cn
\ Bn j for j = 1, . . . , k such that the following conditions

hold:

(1k) ‖φk − Id‖< εk on Bnk ;

(2k) ‖φ−1
k − Id‖< εk on Bnk ;

(3k) φk(Bk) is not polynomially convex.

Choose an integer nk+1 > nk such that

φk(Bnk+1)∪φk(φk−1(Bnk−1+2))∪ · · · ∪φk
(
· · · (φ1(Bn1+k))

)
∪φk(Bk)⊂ Bnk+1,

and pick a ball Bk+1
⊂ Cn

\ Bnk+1 . By Lemma 5.2, there exists a Fatou–Bieberbach map φk+1 : C
n ↪→ Cn

satisfying the following conditions:

(1k+1) ‖φk+1− Id‖< εk+1 on Bnk+1 ;

(2k+1) ‖φ−1
k+1− Id‖< εk+1 on Bnk+1 ;

(3k+1) φk+1(Bk+1) is not polynomially convex.

This closes the induction step.
Let X =

⋃
∞

k=1 Xk be the long Cn determined by the sequence (φk)k , let ιk : Xk ↪→ Xk+1 denote the
inclusion map, and let ψk : C

n
→ Xk ⊂ X denote the biholomorphic map from Cn onto the k-th element

of the exhaustion such that
ιk ◦ψk = ψk+1 ◦φk, k = 1, 2, . . . .

(See Section 3, in particular (3-1).) By the construction, the sequence ψk(Bnk ) is a Runge exhaustion of X .
If the sequence εk > 0 has been chosen to be summable, then the sequence ψk converges on every ball Bn j

and the limit map 9 = limk→∞ ψk : C
n
→ X is a biholomorphism (see [Forstnerič 2011, Corollary 4.4.2,

p. 115]). In the terminology of Dixon and Esterle [1986, Theorem 5.2], we have that

(ψk, Bnk )→ (9,Cn) as k→∞,

where 9(Cn)= X and 9 is biholomorphic. �

Remark 5.3. If we only assume that the images of Fatou–Bieberbach maps φk : C
n ↪→ Cn contain large

enough balls centered at the origin, we get an exhaustion of a long Cn with Runge images of balls. By
[Arosio et al. 2013, Theorem 3.4], such a long Cn is biholomorphic to a Stein Runge domain in Cn .
Therefore, the following problem is closely related to problem (C) stated in the introduction.



2048 LUKA BOC THALER AND FRANC FORSTNERIČ

(C′ ) If a long Cn is exhausted by Runge images of balls, is it necessarily biholomorphic to Cn?

In this connection, we mention that the first author proved in his thesis [Boc Thaler 2016, Theorem IV.15,
p. 62] that Cn is the only Stein manifold with the density property (see Definition 2.2) having an exhaustion
by Runge images of balls.
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