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FINITE-TIME BLOWUP FOR
A SUPERCRITICAL DEFOCUSING NONLINEAR WAVE SYSTEM

TERENCE TAO

We consider the global regularity problem for defocusing nonlinear wave systems

�uD .rRmF /.u/

on Minkowski spacetime R1Cd with d’Alembertian� WD�@2
tC
Pd

iD1 @
2
xi

, where the field u WR1Cd!Rm

is vector-valued, and F WRm!R is a smooth potential which is positive and homogeneous of order pC1

outside of the unit ball for some p > 1. This generalises the scalar defocusing nonlinear wave (NLW)
equation, in which mD 1 and F.v/D 1=.pC 1/jvjpC1. It is well known that in the energy-subcritical
and energy-critical cases when d � 2 or d � 3 and p � 1C4=.d � 2/, one has global existence of smooth
solutions from arbitrary smooth initial data u.0/; @t u.0/, at least for dimensions d � 7. We study the
supercritical case where d D 3 and p > 5. We show that in this case, there exists a smooth potential F

for some sufficiently large m (in fact we can take mD 40), positive and homogeneous of order pC 1

outside of the unit ball, and a smooth choice of initial data u.0/; @t u.0/ for which the solution develops a
finite-time singularity. In fact the solution is discretely self-similar in a backwards light cone. The basic
strategy is to first select the mass and energy densities of u, then u itself, and then finally design the
potential F in order to solve the required equation. The Nash embedding theorem is used in the second
step, explaining the need to take m relatively large.

1. Introduction

Let Rm be a Euclidean space, with the usual Euclidean norm v 7! kvkRm and Euclidean inner product
v;w 7! hv;wiRm . A function F W Rm ! Rn is said to be homogeneous of order ˛ for some real ˛ if
we have

F.�v/D �˛F.v/ (1-1)

for all � > 0 and v 2 Rm. In particular, differentiating this at �D 1 we obtain Euler’s identity

hv; .rRmF /.v/iRm D ˛F.v/; (1-2)

where rRm denotes the gradient in Rm, assuming of course that the gradient rRmF of F exists at v.
When ˛ is not an integer, it is not possible for such homogeneous functions to be smooth at the origin
unless they are identically zero (this can be seen by performing a Taylor expansion of F around the
origin). To avoid this technical issue, we also introduce the notion of F being homogeneous of order ˛
outside of the unit ball, by which we mean that (1-1) holds for �� 1 and v 2 Rm with kvkRm � 1.
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Define a potential to be a function F W Rm ! R that is smooth away from the origin; if F is also
smooth at the origin, we call it a smooth potential. We say that the potential is defocusing if F is positive
away from the origin, and focusing if F is negative away from the origin. In this paper we consider
nonlinear wave systems of the form

�uD .rRmF /.u/; (1-3)

where the unknown field u W R1Cd ! Rm is assumed to be smooth, �D @˛@˛ D�@2
t C

Pd
iD1 @

2
xi

is the
d’Alembertian operator on Minkowski spacetime

R1Cd
WD f.t;x1; : : : ;xd / W t;x1; : : : ;xd 2 Rg D f.t;x/ W t 2 R;x 2 Rd

g

with the usual Minkowski metric

�˛ˇx˛xˇ D�t2
Cx2

1 C � � �Cx2
d

and the usual Einstein summation, raising, and lowering conventions, m; d�1 are integers, and F WRm!R

is a smooth potential. This is a Lagrangian field equation, in the sense that (1-3) is (formally, at least) the
Euler–Lagrange equations for the LagrangianZ

R1Cd

1
2
h@˛u; @˛uiRm CF.u/ d�:

We will restrict attention to potentials F which are homogeneous outside of the unit ball of order pC 1

for some exponent p > 1. The well-studied nonlinear wave equation (NLW) corresponds to the case
when m D 1 and F.v/ D jvjpC1=.pC 1/ (for the defocusing NLW) or F.v/ D �jvjpC1=.pC 1/ (for
the focusing NLW), with the caveat that one needs to restrict p to be an odd integer if one wants these
potentials to be smooth. Later in the paper we will restrict attention to the physical case d D 3, basically
to take advantage of a form of the sharp Huygens’ principle.

The natural initial value problem to study here is the Cauchy initial value problem, in which one
specifies a smooth initial position u0 W Rd ! Rm and initial velocity u1 W Rd ! Rm, and asks for a
smooth solution u to (1-3) with u.0;x/D u0.x/ and @tu.0;x/D u1.x/. Standard energy methods (see,
e.g., [Shatah and Struwe 1998]) show that for any choice of smooth initial data u0;u1 W Rd ! Rm,
one can construct a solution u to (1-3) in an open neighbourhood � in R1Cd of the initial time slice
f.0;x/ W x 2 Rdg with this initial data. Furthermore, either such a solution can be extended to be globally
defined in R1Cd, or else there is a solution u defined on some open neighbourhood � of f.0;x/ W x 2Rdg

that “blows up” in the sense that it cannot be smoothly continued to some boundary point .t�;x�/ of �.
The global regularity problem for a given choice of potential F asks if the latter situation does not occur,
that is to say that for every choice of smooth initial data there is a smooth global solution. Note that as
the equation (1-3) enjoys finite speed of propagation, there is no need to specify any decay hypotheses on
the initial data as this will not affect the answer to the global regularity problem.

For focusing potentials F , there are well-known blowup examples that show that global regularity fails.
For instance, if mD 1 and F W R! R is given by

F.v/ WD �
2

.p� 1/2
jvjpC1 (1-4)
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for all jvj � 1 (and extended arbitrarily in some smooth fashion to the region jvj < 1 while remaining
negative away from the origin), then F is a focusing potential that is homogeneous of order pC1 outside
of the unit ball, and the function u W f.t;x/ 2 R1Cd W 0< t � 1g ! R defined by

u.t;x/ WD t�
2

p�1 (1-5)

solves (1-3) but blows up at the boundary t D 0; applying the time reversal symmetry .t;x/ 7! .1� t;x/,
we obtain a counterexample to global regularity for this choice of F. We will thus henceforth restrict
attention to defocusing potentials F, which excludes ODE-type blowup examples (1-5) in which u.t;x/

depends only on t .
The energy (or Hamiltonian)

EŒu.t/� WD

Z
Rd

1
2
k@tu.t;x/k

2
Rm C

1
2
krxu.t;x/k2

Rm˝Rd CF.u.t;x// dx (1-6)

is (formally, at least) conserved by the flow (1-3). A dimensional analysis of this quantity then naturally
splits the range of parameters .d;p/ into three cases:

� The energy-subcritical case when d � 2, or when d � 3 and p < 1C 4
d�2

.

� The energy-critical case when d � 3 and p D 1C 4
d�2

.

� The energy-supercritical case when d � 3 and p > 1C 4
d�2

.

In the energy-subcritical and energy-critical cases one has global regularity for any defocusing NLW
system, at least when d �7; see1 [Jörgens 1961] for the subcritical case, and [Grillakis 1990; 1992; Struwe
1988; Shatah and Struwe 1998] for the critical case. These results were also extended to the logarithmically
supercritical case (in which the potential F grows faster than the energy-critical potential by a logarithmic
factor) in [Tao 2007; Roy 2009]. A major ingredient in the proof of global regularity in these cases is
the conservation of the energy (1-6), which is nonnegative in the defocusing case. In the energy-critical
(and logarithmically supercritical) case, one also takes advantage of Morawetz inequalities such asZ T

0

Z
Rd

F.u.t;x//

jxj
dx dt � CEŒu.0/� (1-7)

for any time interval Œ0;T � on which the solution exists. These bounds can be deduced from the properties
of the stress-energy tensor

T˛ˇ WD h@˛u; @ˇui � 1
2
�˛ˇ.h@


u; @
uiRm CF.u//

and in particular in the divergence-free nature @ˇT˛ˇ D 0 of this tensor.
It thus remains to address the energy-supercritical case for defocusing smooth potentials F . In this

case it is known that the Cauchy problem is ill-posed in various technical senses at low regularities
[Lebeau 2001; 2005; Christ et al. 2003; Brenner and Kumlin 2000; Burq et al. 2007; Ibrahim et al. 2011],

1Several of these references restrict attention to the scalar NLW or to three spatial dimensions, but the arguments extend
without difficulty to the energy-critical NLW systems considered here in the range 3� d � 7. There are technical difficulties
establishing global regularity in extremely high dimension, even when the potential F and all of its derivatives are bounded; see,
e.g., [Brenner and von Wahl 1981].
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despite the existence of global weak solutions [Segal 1963; Strauss 1989], as well as global smooth
solutions from sufficiently small initial data [Lindblad and Sogge 1996] (assuming that F vanishes to
sufficiently high order at the origin); see also [Zheng 1991] for a partial regularity result. However, to the
author’s knowledge, finite-time blowup of smooth solutions has not actually been demonstrated for such
equations. The main result of this paper is to establish such a finite-time blowup for at least some choices
of defocusing potential F and parameters d;p;m:

Theorem 1.1 (finite-time blowup). Let d D 3, let p > 1C 4
d�2

, and let

m� 2 max
�
.d C 1/.d C 6/

2
;
.d C 1/.d C 4/

2
C 5

�
C 2

be an integer. Then there exists a defocusing smooth potential F W Rm ! R that is homogeneous of
order pC 1 outside of the unit ball, and a smooth choice of initial data u0;u1 W R

d ! Rm such that
there is no global smooth solution u W R1Cd ! Rm to the nonlinear wave system (1-3) with initial data
u.0/D u0, @tu.0/D u1.

Of course, since d is set equal to 3, the conditions on p and m reduce to p> 5 and m� 40 respectively.
However, our restriction to the d D 3 case is largely for technical reasons (basically in order to exploit the
strong Huygens principle), and we believe the results should extend to higher values of d , with the indicated
constraints on d and p, though we will not pursue this matter here. The rather large value of m is due
to our use of the Nash embedding theorem (!) at one stage of the argument. It would of course be greatly
desirable to lower the number m of degrees of freedom down to 1, in order to establish blowup for the
scalar defocusing supercritical NLW, but our methods crucially need a large value of m in order to ensure
that a certain map from a .1Cd/-dimensional space into the sphere Sm�1 is embedded, which is where
the Nash embedding theorem comes in. Nevertheless, even though Theorem 1.1 does not directly show
that the scalar defocusing supercritical NLW exhibits finite-time blowup, it does demonstrate a significant
barrier to any attempt to prove global regularity for this equation, as such an attempt must necessarily
use some special property of the scalar equation that is not shared by the more general system (1-3).

We briefly discuss the methods used to prove Theorem 1.1. The singularity constructed is a discretely
self-similar blowup in a backwards light cone; see the reduction to Theorem 2.1 below. In particular, the
blowup is “locally of type II” in the sense that scale-invariant norms inside the light cone stay bounded,
but not “globally of type II”, as a significant amount of energy (as measured using scale-invariant norms)
radiates out of the backwards light cone at all scales. This is compatible with the results in [Kenig and
Merle 2008; Killip and Visan 2011a; 2011b], which rule out “global” type II blowup, but not “local”
type II blowup. It would be natural to seek a continuously self-similar smooth blowup solution, but it
turns out2 that these are ruled out; see Proposition 2.2 below. Hence we will not restrict attention to

2On the other hand, it is possible to use perturbative methods to create rough solutions to (1-3) that are continuously
self-similar: see [Planchon 2000; Ribaud and Youssfi 2002]. However, these methods do not seem to be adaptable to generate
smooth solutions, and indeed Proposition 2.2 suggests that there are strong obstacles in trying to create such an adaptation. The
negative result here also stands in contrast to the situation of high-dimensional wave maps into negatively curved targets, where
ODE methods were used in [Cazenave et al. 1998] to construct continuously self-similar blowup examples in seven and higher
spatial dimensions.
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continuously self-similar solutions. It also turns out to be convenient not to initially restrict attention to
spherically symmetric solutions, although we will eventually do so later in the argument.

Traditionally, one thinks of the potential F as being prescribed in advance, and the field u as the
unknown to be solved for. However, as we have the freedom to select F in Theorem 1.1, it turns out to
be more convenient to prescribe u first, and only then design an F for which the equation (1-3) is obeyed.
This turns out to be possible as long as the map

� W .t;x/ 7!
u.t;x/

ku.t;x/kRm

has certain nondegeneracy properties, and if the stress-energy tensor T˛ˇ (which can be defined purely in
terms of u) is divergence-free; see the reduction to Theorem 3.2 below. The stress-energy tensor T˛ˇ (or
more precisely, some related fields which we call the mass density M and the energy tensor E˛ˇ) can
be viewed as prescribing the metric geometry of the map � , and the Nash embedding theorem can then
be used to locate a choice of � with the desired nondegeneracy properties and the prescribed metric, so
long as the fields M and E˛ˇ obey a number of conditions (one of which relates to the divergence-free
nature of the stress-energy tensor, and another to the positive definiteness of the Gram matrix of u). This
reduces the problem to a certain “semidefinite program” (see Theorem 4.1), in which one now only needs
to specify the fields M and E˛ˇ, rather than the original field u or the potential F.

It is at this point (after some additional technical reductions in which certain fields are allowed to
degenerate to zero) that it finally becomes convenient to make symmetry reductions, working with fields
M , E˛ˇ that are both continuously self-similar and spherically symmetric, and assuming that there are
no angular components to the energy tensor. In three spatial dimensions, this reduces the divergence-free
nature of the stress-energy tensor to a single transport equation for the null energy eC

�
which, in terms

of the original field u, is given in polar coordinates by eC D
1
2
k.@t C @r /.ru/k2

H

�
, in terms of a certain

“potential energy density” V (which, in terms of the original data u and F, is given by V D rF.u/); see
Theorem 5.4 for a precise statement. The strategy is then to solve for these fields eC;V first, and then
choose all the remaining unknown fields in such a way that the remaining requirements of the semidefinite
program are satisfied. This turns out to be possible if the fields eC;V are chosen to concentrate close to
the boundary of the light cone.

2. Reduction to discretely self-similar solution

We begin the proof of Theorem 1.1.
We first observe that from finite speed of propagation and the symmetries of the equation, Theorem 1.1

follows from the claim below, in which the solution is restricted to a truncated light cone and is discretely
self-similar and the potential is now homogeneous everywhere (not just outside of the unit ball), but no
longer required to be smooth. This reduction does not use any of the hypotheses on m; d;p.

Theorem 2.1 (first reduction). Let d D 3, let p > 1C 4
d�2

, and let

m� 2 max
�
.d C 1/.d C 6/

2
;
.d C 1/.d C 4/

2
C 5

�
C 2
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be an integer. Then there exists a defocusing potential F W Rm! R which is homogeneous of order pC 1

and a smooth function u W �d ! Rmnf0g on the light cone �d WD f.t;x/ 2 R1Cd W t > 0I jxj � tg that
solves (1-3) on its domain and is nowhere vanishing, and also discretely self-similar in the sense that
there exists S > 0 such that

u.eS t; eSx/D e�
2

p�1
Su.t;x/ (2-1)

for all .t;x/ 2 �d .

A key point here is that u is smooth all the way up to the boundary of the light cone �d , rather
than merely being smooth in the interior. The exponent � 2

p�1
is mandated by dimensional analysis

considerations. It would be natural to consider solutions that are continuously self-similar in the sense
that (2-1) holds for all S 2R, but as we shall shortly see, it will not be possible to generate such solutions
in the three-dimensional defocusing setting.

Let us assume Theorem 2.1 for the moment, and show how it implies Theorem 1.1. Let F , S , u be as
in Theorem 2.1. Since u is smooth and nonzero on the compact region f.t;x/ 2 �d W e

�S � t � 1g, it is
bounded from below in this region. By replacing u with C u and F with v 7! C 2F.v=C / for some large
constant C , we may thus assume that

ku.t;x/kRm � 1

whenever .t;x/ 2 �d with e�S � t � 1. Using the discrete self-similarity property (2-1), we then have
this bound for all 0< t � 1; in fact we have a lower bound on ku.t;x/kRm that goes to infinity as t ! 0,
ensuring in particular that u has no smooth extension to .0; 0/.

Using a smooth cutoff function, one can find a smooth defocusing potential zF WRm!R that agrees with
F in the region fv 2 Rm W kvkRm � 1g. Then u solves (1-3) with this potential in the truncated light cone
f.t;x/ 2 R1Cd W 0< t � 1I jxj � tg with F replaced by zF. Choose smooth initial data v0; v1 W R

d ! Rm

such that
v0.x/D u.1;x/

and
v1.x/D�@tu.1;x/

for all jxj � 1 (where we use jxj WD kxkRd to denote the magnitude of x 2 Rd ); such data exists from
standard smooth extension theorems (see, e.g., [Seeley 1964]) since the functions u.1;x/; @tu.1;x/ are
smooth on the closed ball fx W jxj � 1g. Suppose for contradiction that Theorem 1.1 failed (with F

replaced by zF ); then we have a global smooth solution v W R1Cd ! Rm to (1-3) (for zF ) with initial data
v.0/ D v0; @tv.0/ D v1. The function Qu W .t;x/ 7! v.1� t;x/ is then another global smooth solution
to (1-3) (for zF ) such that Qu.1;x/ D u.1;x/ and @t Qu.1;x/ D @tu.1;x/ for all jxj � 1. Finite speed
of propagation (see, e.g., [Tao 2006, Proposition 3.3]) then shows that Qu and u agree in the region
f.t;x/ 2 R1Cd W 0< t � 1I jxj � tg; as Qu is smoothly extendible to .0; 0/, we know u is also, giving the
desired contradiction. This concludes the derivation of Theorem 1.1 from Theorem 2.1.

It remains to prove Theorem 2.1. This will be the focus of the remaining sections of the paper. For
now, let us show why continuously self-similar solutions are not available in the defocusing case, at
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least for some choices of parameters d;p. The point will be that continuous self-similarity gives a new
monotonicity formula for a certain quantity f .t; r/ (measuring a sort of “equipartition of energy”) that
can be used to derive a contradiction.

Proposition 2.2 (no self-similar defocusing solutions). Let d � 3 and p > 1 be such that d�3
2
�

2
p�1

< 0,
let m be a natural number, and let F W Rm ! R be a defocusing potential that is homogeneous of
order pC 1. Then there does not exist a smooth solution u W �d ! Rmnf0g to (1-3) that is homogeneous
of order � 2

p�1
.

Note in particular that in the physical case d D 3, the condition d�3
2
�

2
p�1

< 0 is automatic, and so
no self-similar defocusing solutions exist in this case. We do not know if this condition is necessary in
the above proposition.

Proof. Suppose for contradiction that such a u exists. Equation (1-3) in polar coordinates .t; r; !/ reads

�@t tuC @rr uC
d�1

r
@r uC

1

r2
�!uD .rF /.u/;

where �! is the Laplace–Beltrami operator on the sphere Sd�1. Making the substitution

�.t; r; !/ WD r
d�1

2 u.t; r; !/; (2-2)

this becomes

�@t t�C @rr� �
1

r2

�
��! C

.d�1/.d�3/

4

�
� D r

d�1
2 .rF /.r�

d�1
2 �/ (2-3)

for r > 0.
We introduce the scaling vector field S WD t@t C r@r and the Lorentz boost L WD r@t C t@r . Observe

that L and S commute with

�S2
CL2

D .t2
� r2/.�@t t C @rr / (2-4)

and thus
�hS2�;L�iRm ChL2�;L�iRm D .t2

� r2/h�@t t�C @rr�;L�iRm :

As u is assumed homogeneous of order � 2
p�1

, we know � is homogeneous of order d�1
2
�

2
p�1

. From
Euler’s identity (1-2) we thus have � an eigenfunction of S ,

S� D
�

d�1

2
�

2

p�1

�
�;

and thus (by the commutativity of L and S )

hL�;S2�iRm D hLS�;S�iRm D
1
2
LkS�k2Rm :

We also have
hL�;L2�iRm D

1
2
LkL�k2Rm :

Putting all of these facts together, we conclude that

L
�
�

1
2
kS�k2Rm C

1
2
kL�k2Rm

�
D .t2

� r2/h�@t t�C @rr�;L�iRm :
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A computation similar to (2-4) shows that

�kS�k2Rm CkL�kRm D .t2
� r2/.�k@t�k

2
Rm Ck@r�k

2
Rm/:

Since t2� r2 is annihilated by L, we conclude that

L
�
�

1
2
k@t�k

2
Rm C

1
2
k@r�k

2
Rm

�
D h�@t t�C @rr�; �iRm :

By (2-3), the right-hand side is equal to

1

r2
h��!�;L�iRm C

.d � 1/.d � 3/

4r2
h�;L�iRm C r

d�1
2

˝
.rF /.r�

d�1
2 �/;L�

˛
Rm :

To deal with the angular Laplacian, we integrate over Sd�1 and then integrate by parts to conclude that

L

Z
Sd�1

�
�

1
2
k@t�k

2
Rm C

1
2
k@r�k

2
Rm

�
d!

D

Z
Sd�1

1

2r2
Lkr!�k

2
Rm˝Rd C

.d � 1/.d � 3/

8r2
Lk�k2Rm C r

d�1
2

˝
.rF /.r�

d�1
2 �/;L�

˛
Rm d!;

where we use the fact that the Lorentz boost L commutes with angular derivatives, and where d! denotes
surface measure on Sd�1.

From the chain and product rules, noting that Lr D t , we have

L� D r
d�1

2 L.r�
d�1

2 �/C
d � 1

2

t

r
�

and thus (using (1-2))˝
.rF /.r�

d�1
2 �/;L�

˛
Rm D r

d�1
2

�
LF.r�

d�1
2 �/C

d � 1

2

t

r

˝
r�

d�1
2 �; .rF /.r�

d�1
2 �/

˛
Rm

�
D r

d�1
2

�
LF.r�

d�1
2 �/C

.d � 1/.pC 1/

2

t

r
F.r�

d�1
2 �/

�
:

Putting all this together, we see that if we introduce the quantity

f .t; r/ WD

Z
Sd�1

�
1

2
k@t�k

2
Rm C

1

2
k@r�k

2
Rm �

1

2r2
kr!�k

2
Rm˝Rd

�
.d�1/.d�3/

8r2
k�k2Rm � rd�1F.r�

d�1
2 �/ d!

then we have the formula

Lf D

Z
Sd�1

t

r3
kr!�k

2
Rm˝Rd C

.d � 1/.d � 3/t

4r3
k�k2Rm C

.d � 1/.p� 1/

2

t

r
rd�1F.r�

d�1
2 �/ d!

for any r > 0. In particular, f .cosh y; sinh y/ is a strictly function of y for y > 0, since

d

dy
f .cosh y; sinh y/D .Lf /.cosh y; sinh y/ > 0
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with the strict positivity coming from the defocusing nature of F. On the other hand, when y! 0C, we
see from (2-2) that all the negative integrands in the definition of f .cosh y; sinh y/ go to zero, and thus

lim
y!0C

f .cosh y; sinh y/� 0:

Combining these two facts, we conclude in particular that

lim
y!C1

f .cosh y; sinh y/ > 0: (2-5)

On the other hand, as � is homogeneous of order d�1
2
�

2
p�1

and F is homogeneous of order pC1, we see
that the integrand in the definition of f .t; r/ is homogeneous of order 2

�
d�3

2
�

2
p�1

�
, which is negative

by hypothesis. This implies that f .cosh y; sinh y/ goes to zero as y!C1, contradicting (2-5). �

3. Eliminating the potential

We now exploit the freedom to select the defocusing potential F by eliminating it from the equations
of motion. To motivate this elimination, let us temporarily make the a priori assumption that we have a
solution u to (1-3) in the light cone �d from Theorem 2.1 that is nowhere vanishing. Taking the inner
product of (1-3) with u and using (1-2) then gives an equation for F.u/:

F.u/D
1

pC 1
hu;�uiRm : (3-1)

In particular, since F is defocusing and u is nowhere vanishing, we have the defocusing property

hu;�uiRm > 0 (3-2)

throughout �d . Next, if @˛ denotes one of the d C 1 derivative operators @t ; @x1
; : : : ; @xd

, we have from
the chain rule that

@˛F.u/D h@˛u; .rF /.u/iRm

and hence from (1-3) and (3-1) we have the equation

@˛hu;�uiRm D .pC 1/h@˛u;�uiRm : (3-3)

Remark 3.1. One can rewrite the equation (3-3) in the more familiar form

@ˇT˛ˇ D 0;

where T˛ˇ is the stress-energy tensor

T˛ˇ D h@˛u; @ˇuiRm � �˛ˇ

�
1
2
h@
u; @
uiRm C

1

pC1
hu;�ui

�
:

Now assume that u obeys the discrete self-similarity hypothesis (2-1). Let � WD u=kukRm denote the
direction vector of u; then � is smooth map from �d to the unit sphere Sm�1 WD fv 2 Rm W kvkRm D 1g

of Rm. From the discrete self-similarity (2-1) we see that � is invariant under the dilation action of the
multiplicative group eSZ WD fenS W n 2Zg on �d . Thus � descends to a smooth map Q� W �d=e

SZ!Sm�1
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on the compact quotient �d=e
SZ, which is a smooth surface with boundary (diffeomorphic to the product

of a d -dimensional closed ball and a circle). Under some nondegeneracy hypotheses on this map, we can
now eliminate the potential F, reducing Theorem 2.1 to the following claim:

Theorem 3.2 (second reduction). Let d D 3, let p > 1C 4
d�2

, and let

m� 2 max
�
.d C 1/.d C 6/

2
;
.d C 1/.d C 4/

2
C 5

�
C 2

be an integer. Then there exists S > 0 and a smooth nowhere vanishing function u W�d!Rmnf0g which is
discretely self-similar in the sense of (2-1) and obeys the defocusing property (3-2) and the equations (3-3)
throughout �d . Furthermore, the map Q� W �d=�

Z! Sm�1 defined as above is injective, and immersed in
the sense that the d C 1 derivatives @˛�.t;x/ for ˛ D 0; : : : ; d are linearly independent in Rm for each
.t;x/ 2 �d .

Let us assume Theorem 3.2 for now and see how it implies Theorem 2.1. As in the previous section,
our arguments here will not depend on our hypotheses on m,d , p.

Since the map Q� W�d=e
SZ!Sm�1 is assumed to be injective and immersed, it is a smooth embedding

of the set �d=e
SZ to Sm�1, so that Q�.�d=e

SZ/D �.�d / is a smooth manifold with boundary contained
in Sm�1. We define a function F0 W �.�d /! R by the formula

F0

�
u.t;x/

ku.t;x/kRm

�
WD

1

.pC 1/ku.t;x/k
pC1
Rm

˝
u.t;x/;�u.t;x/

˛
Rm (3-4)

for any .t;x/ 2 �d . As � is injective and u is nowhere vanishing and discretely self-similar, one verifies
that F0 is well-defined. As the map � is immersed, we also see that F0 is smooth. From (3-2) we see
that F0 is positive on �.�d /. Intuitively, F0 is going to be our choice for F on the set �.�d / (this choice
is forced upon us by (3-1) and homogeneity).

We define an auxiliary function T W �.�d /! Rm by the formula

T

�
u.t;x/

ku.t;x/kRm

�
WD

1

ku.t;x/k
p
Rm

�u.t;x/�
1

ku.t;x/k
pC2
Rm

˝
u.t;x/;�u.t;x/

˛
Rmu.t;x/ (3-5)

for all .t;x/ 2 �d ; geometrically, this is the orthogonal projection of .1=kukpRm/�u to the tangent plane
of Sm at u=kukRm , and will be our choice for the Sm�1 gradient

.rSm�1F /

�
u

kuk

�
D .rRmF /

�
u

kukRm

�
�

�
u

kukRm

; .rRmF /

�
u

kuk

��
Rm

u

kukRm

of F at u=kukRm .
As � is injective and u is nowhere vanishing and discretely self-similar, one verifies as before that

T is well-defined, and from the immersed nature of � we see that T is smooth. Clearly T .!/ is also
orthogonal to ! for any ! 2 �.�d /. We also claim that T is an extension of the gradient r�.�d /F0 of F0

on �.�d /, in the sense that
hv;r�.�d /F0.!/iRm D hv;T .!/iRm (3-6)
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for any ! 2 �.�d / and tangent vectors v 2 T!�.�d / to �.�d / at !. To verify (3-6), we write

! D
u.t;x/

ku.t;x/kRm

D
u

kuk

for some .t;x/ 2 �d ; henceforth we suppress the explicit dependence on .t;x/ for brevity. The tangent
space to �.�d / at ! is spanned by @˛.u=kuk/ for @˛ D @t ; @x1

; : : : ; @xd
, so it suffices to show that�

@˛
u

kuk
;r�.�d /F0.!/

�
Rm

D

�
@˛

u

kuk
;T .!/

�
Rm

for each @˛. But from the chain and product rules and (3-4), (3-3) and (3-5) we have�
@˛

u

kuk
;r�.�d /F0.!/

�
Rm

D @˛F0

�
u

kuk

�
D

1

pC 1
@˛

�
1

kuk
pC1
Rm

hu;�uiRm

�
D�
hu; @˛uiRm

kuk
pC3
Rm

hu;�uiRm C
@˛hu;�uiRm

.pC 1/kuk
pC1
Rm

D�
hu; @˛uiRm

kuk
pC3
Rm

hu;�uiRm C
h@˛u;�uiRm

kuk
pC1
Rm

D

�
1

kukRm

@˛u;T

�
u

kukRm

��
Rm

D

�
@˛

u

kukRm

;T

�
u

kukRm

��
Rm

as desired, where in the final line comes from the orthogonality of T .u=kukRm/ with scalar multiples of u.
We now claim that we may find an open neighbourhood U of �.�d / in Sm�1 and a smooth extension

F1 W U ! R of F0, with the property that

rSm�1F1.!/D T .!/ (3-7)

for all ! 2 �.�d /. Indeed, we can define

F1.!C v/ WD F0.!/Chv;T .!/iRm

for all ! 2 �.�d / and sufficiently small v 2 Rm orthogonal to the tangent space T!�.�d=e
SZ/ with

!Cv 2 Sm�1; one can verify that this is well-defined as a smooth extension of F0 to a sufficiently small
normal neighbourhood of �.�d / with the desired gradient property (3-7) (here we use (3-6) to deal with
tangential components of the gradient), and one may smoothly extend this to an open neighbourhood of
�.�d / by Seeley’s theorem [1964].

Next, if we extend F1 by zero to all of Sm�1 and define F2 W S
m�1! R to be the function F2 WD

 F1C.1� / for some smooth function WSm�1! Œ0; 1� supported in U that equals 1 on a neighbourhood
of �.�d /, then F2 is a smooth extension of F0 to Sm�1 that is strictly positive, and which also obeys
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(3-7). If we then set F W Rm! R to be the function

F.�!/ WD �pC1F2.!/

for all � � 0 and ! 2 Sm�1, then F is a defocusing potential, homogeneous of order p C 1, which
extends F0, and such that

rSm�1F.!/D T .!/

for ! 2 �.�d /. By homogeneity (1-1), the radial derivative h!;rRmF.!/iRm is

.pC 1/F.!/D .pC 1/F0.!/

for such !, and hence for ! D u=kuk by (3-5) and (3-4) we have

rRmF.!/D T .!/C .pC 1/F0.!/!

D
1

kukp
�u�

hu;�ui

kukpC2
uC

pC 1

.pC 1/kukpC1
hu;�ui

u

kuk

D
1

kukp
�uI

since rRmF is homogeneous of order p, this gives (1-3) as required.
It remains to establish Theorem 3.2. This will be the focus of the remaining sections of the paper.

4. Eliminating the field

Having eliminated the potential F from the problem, the next step is (perhaps surprisingly) to eliminate
the unknown field u, replacing it with quadratic data such as the mass density

M.t;x/ WD ku.t;x/k2Rm (4-1)

and the energy tensor
E˛ˇ.t;x/ WD h@˛u.t;x/; @ˇu.t;x/i: (4-2)

If u has the discrete self-similarity property (2-1), then M and E similarly obey the discrete self-similarity
properties

M.eS t; eSx/D e�
4

p�1
SM.t;x/ (4-3)

and
E˛ˇ.e

S t; eSx/D e�
2.pC1/

p�1
SE˛ˇ.t;x/: (4-4)

Next, observe from the product rule that

hu;�uiRm D
1
2
�M � �ˇ
Eˇ
 ; (4-5)

where � is the Minkowski metric. Thus, the defocusing property (3-2) can be rewritten as

1
2
�M � �˛ˇE˛ˇ > 0: (4-6)
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In a similar spirit, we have
h@˛u;�ui D @ˇE˛ˇ �

1
2
@˛.�

ˇ
Eˇ
 /

and hence the equation (3-3) can be expressed in terms of M and E as

@˛
�

1
2
�M � �ˇ
Eˇ


�
D .pC 1/

�
@ˇE˛ˇ �

1
2
@˛.�

ˇ
Eˇ
 /
�
: (4-7)

Finally, observe that the .2C d/� .2C d/ Gram matrix0BBB@
hu.t;x/;u.t;x/iRm hu.t;x/; @tu.t;x/iRm � � � hu.t;x/; @xd

u.t;x/iRm

h@tu.t;x/;u.t;x/iRm h@tu.t;x/; @tu.t;x/iRm � � � h@tu.t;x/; @xd
u.t;x/iRm

:::
:::

: : :
:::

h@xd
u.t;x/;u.t;x/iRm h@xd

u.t;x/; @tu.t;x/iRm � � � h@xd
u.t;x/; @xd

u.t;x/iRm

1CCCA (4-8)

can be expressed in terms of E;M as0BBB@
M.t;x/ 1

2
@tM.t;x/ � � � 1

2
@xd

M.t;x/
1
2
@tM.t;x/ E00.t;x/ � � � E0d .t;x/

:::
:::

: : :
:::

1
2
@xd

M.t;x/ Ed0.t;x/ � � � Edd .t;x/

1CCCA : (4-9)

In particular, the matrix (4-9) is positive semidefinite for every t;x.
It turns out that with the aid of the Nash embedding theorem and our hypothesis that m is large, we

can largely reverse the above observations, reducing Theorem 3.2 to the following claim that no longer
directly involves the field u (or the range dimension m).

Theorem 4.1 (third reduction). Let d D 3, and let p > 1C 4
d�2

. Then there exists S > 0 and smooth
functions M W�d!R and E˛ˇ W�d!R for ˛; ˇD 0; : : : ; d which are discretely self-similar in the sense
of (4-3) and (4-4), obey the defocusing property (4-6) and the equation (4-7) on �d for all ˛ D 0; : : : ; d ,
and such that the matrix (4-9) is strictly positive definite on �d (in particular, this forces M to be strictly
positive).

Let us assume Theorem 4.1 for the moment and show Theorem 3.2. Let d , p, S , M, E˛ˇ be as in
Theorem 4.1, and let m be as in Theorem 3.2. Our task is to obtain a function u W �d ! Rmnf0g obeying
all the properties claimed in Theorem 3.2.

The idea is to build u in such a fashion that (4-1) and (4-2) are obeyed. Accordingly, we will use an
ansatz

u.t;x/ WDM.t;x/
1
2 �.t;x/ (4-10)

for some smooth � W �d ! Sm�1 to be constructed shortly. As M is strictly positive, such a function u

will be smooth on � and obey (4-1); differentiating, we see that

hu; @˛uiRm D
1
2
@˛M (4-11)

for ˛ D 0; : : : ; d . If � obeys the discrete self-similarity property

�.eS t; eSx/D �.t;x/ (4-12)



2012 TERENCE TAO

then u will obey (2-1). Thus we shall impose (4-12); that is to say we assume that � is lifted from a
smooth map Q� W �d=e

SZ! Sm�1.
From the product rule, (4-1) and (4-11) we have (after some calculation)

h@˛�; @ˇ�iRm DM�1
h@˛u; @ˇuiRm �M�2.@˛M /@ˇM:

Thus, if we wish for (4-2) to be obeyed, then the .1C d/� .1C d/ Gram matrix

.h@˛�; @ˇ�iRm/˛;ˇD0;:::;d

must be equal to
M
�
E˛ˇ � .@˛M /M�1@ˇM

�
˛;ˇD0;:::;d

: (4-13)

The matrix in (4-13) is a Schur complement of the matrix in (4-9). Since the matrix in (4-9) is assumed
to be strictly positive definite, we conclude that (4-13) is also.

If we denote the matrix in (4-13) by g.t;x/, then from (4-3) and (4-4) we have the discrete self-similarity
property

g.eS t; eSx/D e�2Sg.t;x/: (4-14)

As g is a positive definite and symmetric .1Cd/�.1Cd/ matrix, we can view g as a smooth Riemannian
metric on �d . Given that the dilation operator .t;x/ 7! .eS t; eSx/ dilates tangent vectors to �d by a
factor of eS, we see that the metric g is lifted from a smooth Riemannian metric Qg on the quotient space
�d=e

SZ.
The space .�d=e

SZ; Qg/ is a smooth compact .1Cd/-dimensional Riemannian manifold with boundary;
it is easy to embed it in a smooth compact .1Cd/-dimensional Riemannian manifold without boundary (for
instance by using the theorems in [Seeley 1964]). Applying the Nash embedding theorem (for instance in
the form in [Günther 1991]), we can thus isometrically embed .�d=e

SZ; Qg/ in a Euclidean space RD with

D WDmax
�
.d C 1/.d C 6/

2
;
.d C 1/.d C 4/

2
C 5

�
:

The embedded copy of .�d=e
SZ; Qg/ is compact and is thus contained in a cube Œ�R;R�D for some

finite R. We use a generic3 linear isometry from RD to RDC1 to embed Œ�R;R�D to some com-
pact subset of RDC1. The image of this isometry is a generic hyperplane, which can be chosen to
avoid the lattice .1=

p
2DC 2/ZDC1, and thus we can embed Œ�R;R�D isometrically into the torus

RDC1=
�
.1=
p

DC 1/ZDC1
�
, which is isometric to .1=

p
DC 1/.S1/DC1. But from Pythagoras’ theo-

rem, .1=
p

DC 1/.S1/DC1 is contained in S2DC1, which is in turn contained in Sm�1 by the largeness
hypothesis on m. Thus we have an isometric embedding Q� W �d=e

SZ! Sm�1 from .�d=e
SZ; Qg/ into

the round sphere Sm�1. In particular, Q� is injective and immersed, and lifting Q� back to �d , we obtain a
smooth map � W �d ! Sm�1 with Gram matrix (4-13) that is discretely self-similar in the sense of (4-12),
so that the function u defined by (4-10) obeys (2-1). Reversing the calculations that led to (4-13), we

3We thank Marc Nardmann for this argument, which improved the value of m from our previous argument by a factor of
approximately two.
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see that the Gram matrix (4-8) of u is given by (4-9). In particular, (4-2) holds. Reversing the derivation
of (4-6), we now obtain (3-2), while from reversing the derivation of (4-7), we obtain (3-3). We have
now obtained all the required properties claimed by Theorem 3.2, as desired.

It remains to establish Theorem 4.1. This will be the focus of the remaining sections of the paper.

5. Reduction to a self-similar .1C1/-dimensional problem

In reducing Theorem 1.1 to Theorem 4.1, we have achieved the somewhat remarkable feat of converting a
nonlinear PDE problem to a convex (or positive semidefinite) PDE problem, in that all of the constraints4

on the remaining unknowns M, E˛ˇ are linear equalities and inequalities, or assertions that certain
matrices are positive definite. Among other things, this shows that if one has a given solution M, E˛ˇ to
Theorem 4.1, and then one averages that solution over some compact symmetry group that acts on the space
of such solutions, then the average will also be a solution to Theorem 4.1. In particular, one can then reduce
without any loss of generality to considering solutions that are invariant with respect to that symmetry.

For instance, given that M, E˛ˇ are already discretely self-similar by (4-3) and (4-4), the space of
solutions has an action of the compact dilation group RC=eSZ, with (the quotient representative of) any
real number � > 0 acting on M, E˛ˇ by the action

.� �M /.t;x/ WD
1

�
4

p�1

M
�

t

�
;
x

�

�
and

.� �E˛ˇ/.t;x/ WD
1

�
2.pC1/

p�1

E˛ˇ

�
t

�
;
x

�

�
I

this is initially an action of the multiplicative group RC, but descends to an action of RC=eSZ thanks
to (4-3) and (4-4). By the preceding discussion, we may restrict without loss of generality to the case
when M, E˛ˇ are invariant with respect to this RC=eSZ, or equivalently that M, E˛ˇ are homogeneous
of order � 4

p�1
and 2.pC1/

p�1
respectively. With this restriction, the parameter S no longer plays a role and

may be discarded.

Remark 5.1. This reduction may seem at first glance to be in conflict with the negative result in
Proposition 2.2. However, the requirement that the mass density M and the energy tensor E˛ˇ be
homogeneous is strictly weaker than the hypothesis that the field u itself is homogeneous. For instance,
one could imagine a “twisted self-similar” solution in which the homogeneity condition (1-1) on u is
replaced with a more general condition of the form

u.�t; �x/D ��
2

p�1 exp.J log�/u.t;x/

for all .t;x/ 2 �d and � > 0, where J W Rm! Rm is a fixed skew-adjoint linear transformation. (To be
compatible with (1-3), one would also wish to require that the potential F is invariant with respect to the
orthogonal transformations exp.sJ / for s 2 R.) Such solutions u would not be homogeneous, but the
associated densities M;E˛ˇ would still be homogeneous of the order specified above.

4Compare with the “kernel trick” in machine learning, or with semidefinite relaxation in optimization.
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We may similarly apply the above reductions to the orthogonal group O.d/, which acts on the scalar
field M and on the 2-tensor E˛ˇ in the usual fashion; thus

.UM /.t;x/ WDM.t;U�1x/

and
.UE/˛ˇ.t;x/.Uv/

˛.Uv/ˇ DE˛ˇ.t;U
�1x/v˛vˇ

for all .t;x/ 2 �d , U 2O.d/, and v 2R1Cd, where U acts on R1Cd by .t;x/ 7! .t;Ux/. This allows us
to reduce to fields M;E˛ˇ which are O.d/-invariant; thus M is spherically symmetric, and E˛ˇ takes
the form5

E00 DEt t ; (5-1)

E0i DEi0 D
xi

r
Etr ; (5-2)

Eij D
xixj

r2
.Err �E!!/C ıij E!! (5-3)

for i; j D 1; : : : ; d and some spherically symmetric scalar functions Et t , Etr , Err , E!! , where r WD jxj

is the radial variable and ıij is the Kronecker delta. Observe that if Et t ;Err ;E!! W �1! R are smooth
even functions and Etr W �1! R is a smooth odd function on the .1C1/-dimensional light cone

�1 WD f.t; r/ 2 R1C1
W t > 0I �t � r � tg

with Err �E!! vanishing to second order at r D 0, then the above equations define a smooth field E˛ˇ

on �d , which will be homogeneous of order �2.pC1/
p�1

if Et t , Etr , Err , E!! are.
Using polar coordinates, we have

1

2
�M � �ˇ
Eˇ
 D

1

2

�
�@t tM C @rr M C

d�1

r
M
�
� .�Et t CErr C .d � 1/E!!/I

thus the condition (4-6) is now

1

2

�
�@t tM C @rr M C

d�1

r
M
�
�
�
�Et t CErr C .d � 1/E!!

�
> 0: (5-4)

By rotating x to be of the form x D re1, we see that the matrix (4-9) is conjugate to0BBBBBBBB@

M 1
2
@tM

1
2
@r M 0 � � � 0

1
2
@tM Et t Etr 0 � � � 0

1
2
@r M Etr Err 0 � � � 0

0 0 0 E!! � � � 0
:::

:::
:::

:::
: : :

:::

0 0 0 0 � � � E!!

1CCCCCCCCA
5To see that E˛ˇ must be of this form, rotate the spatial variable x to equal x D re1, then use the orthogonal transformation

.x1;x2; : : : ;xd / 7! .x1;�x2; : : : ;�xd /, which preserves re1, to see that E0i DE1i D 0 for all i D 2; : : : ; d ; further use of
orthogonal transformations preserving re1 can be then used to show that Eij D 0 and Eii DEjj for 2� i < j � d (basically
because the only matrices that commute with all orthogonal transformations are scalar multiples of the identity). This places
E˛ˇ in the desired form in the x D re1 case, and the general case follows from rotation.
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so the positive definiteness of (4-9) is equivalent to the positive definiteness of the 3� 3 matrix0B@ M 1
2
@tM

1
2
@r M

1
2
@tM Et t Etr

1
2
@r M Etr Err

1CA (5-5)

together with the positivity of E!! . It will be convenient to isolate the r D0 case of this condition (in order
to degenerate Err to zero at r D 0 later in the argument). In this case, the odd functions @r M and Etr

vanish, and Err is equal to E!! , so the condition reduces to the positive definiteness of the 2�2 matrix 
M 1

2
@tM

1
2
@tM Et t

!
(5-6)

together with the aforementioned positivity of E!! .
Finally, we turn to the condition (4-7). Again, we can rotate the position x to be of the form xD re1. In

the angular cases ˛D 2; : : : ; d , both sides of (4-7) automatically vanish, basically because @˛f .re1/D 0

for any spherically symmetric f (and because E˛ˇ vanishes to second order for any ˇ ¤ ˛). So the only
nontrivial cases of (4-7) are ˛ D 0 and ˛ D 1. Applying (5-1), (5-2), and (5-3), we can write these cases
of (4-7) as

@t

h
1

2

�
�@t tM C @rr M C

d�1

r
M
�
�
�
�Et t CErr C .d � 1/E!!

�i
D .pC 1/

h
�@tEt t C @r Etr C

d�1

r
Etr �

1

2
@t

�
�Et t CErr C .d � 1/E!!

�i
(5-7)

and

@r

h
1

2

�
�@t tM C @rr M C

d�1

r
M
�
�
�
�Et t CErr C .d � 1/E!!

�i
D .pC 1/

h
�@tEtr C @r Err C

d�1

r
.Err �E!!/�

1

2
@r

�
�Et t CErr C .d � 1/E!!

�i
(5-8)

respectively.
To summarise, we have reduced Theorem 4.1 to

Theorem 5.2 (fourth reduction). Let d D 3, and let p > 1C 4
d�2

. Then there exist smooth even functions
M, Et t , Err , E!! W �1 ! R and a smooth odd function Etr W �1 ! R, with M homogeneous of
order � 4

p�1
and Et t , Etr , Err , E!! homogeneous of order �2.pC1/

p�1
, and with Err �E!! vanishes to

second order at r D 0, obeying the defocusing property (5-4) and the equations (5-7) and (5-8) on �1,
such that

E!! > 0 (5-9)

and the 3 � 3 matrix (5-5) is strictly positive definite on �1 with r ¤ 0, and the 2 � 2 matrix (5-6) is
positive definite when r D 0.
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It remains to prove Theorem 5.2. To do so, we make a few technical relaxations. Firstly, we claim that
we may relax the strict conditions (5-4) and (5-9) to their nonstrict counterparts

1

2

�
�@t tM C @rr M C

d�1

r
M
�
� .�Et t CErr C .d � 1/E!!/� 0 (5-10)

and
E!! � 0: (5-11)

To see this, suppose that M, Et t , Etr , Err , E!! obey the conclusions of Theorem 5.2 with the conditions
(5-4), (5-9) replaced by (5-10), (5-11). We let " > 0 be a small quantity to be chosen later, and define new
fields M ";E"

t t ;E
"
tr ;E

"
rr ;E

"
!! by the formulae6

M "
WDM � c"t�

4
p�1 ;

E"
t t WDEt t � .d C 1/"t�

2.pC1/
p�1 ;

E"
tr WDEtr ;

E"
rr WDErr C "t

�
2.pC1/

p�1 ;

E"
!! WDE!! C "t

�
2.pC1/

p�1 ;

where c is the constant such that

c

2

4

p� 1

pC 3

p� 1
� .2d C 1/D

pC 1

2
:

Clearly these new fields M ", E"
t t , E"

tr , E"
rr , E"

!! are still smooth, with M ", E"
t t , E"

rr , E"
!! even

and E"
tr odd, with M " homogeneous of order � 4

p�1
and E"

t t , E"
tr , E"

rr , E"
!! homogeneous of order

�
2.pC1/

p�1
, with E"

rr �E"
!! vanishing to second order at r D 0. A calculation using the definition of c

shows that the equations (5-7) and (5-8) continue to be obeyed when the fields M, Et t , Etr , Err , E!!

are replaced by M ", E"
t t , E"

tr , E"
rr , E"

!! . With this replacement, the left-hand side of (5-10) increases by

pC1

2
"t�

2.pC1/
p�1 ;

and so (5-4) now holds. The remaining task is to show that with these new fields M ", E"
t t , E"

tr , E"
rr ,

E"
!! , (5-5) is positive definite when r ¤ 0 and (5-6) is positive definite when r D 0. By the scale

invariance it suffices to verify these latter properties when t D 1. The positive definiteness of (5-6) when
r D 0 then follows by continuity for " small enough. For (5-5), we have to take a little care because the
condition r ¤ 0 is noncompact. We need to ensure the positive definiteness of0B@ M � c" 1

2
@tM C

2c
p�1

" 1
2
@r M

1
2
@tM C

2c
p�1

" Et t � .d C 1/" Etr

1
2
@r M Etr Err C "

1CA
6The ability to freely manipulate the fields M;Et t ;Etr ;Err ;E!! in this fashion is a major advantage of the formulation of

Theorem 5.2. It would be very difficult to perform analogous manipulations if the original field u or the potential F were still
present.
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when t D 1 and r ¤ 0 for " small enough. Continuity will ensure this if jr j is bounded away from zero
(independently of "), so we may assume that r is in a small neighbourhood of the origin (independent
of "). Given that the above matrix is already positive definite when " D 0, it suffices by a continuity
argument to show that the above matrix has positive determinant for sufficiently small "; by the hypothesis
(5-5) and the fundamental theorem of calculus, it thus suffices to show that

d

d"
det

0B@ M � c" 1
2
@tM C

2c
p�1

" 1
2
@r M

1
2
@tM C

2c
p�1

" Et t � .d C 1/" Etr

1
2
@r M Etr Err C "

1CA> 0

for r near zero and sufficiently small ". But since @r M;Etr ;Err vanish at r D 0, we can use cofactor
expansion to write the left-hand side as 

M.1; 0/ 1
2
@tM.1; 0/

1
2
@tM.1; 0/ Et t .1; 0/

!
CO.jr j/CO."/

and the claim then follows from the hypothesis (5-5). This concludes the relaxation of the conditions
(5-4), (5-9) to (5-10), (5-11).

Now that we allow equality in (5-11), we sacrifice some generality by restricting to the special case
E!! D 0 (which basically corresponds to considering spherically symmetric blowup solutions). While
this gives up some flexibility, this will simplify our calculations a bit as we now only have four fields M,
Et t , Etr , Err to deal with, rather than five.

Until now we have avoided using the hypothesis d D 3. Now we will embrace this hypothesis. In
Proposition 2.2 it was convenient to make the change of variables �D r

d�1
2 uD ru to eliminate lower-order

terms such as
�

d�1
r

�
@r u; this change of variables is particularly pleasant in the three-dimensional case

as the lower-order term involving the coefficient 1
4
.d � 1/.d � 3/ vanishes completely (this vanishing is

closely tied to the strong Huygens principle in three dimensions). The corresponding change of variables
in this setting, aimed at eliminating the lower-order terms

�
d�1

r

�
Etr and

�
d�1

r

�
Err in (5-7) and (5-8), is

to replace the fields M, Et t , Etr , Err by the fields zM, zEt t , zEtr , zErr W �1! RC defined by
zM WD r2M;

zEt t WD r2Et t ;

zEtr WD r2Etr C
1
2
r@tM D r2Etr C

1

2r
@t
zM;

zErr WD r2Err C r@r M CM D r2Err C
1

r
@r
zM �

1

r2
zM :

Observe that if zM, zEt t , zErr are smooth and even, and zEtr is odd, with zM, zEt t vanishing to second
order at r D 0,

zEtr �
1

2r
@t
zM

vanishing to third order, and
zErr �

1

r
@r
zM C

1

r2
zM
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to fourth order, then these fields determine smooth fields M, Et t , Etr , Err with M, Et t , Err even, Etr

odd, and Err vanishing to second order at r D 0. Furthermore, if zM is homogeneous of order 2p�6
p�1

and
zEt t ; zEtr ; zErr are homogeneous of order � 4

p�1
, then we know M will be homogeneous of order � 4

p�1

and Et t , Etr , Err will be homogeneous of order �2.pC1/
p�1

.
If we introduce the quantity

V WD
1

pC1

�
1

2
.�@t t

zM C @rr
zM /C zEt t �

zErr

�
(5-12)

then a brief calculation shows that

V D
r2

2.pC 1/

��
�@t tM C @rr M C

2

r
M
�
� .�Et t CErr /

�
and so the condition (5-10) is equivalent to

V � 0: (5-13)

The equations (5-7) and (5-8) can now be expressed as

@t

h
1

r2
V
i
D�@tEt t C @r Etr C

2

r
Etr �

1

2
@t .�Et t CErr /

and
@r

h
1

r2
V
i
D�@tEtr C @r Err C

2

r
Err �

1

2
@r .�Et t CErr /;

which rearrange as an energy conservation law

@t

�
1

2
Et t C

1

2
Err C

1

r2
V
�
D @r Etr C

2

r
Etr

and a momentum conservation law

@tEtr D @r

�
1

2
Et t C

1

2
Err �

1

r2
V
�
C

2

r
Err I

multiplying these equations by r2 and writing Et t ;Etr ;Err in terms of zEt t ; zEtr ; zErr and zM one
obtains (after some calculation, as well as (5-12) in the case of (5-15)) the slightly simpler equations

@t

�
1
2
zEt t C

1
2
zErr CV

�
D @r

zEtr (5-14)

and

@t
zEtr D @r

�
1
2
zEt t C

1
2
zErr �V

�
�

p� 1

r
V: (5-15)

The expressions in (5-14) are even, while the expressions in (5-15) are odd. Thus we may combine these
equations into a single equation by adding them together, which after some rearranging becomes the
transport-type equation

.@t � @r /eCC .@t C @r /V D�
p� 1

r
V; (5-16)

where eC is the null energy density

eC WD
1
2
zEt t C

1
2
zErr C

zEtr : (5-17)
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Remark 5.3. It may be instructive to derive these equations in the specific context of a solution u W�3!R

to the scalar defocusing NLW

�uD jujp�1u;

which in polar coordinates becomes

�@t tuC @rr uC
2

r
uD jujp�1u:

Making the change of variables � D ru, this becomes

�@t t�C @rr� D
j�jp�1�

rp�1
:

Introducing the null energy

eC WD
1
2
j@t�C @r�j

2

and the potential energy

V WD
1

pC 1

j�jpC1

rp�1

as well as the additional densities

zM WD j�j2; zEt t WD j@t�j
2; zErr WD j@r�j

2; zEtr WD @t�@r�;

one can readily verify the identities (5-12), (5-16), and (5-17). It is similar for the other properties of zM ,
zEt t , zErr , zEtr identified in this section.

Finally, we translate the positive definiteness of (5-5) (when r ¤ 0) and (5-6) (when r D 0) into
conditions involving the fields zM, zEt t , zErr , zEtr . From the identity0B@

zM 1
2
@t
zM 1

2
@r
zM

1
2
@t
zM zEt t

zEtr

1
2
@r
zM zEtr

zErr

1CAD r2

0@1 0 0

0 1 0
1
r

0 1

1A
0B@ M 1

2
@tM

1
2
@r M

1
2
@tM Et t Etr

1
2
@r M Etr Err

1CA
0@1 0 1

r

0 1 0

0 0 1

1A;
we see (for r ¤ 0) that (5-5) is strictly positive definite if and only if the matrix0B@ zM 1

2
@t
zM 1

2
@r
zM

1
2
@t
zM zEt t

zEtr

1
2
@r
zM zEtr

zErr

1CA (5-18)

is strictly positive definite. Now we turn to (5-6) when r D 0. By homogeneity, it suffices to verify
this condition when .t; r/ D .1; 0/. From (1-1), we have @tM.1; 0/ D � 4

p�1
M.1; 0/, so the positive

definiteness of (5-6) is equivalent to the condition

Et t .1; 0/ >
�

2

p�1

�2
M.1; 0/ > 0;
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which in terms of zEt t ; zM becomes

@rr
zEt t .1; 0/ >

�
2

p�1

�2
@rr
zM .1; 0/ > 0: (5-19)

Summarising the above discussion, we now see that Theorem 5.2 is a consequence of the following:

Theorem 5.4 (fifth reduction). Let p > 5. Then there exist smooth even functions zM, zEt t , zErr W �1! R

and a smooth odd function zEtr W �1 ! R, with zM homogeneous of order 2p�6
p�1

and zEt t , zEtr , zErr

homogeneous of order � 4
p�1

, with zM ; zEt t vanishing to second order at r D 0,

zEtr �
1

2r
@t
zM

vanishing to third order, and
zErr �

1

r
@r
zM C

1

r2
zM

to fourth order. Furthermore, if one defines the fields V; eC W �1! R by (5-12) and (5-17), we have the
weak defocusing property (5-13) and the null transport equation (5-16). Finally, the matrix (5-18) is
strictly positive definite for r ¤ 0, and for r D 0 one has the condition (5-19).

It remains to establish Theorem 5.4. This will be the focus of the final section of the paper.

6. Constructing the mass and energy fields

Fix p> 5. We will need a large constant A> 1 depending only on p, and then sufficiently small parameter
ı > 0 (depending on p;A) to be chosen later. We use the notation X . Y , Y & X , or X D O.Y / to
denote an estimate of the form jX j � C Y , where C can depend on p but is independent of ı;A.

We need to construct smooth fields zM, zEt t , zErr , zEtr W �1! R which generate some further fields
V , eC W �1! R, which are all required to obey a certain number of constraints. The problem is rather
underdetermined, and so there will be some flexibility in selecting these fields; most of these fields will
end up being concentrated in the region f.t; r/ 2 �1 W r D .˙1CO.ı//tg near the boundary of the light
cone. Given that the constraint (5-16) only involves the two fields V and eC, it is natural to proceed by
constructing V and eC first. In fact we will proceed as follows.

Selection of eC in the left half of the cone. We begin by making a choice for the function eC W �1! R

in the left half � l
1
WD f.t; r/ 2 �1 W r � 0g of the cone. When t D 1, we choose eC.1; r/ to be a smooth

function with the following properties:

� One has
eC.1; r/D .1C r/�

4
p�1 (6-1)

for �1C ı � r � 0.

� One has
eC.1; r/� .1C r/�

4
p�1 (6-2)

for �1C 1
2
ı � r � �1C ı. Furthermore, one hasZ �1Cı

�1C 1
2
ı

eC.1; r/ dr �Aı1� 4
p�1 : (6-3)
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� One has

ı�
4

p�1 . eC.1; r/.Aı�
4

p�1 (6-4)

and ˇ̌̌̌
d

dr
eC.1; r/

ˇ̌̌̌
.Aı�

pC3
p�1 (6-5)

for �1� r � �1C ı.

Clearly we can find a smooth function r ! eC.1; r/ on Œ�1; 0� with these properties. We then extend eC

to the entire left half � l
1

of the cone by requiring it to be homogeneous of order � 4
p�1

; thus

eC.t; r/ WD t
�

4
p�1 eC

�
1;

r

t

�
: (6-6)

In particular, eC is smooth on this half of the cone, and we have

eC.t; r/D .t C r/�
4

p�1

for �.1� ı/t � r � 0.
The properties (6-1)–(6-5) are largely used to ensure that the potential energy V that we will construct

below is nonnegative.

Selection of V in the left half of the cone. Once eC has been selected on � l
1

, we construct V on � l
1

by
solving (5-16), or more explicitly by the formula

V .t; r/ WD
1

2jr jp�1

Z 0

r

jsjp�1..@t � @r /eC/.t � r C s; s/ ds (6-7)

for �t � r < 0. Note that as .@t �@r /eC vanishes for �.1� ı/t < r < 0, the potential energy V vanishes
on this region also, and so one can smoothly extend V to all of � l

1
. It is easy to see that V is homogeneous

of order � 4
p�1

. From the fundamental theorem of calculus and the chain rule, we have

.@t C @r /.jr j
p�1V /D jr jp�1.@t � @r /eC

for �t � r < 0, and hence by the product rule we see that (5-16) is obeyed for �t � r < 0, and hence to
all of � l

1
by smoothness. We have already seen that V vanishes in the region �.1� ı/t < r � 0. In the

region �t � r � �.1� ı/t , we have the following estimate and nonnegativity property:

Proposition 6.1. For �t � r � �.1� ı/t , we have

0� V .t; r/.At�
4

p�1 ı
p�5
p�1 :

We remark that to get the lower bound V .t; r/, the supercriticality hypothesis p > 5 will be crucial.

Proof. By homogeneity we may assume that t � r D 2, so that t D 1�O.ı/ and r D�1CO.ı/, and it
will suffice to show that

0� V .t; r/.Aı
p�5
p�1 : (6-8)
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Write eC.t; r/D .t C r/�
4

p�1 Cf .t; r/; then from (6-7) we have

V .t; r/D
1

2jr jp�1

Z 0

r

jsjp�1..@t � @r /f /.2C s; s/ ds: (6-9)

The function f is homogeneous of order � 4
p�1

; hence by (1-2)

.t@t C t@r /f D�
4

p� 1
f:

From the identity

@t � @r D�
t C r

t � r
.@t C @r /C

2

t � r
.t@t C t@r /

and the chain rule, we thus have

..@t � @r /f /.2C s; s/D�.1C s/
d

ds
f .2C s; s/�

4

p� 1
f .2C s; s/:

Inserting this into (6-9) and integrating by parts, we conclude that

V .t; r/D
1C r

2
f .t; r/C

1

2jr jp�1

Z 0

r

d

ds
.jsjp�1.1C s//f .2C s; s/� jsjp�1 4

p� 1
f .2C s; s/ ds;

which by the product rule is equal to

V .t; r/D
1C r

2
f .t; r/C

1

2jr jp�1

Z 0

r

jsjp�1

�
p� 5

p� 1
C
.p� 1/.1C s/

s

�
f .2C s; s/ ds: (6-10)

Note that f .2C s; s/ is only nonzero when s D �1CO.ı/, in which case it is of size O.Aı�
4

p�1 /

thanks to (6-2) and (6-4). This gives the upper bound in (6-8). Now we turn to the lower bound. First
suppose that �

�
1� 1

2
ı
�
t � r ; then f is nonnegative in all of its appearances in (6-10). As we are in the

supercritical case p > 5, the factor
p� 5

p� 1
C
.p� 1/.1C s/

s

is positive (indeed it is & 1) for ı small enough, and the claim follows in this case.
It remains to consider the case when �t � r � �

�
1� 1

2
ı
�
t . In this case we can use the lower bound

f .t; r/� �.t C r/
� 4

ı

and conclude that the term 1
2
.1C r/f .t; r/ is at least �O.ı

p�5
p�1 /. A similar argument shows that the

contribution to (6-10) coming from those s with

�.2C s/� s � �
�
1� 1

2
ı
�
.2C s/

is at least �O.ı
p�5
p�1 /. On the other hand, from (6-3), the contribution of those s with

s > �
�
1� 1

2
ı
�
.2C s/

is & .A�O.1//ı
p�5
p�1 . As A is assumed to be large, the claim follows. �
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On the support of V in � l
1

, we see from (6-5) and (6-6) that

.@t � @r /eC DO.At�
pC3
p�1 ı�

4
p�1 /

and hence by (5-16) and Proposition 6.1,

.@t C @r /V DO.At�
pC3
p�1 ı�

4
p�1 /: (6-11)

Selection of V in the right half of the cone. Once V has been constructed in the left half � l
1

of the light
cone, we extend it to the right half �r

1
WD f.t; r/ 2 �1 W r � 0g by even extension; thus

V .t; r/ WD V .t;�r/

for all .t; r/ 2 �r
1

. Since V vanished for �.1� ı/t � r � 0, we see that V is smooth on all of �1, and
vanishing in the interior cone f.t; r/ 2 �1 W jr j � .1� ı/tg. It also obeys the nonnegativity property (5-13).
From reflecting (6-11) and Proposition 6.1 we have the bounds

V DO.At�
4

p�1 ı
p�5
p�1 / (6-12)

and
.@t � @r /V DO.At�

pC3
p�1 ı�

4
p�1 / (6-13)

when .1� ı/t � r � t .

Selection of eC in the right half of the cone. Thus far, V has been defined on all of �1, and eC defined
on � l

1
. We now extend eC to �r

1
by solving (5-16), or more precisely by setting

eC.t; r/ WD eC.t C r; 0/C

Z r

0

..@t C @r /V /.t C r � s; s/C
p� 1

s
V .t C r � s; s/ ds (6-14)

for 0< r � t ; note that the integral is well-defined since V vanishes near the time axis. One easily checks
that eC.t; r/D .t C r/�

4
p�1 for 0� r � .1� ı/t , and so eC extends smoothly to all of �1 and is equal

to .t C r/�
4

p�1 in the interior cone f.t; r/ 2 �1 W jr j � .1� ı/tg. It is also clear from construction that
eC is homogeneous of order � 4

p�1
. From the fundamental theorem of calculus we see that eC and V

obey (5-16) on �r
1

, and hence on all of �1. From (6-12) and (6-13) we see that the integrand is of size
O.At�

pC3
p�1 ı�

4
p�1 / when r D .1�O.ı//t , and vanishes otherwise, which leads (for ı small enough) to

the crude upper and lower bounds

t�
pC3
p�1 . eC.t; r/. t�

pC3
p�1 (6-15)

throughout �r
1

.

Selection of e� and zEtr . We reflect the function eC around the time axis to create a new function
e� W �1! R:

e�.t; r/ WD eC.t; r/:

Like eC, the function e� is smooth and homogeneous of order � 4
p�1

. It equals .t�r/�
4

p�1 in the interior
cone f.t; r/ 2 �1 W jr j � .1� ı/tg. On � l

1
it obeys the crude upper and lower bounds

t�
pC3
p�1 . e�.t; r/. t�

pC3
p�1 (6-16)
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and in the region .1� ı/t � r � t we have the bounds

.ıt/�
4

p�1 . e�.t; r/.A.ıt/�
4

p�1 (6-17)

thanks to (6-4).
Recall from (5-17) that the field eC is intended to ultimately be of the form 1

2
zEt t C

1
2
zErr C

zEtr .
Similarly, e� is intended to be of the form

e� D
1
2
zEt t C

1
2
zErr �

zEtr : (6-18)

Accordingly, we may now define zEtr as

zEtr WD
eC� e�

2
: (6-19)

This is clearly smooth, odd, and homogeneous of order � 4
p�1

. We also see that the quantity zEt t C
zErr

is now specified:
zEt t C

zErr D eCC e�: (6-20)

We are left with two remaining unknown scalar fields to specify: the mass density zM and the energy
equipartition � zEt t C

zErr , which determines the fields zEt t and zErr by (6-20). The requirements needed
for Theorem 5.4 that have not already been verified are as follows:

� zM is smooth, even, and homogeneous of order 2p�6
p�1

, and � zEt t C
zErr is smooth, even, and

homogeneous of order � 4
p�1

.

� zM, zEt t vanish to second order at r D 0, zEtr �
1

2r
@t
zM vanishes to third order, and zErr �

1
r
@r
zM C

1
r2
zM to fourth order.

� One has the equations (5-12) and (5-17) (and hence also (6-18)).

� The matrix (5-18) is strictly positive definite for r ¤ 0, and for r D 0 one has the condition (5-19).

As there is only one equation (beyond homogeneity and reflection symmetry) constraining zM and
� zEt t C

zErr — namely, (5-12) — the problem of selecting these two fields is underdetermined, and thus
subject to a certain amount of arbitrary choices. We will select these fields first in the exterior region˚
.t; r/ 2 � W jr j � t

2

	
, and then fill in the interior using a different method.

Selection of M;� zEttC
zErr away from the time axis. In the exterior region

˚
.t; r/ 2 � W jr j � t

2

	
, we

shall simply select the field zM to be a small but otherwise rather arbitrary field, and then use (5-12) to
determine � zEt t C

zErr .
More precisely, let zM .1; r/ be a smooth even function on the region

˚
r W 1

2
� jr j � 1

	
obeying the

following properties:

� For 1
2
� jr j � 3

4
, one has

zM .1; r/D ı
�
.1C r/

2p�6
p�1 C .1� r/

2p�6
p�1

�
: (6-21)

(This condition will not be used directly in this part of the construction, but is needed for compatibility
with the next part.)
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� For 1
2
� jr j � 1, one has the bounds

ı . zM .1; r/. ı (6-22)

and
d

dr
zM .1; r/;

d2

dr2
zM .1; r/DO.ı/: (6-23)

It is clear that one can select such a function. We then extend zM to
˚
.t; r/ 2 �1 W jr j �

t
2

	
by requiring

that zM be homogeneous of order 2p�6
p�1

. Then zM is smooth and even, and one has the bounds

ıt
2p�6
p�1 . zM .t; r/. ıt

2p�6
p�1 ; (6-24)

d

dr
zM .t; r/;

d

dt
zM .t; r/DO.ıt

p�5
p�1 /; (6-25)

d2

dr2
zM .t; r/;

d2

dt2
zM .t; r/DO.ıt�

4
p�1 / (6-26)

in the region
˚
.t; r/ 2 �1 W jr j �

t
2

	
.

We then define � zEt t C
zErr on this region by enforcing (5-12); thus

� zEt t C
zErr WD

1
2
.�@t t

zM C @rr
zM /� .pC 1/V: (6-27)

Combining this with (6-20), this defines zEt t and zErr . It is easy to see that these fields are smooth, even
and homogeneous of order � 4

p�1
on
˚
.t; r/ 2 �1 W jr j �

t
2

	
.

We now claim that the matrix (5-18) is strictly positive definite in the region
˚
.t; r/ 2 �1 W jr j �

t
2

	
.

By homogeneity and reflection symmetry, it suffices to verify this when t D 1 and 1
2
� r � 1. Using the

identity0B@ zM 1
2
.@tC@r / zM

1
2
.@t�@r / zM

1
2
.@tC@r / zM 2eC � zEt tC

zErr

1
2
.@t�@r / zM � zEt tC

zErr 2e�

1CAD
0@1 0 0

0 1 1

0 �1 1

1A
0B@
zM 1

2
@t
zM 1

2
@r
zM

1
2
@t
zM zEt t

zEtr

1
2
@r M zEtr

zErr

1CA
0@1 0 0

0 1 �1

0 1 1

1A ;
it suffices to show that the matrix0B@

zM 1
2
.@t C @r / zM

1
2
.@t � @r / zM

1
2
.@t C @r / zM 2eC � zEt t C

zErr

1
2
.@t � @r / zM � zEt t C

zErr 2e�

1CA
is strictly positive definite.

If r � 1� ı, then all off-diagonal terms are O.ı/ thanks to (6-23) and (6-27), while the diagonal terms
are & ı, & 1, and & 1 respectively, and the positive definiteness is easily verified, since the associated
quadratic form is at least

& ıx2
1 Cx2

2 Cx2
3 �O.ıjx1jjx2j/�O.ıjx1jjx3j/�O.ıjx2jjx3j/;

which is easily seen to be positive for ı small enough. If r < 1� ı, then the off-diagonal terms are O.ı/

in the top row and left column, and O.Aı
p�5
p�1 / in the bottom right minor by (6-12), while the diagonal
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terms are & ı, & 1, and & ı�
4

p�1 by (6-22), (6-15) and (6-17), so the associated quadratic form is

& ıx2
1 Cx2

2 C ı
� 4

p�1 x2
3 �O.ıjx1jjx2j/�O.ıjx1jjx3j/�O.Aı

p�5
p�1 jx2jjx3j/;

which is again positive definite (note that Aı
p�5
p�1 can be chosen to be much smaller than the geometric

mean of ı and ı�
4

p�1 ).

Selection of M, zEtt , zErr near the time axis. Now we restrict attention to the interior region � i
1
WD˚

.t; r/2�1 W jr j �
t
2

	
; all identities and estimates here are understood to be on this region unless otherwise

specified.
We will now reverse the Gram matrix reduction from previous sections, and construct zM, zEt t , zErr in

� i
1

from an (infinite-dimensional) vector-valued solution to the (free, .1C1/-dimensional) wave equation.
Let H be a Hilbert space and let t 7! f .t/ be a family of vectors f .t/ in H smoothly parmeterised by a
parameter t 2 .0;C1/ (so that all derivatives in t exist in the strong sense and are continuous); we will
select this family more precisely later. We introduce the smooth vector-valued field � W � i

1
!H by the

formula
�.t; r/ WD f .t C r/�f .t � r/

and we will define zM, zEt t , zErr W �
i
1
! R by the formulae

zM .t; r/ WD h�.t; r/; �.t; r/iH ;

zEt t .t; r/ WD h@t�.t; r/; @t�.t; r/iH ;

zErr .t; r/ WD h@r�.t; r/; @r�.t; r/iH :

Since � is smooth and odd in r , these functions are smooth and even in r . If we impose the additional
hypothesis that the Gram matrix hf .s/; f .t/iH has the scaling symmetry

hf .�s/; f .�t/iH D �
2p�6
p�1 hf .s/; f .t/iH (6-28)

for s; t; � > 0, then M will be homogeneous of order 2p�6
p�1

; furthermore, by differentiating (6-28) with
respect to both s and t we see that

hf 0.�s/; f 0.�t/iH D �
� 4

p�1 hf 0.s/; f 0.t/iH (6-29)

(where f 0 denotes the derivative of f ) and so zEt t ; zErr will be homogeneous of order � 4
p�1

.
Observe that

1
2
zEt t C

1
2
zErr Ch@t�; @r�iH D

1
2
k.@t C @r /�k

2
H

D 2kf 0.t C r/k2H

and similarly
1
2
zEt t C

1
2
zErr � h@t�; @r�iH D 2kf 0.t � r/k2H :

Thus, if we impose the additional normalisation

kf 0.1/kH D
1
p

2
; (6-30)
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and hence by (6-29),

kf 0.t/kH D
1
p

2
t�

2
p�1; (6-31)

we see from the identities e˙.t; r/D .t ˙ r/�
4

p�1 in � i
1

that

1
2
zEt t C

1
2
zErr ˙h@t�; @r�iH D e˙:

In particular, (6-20) holds, and from (6-19) one has

zEtr D h@t�; @r�iH :

We also obtain the equations (5-17) and (6-18).
Next, it is clear that � solves the wave equation

�@t t�C @rr� D 0;

so in particular

h�;�@t t�C @rr�iH D 0;

which implies in particular (cf. (4-5)) that

1
2
.�@t t

zM C @rr
zM /C zEt t �

zErr D 0:

Since V vanishes on �1, we conclude that (5-12) holds.
Next, from differentiating the formula for zM , one has

1
2
@t
zM D h�; @t�iH

and
1
2
@r
zM D h�; @t�iH

and so the quadratic form associated with (5-18) factorises as

kx1�Cx2@t�Cx3@r�k
2
H :

This is clearly positive semidefinite at least; to make it positive definite for r ¤ 0, it will suffice to enforce
the condition

f .s/; f .t/; f 0.s/; f 0.t/ linearly independent (6-32)

for all distinct s; t > 0.
Suppose we assume the long-range orthogonality condition

hf .s/; f .t/iH D 0 (6-33)

whenever t
s
> 1:1 or s

t
> 1:1. Then in the region

˚
.t; r/ 2 � i

1
W jr j � t

4

	
away from the time axis, we have

from Pythagoras’ theorem that

zM .t; r/D kf .t C r/k2H Ckf .t � r/k2H :
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In particular, if we also impose the normalisation

kf .1/kH D
p
ı (6-34)

then (from (6-28)) we have

zM .t; r/D ı
�
.t C r/

2p�6
p�1 C .t � r/

2p�6
p�1

�
in the region

˚
.t; r/ 2 � i

1
W jr j � t

4

	
. In particular from (6-21) and homogeneity we see that zM on � i

1

joins up smoothly with its counterpart in the exterior region
˚
.t; r/ 2 �1 W jr j �

t
2

	
; by (5-12) we see

that � zEt t C
zErr does too. By (6-20) and (6-19) we now see that all of the fields M, zEt t , zErr , zEtr are

smooth on all of �1.
Now we study the vanishing properties of the various fields constructed at r D 0 for a fixed value of t .

From Taylor expansion we have

�.t; r/D 2rf 0.t/C 1
3
r3f 000.t/CO.jr j5/

as r ! 0 (where the error term denotes a quantity in H of norm O.jr j5/, and the implied constant can
depend on t and �). Furthermore, these asymptotics behave in the expected fashion with respect to
differentiation in time or space; thus for instance

@r�.t; r/D 2f 0.t/C r2f 000.t/CO.jr j4/;

@t�.t; r/D 2rf 00.t/C 1
3
r3f .4/.t/CO.jr j5/:

Taking inner products, we conclude the asymptotics

zM .t; r/D 4r2
kf 0.t/k2H C

4
3
r4
hf 0.t/; f 000.t/iH CO.jr j6/;

zEt t .t; r/D 4r2
kf 00.t/k2H CO.jr j4/;

zEtr .t; r/D 4rhf 0.t/; f 00.t/iH CO.jr j3/;

zErr D 4kf 0.t/k2H C 4r2
hf 0.t/; f 000.t/iH CO.jr j4/:

The asymptotic for zM behaves well with respect to derivatives; thus for instance

@t
zM .t; r/D 8r2

hf 0.t/; f 00.t/iH CO.jr j4/;

@r
zM .t; r/D 8rkf 0.t/k2H C

16
3

r3
hf 0.t/; f 000.t/iH CO.jr j5/:

Among other things, this shows (using (6-30)) that the condition (5-19) reduces to

kf 00.1/kH >
2

p� 1

1
p

2
: (6-35)

It is also clear from these asymptotics that zE and zEt t vanish to second order, and zEtr �
1

2r
@t
zM vanishes

to third order; a brief calculation also shows that zErr �
1
r
@r
zM C 1

r2
zM vanishes to fourth order.

To summarise: in order to conclude all the required properties for Theorem 5.4, it suffices to locate a
smooth curve t 7! f .t/ in a Hilbert space H which obeys the hypotheses (6-28), (6-30), (6-32), (6-33),
(6-34) and (6-35).
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We take the Hilbert space H to be the space L2.R/ of square-integrable real-valued functions on R

with Lebesgue measure. The functions f .t/ 2H will take the form

f .t/.x/ WD t
p�3
p�1 .x� log t/;

where  W R! R is a bump function whose (closed) support is precisely Œ0; 0:01� (that is to say, the
set f ¤ 0g is a dense subset of Œ0; 0:01�) depending on ı and p to be chosen shortly. It is clear from
construction that (6-28) and (6-33) hold. The condition (6-34) becomesZ

R

 .x/2 dx D ı;

while the condition (6-30) becomes Z
R

 0.x/2 dx D 1
2
:

It is easy to see that we can select with closed support precisely Œ0; 0:01�with both of these normalisations,
basically because the Dirichlet form h�0;  0i is unbounded on L2.Œ0; 0:01�/.

Now we verify the linear independence claim (6-32). We may assume without loss of generality that
sD 1 and t > 1. Then we have a linear dependence between  and  0 in a neighbourhood of 0; since  ; 0

vanish to the left of 0, the Picard uniqueness theorem for ODEs then implies that  vanishes a little to
the right of 0 also, contradicting the hypothesis that  has closed support containing 0. This gives (6-32).

A similar argument shows that f 0.1/ and f 00.1/ are linearly independent. Squaring and differentiating
(6-31) at t D 1 gives

hf 0.1/; f 00.1/iH D�
2

p�1

1

2

and (6-35) then follows from (6-30) and the Cauchy–Schwarz inequality, using the linear independence
to get the strict inequality. This (finally) completes the proof of Theorem 5.4 and hence Theorem 1.1.
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