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A DOUBLE WELL POTENTIAL SYSTEM

JAEYOUNG BYEON, PIERO MONTECCHIARI AND PAUL H. RABINOWITZ

A semilinear elliptic system of PDEs with a nonlinear term of double well potential type is studied
in a cylindrical domain. The existence of solutions heteroclinic to the bottom of the wells as minima
of the associated functional is established. Further applications are given, including the existence of
multitransition solutions as local minima of the functional.

1. Introduction

In this paper, the system of partial differential equations

��uCVu.x; u/D 0; x 2�; (PDE)

where � � Rn and u W �! Rm, will be studied. The set � is a cylindrical domain in Rn given by
�D R�D, where D is a bounded open set in Rn�1 with @D 2 C 1. On @�, we require

@u

@�
D 0 on @�D R� @D; (BC)

where � is the outward-pointing unit normal to @D. Later, � will be allowed to be a more general
cylindrical domain which depends 1-periodically on x1.

As to the function V , to begin assume:

(V1) V 2 C 1.��Rm;R/ and V.x1C 1; x2; : : : ; xn; u/D V.x; u/, i.e., V is 1-periodic in x1.

(V2) There are points a�¤ aC such that V.x; a˙/D 0 for all x 2� and V.x; u/ > 0 otherwise.

(V3) There is a constant V > 0 such that lim infjuj!1 V.x; u/� V uniformly in x 2�.

(V4) For n� 2, there exist constants c1; C1 > 0 such that

jVu.x; u/j � c1CC1juj
p;

where 1 < p < .nC 2/=.n� 2/ for n� 3 and there is no upper growth restriction on p if nD 2.

An example of V satisfying (V1)–(V4) is V.x; u/ D ju� a�jq ju� aCjq for q 2 .1; n=.n� 2// and
aC¤ a� 2 Rn. By (V2), V is a double well potential and we are interested in the existence of classical
solutions of (PDE) that are heteroclinic in x1 from a� to aC. If nD 1 and m is arbitrary, (PDE) reduces to
a second-order Hamiltonian system of ordinary differential equations and conditions (V1)–(V3) suffice for
such an existence result. For arbitrary n and m, conditions (V1)–(V4) enable us to show (PDE) possesses
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a weak solution. As is usual, we say that U 2W 1;2
loc .�;R

m/ is a weak solution of (PDE) and (BC) when
for any ' 2W 1;2

loc .�/ having compact support in �,Z
�

�
rU � r'CVu.x; U /'

�
dx D 0: (1.1)

The weak solution is a classical solution when nD 1. However, when n > 1, more regularity of V and
@� is required to get a classical solution.

In Section 2, the functional

J.u/D

Z
�

�
1
2
jruj2CV.x; u/

�
dx �

Z
�

L.u/ dx; (1.2)

whose formal Euler–Lagrange equation is (PDE), will be studied. Minimization arguments will be used
to show that J has a critical point. In particular when nD 1, our first existence result for (PDE) is:

Theorem. If V satisfies (V1)–(V3), then (PDE) possesses a solution heteroclinic from a� to aC.

For n > 1, existence of solutions requires more work. In Section 3, a regularity theorem will be stated
as a consequence of which we have:

Theorem. If (V1)–(V4) hold, V 2 C 2, and @� 2 C 3, there is a classical solution U of (PDE) and (BC)
such that limx1!˙1 U.x1; : : : ; xn/D a

˙ uniformly for .x2; : : : ; xn/ 2 D.

In Section 2, we find the solution by a minimization argument in an appropriate class of functions, � ,
and a detailed proof of the regularity will be given in Section 6.

Four generalizations of our existence results will be given in Section 4. The first, Theorem 4.1,
essentially replaces conditions (V2)–(V4) by the requirement that V possesses a convex basin containing
a˙— see hypothesis (V5) — to get an L1.�;Rm/ bound for the minimizer of Section 2 and this bound
leads in turn to the existence of a solution of (PDE) and (BC), which is heteroclinic in x1 from a�

to aC. This result gives the existence of the heteroclinic solution of (PDE) and (BC) for the example of
V.x; u/D ju� a�jq ju� aCjq mentioned earlier, but now for any q > 1.

The second replaces � by a more general domain varying periodically in x1. The third considers a
PDE perturbation of the case of nD 1. Finally for the fourth, the case of multiwell potentials will be
discussed briefly.

In Section 5, it will be shown that variational gluing arguments in the spirit of [Montecchiari and
Rabinowitz 2016] together with the basic heteroclinic minimizers of (1.2) as well as their counterparts when
the roles of a� and aC are reversed can be used to construct infinitely many multitransition homoclinic
and heteroclinic solutions of (PDE). These solutions are local minima of (1.2) that as a function of x1
transit back and forth between the two global minima, a˙, of V . Obtaining these solutions requires a
mild nondegeneracy condition — see Proposition 5.10(ii) — on the set of heteroclinic minimizers of (1.2).
Stated very informally, we will show:

Theorem. If (V1)–(V4) are satisfied and a mild nondegeneracy condition on the heteroclinics in x1 from
a˙ to a� holds, then for each k2N[f1g, k � 2, there exist infinitely many k-transition solutions of
(PDE) and (BC).
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As has been noted above, our existence results rely on minimization arguments from the calculus
of variations. These arguments are elementary, but often delicately exploit (V1)–(V3). The regularity
arguments where (V4) and further smoothness of V and @D play their roles are of necessity rather
technical.

To conclude this section, some of the literature on (PDE) and (BC) will be discussed. The earliest
work we know of is for the case of nD 1, where of course D D ∅ and (BC) is vacuous. Thus (PDE)
becomes a second-order Hamiltonian system. Using geometrical arguments, the existence of heteroclinic
solutions for V D V.u/ was studied for a more general class of potentials by Bolotin [1978]. See also
the survey article by Kozlov [1985]. Subsequently other work was done, also for the autonomous case
where V 2 C 3 has nondegenerate minima and mD 2, by Sternberg [1991]. Rabinowitz [1993] treated
V D V.t; u/ where V 2 C 2 is periodic in t . He used minimization arguments from [Rabinowitz 1989],
where V D V.u/ and is periodic in the components of u. Alikakos and Fusco [2008] also treated the
autonomous case for a C 2 potential under a milder condition than the nondegeneracy of the minima.

For m D 1 and n > 1, where (BC) plays a role, minimization arguments similar to the ones used
in [Rabinowitz 1994] were used in [Rabinowitz 2002] and generalized in [Rabinowitz 2004] to obtain
heteroclinics in x1. The case of m; n > 1 for (PDE) has been studied extensively in several papers by
Alikakos and his collaborators, especially Fusco, mainly in the autonomous setting when V possesses
symmetries and one seeks solutions possessing these symmetries [Alikakos 2012; 2013; Alikakos and
Fusco 2008; 2009; 2011; 2015; Alikakos and Smyrnelis 2012]. In fact it was their recent paper, [Alikakos
and Fusco 2015], together with our work [Montecchiari and Rabinowitz 2016] on systems like (PDE)
but with potentials V.x; u/ that are periodic in the components of u that led to this paper. Alikakos and
Fusco [2015] studied (PDE) and (BC), with � periodic in x1, essentially under the C 2 version of (V1),
and stronger forms of (V2) and (V5). See the survey paper [Alikakos 2013] for many more references
to and related questions for (PDE). For some other related results on entire solutions of systems of
Allen–Cahn-type, see [Alessio 2013; Alessio and Montecchiari 2014; Bronsard and Reitich 1993; Gui
and Schatzman 2008; Schatzman 2002].

2. The existence of a minimizer of J

In this section, as a first step towards finding heteroclinic solutions of (PDE), a minimizer will be obtained
for the functional J, defined in (1.2). The functional will be studied on the Hilbert space

E �

�
u 2W

1;2
loc .�;R

m/

ˇ̌̌̌
kuk2 �

Z
�

jruj2 dxC

Z
T0

juj2 dx <1

�
;

where for i 2 Z, we set Ti D .i; i C 1/�D. As the class of admissible functions, take

� D
˚
u 2E

ˇ̌
ku� a˙kL2.Ti ;Rm/! 0; i !˙1

	
:

Define
c D inf

u2�
J.u/: (2.1)

It is readily seen that � ¤∅ and 0� c <1. Then we have:
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Theorem 2.2. Suppose � D R � D with D � Rn�1 a bounded domain and @D 2 C 1. If V satisfies
(V1)–(V3), then there exists a U 2 � such that J.U /D c > 0. Moreover, there is a constant M > 0 such
that for any minimizer U of (2.1),

sup
i2Z

kU kW 1;2.Ti ;Rm/
�M:

Before proving Theorem 2.2, the following result is useful.

Proposition 2.3. Let V satisfy (V1)–(V3), @D 2 C 1, and v 2 E with J.v/ <1. Then there are '˙ 2
fa�; aCg such that kv�'˙kL2.Ti ;Rm/! 0 as i !˙1.

Proof. Their proofs being the same, we will prove the result for 'C. For x 2 �, set x D .x1; Ox/ with
x1 2 R and Ox 2 D. For x 2 T0 and k 2 Z, set vk.x/D v.x1C k; Ox/ so vk 2W 1;2.T0;R

m/. Then (V2)
and J.v/ <1 imply

lim
k!1

krvkkL2.T0;Rm/ D lim
k!1

Z
T0

V.x; vk/ dx D 0: (2.4)

Consequently fkrvkkL2.T0;Rm/g is bounded independently of k 2 Z. By the Poincaré inequality and the
fact that D 2 C 1, there is a constant b so that

kvk � Œvk�kL2.T0;Rm/ � bkrvkkL2.T0;Rm/; (2.5)

where Œvk� denotes the mean value of vk on T0. We claim that fvkg is bounded in L2.T0;Rm/. If not,
(2.5) shows fŒvk�g is unbounded in R. For a set S � Rn, let jS j denote the measure of S . By (2.5) again,
the sequence fvk � Œvk�g converges to 0 in measure. Therefore for any ı > 0, the measure of the set in T0
where jvk � Œvk�j � ı is at least 1

2
jT0j for large k. Thus by (V3), for large k > 0,Z

T0

V.x; vk/ dx �
1
4
jT0jV : (2.6)

But (2.6) is contrary to (2.4), so fvkg is bounded in W 1;2.T0;R
m/. Hence there is a v� 2W 1;2.T0;R

m/

such that along a subsequence, vk converges to v� weakly in W 1;2.T0;R
m/ and strongly in L2.T0;Rm/.

By (2.5), v� D Œv��; i.e., v� is a constant vector. Again vk! v� in measure along the subsequence as
k!1, so for any small ı, we have jvk � v�j � ı on a subset of T0 of measure � 1

2
jT0j. ThereforeZ

T0

V.x; vk/ dx �
1
2
jT0j min

z2Bı.v�/
V.x; z/; (2.7)

where Bı.v/ denotes an open ball of center v and radius ı in Rm. If v� 62 fa�; aCg, and ı is small enough,
the right-hand side of (2.7) is positive. But as k!1, the left-hand side of (2.7) goes to 0. Therefore
v� 2 fa�; aCg. For notational convenience, suppose v� D a�.

It remains to show that the entire sequence fvkg, rather than a subsequence, converges to a�, i.e.,

lim
k!1

vk D a
�: (2.8)



A DOUBLE WELL POTENTIAL SYSTEM 1741

Otherwise, there exist subsequences fipg; fkqg � N, with ip !1 as p !1, kq !1 as q !1,
ip < kp < ipC1 for all p and such that

lim
p!1

vip D a
�; lim

q!1
vkq D a

C:

Set "D 1
3
jaC� a�j

p
jT0j. Therefore there is a p such that for p � p,

kvip � a
�
kL2.T0;Rm/ < "; kvkp � a

C
kL2.T0;Rm/ < ":

We claim that for p possibly still larger and all p � p, there is an sp 2 N such that ip < sp < kp and

kvsp � a
�
kL2.T0;Rm/ � "; kvsp � a

C
kL2.T0;Rm/ � ":

If not, for every t between ip and kp,

kvt � a
�
kL2.T0;Rm/ < " or kvt � aCkL2.T0;Rm/ < ":

Replace ip and kp by the smallest adjacent pair j; j C 1 2 N\ Œip; kp� such that

kvj � a
�
kL2.T0;Rm/ < "; kvjC1� a

C
kL2.T0;Rm/ < ": (2.9)

Next observe that

jvjC1.x/� vj .x/j D

ˇ̌̌̌Z 1

0

vx1.x1C j C s; Ox/ ds

ˇ̌̌̌
�

ˇ̌̌̌Z 2

0

vx1.j C s; Ox/ ds

ˇ̌̌̌
�
p
2

�Z 2

0

vx1.j C s; Ox/
2 ds

�1=2
:

Therefore

kvjC1� vj kL2.T0;Rm/ �
p
2kvx1kL2.T0[T1;Rm/: (2.10)

By (2.4), for p still larger, we can assume the right-hand side of (2.10) is � ". On the other hand, by (2.9),

kvjC1� vj kL2.T0;Rm/ > ka
C
� a�kL2.T0;Rm/� 2"

D jaC� a�j
p
jT0j � 2": (2.11)

Since 3"D jaC� a�j
p
jT0j, (2.11) is not possible and therefore there exists a sequence fspg as claimed.

But then

J.v/�

1X
p

Z
Tsp

L.v/ dx D1

and we have a contradiction, establishing Proposition 2.3. �

To prove Theorem 2.2, let fukg be a minimizing sequence for (2.1). Thus there is a constant M1 such
that for all k 2 N,

J.uk/�M1: (2.12)
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Let �2
�
0; 1
4
jaC�a�j

p
jT0j

�
. Noting that � and J are invariant under a unit phase shift in the x1-direction,

it can be assumed that

kuk � a
�
kL2.Ti ;Rm/

� � for all i � 0 and kuk � a
�
kL2.T1;Rm/ > � (2.13)

for all k 2 N. Now a few observations about any u 2 � are required. Set

�1 �
˚
u 2 �

ˇ̌
minfku� a�kL2.T0;Rm/; ku� a

C
kL2.T0;Rm/g � �

	
;

�2 �
˚
u 2 �

ˇ̌
maxfku� a�kL2.T0;Rm/; ku� a

C
kL2.T1;Rm/g � �

	
;

�3 �
˚
u 2 �

ˇ̌
maxfku� aCkL2.T0;Rm/; ku� a

�
kL2.T1;Rm/g � �

	
:

Proposition 2.14. (1) There is a constant �1 > 0 such that

d1 � inf
u2�1

Z
T0

L.u/ dx � �1:

(2) There is a constant � > 0 such that

d � inf
u2�2[�3

Z
T0[T1

L.u/ dx � �:

Proof. If �1 D 0, there is a sequence fvkg in �1 such thatZ
T0

L.vk/ dx! 0 as k!1: (2.15)

Arguing as in the proof of Proposition 2.3, we again conclude (2.4)–(2.5) hold and either (i) both fvkg is
bounded inL2.T0;Rm/ and fŒvk�g is bounded in Rm or (ii) both sequences are unbounded. If (i) occurs, as
in the proof of Proposition 2.3, fvkg converges along a subsequence in L2.T0;Rm/ to a constant function
v� D Œv�� and for any small ı, for large k, we have jvk � v�j � ı on a subset of T0 of measure � 1

2
jT0j.

Thus (2.7) again holds. Noting that

jv� a˙jjT0j
1=2
D kv� a˙kL2.T0;Rm/ � �

for ı small compared to �, (V2) and (V3) show the right-hand side of (2.7) is positive independently of v.
This contradicts (2.4) and this case is proved.

Next suppose that (ii) occurs. Then the argument centered around (2.6) again applies and this case is
impossible. Thus (1) of the proposition is proved.

For the proof of (2), we use a similar argument. Assume to the contrary that � D 0. Then there is a
sequence fvkg in �2[�3 such thatZ

T0[T1

L.vk/ dx! 0 as k!1: (2.16)

Taking a subsequence if necessary, it can be assumed that fvkg � �2 or fvkg � �3. Suppose fvkg � �2.
Arguing as in the proof of (1), by (2.16),

lim
k!1

krvkkL2.T0[T1;Rm/ D lim
k!1

Z
T0[T1

V.x; vk/ dx D 0: (2.17)
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Again by the Poincaré inequality, there is a constant b1 so that

kvk � Œvk�1kL2.T0[T1;Rm/ � b1krvkkL2.T0[T1;Rm/! 0 as k!1; (2.18)

where Œvk�1 denotes the mean value of vk on T0 [ T1. It follows as in case (ii) of (1) that fŒvk�1g is
bounded. Taking a subsequence again if necessary, it can be assumed that limk!1Œvk�1 D a 2 Rm. Then
we see that

2� � lim
k!1

kvk � a
�
kL2.T0;Rm/C lim

k!1
kvk � a

C
kL2.T1;Rm/

D ka�� akL2.T0;Rm/Cka
C
� akL2.T1;Rm/

D ja�� aj
p
jT0jC ja

C
� aj

p
jT1j

� ja�� aCj
p
jT0j;

which contradicts that � < 1
4
jaC� a�j

p
jT0j. In the remaining case where fvkg � �3, a contradiction

follows by the same argument. This proves (2). �

Remark 2.19. Observe that for any u 2 � satisfying (2.12) and any i 2 N, either

min
˚
ku� a�kL2.Ti ;Rm/; ku� a

C
kL2.Ti ;Rm/

	
> � (2.20)

or

min
˚
ku� a�kL2.Ti ;Rm/; ku� a

C
kL2.Ti ;Rm/

	
� �: (2.21)

Let l.u/ be the number of values of i for which (2.20) holds. By (2.12) and Proposition 2.14(1),

l.u/�1 �M1: (2.22)

Thus (2.22) shows l.u/ is bounded from above independently of u; i.e., (2.20) holds for at most M1=�1

values of i . Next let l�.u/ denote the number of values of i for which

max
˚
ku� a�kL2.Ti ;Rm/; ku� a

C
kL2.TiC1;Rm/

	
� �

or

max
˚
ku� aCkL2.Ti ;Rm/; ku� a

�
kL2.TiC1;Rm/

	
� �:

Hence l�.u/ represents the number of transitions of u from being “near” a˙ on Ti to being “near” a�

on TiC1. By Proposition 2.14(2),

l�.u/� �M1: (2.23)

This means that the number of pairs of consecutive intervals on which u shifts from being near one of a�

or aC to the other is uniformly bounded for u 2 � satisfying (2.12).

Bounds for the functions uk in the minimizing sequence are provided by the next result.

Proposition 2.24. If V satisfies (V1)–(V3), then there is a constant M such that kukkW 1;2.Ti ;Rm/
�M

for all k 2 N and i 2 Z.
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Proof. We argue as in an analogous situation in [Montecchiari and Rabinowitz 2016]. It can be assumed
that uk satisfies the normalization (2.13). By (2.12),

J.uk/D
X
i2Z

Z
Ti

L.uk/ dx �M1: (2.25)

Therefore (2.25) and (2.13) immediately yield the desired bound for some value of M, say M2, for i � 0.
For any i 2 Z for which kuk � a˙kL2.Ti ;Rm/ � �, we get the kukkW 1;2.Ti /

bound exactly as was done
for i � 0 and obtain the same upper bound, M2. By Remark 2.19, there are at most l values of i that
remain. They lie in

Ak D
˚
i 2 N

ˇ̌
kuk � a

�
kL2.Ti ;Rm/

� �; kuk � a
C
kL2.Ti ;Rm/

� �
	
:

Note that Ak � N. Let i … Ak and i C 1 2 Ak . Let Ox D .x2; : : : ; xn/. For .s; Ox/ 2 Ti and .�; Ox/ 2 TiC1,

uk.�; Ox/D uk.s; Ox/C

Z �

s

@uk.t; Ox/

@t
dt;

so

juk.�; Ox/j
2
� 2juk.s; Ox/j

2
C 4

Z iC2

i

jruk.t; Ox/j
2 dt: (2.26)

Integrating (2.26) over s; �; Ox gives

kukk
2
L2.TiC1;Rm/

� 2kukk
2
L2.Ti ;Rm/

C 4krukk
2
L2.Ti[TiC1;Rm/

: (2.27)

Therefore by (2.25) and the above remarks,

kukk
2
W 1;2.TiC1;Rm/

� 2M 2
2 C 8M1 �M3: (2.28)

Then, if i C 2 2 Ak , the argument of (2.27)–(2.28) can be repeated. Since the number of elements of Ak
is bounded by l 2 N, the process stops in at most l steps, giving the desired bound with M DM.l/. �

Completion of the proof of Theorem 2.2. It is convenient to introduce some notions. A set I � Z will be
called connected if for any i; j 2 I with i � j , any integer between i and j is also an element in I . For
two connected sets I1; I2 2 Z with I1\ I2 D∅, we write I1 < I2 if i1 < i2 for any i1 2 I1 and i2 2 I2.
For a connected set I � Z, the length jI j of I is defined by jI j D supfji � j j j i; j 2 I g. Now consider
the minimizing sequence fukg normalized by (2.13). By Remark 2.19, for each k, there are finitely many
disjoint connected sets I k1 < � � �< I

k
l.k/

in Z satisfying

˚
i 2 Z

ˇ̌
kuk � a

�
kL2.Ti ;Rm/

� �
	
D

l.k/[
jD1

I kj :

The normalization (2.13) shows that for any integer i �0, we have i 2I k1 and jI kj j<1 for j D2; : : : ; l.k/.
Remark 2.19 also implies that the sequence fl.k/g is bounded. Taking a subsequence of k 2N if necessary,
it can be assumed that l.k/ is a positive integer l independent of k 2 N. Define

p0 �max
˚
i 2 f1; : : : ; lg

ˇ̌
lim sup
k!1

jI ki j D1
	
:
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It is well-defined since jI k1 j D1. Note that if p0 < l ,

lim sup
k!1

lX
jDp0C1

jI kj j<1: (2.29)

Now define p.k/ to be the largest i 2 I kp0 . Set vk.x/D uk.x1Cp.k/; x2; : : : ; xn/ for k 2 N, so fvkg is
a new minimizing sequence. By Proposition 2.24, the set of norms fkvkkW 1;2.Ti ;Rm/

j i 2 Z; k 2 Ng is
bounded. Since @� 2 C 1, taking a subsequence if necessary, we see that for some U 2E and any i 2 Z,
vk converges weakly to U in W 1;2.Ti /, strongly to U in L2.Ti ;Rm/ and pointwise a.e. to U on Ti as
k!1. Therefore V.x; vk/! V.x; U / pointwise a.e. The weak lower semicontinuity of the jruj2 term
in J on bounded sets implies that for any p < q 2 Z,

qX
iDp

�Z
Ti

jrU j2 dx

�
� lim inf

k!1

qX
iDp

�Z
Ti

jrvkj
2 dx

�
:

By Fatou’s lemma,
qX
iDp

�Z
Ti

V.x; U / dx

�
� lim inf

k!1

qX
iDp

�Z
Ti

V.x; vk/ dx

�
:

Combining these inequalities yields
qX
iDp

�Z
Ti

L.U / dx

�
� lim inf

k!1

qX
iDp

�Z
Ti

L.vk/ dx

�
� lim inf

k!1
J.vk/� c:

Letting p!�1 and q!1 gives
J.U /� c: (2.30)

Since limk!1 jI kp0 j D1, we see that

kU � a�kL2.Ti ;Rm/ � � for i � 0: (2.31)

By (2.30), krU kL2.Ti ;Rm/! 0 as i!1. By the Poincaré inequality, there is a constant b, independent
of i 2 Z, so that

kU � ŒU �ikL2.Ti ;Rm/ � bkrU kL2.Ti ;Rm/! 0 as i !1; (2.32)

where ŒU �i is the mean value of U on Ti . Since
R
�V.x;U /dx <1, as in the proof of Proposition 2.14,

it follows that limi!1ŒU �i D a� or aC. Thus,

lim
i!1

kU � a�kL2.Ti ;Rm/ D 0 or lim
i!1

kU � aCkL2.Ti ;Rm/ D 0:

If limi!1 kU � a�kL2.Ti ;Rm/ D 0, this contradicts (2.29) since limk!1 kU � vkkL2.Ti ;Rm/ D 0 for
each i 2 Z. Consequently,

lim
i!1

kU � aCkL2.Ti ;Rm/ D 0 (2.33)

and U 2 �. This with (2.30) shows U is a minimizer of J in (2.1). It is clear that J.U /D c > 0 and
Theorem 2.2 is proved. �
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If n D 1, then D D ∅ and � D R in the problem (PDE). Thus, in this case, (PDE) reduces to a
second-order Hamiltonian system of ordinary differential equations. Moreover, we get a much stronger
conclusion than Theorem 2.2:

Theorem 2.34. Assume nD 1. If V satisfies (V1)–(V3) with DD∅ and �D R, then any minimizer U
of (2.1) is a classical solution of (PDE).

Proof. Since nD 1, the above W 1;2
loc bounds imply U is continuous. Its asymptotic behavior then shows

U 2L1.R;Rm/. Consider ' 2W 1;2
loc .R/ having compact support in R and t 2 R. Then for 0 < jt j small,

U C t' 2 �. Consequently, J.U C t'/� J.U / orZ
supp'

L.U C t'/�L.U / dx � 0 (2.35)

for all such t and '. Hence Z
�

rU � r'CVu.x; U / �' dx D 0 (2.36)

for all such ', so U is a weak solution of (PDE). But for nD 1, the weak form of (PDE) implies U is a
classical solution of (PDE). �

Remark 2.37. If the minimizer U of Theorem 2.2 lies in L1.�;Rm/, the argument just given in
(2.35)–(2.36) shows U is a weak solution of (PDE) even for n > 1.

Remark 2.38. This existence result for nD 1 under (V1)–(V3) seems to be new. It generalizes earlier
such results, [Bolotin 1978; Kozlov 1985; Sternberg 1991; Rabinowitz 1989; 1993; 2012; Alikakos
and Fusco 2015], which get the existence results under slightly stronger hypotheses on V in terms of
smoothness and nondegenerate behavior of V at the equilibrium solutions a˙.

To conclude this section, as a corollary of Theorem 2.34, an explicit L1 bound for any minimizer U
will be given. The bound will be useful in Section 4. First some notational preliminaries are needed.
Since U D U.x1/, writing t for x1, by (2.1),

J.U /D c D

Z
R

�
1
2
jUt j

2
CV.t; U /

�
dt; (2.39)

so Z
R

jUt j
2 dt � 2c: (2.40)

With � � 1
2
jaC� a�j, let

T .�/�
˚
t 2 R

ˇ̌
minfjU.t/� a�j; jU.t/� aCjg � �

	
:

By (V1)–(V3),
ˇ.�/� inf

˚
V.t; u/

ˇ̌
t 2 R; minfju� a�j; ju� aCjg � �

	
> 0:

Therefore by (2.39),

jT .�/jˇ.�/�

Z
R

V.t; U / dt � c: (2.41)
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Corollary 2.42. If U is a minimizer of (2.1) as in Theorem 2.34, then

kU kL1.R;Rm/ � �Cmaxfja�j; jaCjgC
�

2

ˇ.�/

�1
2

c �K: (2.43)

Proof. If kU kL1.R;Rm/�maxfja�j; jaCg, the estimate holds. Thus we may assume that kU kL1.R;Rm/>
maxfja�j; jaCjg. Then, the maximum of jU j is achieved at some z 2 R. If z … T .�/, it follows that

jU.z/j � �CmaxfjaCj; ja�jg:

If z 2 T .�/, we take � to be the closest boundary point of T .�/ to z. Then, we see from (2.40)–(2.41) that

kU kL1.R;Rm/ D jU.z/j � jU.�/jC

ˇ̌̌̌Z z

�

Ut .s/ ds

ˇ̌̌̌

� jU.�/jC

�
jz� �j

Z z

�

jUt .s/j
2 ds

�1
2

� jU.�/jC jT .�/j
1
2 .2c/

1
2 � jU.�/jC

�
2

ˇ.�/

�1
2

c:

Since jU.�/j � �Cmaxfja�j; jaCjg, (2.43) now follows. �

Remark 2.44. Suppose that V in Theorem 2.34 is modified for juj>K so that the resulting function, V �,
still satisfies (V1)–(V3) (for nD 1) and

inf
˚
V �.t; u/

ˇ̌
t 2 R; minfju� a�j; ju� aCjg � �

	
� ˇ.�/:

Then the corresponding functional J � has a minimizer U � 2 � and since V �.t; u/D V.t; u/ for juj �K,
minimizing sequences fukg for J � can be assumed to satisfy J �.uk/� J.U /. Consequently

J �.U �/� J.U / (2.45)

and (2.45) and the derivation of (2.43) show any minimizer U � of the modified problem is also bounded
in L1 by K. Thus such a modification produces no new minimizers.

3. The regularity of the weak solution

The regularity of any weak solution U of (PDE) that minimizes J on � will be discussed in this section.
The special case of nD 1 has already been shown in Theorem 2.34. Therefore it will be assumed that
n � 2 in what follows. Using standard terminology, a solution u of (PDE) and (BC) is called a strong
solution if u 2W 2;2

loc .�/. Our main result is:

Theorem 3.1. Suppose V satisfies (V1)–(V4).

(1) If @� D R � @D 2 C 2, then any minimizer U of (2.1) is a weak solution of (PDE) and (BC).
Moreover, any weak solution U 2E of (PDE) and (BC) is a strong solution of (PDE) and (BC), and
U 2 L1.�/.
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(2) If Vu 2 C 1.��Rm/ and @� 2 C 3, then U 2 C 2;˛.�;Rm/ for any ˛ 2 .0; 1/ and U is a classical
solution of (PDE) and (BC) with limx1!˙1 U.x1; Ox/D a

˙ uniformly for Ox 2 D.

Regularity results for weak solutions of a single second-order quasilinear elliptic partial differential
equation satisfying Dirichlet boundary conditions can be found in the literature; see, e.g., Chapters 8–9 of
[Gilbarg and Trudinger 1983]. However, we do not know of a reference for such a result for the system
(PDE) with (BC). Therefore for completeness we will provide a proof of Theorem 3.1 but postpone it
until Section 6.

4. Some generalizations

In this section, Theorem 2.2 will be generalized in various ways. First we will show that the growth
condition, (V4), can be bypassed when a geometrical condition that leads to an L1 bound for minimizers
of (2.1) is satisfied. Next the case of a more general domain � that is periodic in the x1-direction will
be treated. Then a perturbation result will be given. Lastly, the case when the potential V has multiple
minima will be discussed briefly.

To begin the first result, for any set A 2 Rm and a > 0, let Aa � fy 2 Rm j dist.y; A/ < ag.

Theorem 4.1. Suppose that V satisfies (V1) and (V5), where:

(V5) There is a convex bounded open set O � Rm with @O 2 C 2 such that

(1) there are two different points a� and aC in O such that V.x; a˙/ D 0 for all x 2 � and
V.x; u/ > 0 for any u 2O n fa�; aCg, x 2�;

(2) there is a constant ı > 0 such that for the outward unit normal vector �D �.u/ to @O ,

V.x; u/� V.x; uC t�.u// when x 2�; u 2 @O; t 2 Œ0; ı�:

Then there is a weak solution, U 2W 1;2
loc .�;O/\� of (PDE) and (BC). If further, Vu 2C 1.��Rm/ and

@� 2 C 3, the solution U is a classical solution of (PDE) and (BC) with U 2 C 2;˛.�/ for any ˛ 2 .0; 1/
with limx1!˙1 U.x1; Ox/D a

˙ uniformly for Ox 2 D.

As a first step towards proving Theorem 4.1, a projection map P WOı !O DO [@O will be defined.
Taking a smaller ı > 0 if necessary shows that for each u 2 .@O/ı, there exists a unique s.u/ 2 @O with
ju� s.u/j Dminw2@O ju�wj. This implies s 2 C 1..@O/ı; @O/. Define a projection map P WOı !O

by P.u/D u for u 2O and P.u/D s.u/ 2 @O for u 2Oı nO . Note that if u 2Oı nO , then

u� s.u/D ju� s.u/j�.s.u//: (4.2)

Making ı smaller if necessary, the implicit function theorem shows P WOı nO! @O is C 1.
Next to prove Theorem 4.1, a property of the function s.u/ is needed.

Lemma 4.3. If u 2 C 1.�;Rm/ and u.x/ 2Oı for some x 2�, then, for each i D 1; : : : ; n,ˇ̌̌̌
@u.x/

@xi

ˇ̌̌̌
�

ˇ̌̌̌
@.s ıu/.x/

@xi

ˇ̌̌̌
:
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Proof. It is a well-known result that the function s is a contraction; that is, js.z1/� s.z2/j � jz1� z2j for
any z1; z2 2Oı. Thus, for y 2� close to x,

ju.y/�u.x/j

jy � xj
�
js.u.y//� s.u.x//j

jy � xj
:

For y D xC hei , h 2 R, letting jhj ! 0, we get the inequality. �

Proposition 4.4. For any u 2 C 1.�;Oı/\W 1;2
loc .�;O

ı/, it follows that

P ıu 2W
1;2

loc .�;O/ and J.P.u//� J.u/:

Proof. For each z 2 .@O/ı, there exists a unique s.z/ 2 @O with jz� s.z/j Dminw2@O jz�wj. For each
z 2 @O, we have �.z/ is the outward unit normal vector to @O at z 2 @O. For each z 2 .@O/ı, we define

�.z/D

�
jz� s.z/j for z 2 .@O/ı nO;
�jz� s.z/j for z 2 .@O/ı \O;

and
��.z/�minf�.z/; 0g:

Observe that
s 2 C 1..@O/ı ; @O/; � 2 C 1..@O/ı ;R/; � 2 C 1.@O;Rm/;

and
z D s.z/C�.z/�.s.z//:

For z D u.x/ 2 .@O/ı , we see that

P.u.x//D s.u.x//C��.u.x//�.s.u.x///:

Define

f".�/�

�
0 for �� 0;
�.�2C "2/

1
2 C " for � < 0:

Approximating P.u/.x/ by s.u.x//C f".�.u.x///�.s.u.x/// and letting " ! 0 shows that P.u/ 2
W
1;2

loc .�;O/, and for u.x/ 2 Oı nO , we have rP.u/.x/ D rs ı u.x/, while for u.x/ 2 O , we have
rP.u/.x/Dru.x/. Now Lemma 4.3 implies that jrP.u/j � jruj. ThusZ

�

jrP.u.x//j2 dx �

Z
�

jru.x/j2 dx: (4.5)

Moreover, hypothesis (V5) implies thatZ
�

V.x; P.u.x// dx �

Z
�

V.x; u.x// dx: (4.6)

Then (4.5) and (4.6) show J.P.u//� J.u/. �

Proof of Theorem 4.1. As a class of admissible functions, take

�.Oı/D
˚
u 2E

ˇ̌
u.x/ 2Oı for x 2�; ku� a˙kL2.Ti ;Rm/! 0; i !˙1

	
:
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Define
c.Oı/D inf

u2�.Oı/
J.u/: (4.7)

Since O is convex, it is readily seen that �.Oı/ ¤ ∅ and 0 � c.Oı/ <1. Let fukg � �.Oı/ be a
minimizing sequence for (4.7). By the density of C 1.�;Rm/\�.Oı/ in �.Oı/, we may assume that
fukg � C

1.�;Rm/\ �.Oı/. Since P is a contraction on Oı and is the identity map on O, for any
z 2Oı and w 2O, we have jP.z/�wj � jz�wj. Thus

kP.u/� a˙kL2.Ti ;Rm/ � ku� a
˙
kL2.Ti ;Rm/

! 0; i !˙1:

Hence Proposition 4.4 implies that fP.uk/g is also a minimizing sequence for (4.7) which is contained in
W
1;2

loc .�;O/\�.O
ı/. The proof of Theorem 2.2 shows that there exists a p.k/ 2 Z such that a subse-

quence of fP.uk. � C .p.k/; 0; : : : ; 0///g converges weakly in W 1;2
loc .�;R

m/, strongly in L2loc.�;R
m/

and pointwise a.e. to a minimizer U 2W 1;2
loc .�;O/\�.O

ı/ of (2.1). Since U.x/ 2 O for any x 2�
and O is bounded, by Remark 2.37, U is a weak solution of (PDE) and (BC).

Following the argument in the Completion of the Proof of Theorem 3.1, we get that if Vu 2 C 1 and
@�2C 3, then U 2C 2;˛.�;O/\� and U is a classical (PDE) and (BC) with limx1!˙1 U.x1; Ox/D a

˙

uniformly for Ox 2 D. �
For our second result, as earlier, let ei be a unit vector in the positive xi -direction, 1� i � n. Assume:

(�1) � � R�D for some bounded set D � Rn�1, @� is a C 3 manifold, and for all x 2 �, we have
x˙ e1 2�.

(�2) � is a connected set.

Define the functional J as earlier with this new choice of � and for i; j 2 Z with i < j , set Ti D
fx 2� j i < x1 < i C 1g and T ji D fx 2� j i < x1 < j g.

Then we have:

Theorem 4.8. Suppose that V satisfies (V1)–(V3) and � satisfies (�1), (�2). Let

�1 D
˚
u 2E

ˇ̌
ku� a˙kL2.Ti ;Rm/! 0; i !˙1

	
:

Then there is a U 2 �1 such that
J.U /D inf

u2�1
J.u/: (4.9)

Proof. The proof of Theorem 2.2 uses Proposition 2.14 and Remark 2.19 to show that a minimizing
sequence fukg satisfying the normalization (2.13) and the bounds given by Proposition 2.24 has a
subsequence which converges to a minimizer U of the functional J on �. Since Proposition 2.14 and
Remark 2.19 can be proved in the same manner for a domain � satisfying (�1) and (�2), the proof
carries over to the present setting provided that the bounds of Proposition 2.24 are also valid here; i.e., if
fukg is a minimizing sequence for (4.9), there is a constant M > 0 such that

kukkW 1;2.Ti ;Rm/
�M (4.10)

for all k 2 N and i 2 Z. We will show that this is the case. The proof uses the following result.
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Lemma 4.11. Assume that (�1) and (�2) hold. Then for any fixed k � 3, there exists a constant C > 0,
independent of i 2 Z, such that for any u 2W 1;2

loc .�;R
m/ and j 2 fi C 1; : : : ; i C k� 2g,

kukL2.Tj ;Rm/ � C
�
kruk

L2.T
iCk
i

;Rm/
CkukW 1;2.Ti ;Rm/

CkukL2.TiCk�1;Rm/
�
:

Proof. By a translation in Ze1, it suffices to show that there exists a constant C > 0 such that for any
u 2W

1;2
loc .�;R

m/ and j 2 f1; : : : ; k� 2g,

kukL2.Tj ;Rm/ � C
�
krukL2.T k0 ;Rm/

CkukL2.T0;Rm/CkukL2.Tk�1;Rm/
�
:

To the contrary, suppose that the inequality above does not hold. Then there is a sequence fwlg �
W
1;2

loc .�;R
m/ and j 2 f1; : : : ; k� 2g such that

kwlkL2.Tj ;Rm/ D 1 (4.12)

and
krwlkL2.T k0 ;Rm/

CkwlkL2.T0;Rm/CkukL2.Tk�1;Rm/! 0 as l!1: (4.13)

Let �j0 be a connected component of Tj and �j a connected component of T k0 containing �j0 . If
�j \ .T0[Tk�1/D∅, then �j is an isolated connected component of �. But k � 3, so this contradicts
the connectedness of �. Thus �j \ .T0[Tk�1/¤∅. Assume that �j \T0 ¤∅. Then by the Poincaré
inequality, there exists c > 0, independent of l , such that

kwl � Œwl �j kL2.�j ;Rm/ � ckrwlkL2.�j ;Rm/; (4.14)

where Œwl �j D .1=j�j j/
R
�j
wl dx. Since liml!1 kwlkL2.T0;Rm/ D 0 and

kwl � Œwl �j kL2.�j\T0;Rm/ � kwl � Œwl �j kL2.�j ;Rm/ � ckrwlkL2.�j ;Rm/

� ckrwlkL2.T k0 ;Rm/
;

(4.13) implies that liml!1Œwl �j D 0. Then (4.14) shows that

kwlkL2.�j0 ;Rm/
� kwlkL2.�j ;Rm/! 0 as l!1:

If �j \ Tk ¤ ∅, we obtain the same conclusion. Thus, for each connected component �j0 , we have
liml!1 kwlkL2.�j0 ;Rm/

D 0. This implies liml!1 kwlkL2.Tj ;Rm/ D 0, contradicting (4.12) and com-
pleting the proof. �

Now, we argue as in the proof of Proposition 2.14. Since Proposition 2.14 and Remark 2.19 hold for
a domain � satisfying (�1) and (�2), there exists L 2 N, independent of k, such that the number of
elements of

Ak D
˚
i 2 N

ˇ̌
kuk � a

�
kL2.Ti ;Rm/

� �; kuk � a
C
kL2.Ti ;Rm/

� �
	

is bounded by L for each k 2 N. Note that if i … Ak ,

kukkL2.Ti ;Rm/ � �Cmaxfja�1j; jaCjgjT0j
1
2:
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Then, applying Lemma 4.11, we get the boundedness (4.10). For the completion of the proof of
Theorem 4.8, we follow exactly the same argument as in the Completion of the Proof of Theorem 2.2.
Then, we get a minimizer U 2 �1 of J. �

As a consequence of Theorem 4.8 and Theorem 3.1, we have:

Corollary 4.15. If in addition to the hypotheses of Theorem 4.8, (V4) is satisfied, Vu 2 C 1.��Rm/ and
@� 2 C 3, then U 2 C 2;˛.�;Rm/ for any ˛ 2 .0; 1/ and U is a classical solution of (PDE) and (BC)
with limx1!˙1 U.x1; Ox/D a

˙ uniformly for Ox 2 D. If V satisfies (V5), then (PDE) and (BC) possess a
solution U 2 C 2;˛.�;O/\�1.

Theorem 3.1 and Corollary 4.15 require condition (V4), which allows us to get an L1 bound for the
solution. When n D 1, condition (V4) is not required; conditions (V1)–(V3) suffice. Next an example
will be given showing that a PDE perturbation of that case without any further conditions other than
V 2 C 2 gives classical solutions of (PDE) and (BC). Thus consider (PDE) and (BC) for nD 1. To better
distinguish between the cases of nD 1 and the general case, set

�0 D
˚
u 2W

1;2
loc .R;R

m/
ˇ̌
ku� a˙kL2.Œi;iC1�;Rm/! 0; ˙i !1

	
and

J0.u/D

Z
R

�
1
2
jux1 j

2
CV.x1; u/

�
dx1:

Then in Section 2, it was shown that

c0 D inf
u2�0

J0.u/

has a minimizer, U0 D U0.x1/, which is a classical solution of (PDE). With the same choice of V , take
any bounded domain D � Rn�1 with �D R�D and � as in Section 2, J as in (1.2) and c as in (2.1).
Note that U0 2 � so J.U0/D jDjJ0.U0/� c.

Proposition 4.16. J.U0/D c and any minimizer U 2 C 2;˛.�/\L1.�/ of (2.1) depends only on x1.

Proof. Let fukg be a minimizing sequence for (2.1). Write x D .x1; Ox/ for x 2 Rn and fix k 2 N. Then
by Fubini’s theorem, there exists a set Ak � D with jAkj D jDj such that for any Ox 2 Ak ,Z

�

�
1
2
jruk.x1; Ox/j

2
CV.x1; uk.x1; Ox//

�
dx1 <1: (4.17)

Therefore by Proposition 2.3, there exist e˙
k
. Ox/ 2 fa�; aCg such that

lim
i!˙1

kuk. � ; Ox/� e
˙
k . Ox/kL2.Œi;iC1�;Rm/ D 0: (4.18)

We claim that e˙
k
. Ox/D a˙ for all Ox 2 Ak . Indeed for each i 2 Z, set

f ˙i . Ox/D

Z
Œi;iC1�

juk.x1; Ox/� a
˙
j
2 dx1:
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Then each function f ˙i is measurable on D and by Fubini’s theorem again,

lim
i!˙1

Z
D
f ˙i . Ox/ d Ox D lim

i!˙1

Z
D

Z
Œi;iC1�

juk.x1; Ox/� a
˙
j
2 dx1 d Ox

D lim
i!˙1

kuk � a
˙
kL2.Ti /

D 0

since uk 2 �. But f ˙i . Ox/ � 0, so f ˙i ! 0 in L1.D/ as i ! ˙1. Hence there exist subsequences
i˙j !˙1 such that

f ˙
i˙
j

. Ox/! 0 for a.e. x 2 D: (4.19)

Comparing (4.19) to (4.18) shows the existence of a set Bk �Ak with jBkjD jAkjD jDj and e˙
k
. Ox/D a˙

for all Ox 2 Bk . Defining B D
T
k Bk , we have jBj D jDj, and for any Ox 2 B and k 2 N, we have

uk. � ; Ox/ 2W
1;2

loc .R;R
m/ and lim

i!˙1
kuk. � ; Ox/� a

˙
kL2.Œi;iC1�;Rm/! 0:

This implies that for each Ox 2 B , we have uk.x1; Ox/ 2 �0. Therefore, for each Ox 2 B ,

J0.uk. � ; Ox//� J0.U0/: (4.20)

Integrating (4.20) over D then shows J.uk/� J.U0/, which implies J.U0/D c, yielding the first part of
the proposition.

For the second part, suppose that c is attained by U 2 C 2;˛.�/\L1.�/. As in (4.20), for a.e. Ox 2D,

J0.U. � ; Ox//� J0.U0/:

Since J.U /D c, this implies that for a.e. Ox 2 D,

J0.U. � ; Ox//D J0.U0/:

Then, for a.e. Ox 2 D,
@2U.x1; Ox/

@x21
�Vu.x1; U.x1; Ox//D 0:

This implies that

� OxU ��U �
@2U.x1; Ox/

@x21
D 0 for any x1 2 RI

i.e., U.x1; Ox/ as a function of Ox is harmonic. Thus using the boundary condition (BC) shows that U.x1; Ox/
does not depend on Ox 2 D. This completes the proof. �

Now the perturbation result can be formulated. Suppose:

(V0) For some "0 >0, there exists a function W 2C 1..�"; "/���Rm/ such that for each "2 .�"0; "0/,
W."; � / satisfies (V1)–(V3) and W.0; x; u/D V.x1; u/.
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For j"j< "0, consider the family of equations

��uCWu."; x; u/D 0; x 2�; (4.21)

with boundary conditions
@u

@�
D 0 on @�: (4.22)

Then we have:

Theorem 4.23. Suppose (V0) is satisfied and @�2C 3. Then there is an "1 2 .0; "0/ such that the problem
(4.21)–(4.22) has a classical solution U" for each j"j � "1.

Proof. Let u0 be any minimizer of J0 on �0. Then (2.43) provides an upper bound K for ku0kL1.R;Rm/
and any such u0. To obtain the solutions U", the family of functions W."; � / will be truncated. Let
WK 2 C..�"; "/���Rm/ satisfy (V0) with

(1) WK.0; x; u/ independent of Ox,

(2) WK."; x; u/DW."; x; u/ for juj � 2K,

(3) j.WK/u."; x; u/j �K1 for some constant K1,

(4) lim infjuj!1WK."; x; u/� V > 0 uniformly for x 2� and j"j � "0,

(5) inf
˚
WK.0; x; u/

ˇ̌
t 2 R; minfju� a�j; ju� aCjg � �

	
� ˇ.�/,

where ˇ.�/ D inf
˚
V.x1; u/

ˇ̌
x1 2 R; minfju� a�j; ju� aCjg � �

	
. It is straightforward to construct

such a family of functions. By (V0) and Theorem 2.2, the functional

J";K.u/�

Z
�

�
1
2
jruj2CWK."; x; u/

�
dx �

Z
�

L";K.u/ dx;

corresponding to (4.21) with W replaced by WK has a minimizer U";K 2 � for each j"j � "0. By (3) of
the properties of WK and Theorem 3.1(1), there is a constant M 1 that is independent of " but depends
on K such that

kU";KkL1.�;Rm/ �M 1:

Thus by Theorem 3.1(2), each component of U";K can be viewed as a C 2;˛.�;R/ solution of a linear
elliptic equation of the form

��v D f; x 2�;

with @v=@� D 0, x 2 @� and f 2 L1.�;R/. Applying the W 2;q
loc estimates for such equations gives a

constant M 2 > 0 that is independent of " but depends on K such that

kU";KkW 2;q.�;R/ �M 2:

Taking q > n and applying the Schauder estimates for each component yields a constant M > 0 that is
independent of " but depends on K such that

kU";KkC2;˛.�;Rm/ �M: (4.24)
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Thus,U";K is a classical solution of (4.21)–(4.22). It can be assumed that the functionsU";K are normalized
as in (2.13). We claim there is an "1 2 .0; "0� such that for j"j � "1, we have kU";KkL1.�;Rm/ < 2K. If
so, WK."; x; U";K.x//DW."; x; U";K.x// and U";K is the desired solution of (4.21)–(4.22) for j"j � "1.
To show that such an "1 exists, suppose that there exists "l 2 .�"0; "0/ with liml!1 "l D 0 such that

lim sup
l!1

kU"l ;KkL1.�;Rm/ � 2K: (4.25)

By (4.24), it can be assumed that U"l ;K converges in C 2loc.�;R
m/ to a solution U � of (4.21)–(4.22) for

"D 0. Due to equations (4.21)–(4.22) again, the convergence is in C 2;˛loc .�;R
m/ so by (4.24),

kU �kC2;˛.�;Rm/ �M: (4.26)

Suppose for the moment that U � minimizes J0;K on �. Then by Remark 2.44, kU �kL1.�;Rm/ �K and
(4.26) is in contradiction to (4.25). Hence "1 exists and the theorem is proved.

It remains to verify that U � minimizes J0;K on �. As a first step, let w 2 C 1.R;Rm/ with w.t/D a�

for t � �1 and w.t/ D aC for t � 1. We define Qw.x1; Ox/ D w.x1/. Then there is a constant M1

independent of " but depending on K such that

J";K. Ow/�M1: (4.27)

Thus J";K.U";K/�M1 for j"j � "0. Now for any R > 0, due to the C 1loc convergence of U";K ,Z
Œ�R;R��D

L0;K.U
�/ dx D lim

"!0

Z
Œ�R;R��D

L";K.U";K/ dx �M1:

Thus letting R!1 shows
J0;K.U

�/�M1: (4.28)

By (4.28), as ji j !1, Z
Ti

L0;K.U
�/ dx! 0: (4.29)

Due to the bounds (4.26) and the Poincaré inequality,

kU �� a˙kW 1;2.Ti ;Rm/
! 0; ji j !1: (4.30)

Employing the bounds, (4.26) again with (4.30) and an interpolation inequality shows

kU �� a˙kC1.Ti ;Rm/! 0; i !˙1: (4.31)

The estimate (4.31) also holds for any u0 minimizing J0;K on �. Let � > 0. By (4.31), there is a
q D q.�/ 2 N such that for uD U � or uD u0,

ku� a˙kC1.Ti ;Rm/ � �; ˙i � q: (4.32)

By (4.28) again, by taking q larger if need be, it can be assumed thatZ
fjx1j�qC1g�D

L0;K.U
�/ dx � � and

Z
fjx1j�qC1g�D

L0;K.u0/ dx � �: (4.33)
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Next observe that U �, being a limit of minimizers, possesses a minimality property. Indeed since U";K
minimizes J";K over �, for any ' 2W 1;2.�;Rm/ having compact support,Z

�

�
L";K.U";K C'/�L";K.U";K/

�
dx D

Z
supp'

�
L";K.U";K C'/�L";K.U";K/

�
dx � 0: (4.34)

Thus taking "! 0 in (4.34) yieldsZ
supp'

�
L0;K.U

�
C'/�L0;K.U

�/
�
dx � 0: (4.35)

Taking q D q.�/, choose ' D fq , where

fq.x/D

8̂̂̂<̂
ˆ̂:
u0�U

� for jx1j � q;
.x1� q� 1/.U

��u0/ for q � x1 � qC 1;
.�q� 1� x1/.U

��u0/ for � q� 1� x1 � �q;
0 for jx1j � qC 1:

With this choice of ', (4.35) becomesZ
Œ�q;q��D

L0;K.u0/ dxC

Z
T�q�1[Tq

L0;K.U
�
Cfq/ dx �

Z
Œ�q�1;qC1��D

L0;K.U
�/ dx: (4.36)

The choice of fq and (4.32) showZ
T�q�1[Tq

L0;K.U
�
Cfq/ dx � 
.�/;

where 
.�/! 0 as � ! 0. Recall that by Remark 2.44 and Proposition 4.16,

c0;K � inf
u2�

J0;K.u/D inf
u2�

J.u/� c:

Consequently, letting � ! 0, q!1 and (4.36) implies

c D J.u0/� J0;K.U
�/� c0;K

and Theorem 4.23 is proved. �

Remark 4.37. One can also allow for perturbations of the domain in the setting of Theorem 4.23. For
example, with a condition like:

(�0) For some "0 > 0 and each j"j � "0, there is a domain �" � Rn, where �" satisfies (�1)–(�2), the
map "!�" is continuous, and �0 D R�D.

To conclude this section, we will briefly mention the case of (V2) replaced by:

(V 02) There are points ai 2Rm such that V.x; ai /D 0, 1� i � s, for all x 2�, and V.x; u/> 0 otherwise,

i.e., V is a multiwell potential. Existence and multiplicity results for such multiwell potentials and even
infinite well potentials have been studied, e.g., in [Montecchiari and Rabinowitz 2016]. Using the methods
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of this paper, such treatments can readily be extended to the current setting. For example, suppose that V
is an s-well potential and set

AD fa1; : : : ; asg:

Then it is straightforward to show:

Theorem 4.38. Suppose that V satisfies (V1), (V 02), (V3), (V4), Vu 2 C 1, �D R�D with D � Rn�1 a
bounded open set and @D a C 3 manifold. Then:

(1) For any ai 2A, there exists an aj 2A with i ¤ j and corresponding classical solution Ui;j of (PDE)
and (BC) such that Uij is heteroclinic in x1 from ai to aj and Ui;j minimizes J over the set˚

u2E
ˇ̌

lim
k!�1

ku� aikL2.Tk ;Rm/D lim
k!1

ku� aj kL2.Tk ;Rm/D0 for some j¤i
	
:

(2) For any ai; aj 2 A, with i ¤ j, there exists a (minimal) heteroclinic chain of solutions Ui;p1 ;
Up1;p2 ; : : : ; Upt ;j of (PDE) and (BC), where Uk;l are as in (1) and the integers i; p1; : : : ; pt ; j are
distinct. Moreover, if

ci;j D inf
u2�i;j

J.u/;

where

�i;j D
˚
u 2E

ˇ̌
ku� aikL2.Tk ;Rm/! 0; k!�1Iku� aj kL2.Tk ;Rm/! 0; k!1

	
;

then
ci;j D J.Ui;p1/C � � �CJ.Upt ;j /:

5. Multitransition solutions

In this section, it will be shown how the approach of [Montecchiari and Rabinowitz 2016] can be mirrored
to construct multitransition homoclinic and heteroclinic solutions of (PDE). More precisely, we seek
solutions of (PDE) that as a function of x1 make multiple transitions between small neighborhoods of a�

and aC. In order to find such solutions, we need a mild nondegeneracy condition on the set of minimizing
heteroclinics given by Theorem 2.2. To make this precise, we replace � by �.a�; aC/ and c by c.a�; aC/.
Thus interchanging the roles of a� and aC gives us �.aC; a�/ and c.aC; a�/. For � 2 faC; a�g, and
� 2 faC; a�g n f�g, set

M.�; �/� fu 2 �.�; �/ j J.u/D c.�; �/g:

Define
S.�; �/� fujT0 j u 2M.�; �/g

and put the W 1;2.T0;R
m/ topology on this set. Then we have:

Proposition 5.1. Suppose V satisfies (V1)–(V4), Vu 2 C 1.��Rm/ and @� 2 C 3. Then

(1) S.�; �/D S.�; �/[f�g[ f�g,

(2) S.�; �/ is compact.
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Proof. Due to the asymptotic behavior of the members u of M.�; �/, we know u.x1C j; x2; : : : ; xn/

converges in L2.T0;Rm/ to � as j !1 and to � as j !�1. Then, by the L1 uniform boundedness
of minimizers U 2 S.�; �/ in Proposition 6.2 and elliptic estimates, we see that f�g[ f�g 2 S.�; �/.

Let fwj g be a sequence in S.�; �/. Then the proof of (1)–(2) is complete if a subsequence of fwj g
converges to a member of S.�; �/[f�g[f�g. If a subsequence ofwj converges to � or �, we are done. Thus
suppose this is not the case. For any j, we have wj DWj jT0 , where Wj 2M.�; �/, so J.Wj /D c.�; �/.
By Proposition 6.2 and elliptic estimates, there exists K > 0 such that kWj kC2;˛.�;Rm/ � K. Then, a
subsequence of Wj converges in C 2loc.�;R

m/ to a function W 2 E \C 2.�;Rm/ and W is a classical
solution of (PDE). In particular wj ! w DW jT0 ¤ �; �. Since for each p < q 2 Z,

qX
iDp

Z
Ti

L.W / dx D lim
j!1

qX
iDp

Z
Ti

L.Wj / dx � J.Wj /D c.�; �/;

letting q;�p!1 shows X
i2Z

Z
Ti

L.W / dx D J.W /� c.�; �/: (5.2)

Equation (5.2) and (V2) imply there are points �˙ 2 f�; �g such that kW ��˙kL2.Ti ;Rm/! 0 as i!˙1,
respectively. We must show �� D � and �C D �. Arguing indirectly, suppose that �� ¤ �, so �� D �.
Let " > 0. Then there is a negative integer i0 D i0."/ 2 Z such that kW � �kW 1;2.Ti ;Rm/

� " for all
i � i0C 2. For large k D k.i0/ and i 2 fi0� 1; : : : ; i0C 2g, we have kWk � �kW 1;2.Ti ;Rm/

� 2". Define
fk 2 �.�; �/ by

fk D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Wk for x1 � i0� 1;
.x1� i0C 1/�C .i0� x1/Wk for i0� 1� x1 � i0;
� for i0 � x1 � i0C 1;
.x1� i0� 1/WkC .2C i0� x1/� for i0C 1� x1 � i0C 2;
Wk for i0C 2� x1:

(5.3)

Note that

jJ.Wk/�J.fk/j D

ˇ̌̌̌Z
Si0C2
iDi0�1

Ti

.L.Wk/�L.fk// dx

ˇ̌̌̌
� �."/; (5.4)

where �."/! 0 as "! 0. Therefore by (5.4),

c.�; �/D J.Wk/� J.fk/� �."/: (5.5)

Further define functions gk 2 �.�; �/ and hk via

gk D

�
fk for x1 � i0;
� for x1 � i0;

(5.6)

hk D

�
� for x1 � i0C 1;
fk for x1 � i0C 1;

(5.7)

so by construction,
J.fk/D J.gk/CJ.hk/: (5.8)



A DOUBLE WELL POTENTIAL SYSTEM 1759

By (5.5) and (5.8),

c.�; �/� J.gk/CJ.hk/� �."/� c.�; �/CJ.hk/� �."/:

Thus, we get

�."/� J.hk/�

1X
iDi0C1

Z
Ti

L.fk/ dx �

1X
iD0

Z
Ti

L.fk/ dx; (5.9)

where the last inequality follows since i0 is negative. But on T0, we have fk Dwk!w in W 1;2.T0;R
m/

as k!1 and w¤ a˙. Therefore
R
T0
L.fk/ dx � ! > 0 for all large k. Since the left-hand side of (5.9)

goes to 0 as "! 0, we have a contradiction. Thus �� D �. Similarly, �C D � and the proposition is
proved. �

Next define C�.�; �/ to be the connected component of S.�; �/ to which � belongs and define C�.�; �/
similarly. Then the following alternative holds.

Proposition 5.10. One of the following items holds:

(i) C�.�; �/D C�.�; �/;

(ii) C�.�; �/D f�g and C�.�; �/D f�g.

If (ii) holds, there exist nonempty disjoint compact sets K�.�; �/; K�.�; �/� S.�; �/ such that

(a) � 2K�.�; �/; � 2K�.�; �/,

(b) S.�; �/DK�.�; �/[K�.�; �/,

(c) dist.K�.�; �/;K�.�; �//� 5r.�; �/ > 0.

Proof. The proofs of these statements are exactly the same as their counterparts in Proposition 2.43 of
[Montecchiari and Rabinowitz 2016]. �

Remark 5.11. Note that Proposition 5.10(i) occurs if V is independent of x1.

To continue, we assume that the nondegeneracy condition, alternative (ii) of Proposition 5.10, holds for
both C�.�; �/ and C�.�; �/. Since the arguments are very close to those of [Montecchiari and Rabinowitz
2016], we will give the proof for the simplest case of two transition solutions and merely set up the
variational problem that finds the multitransition solutions as local minima of J, referring to [Montecchiari
and Rabinowitz 2016] for further results and details.

Recalling the definition of � given after (2.12), by Proposition 5.10,

Nr Dmin
�
�; r.a�; aC/; r.aC; a�/

�
> 0:

Define the set

ƒ.�; �/D
˚
u 2 �.�; �/

ˇ̌
ku�K�.�; �/kW 1;2.T0;Rm/

D Nr or ku�K�.�; �/kW 1;2.T0;Rm/
D Nr

	
and

d.�; �/D inf
u2ƒ.�;�/

J.u/: (5.12)
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Arguing as in the proof of Proposition 2.47 of [Montecchiari and Rabinowitz 2016] shows

d.�; �/ > c.�; �/: (5.13)

To set up the variational framework to find the simplest two transition solutions of (PDE) and (BC),
following [Montecchiari and Rabinowitz 2016], let mD .m1; : : : ; m4/ 2 Z4 and l 2 N be such that

m1C 2l < m2� 2l < m2C 2l < m3� 2l < m3C 2l < m4� 2l:

Finally define
A2 DA2.m; l/D fu 2E j u satisfies (5.14)g;

where

u. � C je1/jT0 2

8̂̂̂<̂
ˆ̂:
Nr.Ka�.a�; aC//; j < m1C l;

Nr.KaC.a�; aC//; m2� l � j < m2C l;

Nr.KaC.aC; a�//; m3� l � j < m3C l;

Nr.Ka�.aC; a�//; m4� l � j:

(5.14)

Here Nr.A/� fu 2W 1;2.T0;R
m/ j distW 1;2.T0;Rm/

.u; A/� rg for any A�W 1;2.T0Rm/.
We seek 2-transition solutions as minima of J on A2. Define

b2 D b2.m; l/D inf
u2A2

J.u/: (5.15)

Theorem 5.16. Suppose (V1)–(V4) are satisfied and that Proposition 5.10(ii) holds for C�.�; �/ whenever
� 6D � 2 fa�; aCg. There exists an m0 2 N such that if l �m0 and miC1�mi � 6l �m0 for i D 1; 2; 3,
then

M.b2/� fu 2A2 j J.u/D b2g ¤∅:

Moreover, any U 2M.b2/ is a classical solution of (PDE) satisfying (BC) and kU �a�kW 1;2.Tp;Rm/
! 0

as p!˙1.

Proof. Let fukg � A2 be such that J.uk/ ! b2. Arguments similar to the ones used to prove
Propositions 2.14 and 2.24 show that fkukkW 1;2.Ti ;Rm/

gi2Z;k2N is bounded. Then, along a subsequence
(denoted again by fukg), uk! U weakly in E. Since A2 is weakly closed, we have U 2A2 and J is
weakly lower semicontinuous, so J.U /D b2. Since J.U / <C1,

distW 1;2.Tp;Rm/
.U; fa�; aCg/! 0 as p!˙1;

and by the definition of A2, it follows that lim˙!1 kU � a�kW 1;2.Tp;Rm/
D 0. To show that U is a

classical solution of (PDE) satisfying (BC), the arguments of Section 3 can be applied here once we have
verified that U is a weak solution of (PDE), i.e.,Z

�

rU � r'CVu.x; U / �' dx D 0 for any ' 2 C10 .R
n;Rm/: (5.17)

To verify (5.17), it suffices to show that ifm0 is large enough, U satisfies the inequalities defining A2 with
strict inequalities. Towards this end, defineK1DKa�.a�; aC/, K2DKaC.a�; aC/, K3DKaC.aC; a�/,
K4DKa�.aC; a�/, and a1Da4Da�, a2Da3DaC. IfU does not satisfy one of the inequalities defining
A2 with strict inequality, then
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(�) there exist integers j 2 f1; : : : ; 4g and

pj 2

8<:
.�1; m1C l �\Z if j D 1;
Œmj � l; mj C l/\Z if 1 < j < 4;
Œm4� l;C1/\Z if j D 4;

for which

Nr D distW 1;2.T0;Rm/
.U. � Cpj e1/jT0 ; Kj /:

We show here below how (�) is not possible if m0 is large enough. The arguments are slightly different
depending on whether j D 1; 4 (the “boundary” case) or j D 2; 3 (the “interior” case). We will show
here how to get a contradiction only for the interior case, the other being very similar (and simpler).

Assume that for some Nj 2 f2; 3g there exists a p 2 Œm Nj � l; m Nj C l/ such that

Nr D distW 1;2.T0;Rm/
.U. � Cpe1/jT0 ; K Nj /: (5.18)

Let " 2 .0; Nr/. First note that if m0 is sufficiently large then

b2 < c.a�; aC/C c.aC; a�/C 2 (5.19)

independently of the choice on m — see the simple argument at the beginning of the proof of Proposi-
tion 3.29 in [Montecchiari and Rabinowitz 2016]. Moreover, taking m0 larger if need be, observe that for
any j 2 f1; : : : ; 4g there exists �j 2 Œmj � l C 2;mj C l � 2/\Z such that

kU � aj kW 1;2.Ti ;Rm/
< " for i 2 Œ�j � 2; �j C 2�\Z: (5.20)

Indeed, suppose for every Xi �
SiC2
kDi�2 Tk � Œmj � l; mj C l � � D, there exists Tj � Xi such that

kU � aj kW 1;2.Tj ;Rm/
� ". Since U 2 A2, it follows that distW 1;2.Tj ;Rm/

.U; fa�; aCg/ � ". Then, the
argument in Proposition 2.14 shows

R
Tj
L.U / dx � ˇ."/ > 0. Therefore

b2 D J1.U /�
1
5
.2l C 1/ˇ."/� 2

5
m0ˇ."/;

which is in contradiction with (5.19) for large values of m0.
By (5.20), there are integers i� 2 .m Nj�1� lC2;m Nj�1C l�2/ and iC 2 .m NjC1� lC2;m NjC1C l�2/

and corresponding regions Xi� and XiC such that if Tl �Xi� and Tk �XiC , then

kU � a Nj�1kW 1;2.Tl ;Rm/
< " and kU � a NjC1kW 1;2.Tk ;Rm/

< ": (5.21)

Define

f D

8<:
a Nj�1 for x1 � i�;
U for i�C 1� x1 � iC� 1;
a NjC1 for iC � x1;

(5.22)

with interpolations as in (5.3) in the other regions.



1762 JAEYOUNG BYEON, PIERO MONTECCHIARI AND PAUL H. RABINOWITZ

By construction, f 2 �.a Nj�1; a NjC1/ and since f D U on Tp , by (5.18) we have f 2ƒ.a Nj�1; a NjC1/.
Then, by (5.13) and (5.22),

d.a Nj�1; a NjC1/� J.f /

�

Z
SiC�2
i�C1

Ti

L.U / dxC

Z
Ti�

L.f / dxC

Z
TiC�1

L.f / dx

�

Z
SiC�2
i�C1

Ti

L.U / dxC 2�."/: (5.23)

If m0 is large enough, there exists u 2M.a Nj�1; a NjC1/ such that

ku� a Nj�1kW 1;2.Tq ;Rm/
� " for any q �m Nj�1C l;

ku� a NjC1kW 1;2.Tq ;Rm/
� " for any q �m NjC1� l:

Define

ˆD

8̂̂̂̂
<̂̂
ˆ̂̂̂:

U for x1 � i�� 2;
a Nj�1 for i�� 1� x1 � i�;
u for i�C 1� x1 � iC� 1;
a NjC1 for iC � x1 � iCC 1;
U for x1 � iCC 2;

(5.24)

making the usual interpolations in the remaining regions. Observe that ˆ 2A2. Consequently, with the
aid of (5.23), we obtain

0� J.ˆ/�J.U /D

Z
SiCC1
iDi��2

Ti

L.ˆ/�L.U / dx

�

Z
SiC�1
iDi�C1

Ti

L.u/ dxC 2�."/�

Z
SiCC1
iDi��2

Ti

L.U / dx

� c.a Nj�1; a NjC1/� d.a Nj�1; a NjC1/C 4�."/;

a contradiction to (5.13) if 4�."/ < d.a Nj�1; a NjC1/� c.a Nj�1; a NjC1/. An analogous argument leads to a
contradiction in the boundary case. Thus (�) cannot occur and the theorem is proved. �

Remark 5.25. Varying the values of m, Theorem 5.16 provides the existence of infinitely many 2-transition
solutions of (PDE) homoclinic to a�. Reversing the roles of a� and aC, an analogous result is obtained
giving infinitely many solutions homoclinic to aC.

As in [Montecchiari and Rabinowitz 2016], Theorem 5.16 can be generalized also to the case of
k-transition and infinite transition solutions. We state here the case of k-transition solutions referring to
[Montecchiari and Rabinowitz 2016] for more details.

For k 2 N, let fa1; : : : ; a2kg 2 fa�; aCg2k be such that

a1 6D a2 D a3 6D � � � 6D a2k�2 D a2k�1 6D a2k :

Consider also the family of sets fK1; : : : ; K2kg defined as

K2j�1 DKa2j�1.a2j�1; a2j / and K2j DKa2j .a2j�1; a2j /; j D 1; : : : ; k:
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Given l 2 N and mD .m1; : : : ; m2k/ 2 Z2k with mj �mj�1 > 2l for j D 2; : : : ; 2k, consider the set

A.k;m; l/D fu 2E j u satisfies (5.26)g;

where

u. � Cpe1/jT0 2

8<:
N Nr.K1/; p 2 .�1; m1C l/\Z;

N Nr.Kj /; p 2 Œmj � l; mj C l/\Z; 2� j � 2k� 1;

N Nr.K2k/; p 2 Œm2k � l;C1/\Z;

(5.26)

and let

bk D b.k;m; l/D inf
u2A.k;m;l/

J.u/: (5.27)

Theorem 5.28. Under the hypotheses of Theorem 5.16, there is an m0 2 N for which if k 2 N, l �m0
and miC1�mi � 6l �m0 for i D 1; : : : ; 2k� 1, then

M.bk/�
˚
u 2A.k;m; l/

ˇ̌
J.u/D b.k;m; l/

	
¤∅:

Moreover, any U 2M.bk/ is a classical solution of (PDE) satisfying (BC).

6. Proof of Theorem 3.1

In this section the proof of Theorem 3.1 will be carried out. It is similar to the proof of the corresponding
scalar case. The proof consists of several steps. First note that since (V1)–(V3) are satisfied and @�D
R� @D 2 C 1, by Theorem 2.2, there exists a minimizer U 2 � of (2.1). For any ' 2 W 1;2

loc .�/ with
compact support in � and t 2 R, we see that U C t' 2 �. Since V.x; � / 2 C 1.Rm/ for each x 2� and
(V4) holds, limt!0.J.U C t'/�J.U //=t exists. Since J.U /� J.U C t'/ for any t 2 R, we see that

lim
t!0

J.U C t'/�J.U /

t
D

Z
�

rU � r'CVu.x; U /' dx D 0:

This implies that U is a weak solution of (PDE) and (BC).
Now two rather technical steps are required and will be stated as separate propositions. The first

provides an L1 bound for any weak solution U of (PDE) and (BC). When mD 1, such results are well
known; see, e.g., [Gilbarg and Trudinger 1983]. In general, they are not true for systems, but we will show
that due to the semilinear structure of (PDE) and (V4), variants of arguments in [Gilbarg and Trudinger
1983], that in turn go back to work of Moser, can be modified to treat the current setting.

Note that for any U 2E, there is a constant M4 > 0 depending on U such thatZ
�

jrU j2 dxC sup
i2Z

Z
Ti

jU j2 dx �M4: (6.1)

Proposition 6.2. Suppose V satisfies (V1)–(V4), and that @�DR�@D 2C 1. Then for any weak solution
U 2E of (PDE) and (BC), there exists a constant M5 > 0 depending on U such that

kU kL1.�;Rm/ �M5:

If U is a minimizer of (2.1), M4 and M5 are independent of U .



1764 JAEYOUNG BYEON, PIERO MONTECCHIARI AND PAUL H. RABINOWITZ

Proof. First observe that by Proposition 2.24, M4 can be chosen independently of U if U is a minimizer
of (2.1). Let � 2 C 1.R; Œ0; 1�/ have compact support. Then � extends to a C 1-function on � by defining
�.x1; : : : ; xn/ D �.x1/. For each � > 0 and i D 1; : : : ; m, define a function U �i by U �i .x/DUi .x/ if
jUi .x/j<� , by U �i .x/D� if Ui .x/�� and by U �i .x/D�� if Ui .x/��� . If U D .U1; : : : ; Um/, set
U � D .U �1 ; : : : ; U

�
m/. Let ˇ > 0 and take 'j D �2Uj jU �j j

2ˇ, 1� j �m. Then, taking ' D 'j ej , with ej
the j -th unit vector in Rm, we see that ' 2W 1;2

loc .�/ and the support of ' is compact. Thus, (1.1) implies
that for 1� j �m, Z

�

rUj � r.�
2Uj jU

�
j j
2ˇ /CVuj .x; U /�

2Uj jU
�
j j
2ˇ dx D 0: (6.3)

Note that

rUj � r.�
2Uj jU

�
j j
2ˇ /

D �2jU �j j
2ˇ
jrUj j

2
C 2ˇ�2Uj jU

�
j j
2ˇ�1
rUj � rjU

�
j jC 2�Uj jU

�
j j
2ˇ
rUj � r�: (6.4)

Observing that the middle term on the right in (6.4) satisfies

2ˇ�2Uj jU
�
j j
2ˇ�1
rUj � rjU

�
j j � 0; (6.5)

substituting (6.4)–(6.5) in (6.3) and using (V4) shows for some constant C2 > 0, independent of �; j; ˇ,Z
�

�2jU �j j
2ˇ
jrUj j

2dx� 2

Z
�

�jUj jjU
�
j j
2ˇ
jrUj jjr�jdxCC2

Z
�

�2jUj jjU
�
j j
2ˇ .1CjU jp/dx: (6.6)

Simplifying the right-hand side of (6.6) givesZ
�

�2jU �j j
2ˇ
jrUj j

2 dx

�
1

2

Z
�

�2jU �j j
2ˇ
jrUj j

2 dxC 8

Z
�

jUj j
2
jU �j j

2ˇ
jr�j2 dxCC2

Z
�

�2jU �j j
2ˇ .jUj jC jU j

pC1/ dx:

Hence there is a constant C3 > 0, independent of �; j; ˇ, such thatZ
�

�2jU �j j
2ˇ
jrUj j

2 dx

� C3

Z
�\supp.�/

�
.1Cjr�jL1/

2.jUj jC jUj j
2/jU �j j

2ˇ
C �2jU �j j

2ˇ
jU jpC1

�
dx: (6.7)

Since ˇ̌
r.�Uj jU

�
j j
ˇ /
ˇ̌2
� 2.ˇC 1/2�2jU �j j

2ˇ
jrUj j

2
C 2.Uj /

2
jU �j j

2ˇ
jr�j2;

using this estimate in (6.7) shows there is a constant C4 > 0, independent of �; j; ˇ, such thatZ
�

jr.�Uj jU
�
j j
ˇ /j2C �2.Uj /

2
jU �j j

2ˇ dx

� C4.ˇC 1/
2

Z
�\supp.�/

�
.1Cjr�jL1/

2.jUj jC jUj j
2/jU �j j

2ˇ
C �2jU �j j

2ˇ
jU jpC1

�
dx: (6.8)
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Due to the Sobolev inequality and (6.8), there exists a constant C5 > 0, independent of �; j; ˇ, such that�Z
�

.�jU �j j
ˇC1/

2n
n�2 dx

�n�2
n

� C5.ˇC 1/
2

Z
�\supp.�/

�
.1Cjr�jL1/

2
jUj j

2
jU �j j

2ˇ
C �2jU �j j

2ˇ
jU jpC1

�
dx

�M.j; �; ˇ/: (6.9)

Suppose for the moment that n� 3. Define ˇ1 by

2.ˇ1C 1/Cp� 1D
2n

n� 2
:

The restriction on p in (V4) implies ˇ1 > 0. By this choice of ˇ1, (6.1) and the Sobolev inequality,
M.j; �; ˇ1/ is bounded independently of � . Consequently letting �!1 and choosing � so that �.x1/D1
for jx1� i j � l , (6.9) shows there is a constant K DK.ˇ1; l/ such that for each l � 1,Z

�\fjx1�i j�lg

.jU jˇ1C1/
2n
n�2 dx �K.ˇ1; l/ (6.10)

independently of i . For t 2 N with t � 2, define ˇt via

2.ˇt C 1/Cp� 1D 2.ˇt�1C 1/
n

n� 2

and repeat the above argument, obtainingZ
�\fjx1�i j�lg

.jU jˇtC1/
2n
n�2 dx �K.ˇt�1; l C t � 1/ (6.11)

independently of i . Since ˇtC1�ˇt D n=.n� 2/.ˇt �ˇt�1/ and ˇ2�ˇ1 > 0, it follows that ˇt !1
as t !1. Thus for each fixed q > 0 and l � 1,Z

�\fjx1�i j�lg

jU jq dx

is bounded independently of i , the bound depending on q; n;M4 and the constants in (V4).
Now the Moser iteration argument will be used to get the L1 bound of the proposition. Returning to

(6.9), our above observations show there is a constant C6 > 0, independent of � and ˇ > 0, such that�Z
�

.�2jU j.2ˇC2//
n
n�2 dx

�n�2
n

� C6.ˇC 1/
2

Z
�\supp.�/

�
.1Cjr�jL1/

2.1CjU j/jU j2ˇC1C �2jU j2ˇC2Cp�1
�
dx: (6.12)

Consider the last term in (6.12). Let h > 0. Note thatZ
�\supp.�/

�2jU j2ˇC2Cp�1 dxD

Z
R1

�2jU j2ˇC2Cp�1 dxC

Z
R2

�2jU j2ˇC2Cp�1 dx�I1CI2; (6.13)
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where R1 D fx 2�\ supp.�/ j jU j � hg and R2 D fx 2�\ supp.�/ j jU j> hg. Then

I1 � h
p�1

Z
�

�2jU j2ˇC2 dx: (6.14)

By Hölder’s inequality,

I2 �

�Z
R2

jU jn.p�1/=2 dx

�2
n
�Z

�

.�2jU j2ˇC2/
n
n�2 dx

�n�2
n

� I3I4: (6.15)

Noting that 1
2
n.p� 1/ < 2n=.n� 2/ and setting d D 1

4
.p� 1/.n� 2/, another application of Hölder’s

inequality implies

I
n
2

3 � jR2j
1�d

�Z
R2

jU j2n=.n�2/ dx

�d
: (6.16)

Since

jR2j D
ˇ̌˚
x 2�\ supp.�/

ˇ̌
jU j> h

	ˇ̌
� h�2n=.n�2/

Z
�\supp.�/

jU j2n=.n�2/ dx;

(6.16) can be rewritten as

I3 � h
�
4.1�d/
n�2

�Z
�\supp.�/

jU j
2n
n�2 dx

�2
n

: (6.17)

Combining (6.13)–(6.17), (6.12) becomes

�Z
�

.�2jU j2ˇC2/
n
n�2 dx

�n�2
n

� C6.ˇC 1/
2

Z
�\supp.�/

.1Cjr�jL1/
2.jU j2ˇC1CjU j2ˇC2/ dx

CC6.ˇC 1/
2

�
hp�1

Z
�

�2jU j2ˇC2 dx

C h�
4.1�d/
n�2

�Z
�\supp.�/

jU j
2n
n�2 dx

�2
n
�Z

�

.�2jU j2ˇC2/
n
n�2 dx

�n�2
n
�
: (6.18)

Using the freedom in the choice of h, we require that

C6.ˇC 1/
2h�

4.1�d/
n�2

�Z
�\supp.�/

jU j
2n
n�2 dx

�2
n

D
1
2

or equivalently

hD

�
2C6.ˇC 1/

2

�Z
�\supp.�/

jU j
2n
n�2 dx

�2
n
� n�2
4.1�d/

:
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This makes the coefficient of the last integral term in (6.18) equal to 1
2

so it can be absorbed on the
left-hand side of the inequality (6.18). Thus (6.18) becomes�Z

�

.�2jU j.2ˇC2//
n
n�2 dx

�n�2
n

� 2C6.ˇC 1/
2

Z
�\supp.�/

.1Ckr�kL1/
2.jU j2ˇC1CjU j2ˇC2/ dx

C .2C6.ˇC 1/
2/1C

.p�1/.n�2/
4.1�d/

�Z
�\supp.�/

jU j
2n
n�2 dx

�2.n�2/.p�1/
4n.1�d/

Z
�

�2jU j2ˇC2 dx: (6.19)

Now for each i 2 Z and j 2 N, choose �j 2 C1.R/ such that �j .x1/D 1 for jx1 � i j � 1C 2�j�1,
�j .x1/ D 0 for jx1 � i j � 1C 2�j and kr�j kL1 � 2jC2. By (6.1) and the Sobolev inequality, there
exists a constant M 0 > 0, independent of i 2 Z and j 2 N, such thatZ

�\supp.�j /
jU j

2n
n�2 dx �M 0:

Set � D n=.n� 2/ and for each j 2 N, define 
j by 
j D 2�j. Then, taking �D �j and 2ˇC 2D 
j in
(6.19), simple estimates show there is a constant C7 � 1, independent of j 2 N and i 2 Z, so that�Z

fx2�jjx1�i j�1C2�j�1g

jU j2�
jC1

dx

�n�2
n

� C7
�
.2�/2j C �2j.1C

.p�1/.n�2/
4.1�d/

/� Z
fx2�jjx1�i j�1C2�j g

.jU j2�
j�1
CjU j2�

j

/ dx

� C7
�
.2�/C �1C

.p�1/.n�2/
4.1�d/

�2j Z
fx2�jjx1�i j�1C2�j g

.jU j2�
j�1
CjU j2�

j

/ dx: (6.20)

Thus setting

Aj �

�Z
fx2�jjx1�i j�1C2�j g

jU j2�
j

dx

� 1

2�j

;

by the Hölder inequality,Z
fx2�jjx1�i j�1C2�j g

jU j2�
j�1 dx �

ˇ̌
fx 2� j jx1� i j � 2g

ˇ̌ 1

2�j .Aj /
2�j�1: (6.21)

With the aid of (6.21), there is a constant C8 � 1, independent of j 2N and i 2 Z, such that (6.20) yields
the simpler inequality

AjC1 � .C8/
j

2�j

�
1C

1

Aj

� 1

2�j Aj : (6.22)

Since
�
1C

1

Aj

� 1

2�j
� 1C

1

2�j
1

Aj
, (6.22) implies

AjC1 � .C8/
j

2�j

�
Aj C

1

2�j

�
: (6.23)
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This inequality can be further rewritten as

AjC1 � .C8/
j

2�j Aj C
C9

2�j
; (6.24)

where the constant C9 � 1 is independent of j 2N and i 2 Z. Since D�
P
j2N j=.2�

j / <1, by (6.24),

AjC1 � .C8/
j

2�j Aj C
C9

2�j
� .C8/

j

2�j
C

j�1

2�j�1Aj�1C .C8/
j

2�j
C9

2�j�1
C
C9

2�j

� � � � � .C8/
D

�
A1CC9

1X
jD1

��j
�
<1: (6.25)

Consequently there exists a constant M5 > 0, independent of i 2 Z, such that for any weak solution U
of (1.1),

kU kL1.fx2�jjx1�i j�1g/ D lim
j!1

Aj �M5

as claimed. Note that M5 depends on n;M4, and the constants in (V4).
When nD 2, by the Sobolev inequality, for any q > 2, there exists a constant, C10, depending on q

but independent of i , such that

kU kLq.fx2�jjx1�i j�2g/ � C10kU kW 1;2.fx2�jjx1�i j�2g/
: (6.26)

Therefore the case of n � 3 can be simplified and modified by, e.g., replacing our earlier 'j by
�2Uj jUj j

2.ˇC1/. This leads to a simpler version of (6.8). Then employing (6.26) in going from (6.8) to
(6.9) leads to the following variant of (6.12)with q replacing n=.n� 2/:�Z

�

.�jUj j
2.ˇC1//q dx

�1
q

�C11.ˇC1/
2

Z
�\supp.�/

�
.1Cjr�jL1/

2
jUj j

2
jUj j

2ˇ
C�2jUj j

2ˇ
jU jpC1

�
dx

for any q > 2, where C11 depends on q. Then continuing as earlier completes the proof for this case. �

As the next step in the proof of Theorem 3.1, we have:

Proposition 6.27. Suppose that V satisfies (V1)–(V4) and @� 2 C 1. If U 2 E is a weak solution of
(PDE) and (BC), then:

(1) For any �0 ���, we have U 2W 2;2.�0/.

(2) If Vu 2 C 1.��Rm;Rm/, then U 2 C 2;˛loc .�;R
m/ for any ˛ 2 .0; 1/ and satisfies (PDE) in �.

(3) If @� 2 C 2, then U 2W 2;2
loc .�/ and U is a strong solution of (PDE) and (BC).

Proof. First since U is a weak solution of (PDE) and by Theorem 3.1, V.x; U /2L2.�
0

;Rm/, (1) follows
from Theorem 8.8 of [Gilbarg and Trudinger 1983]. Moreover, this additional differentiability shows U
is a strong solution of (PDE). Next by Theorem 3.1 again, Vu. � ; U / 2 Lq.�

0

;Rm/ for any q > 1 so by
Theorem 9.11 of [Gilbarg and Trudinger 1983], U 2W 2;q.�0;Rm/. The Sobolev inequality then implies
U 2 C 1;˛.�0;Rm/ for any ˛ 2 .0; 1/. Then, since Vu.x; U / 2 C 1.�0/, invoking the linear Schauder
theory then gives U 2 C 2;˛.�0;Rm/ and (2) holds. Lastly the proof of Theorem 4 in §6.3.2 of [Evans
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1998] with the modification that U 2 W 1;2 rather than U 2 W 1;2
0 yields the first part of (3). For the

second, taking any ' 2W 1;2
loc .�/ with compact support in �, by (2.36) and integration by parts due to

the fact U 2W 2;2
loc .�/ ,!W

1;2
loc .@�/, we getZ
�

.��U CVu.x; U // �' dx�

Z
@�

@U

@�
�' dS D 0:

Thus since U satisfies (PDE), Z
@�

@U

@�
�' dS D 0 (6.28)

for all ' 2W 1;2
loc .�/ ,! L2loc.@�/ having compact support and (6.28) implies (BC). Thus, U is a strong

solution of (PDE) and (BC). �

Completion of proof of Theorem 3.1. It remains to show the regularity of U in a neighborhood of @�
when @�2C 3. Since in Section 4 we consider a more general domain than �DR�D, the special nature
of � will be suppressed here so that our argument also adapts easily to the case treated elsewhere. Let
Rn
C
� fx 2Rn j xn > 0g and z 2 @�DR�@D. Slightly modifying the proof of Theorem 8.12 of [Gilbarg

and Trudinger 1983], there exists aC 3 diffeomorphism‰ defined onBR.z/ such that‰.BR.z/\�/�Rn
C

,
‰.BR.z/\@�/� @Rn

C
. Choose � <R and set BCDB� .z/\�; D0D‰.B� .z//, and DCD‰.BC/.

Then setting ˆD‰�1 and w � U ıˆ, (PDE) in BC is transformed into the equation

�

X
1�i;j�n

aij .y/
@2w

@yi@yj
C

nX
jD1

bi .y/
@w

@yi
CVu.ˆ.y/; w/D 0 in D0; (6.29)

where

aij .y/D

nX
lD1

@‰i

@xl
.ˆ.y//

@‰j

@xl
.ˆ.y//; 1� i; j � n;

bi .y/D .�‰i /.ˆ.y//; i D 1; : : : ; n:

Moreover, since U 2W 1;2
loc .�;R

m/, we know w 2W 1;2.DC;Rm/.
Next we will show that an appropriate choice of ‰, or equivalently of ˆ, allows us to get the regularity

of U near z and satisfy (BC). Translate and rotate variables for convenience so that z becomes 0 and @Rn
C

is the tangent space to @� at zD 0. Since @� is a C 3 manifold, for r small, there is a C 3 R-valued map �
defined on Br.0/\ @Rn

C
with �.0/D 0D jr�.0/j and such that near 0, the boundary @� is given by

f.y0; �.y0// j y0 2 Br.0/\ @RnCg:

Then, for yD.y0;yn/D.y1; : : : ;yn/, extend � toˆD.ˆ1; : : : ;ˆn/WBr.0/!Rn withˆ WBr.0/\Rn
C
!�

via

ĵ .y/D

8<:yj �yn
@�

@yj
.y0/ for j D 1; : : : ; n� 1;

ynC�.y
0/ for j D n:
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This extension of � makes ˆ a C 2 function with ˆ.0/D 0 and ˆ0.0/D I, the identity matrix. Thus ˆ is
a diffeomorphism in Br.0/ for r small and

@ˆ

@yn
.y0; 0/D

�
�
@ 

@y1
.y0/; : : : ;�

@ 

@yn�1
.y0/; 1

�
is the inward normal to @�. Hence for small r > 0 and an open neighborhood N of 0 in Rn, the map
ˆ W Rn

C
\Br.0/! N \� is a diffeomorphism. Let ‰ W N \�! Rn

C
\Br.0/ be the inverse of the

map ˆ. Note that r‰n.ˆ.y0; 0// is orthogonal to the surface f.y0;  .y0// j y0 2 Br.0/\ @Rn
C
g � @�

since ‰n vanishes on the surface f.y0;  .y0// j y0 2 Br.0/\ @Rn
C
g. For i 2 f1; : : : ; n� 1g, we know

r‰i .ˆ.y
0; 0// is orthogonal to the surface˚

.y0�ynr�.y
0/; ynC�.y

0//
ˇ̌
y0 2 Br.0/\ @RnC; yn � 0 and fixed yi

	
at .y0; �.y0//. This implies that r‰i .ˆ.y0; 0// is in the tangent space of @� at ˆ.y0; 0/. Thus for
i 2 f1; : : : ; n� 1g,

r‰n.ˆ.y
0; 0// � r‰i .ˆ.y

0; 0//D 0:

Hence ain D ani D 0 when yn D 0 and i D 1; : : : ; n� 1. Now for .y0; yn/ 2 Br.0/, we define

Naij .y
0; yn/D aij .y

0; jynj/ if i; j � n� 1;

Nain.y
0; yn/D

yn

jynj
aij .y

0; jynj/ if 1� i � n� 1;

Nann.y
0; yn/D ann.y

0; jynj/:

We also define bi .y0; yn/ D bi .y0; jynj/ for i D 1; : : : ; n� 1, and bn.y0; yn/ D �bn.y0; yn/. For the
solution w, we define a function Nw on Br.0/ by Nw.y0; yn/Dw.y0; jynj/. Then, we see that Nw is a strong
solution of

�

X
1�i;j�n

aij .y/
@2 Nw

@yi@yj
C

nX
jD1

bi .y/
@ Nw

@yi
CVu.ˆ.y/; Nw/D 0; y 2 Br.0/:

Since aij is continuous and bi ; Vu 2 L1, Theorem 9.11 in [Gilbarg and Trudinger 1983] shows first that
Nw 2W 2;p.B r

2
.0// for any p > 1, and then Nw 2C 1;˛.B r

2
.0//. This implies that U 2C 2;˛.�/\C 1;˛.�/.

Now, returning to the original equation (PDE) and applying Theorem 6.31 of [Gilbarg and Trudinger
1983], we get the regularity U 2 C 2;˛.�/.

It remains to show
lim

x1!˙1
U.x1; Ox/D a

˙ uniformly for Ox 2 D: (6.30)

From the proof of Theorem 2.2, we have

lim
i!˙1

�
kr.U � a˙/kL2.Ti ;Rm/CkU � a

˙
kL2.Ti ;Rm/

�
D 0:

By Theorem 3.1, Proposition 6.2, and (PDE), there is a constant, M � >0 such that kU kC2;˛.�;Rm/ �M
�.

Therefore standard interpolation inequalities imply kU � a˙kL1.Ti /! 0, i !˙1, which gives (6.30)
and completes the proof of Theorem 3.1. �
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Remark 6.31. The arguments we have given to establish the regularity of solutions of (PDE) and (BC),
in particular Proposition 6.2 obtaining an L1 bound for the solution, Proposition 6.27 giving interior
regularity, and the final arguments establishing regularity up to the boundary, work equally well for any
divergence structure semilinear elliptic system of PDEs satisfying (V4) provided the coefficients are
sufficiently smooth.
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