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THE FINAL-STATE PROBLEM FOR THE CUBIC-QUINTIC NLS
WITH NONVANISHING BOUNDARY CONDITIONS

ROWAN KILLIP, JASON MURPHY AND MONICA VISAN

We construct solutions with prescribed scattering state to the cubic-quintic NLS

.i@t C�/ D ˛1 �˛3j j
2 C˛5j j

4 

in three spatial dimensions in the class of solutions with j .x/j ! c > 0 as jxj ! 1. This models
disturbances in an infinite expanse of (quantum) fluid in its quiescent state — the limiting modulus c
corresponds to a local minimum in the energy density.

Our arguments build on work of Gustafson, Nakanishi, and Tsai on the (defocusing) Gross–Pitaevskii
equation. The presence of an energy-critical nonlinearity and changes in the geometry of the energy
functional add several new complexities. One new ingredient in our argument is a demonstration that
solutions of such (perturbed) energy-critical equations exhibit continuous dependence on the initial data
with respect to the weak topology on H 1

x .

1. Introduction

We study the cubic-quintic nonlinear Schrödinger equation (NLS) with nonvanishing boundary conditions
in three space dimensions:�

.i@t C�/ D ˛1 �˛3j j
2 C˛5j j

4 ; .t; x/ 2 R�R3;

 .0/D  0:
(1-1)

We consider parameters ˛1; ˛3; ˛5 > 0 so that ˛23 � 4˛1˛5 > 0, which guarantees that the polynomial
˛1�˛3xC˛5x

2 has two distinct positive roots r20 > r
2
1 > 0. The boundary condition is given by

lim
jxj!1

j .t; x/j D r0: (1-2)

The choice of the larger root guarantees the energetic stability of the constant solution; it constitutes a
local minimum of the energy functional (1-7).

Equation (1-1) appears in a great variety of physical problems. It is a model in superfluidity [Ginzburg
and Pitaevskiı̆ 1958; Ginzburg and Sobyanin 1976], descriptions of bosons [Barashenkov et al. 1989] and of
defectons [Pushkarov and Kojnov 1978], the theory of ferromagnetic and molecular chains [Pushkarov and
Primatarova 1984; 1986], and in nuclear hydrodynamics [Kartavenko 1984]. The popularity of this model
can be explained by its simplicity combined with the fact that it captures an important phenomenology:
the constituents of most fluids experience an attractive interaction at low densities and a repulsion at high
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densities. The recent paper [Killip et al. 2014] focuses on the analogous problem with data decaying at
infinity, which constitutes a model for the dynamics of a finite body of fluid; the model (1-1) describes
the behavior of a localized disturbance in an infinite expanse of fluid that is otherwise quiescent.

By rescaling both space-time and the values of  , it suffices to consider the case r20 D 1 and ˛5 D 1.
This leaves one free parameter


 WD 1� r21 2 .0; 1/; (1-3)

in terms of which equation (1-1) becomes�
.i@t C�/ D .j j

2� 1/.j j2� 1C 
/ ;

 .0/D  0;
(1-4)

with the boundary condition
lim
jxj!1

 .t; x/D 1: (1-5)

As discussed in [Gérard 2006] (albeit in the context of the Gross–Pitaevskii equation), finite energy func-
tions obeying (1-2) have a unique limiting phase as jxj!1, which we can normalize to be zero, yielding
(1-5). Furthermore, the dynamics of (1-1) preserve the value of this phase, so that the boundary condition
is independent of time, as well. This breaks the gauge invariance of (1-1) and prohibits using a phase
factor to remove the linear term in this equation. The presence of the linear term leads to weaker dispersion
at low frequencies, which presents a key challenge in understanding the long-time behavior of solutions.

We are interested in perturbations of the constant solution  � 1, and thus it is natural to introduce the
function uD u1C iu2 defined via  D 1Cu. Using (1-4), we arrive at the following equation for u:�

.i@t C�/u� 2
u1 DN.u/;

u.0/D u0;
(1-6)

where N.u/D
P5
jD2Nj .u/, with

N2.u/D .3
 C 4/u
2
1C 
u

2
2C 2i
u1u2;

N3.u/D .
 C 8/u
3
1C .
 C 4/u1u

2
2C i Œ.
 C 4/u

2
1u2C 
u

3
2�;

N4.u/D 5u
4
1C 6u

2
1u
2
2Cu

4
2C i Œ4u

3
1u2C 4u1u

3
2�;

N5.u/D juj
4uD u51C 2u

3
1u
2
2Cu

4
2u1C i Œu

4
1u2C 2u

2
1u
3
2Cu

5
2�:

The Hamiltonian for (1-4) is given by

E. /D
1

2

Z
R3
jr j2 dxC




4

Z
R3
.j j2� 1/2 dxC

1

6

Z
R3
.j j2� 1/3 dx: (1-7)

Introducing the notation
q.u/ WD j j2� 1D 2u1Cjuj

2;

we may write
2
u1CN.u/D Œ
q.u/C q.u/

2�.1Cu/

and
E.1Cu/D

1

2

Z
R3
jruj2 dxC




4

Z
R3
q.u/2 dxC

1

6

Z
R3
q.u/3 dx: (1-8)
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In the sequel we will write E.u/ for E.1Cu/; when there is no risk of confusion we will simply write
q.u/D q. Note that q represents density fluctuations relative to the constant background. The quantityR
q.t; x/ dx, which represents the total surplus/deficit of matter relative to the constant background, is

conserved in time; in this work we do not rely on this conservation law.

Well-posedness in the energy space. We define the energy space for (1-6) to be

E WD
˚
u 2 PH 1

x .R
3/ W q.u/ 2 L2x.R

3/
	
; (1-9)

with associated metric
ŒdE.u; v/�

2
WD ku� vk2

PH1
x

Ckq.u/� q.v/k2
L2x
;

and we let kukE WD dE.u; 0/ denote the energy-norm.
To justify our choice of energy space, we first note that functions with finite energy-norm have finite

energy. Indeed, using Sobolev embedding and the fact that .L3xCL
6
x/\L

2
x � L

3
x , it is not hard to see

that if u 2 E then q.u/ 2 L3x , and so jE.u/j<1. In fact,

jE.u/j. kuk2E Ckuk
3
E :

On the other hand, in Lemma 3.1 we will show that for 
 2
�
2
3
; 1
�
, functions with finite energy have

finite energy-norm. When 
 2
�
0; 2
3

�
, the energy is not coercive unless we impose an additional smallness

assumption (see Lemma 3.2).
When the energy is not coercive, there is no unique candidate for the name “energy space”. The authors

of [Killip et al. 2012] worked with the following notion of energy space:

EKOPV WD
˚
u 2 PH 1

x .R
3/\L4x.R

3/ W Reu 2 L2x.R
3/
	
:

Note that EKOPV � E . In the same work, they also proved that (1-6) is globally well-posed for data
u0 2 EKOPV; in particular, solutions are unconditionally unique in C.RI EKOPV/.

In Section 3, we prove global well-posedness and unconditional uniqueness for (1-6) in the energy
space E (see Theorem 3.3). As in [Killip et al. 2012; Tao et al. 2007; Zhang 2006], our approach is to
regard the equation as a perturbation of the defocusing energy-critical NLS

.i@t C�/uD juj
4u; (1-10)

which was proven to be globally well-posed, first in the radial case and then for general data in the
celebrated papers [Bourgain 1999; Colliander et al. 2008]. Proving well-posedness for a Schrödinger
equation in three dimensions that contains a quintic nonlinearity requires control over the PH 1

x -norm of the
solution. As the energy (1-8) is not necessarily coercive for 
 2

�
0; 2
3

�
, conservation of the Hamiltonian

does not supply the requisite a priori bound. To resolve this issue we will require that both the energy and
the kinetic energy of the data are small when 
 2

�
0; 2
3

�
.

Statement of the main result. The stability of the equilibrium solution  � 1 to (1-4) is equivalent to
the small-data problem for (1-6). In this direction, there are two natural problems to consider, namely,
the initial-value and the final-state problems for (1-6). For the former, the question is whether small and
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localized initial data lead to solutions that are global and decay as jt j !1. For the latter, the question is
whether one can construct a solution that scatters to a prescribed asymptotic state. In this paper we prove
two results related to the final-state problem. We will address the initial-value problem in a forthcoming
work.

To fit (1-6) into the standard framework of dispersive equations it is convenient to diagonalize the
equation. Setting

U D jrjhri�1 and H D jrjhri; with hri WD
p
2
 �� and jrj D .��/

1
2;

we arrive at the following equation for v WD V u WD u1C iUu2:�
.i@t �H/v DNv.u/ WD U ReŒN.u/�C i ImŒN.u/�;
v.0/D V u0:

(1-11)

Note that ulin.t/ WD V
�1e�itHV uC solves the equation

.i@t C�/ulin� 2
 Reulin D 0 with ulin.0/D uCI (1-12)

this is the linearization of (1-6) about uD 0.
Our main result in this paper is the following theorem:

Theorem 1.1. Suppose 
 2
�
2
3
; 1
�
. For any uC 2H 1

realC i
PH 1

real, there exists a global solution u2C.RI E/
to (1-6) such that

lim
t!1

ku.t/�ulin.t/k PH1
x
D 0; (1-13)

where ulin.t/ WD V
�1e�itHV uC. Moreover, we have modified asymptotics in the energy space, in the

sense that this same solution u obeys

lim
t!1

dE
�
u.t/; ulin.t/�
hri

�2
julin.t/j

2
�
D 0: (1-14)

In the case 
 2
�
0; 2
3

�
, both conclusions still hold if additionally kuCkH1

realCi
PH1

real
is sufficiently small.

Remark 1.2. The hypotheses on uC are not sufficient to guarantee that ulin.t/ 2 E at any time t ;
correspondingly, one cannot hope to say that u is close to ulin in the energy space. Nonetheless, (1-13)
does show that the modification in (1-14) only plays a role at very low frequencies. Indeed, simple
computations show that the modification can be omitted, for example, when uC is a Schwartz function.

We do not guarantee uniqueness of the solution u in Theorem 1.1. Later, we will show uniqueness
within a restricted class of solutions u for suitable scattering states uC; see Theorem 1.4 and Corollary 1.7
below.

Discussion of relevant past results. To give proper context to our work, we need to discuss prior work
of Gustafson, Nakanishi, and Tsai [Gustafson et al. 2006; 2007; 2009] on the Gross–Pitaevskii equation8̂̂<̂

:̂
.i@t C�/ D .j j

2� 1/ ;

 .0/D  0;

lim
jxj!1

 .t; x/D 1:

(1-15)
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Note that unlike in (1-4), the cubic nonlinearity here is defocusing. Writing  D 1C u, this equation
preserves the energy

EGP.u/D
1

2

Z
R3
jruj2 dxC

1

4

Z
R3
q.u/2 dx: (1-16)

In contrast to (1-8), this energy density is lacking the sign-indefinite q.u/3-term. Correspondingly, the
energy is coercive and the nonlinearity is energy-subcritical.

The final-state problem for the Gross–Pitaevskii equation was addressed by Gustafson et al. [2007;
2009] in two and three dimensions and in [Gustafson et al. 2006] in higher dimensions. They also
considered the initial-value problem in dimensions d � 3 in [Gustafson et al. 2006; 2009].

The jumping-off point for Theorem 1.1 is an analogous result appearing in [Gustafson et al. 2009]
for the Gross–Pitaevskii equation, which in turn builds on earlier work of Nakanishi [2001] on the
(gauge-invariant) NLS. As our strategy is modeled closely on his, it is worth discussing in detail the
following result:

Theorem 1.3 [Nakanishi 2001]. Given uC 2H 1
x .R

3/ and 2
3
< p < 4

3
, there is a solution to

.i@t C�/uD juj
pu (1-17)

that obeys e�it�u.t/! uC in H 1
x .R

3/.

Sketch of proof. Nakanishi first defines solutions uT to (1-17) with uT .T /D eiT�uC. As the problem is
L2x-subcritical, these solutions are easily seen to be global with uniformly bounded H 1

x -norm (even in
the focusing case).

By writing (1-17) in Duhamel form and exploiting the dispersive estimate (2-2), it is not difficult to
show that for each � 2 C1c .R

3/, the collection of functions˚
t 7! h�; e�it�uT .t/i W T 2 R

	
(1-18)

forms an equicontinuous family on a compactification R[f˙1g of the real line. In particular, each such
function has limiting values as t !˙1. Applying Arzelà–Ascoli and the Cantor diagonal argument
(H 1

x is separable), one can find a sequence Tn!1 and a function u1 2 L1t H
1
x so that

e�it�uTn.t/ * e�it�u1.t/ weakly in H 1
x for each t 2 R.

This construction guarantees that u1 has two further properties. First, the function t 7! e�it�u1.t/ is
weakly H 1

x -continuous on R[f˙1g, that is, when H 1
x is endowed with the weak topology. Secondly,

for any � 2 C1c .R
3/,

h�; e�it�uTn.t/i ! h�; e�it�u1.t/i as n!1, uniformly in t 2 R.

Using these properties it is elementary to verify that e�it�u1.t/ * uC as t !1. This leaves two
obligations: firstly, one must show that u1 is actually a solution to (1-17) and secondly, one must upgrade
weak convergence to norm convergence.
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Due to the H 1
x -subcriticality of the nonlinearity, the Rellich–Kondrashov theorem allows one to show

that u1 is a weak solution to (1-17). For this problem, weak solutions with values in H 1
x are necessarily

strong solutions and so we may conclude that u1 is a solution to (1-17).
Lastly, to upgrade weak convergence to strong convergence, one exploits conservation of mass and

energy and the Radon–Riesz theorem. For example, one may argue as follows: The quantity

F.u/ WD

Z
R3
jruj2C

2

pC 2
jujpC2Cjuj2 dx (1-19)

is conserved under the flow (1-17). Exploiting this, dispersion of the linear flow, and weak lower-
semicontinuity of norms, we deduce that

lim
t!1

ke�it�u1.t/k2
H1
x
� F.u1/� lim

n!1
F.uTn.0//D lim

n!1
F.uTn.Tn//D kuCk

2

H1
x
:

Given that e�it�u1.t/ * uC, we deduce that e�it�u1.t/! uC in H 1
x . �

In order to adapt this beautiful argument to the Gross–Pitaevskii setting, the authors of [Gustafson
et al. 2009] had to overcome two significant obstacles: (i) One needs to make the (conserved) energy
(1-16) associated to (1-15) play the role of F in the argument above. It is far from obvious that this has
the requisite convexity. (ii) The simple arguments used to prove equicontinuity of the family (1-18) no
longer work. This failure stems from lower-power terms in the nonlinearity combined with the fact that
energy conservation gives poor a priori spatial decay of solutions; while it guarantees q.u/ 2 L2x , it only
yields u1 2 L3x and no better than u2 2 L6x . This is not sufficient decay to allow direct access to any of
the integrable-in-time dispersive estimates obeyed by the propagator.

The key to obtaining equicontinuity of the analogue of the family (1-18) in the Gross–Pitaevskii setting
is to exploit certain nonresonant structures in the nonlinearity that allow one to integrate by parts in time.
In implementing this approach, one sees that it is necessary to exhibit such nonresonance in both the
quadratic and cubic terms of the nonlinearity. Such a brute force attack is rather messy. The burden
can be significantly reduced by using test functions whose Fourier support excludes the origin. We will
demonstrate this (primarily expository) improvement over the arguments from [Gustafson et al. 2009]
in the proof of Proposition 6.2 below. One particular virtue of this approach is that it makes clear from
the start that the argument is inherently completely immune to the poor dispersion manifested by the
propagator (2-4) at low frequencies.

In [Gustafson et al. 2009], the authors exploit the quadratic nonresonant structure in a more elegant
way through the use of a normal form transformation

z D Œu1C .2��/
�1
juj2�C i

p
��=.2��/u2: (1-20)

In this work they also observe (and then utilize) the further nonresonant structure at the cubic level (akin to
(6-30)). There is some flexibility in the choice of normal form that witnesses the requisite nonresonance;
however, the particular one employed in [Gustafson et al. 2009] has the dramatic additional benefit of
overcoming obstacle (i) described above. The necessary convexity of the energy functional becomes
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clearer when written in their new variables: with u and z related by (1-20),

EGP.u/D
1
2



p2��z

2
L2x
C
1
4



p��=.2��/ juj2

2
L2x
: (1-21)

The virtue of this identity is best understood in the context of (6-8). Because the right-most term in (1-21)
is nonnegative, combining (1-21) with (6-8) yields

lim
t!1

1
2



p2��z.t/

2
L2x
D

1
2



p2��zC

2L2x ;
where z.t/ and zC represent a particular solution and its putative scattering state, both in terms of the
normal form variable. This is just what is needed as input for the Radon–Riesz theorem.

Discussion of the main result. In order to prove Theorem 1.1 we will need to capitalize on all of the
ideas introduced in [Gustafson et al. 2009] to prove the analogous result for the Gross–Pitaevskii equation.
In particular, we will exploit a normal form transformation modeled closely on (1-20), namely,

z DM.u/ WD
�
u1C 
.2
 ��/

�1
juj2

�
C i

p
��=.2
 ��/u2: (1-22)

However, several new difficulties arise above and beyond those overcome in [Gustafson et al. 2009].
(i) The first group of new difficulties is associated to the presence of energy-critical terms in the nonlinearity.
(ii) The second group of difficulties stems from the shape of the energy functional.

(i) We begin by discussing the difficulties that arise from the energy-critical terms. As discussed earlier
in the introduction, we already need to give consideration to the energy-critical terms in the proof of
Theorem 3.3, which states that (1-6) admits global solutions for initial data in the energy space E . A
more significant challenge involves establishing a form of well-posedness with respect to the weak PH 1

x

topology (see Theorem 4.1), as we will now explain.
In the argument of Nakanishi described above, it was used that weak limits (in the H 1

x topology
pointwise in time) of strong solutions to (1-17) are themselves strong solutions. In the subcritical case,
one sees relatively easily that such limits are weak solutions (via Rellich–Kondrashov) and can then
exploit earlier work (see [Cazenave 2003, Chapters 3–4]) showing that weak solutions with values in H 1

x

are strong solutions. In particular, solutions converging weakly to zero (in H 1
x ) by concentrating will

actually converge to zero in the space-time norms used to construct such solutions. In a similar way, we
see that increasingly concentrated parts of a solution (which will drop out under taking a weak limit) do
not affect parts of the solution living at unit scale.

These arguments break down in the presence of the quintic nonlinearity, which is energy-critical. In
particular, initial data that converge weakly to zero in H 1

x by concentrating at a point lead to solutions that
do not go to zero in the space-time norms needed for well-posedness. Correspondingly, highly concentrated
parts of a solution may have large norm and so, naively at least, have a nontrivial effect on the remainder of
the solution. Thus, it is not clear that weak limits of solutions should even be continuous in time! The key
to escaping this nightmare is to show that two parts of a solution have little effect on one another if they
live at widely separated scales. We will achieve this by employing concentration compactness techniques.

Before tackling the full equation (1-6), one should first ensure that one can prove that weak limits of
solutions are themselves solutions in the case of the energy-critical NLS equation (1-10). Questions of
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this type appear to have been studied before only in the case of the energy-critical wave equation [Bahouri
and Gérard 1999]. As there, we proceed by harnessing the full power of the associated concentration
compactness ideas. Specifically, one starts with a nonlinear profile decomposition and then further exploits
some of the decoupling ideas used in its proof. In this paper, we will implement this strategy in the setting
of (1-6); this is ample guidance for anyone seeking to reconstruct the argument for (1-10).

As a precursor to the nonlinear profile decomposition needed to prove that weak limits of solutions
to (1-6) are themselves solutions, we must first develop a linear profile decomposition adapted to (1-6);
see Proposition 4.3. Despite the fact that the linear equation underlying (1-6) differs from that underlying
(1-10), we are able to adapt the profile decomposition for the linear Schrödinger equation to our setting,
rather than proceeding ab initio. To develop the nonlinear profile decomposition, we need to construct
solutions to (1-6) associated to each linear profile. For profiles living at unit scale, existence of these
solutions (and all requisite bounds) follows from Theorem 3.3. Profiles whose characteristic length scale
diverges can be approximated by linear solutions on bounded time intervals and so require no special
attention. However, highly concentrated profiles require independent treatment; this is the content of
Proposition 4.5. There are two subtle points here: (a) Such profiles are merely PH 1

x and so do not have finite
energy. (b) The characteristic time scale associated to such profiles is very short; thus, understanding such
solutions even on a bounded interval essentially requires an understanding of their infinite time behavior.

The nonlinear profile decomposition posits that the nonlinear evolution of the initial data can be
approximated by the sum of the nonlinear evolutions of its constituent profiles. This is verified by
demonstrating decoupling of the profiles inside the nonlinearity (see Lemma 4.7) and exploiting a suitable
stability theory for the equation (see Proposition 3.5). The latter requires certain a priori bounds, which
are shown to hold in Lemma 4.6. Once it is known that the nonlinear profile decomposition faithfully
represents the true solution, it is relatively elementary to complete the proof of well-posedness in the
weak topology, that is, the proof of Theorem 4.1.

This completes our discussion of the new difficulties (relative to [Gustafson et al. 2009]) associated to
the presence of energy-critical nonlinear terms.

(ii) We turn to the second main group of difficulties mentioned above, which stem from the shape of the
energy functional. First, the lack of coercivity when 
 2

�
0; 2
3

�
was discussed already as an obstacle to

proving global well-posedness. In this case, we restore coercivity by imposing a smallness condition on
the initial data.

As also discussed above, convexity of the energy functional plays a key role in upgrading weak
convergence to strong convergence in the argument of Nakanishi, via an argument of Radon–Riesz type.
The analogue of (1-21) for our equation is as follows: For z DM.u/ as in (1-22),

E.u/D 1
2
khrizk2

L2x
C
1
4

kU juj2k2

L2x
C

Z
1
6
q.u/3 dx: (1-23)

Unlike its analogue (1-21), this does not yield an inequality between the energy and the H 1
x -norm of z.

Indeed, the leading-order correction is the sign-indefinite term 4
3

R
.u1/

3 dx. Correspondingly, we will
need to be concerned with the structure of our solution u1.t/ as t ! 1 to ensure that it does not
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contain surplus energy beyond that needed for its (putative) scattering state. Recall that u1.t/ is merely
constructed as a weak limit of solutions uTn.t/ defined by their values at t D Tn, which gives very little a
priori information on its structure.

The resolution of this dilemma is to prove a form of energy decoupling between the part of the solution
matching the scattering state and any residual part; see Lemma 6.3. Ultimately, this energy decoupling
shows that any residual part of the solution must converge to zero in norm, which in fact obviates any
explicit implementation of the Radon–Riesz-style argument described above.

Existence of wave operators. Recall that in Theorem 1.1, we cannot guarantee uniqueness of the nonlinear
solution with prescribed scattering state. However, we are able to guarantee uniqueness under stronger
hypotheses. Specifically, for scattering states with good linear decay, we can guarantee that there is
only one nonlinear solution scattering to it with comparable decay. The decay of such solutions will be
measured in the norm

kukXT WD sup
t�T

t
1
2 ku.t/k

H
1;3
x .R3/

:

Theorem 1.4. Fix 
 2 .0; 1/. There exists � > 0 so that if uC 2H 1
realC i

PH 1
real satisfies

kV �1e�itHV uCkX1 � �; (1-24)

then there exists a global solution u 2 C.RI E/ to (1-6) such that

lim
t!1

ku.t/�V �1e�itHV uCkH1
realCi

PH1
real
D 0: (1-25)

Moreover u is unique in the class of solutions with kukXT � 4� for some T � 1.

Remark 1.5. The proof of this theorem gives a quantitative rate in (1-25), namely,

ku.t/�V �1e�itHV uCkH1
realCi

PH1
real
. t�

1
4 : (1-26)

Remark 1.6. Writing ulin.t/ D V
�1e�itHV uC, we note that uC 2 H 1

real C i
PH 1

real and kulinkX1 <1

guarantee that ulin is uniformly bounded in the energy space E for t � 1.

Finally, we observe that we can guarantee the smallness condition (1-24) by assuming control over
weighted norms.

Corollary 1.7. Let 
 2 .0; 1/ and uC 2H 1
realC i

PH 1
real. If

khxi
1
2
C
hriuCkL2x Ckhxi

4
3
C
hri

5
6 ReuCkL2x

is sufficiently small, then there exists a global solution u 2 C.RI E/ to (1-6) such that (1-25) holds.

We prove Theorem 1.4 and Corollary 1.7 in Section 7. The proof, which relies primarily on dispersive
and Strichartz estimates, consists of a contraction mapping argument that simultaneously solves the
requisite PDE for z DM.u/ and inverts the normal form transformation. The argument differs little from
that used to prove Theorem 1.1 in [Gustafson et al. 2007].
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Outline of the paper. In Section 2 we set some notation and collect several useful lemmas.
Section 3 concerns the well-posedness of (1-6) in the energy space. We prove Theorem 3.3, giving

global well-posedness and unconditional uniqueness in the energy space for (1-6). We also prove a
stability result, Proposition 3.5.

The proof of the main result, Theorem 1.1, is ultimately carried out in Section 6. The strategy is
modeled on the proof of Theorem 1.3 sketched above. Recalling that proof, we can broadly describe the
three main steps as follows: (a) weak convergence uniformly in time, (b) well-posedness in the weak
topology, and (c) strong convergence. As discussed above, new difficulties in our setting prevent a naive
implementation of Nakanishi’s strategy. Thus, we need to establish some preliminary results before
launching into the proof of Theorem 1.1.

In Section 4, we consider step (b) and prove Theorem 4.1; briefly, this theorem states that if un.0/*u0

in PH 1
x , then un.t/ * u.t/ in PH 1

x for all t , where un and u are solutions to (1-6) with initial data un.0/
and u0, respectively. As described above, ingredients include (i) a linear profile decomposition adapted
to (1-6) and (ii) a way to construct nonlinear solutions associated to the linear profiles. We prove the
linear profile decomposition Proposition 4.3 by adapting the energy-critical linear profile decomposition
for the Schrödinger propagator. For linear profiles living at unit length scales, we use Theorem 3.3 to
construct the corresponding nonlinear profiles. The construction of nonlinear profiles in the case of highly
concentrated linear profiles is more delicate and relies on the main result of [Colliander et al. 2008].
Specifically, we approximate such solutions to (1-6) by solutions to the energy-critical NLS and invoke
the stability result, Proposition 3.5. The details are carried out in Proposition 4.5.

In Section 5, we discuss the normal form transformation, which is needed for steps (a) and (c). As
discussed in the subsection on page 1526, low powers in the nonlinearity and poor spatial decay are problem-
atic for establishing the equicontinuity needed to prove weak convergence. To remedy this, we exploit non-
resonant structure in the equation via the normal form transformationM defined in (1-22). We prove some
continuity and invertibility properties of this transformation in Proposition 5.1. We also prove Lemma 5.3
relating the energy and the inverse of the normal form transformation, which plays a role in step (c).

With the results of Section 4 and Section 5 in place, we are in a position to prove Theorem 1.1 in
Section 6. Following the strategy of Nakanishi and using the normal form transformation and Theorem 4.1,
we first construct the putative scattering solution u1. Working with the variables z1 DM.u1/, we then
prove a weak convergence result, Proposition 6.2. Having removed the worst quadratic terms via normal
form transformation, establishing the requisite equicontinuity is a more feasible prospect; as in the work
of [Gustafson et al. 2009], however, we still need to exhibit additional nonresonance at the cubic level.

We next upgrade to strong convergence, still at the level of z1. This relies largely on an energy
decoupling lemma, Lemma 6.3. Finally, to complete the proof of Theorem 1.1, we show that strong
convergence for z1 implies the desired convergence properties for u1. For this, we make use of results
proved in Section 5 concerning the inverse of the normal form transformation (e.g., Lemma 5.3).

Finally, in Section 7 we prove Theorem 1.4 and Corollary 1.7. These results are much simpler than
Theorem 1.1; they follow from a contraction mapping argument and rely primarily on Strichartz/dispersive
estimates.
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2. Notation and useful lemmas

Some notation. We write A . B or A D O.B/ to indicate that A � CB for some constant C > 0.
Dependence of implicit constants on various parameters will be indicated with subscripts. For example,
A.' B means that A�CB for some C DC.'/. The dependence of implicit constants on the parameter 

defined in (1-3) will not be explicitly indicated. We write A� B if A. B and B . A. We write A� B

if A� cB for some small c > 0.
We write a complex-valued function u as uD u1C iu2. When X is a monomial, we use the notation

Ø.X/ to denote a finite linear combination of products of the factors of X , where Mikhlin multipliers
(e.g., Littlewood–Paley projections) and/or complex conjugation may be additionally applied in each
factor. We extend Ø to polynomials via Ø.X CY /D Ø.X/CØ.Y /.

For a time interval I we write LqtL
r
x.I � R3/ for the Banach space of functions u W I � R3 ! C

equipped with the norm

kukLqt L
r
x.I�R3/ D

�Z
I

ku.t/k
q

Lrx.R3/
dt

�1
q

;

with the usual adjustments when q or r is infinity. If q D r we write LqtL
q
x D L

q
t;x . We often abbreviate

kukLqt L
r
x.I�R3/ D kukLqt L

r
x

and kukLrx.R3/ D kukLrx . We also write C.I IX/ to denote the space of
continuous functions on I taking values in X .

We use the following convention for the Fourier transform on R3:

Of .�/D .2�/�
3
2

Z
R3
e�ix��f .x/ dx so that f .x/D .2�/�

3
2

Z
R3
eix�� Of .�/ d�:

The fractional differential operator jrjs is defined by 1jrjsf .�/D j�js Of .�/. We will also make use of
the following Fourier multiplier operators (and powers thereof):

h�i D
p
2
 Cj�j2;

U.�/D
p
j�j2.2
 Cj�j2/�1;

H.�/D
p
j�j2.2
 Cj�j2/;

hri D

p
2
 ��;

U D
p
.��/.2
 ��/�1;

H D
p
.��/.2
 ��/:

Fix 
 2 .0; 1/ as in (1-3). We define homogeneous and inhomogeneous Sobolev norms PH s;r
x and H s;r

x

as the completion of Schwartz functions under the norms

kf k PH s;r
x
WD k.��/

s
2f kLrx and kf kH s;r

x
WD k.2
 ��/

s
2f kLrx ;

respectively. When r D 2 we abbreviate PH s;2
x D

PH s
x and H s;2

x DH
s
x . Note that this definition of the

H s
x-norm is equivalent (up to constants depending on 
) to the standard one, which uses the operator

.1��/
s
2 .

Basic harmonic analysis. We employ the standard Littlewood–Paley theory. Let � be a radial bump
function supported in

˚
j�j� 11

10

	
and equal to 1 on the unit ball. ForN 22Z we define the Littlewood–Paley
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projections

1P�Nu.�/D �
�
1
N
�
�
Ou.�/; bPNu.�/D

�
�
�
1
N
�
�
��. 1

2N
�/
�
Ou.�/; and P>N D Id�P�N :

These operators commute with all other Fourier multiplier operators. They are self-adjoint and bounded
on every Lpx and H s

x space for 1� p �1 and s � 0. We write Plo D P�1 and Phi D P>1.
The Littlewood–Paley projections obey the following standard estimates.

Lemma 2.1 (Bernstein estimates). For 1� r � q �1 and s � 0 we have

jrjsP�Nu

Lrx.R3/ .N s
kP�NukLrx.R3/;

kP>NukLrx.R3/ .N
�s


jrjsP>Nu

Lrx.R3/;

kP�NukLqx.R3/ .N
3
r
� 3
q kP�NukLrx.R3/:

We will need the following:

Lemma 2.2 (fractional chain rule, [Christ and Weinstein 1991]). Suppose G 2 C 1.C/ and s 2 .0; 1�. Let
1 < r; r2 <1 and 1 < r1 �1 satisfy 1=r1C 1=r2 D 1=r . Then

jrjsG.u/



Lrx
. kG0.u/k

L
r1
x



jrjsu


L
r2
x
:

We will also need the following result concerning bilinear Fourier multipliers. For a real-valued
function B.�1; �2/ we define the operator BŒf; g� via

2BŒf; g�.�/ WD .2�/ 32
Z

R3
B.�; � � �/ Of .�/ Og.� � �/ d�: (2-1)

Lemma 2.3 (Coifman–Meyer bilinear estimate, [Coifman and Meyer 1978; Meyer and Coifman 1991]).
If the symbol B.�1; �2/ satisfies

j@˛�1@
ˇ

�2
B.�1; �2/j.˛;ˇ .j�1jC j�2j/�.j˛jCjˇ j/

for all multi-indices ˛; ˇ up to sufficiently high order, then

kBŒf; g�kLrx . kf kLr1x kgkLr2x
for all 1 < r <1 and 1 < r1; r2 <1 satisfying 1=r D 1=r1C 1=r2.

Linear estimates. We record here the dispersive and Strichartz estimates for the propagators eit�

and e�itH.
As is well known, the linear Schrödinger propagator in three space dimensions can be written as

Œeit�f �.x/D .4�it/�
3
2

Z
R3
e
ijx�yj2

4t f .y/ dy

for t ¤ 0. This yields the dispersive estimates

keit�f kLrx.R3/ . jt j
�. 3

2
� 3
r
/
kf k

Lr
0
x .R3/

(2-2)

for t ¤ 0, where 2� r �1 and 1=rC1=r 0D 1. This estimate can be used to prove the standard Strichartz
estimates for eit�. We state the result we need in three space dimensions.
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Proposition 2.4 (Strichartz estimates for eit�, [Ginibre and Velo 1992; Keel and Tao 1998; Strichartz
1977]). For a space-time slab I �R3 and 2� q; Qq �1 with 2=qC 3=r D 2= QqC 3= Qr D 3

2
, we have



eit�'C Z t

0

ei.t�s/�F.s/ ds






L
q
t L
r
x.I�R3/

. k'kL2x CkF kL Qq0t LQr0x .I�R3/
:

Using stationary phase, one can prove a similar dispersive estimate for e�itH (see [Gustafson et al. 2006;
2009]). In fact, there is a small gain at low frequencies compared to the estimates for the linear Schrödinger
propagator; while the dispersion relation for this propagator has less curvature in the radial direction than
that for Schrödinger, this is more than compensated for by the increased curvature in the angular directions.

Proposition 2.5 (estimates for e�itH, [Gustafson et al. 2006, 2009]). For 2� r �1 we have

ke�itHf kLrx.R3/ . jt j
�. 3

2
� 3
r
/
kU

1
2
� 1
r f k

Lr
0
x .R3/

(2-3)

for t ¤ 0. In particular, for a space-time slab I �R3 and 2� q; Qq �1 with 2=qC3=r D 2= QqC3= Qr D 3
2

,
we have 



e�itH'C Z t

0

e�i.t�s/HF.s/ ds






L
q
t L
r
x.I�R3/

. k'kL2x CkF kL Qq0t LQr0x .I�R3/
:

For an interval I and s � 0 we define the Strichartz norm by

kuk PSs.I / D sup
n


jrjsu




L
q
t L
r
x.I�R3/

W 2� q �1;
2

q
C
3

r
D
3

2

o
:

The Strichartz space PSs.I / is then defined to be the closure of test functions under this norm. We let
PN s.I / denote the corresponding dual Strichartz space.

In several places it will be more convenient to work with (1-6) rather than the diagonalized (1-11).
The linear propagator associated with (1-6) takes the form

V �1e�itHV

"
f1

f2

#
D

"
cos.tH/ U sin.tH/

�U�1 sin.tH/ cos.tH/

#"
f1

f2

#
(2-4)

for any function f D f1C if2. We will make use of the following Strichartz estimates for this propagator:

Lemma 2.6. Fix T > 0. Given 2 < q; Qq �1 with 2=qC 3=r D 2= QqC 3= Qr D 3
2

, we have



V �1e�itHV'C Z t

0

V �1e�i.t�s/HVF.s/ ds






L
q
t L
r
x

.T k'kL2x CkF kL Qq0t LQr0x ; (2-5)

where all space-time norms are over Œ�T; T ��R3.

Proof. As we are excluding the endpoint, it suffices (via a T T � argument) to prove the result when
F � 0; moreover, it clearly suffices to consider each entry in the matrix (2-4) separately. In view of
the boundedness of U , three out of four of these matrix elements obey the same Strichartz estimates
as e�itH ; see Proposition 2.5. As PhiU

�1 is also bounded, we need only prove Strichartz estimates for
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PloU
�1 sin.tH/. However, this is easily done via Hölder and Bernstein’s inequality:

kPloU
�1 sin.tH/'kLqt Lrx.Œ�T;T ��R3/ . T

1
q kPloU

�1 sin.tH/'kL1t L2x.Œ�T;T ��R3/

. T 1C
1
q k'kL2x.R3/: (2-6)

This completes the proof of the lemma. �

At high frequencies, the operator e�itH closely resembles the Schrödinger propagator (on bounded
time intervals); specifically, we haveq

j�j2.2
 Cj�j2/D j�j2C 
 Cm.�/ with jm.�/j. h�i�2: (2-7)

Indeed, it is not difficult to verify that m.�/ defines a Mikhlin multiplier. This observation will play a key
role in our treatment of highly concentrated profiles in Section 4. For the moment, however, we simply
use it to obtain a crude local smoothing estimate.

Lemma 2.7 (local smoothing). Given T > 0 and R > 0,

jrj 12V �1e�itHV'


L2t;x.fjt j�T g�fjxj�Rg/

.R;T k'kL2x : (2-8)

Proof. We treat high and low frequencies separately. In the low-frequency regime, we exploit (2-4) and
argue as in (2-6) to deduce that

jrj 12PloV

�1e�itHV'



L2t;x.fjt j�T g�fjxj�Rg/

. T
1
2 .1CT /k'kL2x :

In the high-frequency regime, we can use the usual local smoothing estimate for the Schrödinger equation
together with 

jrj 12PhiV

�1Œe�itH � e�it.
��/�V'



L1t L

2
x.fjt j�T g�R3/

. T k'kL2x ;

which follows from (2-7). �

In practice, we will use the following corollary.

Corollary 2.8. LetK be a compact subset of I�R3 for some interval I �R. Then the following estimates
hold:

kreit�f kL2t;x.K/
.K keit�f k

1
3

L10t;x.I�R3/
kf k

2
3

PH1
x

;

krV �1e�itHVf kL2t;x.K/
.K kV �1e�itHVf k

1
3

L10t;x.I�R3/
kf k

2
3

PH1
x

:

Proof. Fix N > 0. By the Bernstein and Hölder inequalities,

krP�N e
it�f kL2t;x.K/

.K N keit�f kL10t;x.I�R3/:

By the local smoothing estimate for eit� and Bernstein, we also have

krP>N e
it�f kL2t;x.K/

.K


jrj 12P>Nf 

L2x .K N� 12 krf kL2x :

Optimizing in the choice of N yields the first estimate.
To obtain the second estimate one argues in exactly the same way, making use of Lemma 2.7. �
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3. Global well-posedness in the energy space

In this section we discuss the well-posedness of (1-6) in the energy space. We begin by justifying the
name “energy space” given to the set E defined in (1-9). Recall from the Introduction that if u 2 E ,
then jE.u/j <1. The following two lemmas prove that if the energy of u is finite, then u 2 E; when

 2

�
0; 2
3

�
, this requires an additional smallness condition.

Lemma 3.1. If 
 2
�
2
3
; 1
�

and E.u/ <1, then u 2 E with kuk2E .E.u/. If 
 D 2
3

and E.u/ <1, then
u 2 E with

kruk2
L2x
.E.u/ and kqk2

L2x
.E.u/C ŒE.u/�3:

Proof. When 
 > 2
3

we use the fact that q � �1 in (1-8) to write

E.u/�
1

2

Z
jruj2 dxC




4

Z �
1�

2

3


�
q2 dx;

which immediately implies the result.
We now turn to the case when 
 D 2

3
. In this case, the energy takes the form

E.u/D
1

2

Z
jruj2 dxC

1

6

Z
q2.qC 1/ dx:

As q � �1, we have q2.qC 1/� 0. Thus u 2 PH 1
x .R

3/ and kruk2
L2x
.E.u/.

To estimate the L2x-norm of q, we note thatZ
fq�� 1

2
g
q2 dx � 2

Z
q2.qC 1/ dx .E.u/:

On the other hand, if q < �1
2

then ju1j> 1
4

; thus, by Chebyshev’s inequality and Sobolev embedding,Z
fq<� 1

2
g
q2 dx � 46ku1k

6
L6x
. kruk6

L2x
. ŒE.u/�3: �

We next consider the full range 
 2 .0; 1/. In this case, we can guarantee coercivity of the energy
under an appropriate smallness assumption.

Lemma 3.2. For any 
 2 .0; 1/ there exists ı
 > 0 so that the following hold:

(i) If E.u/ <1 and kru1k2
L2x
� ı
 , then u 2 E with kuk2E .E.u/.

(ii) For any ball B ,

kru1k
2
L2x.R3/

� ı
 D)

Z
Bc

1
2
jruj2C 1

4

q2C 1

6
q3 dx � 0: (3-1)

(iii) If u W I �R3! C is a solution to (1-6) with E.u/� 1
4
ı
 and kr Reu.t0/k2

L2x
� ı
 for some t0 2 I ,

then

kr Reuk2
L1t L

2
x.I�R3/

� ı
 and kuk2L1.I IE/ .E.u/:
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Proof. We begin by writing

E.u/D

Z
1
2
jruj2C 1

8

q2C 1

6
q2
�
qC 3

4


�
dx

�

Z
1
2
jruj2C 1

8

q2 dxC

Z
fq<� 3

4

g

1
6
q2
�
qC 3

4


�
dx:

For q < �3
4

 we have ju1j> 3

8

 . Thus, by Chebyshev’s inequality and Sobolev embedding, we have

ˇ̌˚
q < �3

4


	ˇ̌
�

�
8

3


�6
ku1k

6

L6x
. 
�6kru1k6L2x :

Recalling that q � �1, we find that for kru1k2
L2x
� 


3
2 we haveˇ̌̌̌ Z

fq<� 3
4

g

1
6
q2
�
qC 3

4


�
dx

ˇ̌̌̌
. 
�6kru1k6L2x �

1
4
kru1k

2
L2x
:

Thus
E.u/�

Z
1
4
jruj2C 1

8

q2 dx;

which yields conclusion (i) of the lemma. Claim (iii) also follows from this and a continuity argument.
To obtain (ii), we repeat the argument above, using the fact that Sobolev embedding holds in the

exterior of any ball B . �

We next turn to the question of global well-posedness for (1-6) with initial data u0 2 E . From the
lemmas above we see that u.t/ 2 E and kru.t/k2

L2x
. E.u0/ for all times of existence, whenever

(1) 
 2
�
2
3
; 1
�

or (2) 
 2
�
0; 2
3

�
and E.u0/ and kr Reu0kL2x are sufficiently small. This a priori bound

on kru.t/kL2x allows us to treat (1-6) as a perturbation of the defocusing energy-critical NLS, which
was proven to be globally well-posed with finite space-time bounds in [Colliander et al. 2008]. See also
[Killip et al. 2012; Tao et al. 2007] for similar perturbative arguments.

Theorem 3.3 (global well-posedness and unconditional uniqueness). For 
 2
�
2
3
; 1
�

and u0 2 E , there
exists a unique global solution u 2 C.RI E/ to (1-6).

For 
 2
�
0; 2
3

�
, if u0 2 E satisfies kr Reu0k2

L2x
� ı
 and E.u0/ � 1

4
ı
 , then there exists a unique

global solution u 2 C.RI E/ to (1-6). Here ı
 is as in Lemma 3.2.
In both cases the solution remains uniformly bounded in E and for any T > 0,

kuk PS1.Œ�T;T �/ .T 1:

Remark 3.4. When 
 2
�
0; 2
3

�
, smallness of the initial data is only exploited to prove global existence;

the proof we present below guarantees uniqueness of any solution in C.I I E/ on any time interval I � R.

Proof. As mentioned above, Lemmas 3.1 and 3.2 imply that under the hypotheses of Theorem 3.3 we
have kru.t/k2

L2x
.E.u0/ for all times t of existence. This allows us to treat (1-6) as a perturbation of

the defocusing energy-critical NLS. Indeed, we may rewrite (1-6) as

.i@t C�/uD juj
4uCR.u/;
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where R.u/D 2
 ReuC
P4
jD2Nj .u/. Noting that the “error” R.u/ is energy-subcritical, one may argue

as in [Killip et al. 2012, Section 4.2] to construct a global solution u 2 C.RI E/\L10t PH
1; 30
13

x .R�R3/ to
(1-6). A key ingredient in this argument is the main result in [Colliander et al. 2008], which guarantees
that the defocusing energy-critical NLS is globally well-posed with finite L10t PH

1; 30
13

x .R�R3/ norm. We
omit the details of this argument. Instead, we present the proof of uniqueness of solutions in the energy
space, because the choice of energy space in this paper does not allow for a direct implementation of the
methods in [Killip et al. 2012, Section 4.3].

Fix a compact time interval I D Œ0; �� with � > 0 small. Let u 2 C.RI E/\L10t PH
1; 30
13

x .R�R3/ be
the solution to (1-6) constructed via the perturbative argument described above. Suppose Qu 2 C.I I E/ is
another solution such that Qu.0/D u.0/. We wish to show that uD Qu almost everywhere on I �R3.

To this end, we define w D Qu�u and let 0 < � < 1 be a small parameter to be determined below. As
w.0/D 0 and w 2 C.I I PH 1

x /, we can choose � small enough so that

kwk
L1t

PH1
x .I�R3/

� �: (3-2)

As ru 2 L10t L
30
13
x .I �R3/, we may also use Sobolev embedding and choose � possibly even smaller to

guarantee that
kukL10t;x.I�R3/ � �: (3-3)

We also note that as u and Qu are bounded in E , we have that q.u/, q. Qu/ are bounded in L2x; u, Qu are
bounded in L6x; and u1, Qu1 are bounded in L3x \L

6
x .

We will first show that w is bounded in Strichartz spaces on I �R3. To see this, we write

.i@t C�/w D 2
 Qu1CN. Qu/� Œ2
u1CN.u/�;

where N.u/ is as in (1-6). We make use of q.u/ and q. Qu/ to rewrite

.i@t C�/w DO.j Quj
5
Cjuj5/CO.j Quj4Cjuj4/CO.j Quj3Cjuj3/

C 
q. Qu/C .2
 C 4/ Qu21C 2i
 Qu1 Qu2� Œ
q.u/C .2
 C 4/u
2
1C 2i
u1u2�:

As w.0/D 0, we can use Strichartz to estimate

kwkL2tL
6
x
CkwkL4tL

3
x
CkwkL1t L

2
x
. k Qu5k

L2tL
6=5
x
Cku5k

L2tL
6=5
x
Ck Qu4k

L
4=3
t L

3=2
x

Cku4k
L
4=3
t L

3=2
x
Ck Qu3kL1tL

2
x
Cku3kL1tL

2
x

Ckq. Qu/kL1tL
2
x
Ckq.u/kL1tL

2
x
Ck Qu Qu1kL1tL

2
x
Ckuu1kL1tL

2
x
;

where all space-time norms are over I �R3. Using Hölder, we find

ku5k
L2tL

6=5
x
. �1=2kuk5

L1t L
6
x
; ku4k

L
4=3
t L

3=2
x
. �3=4kuk4

L1t L
6
x
; ku3kL1tL

2
x
. �kukL1t L6x ;

kq.u/kL1tL
2
x
. �kq.u/kL1t L2x ; kuu1kL1tL2x . �kukL1t L6xku1kL1t L3x ;

and we can estimate similarly for Qu. Thus we conclude

kwkL2tL
6
x
CkwkL4tL

3
x
CkwkL1t L

2
x
<1: (3-4)
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We will show that, in fact,

kwkL2tL
6
x
CkwkL4tL

3
x
CkwkL1t L

2
x
D 0; (3-5)

which implies w D 0 almost everywhere, as desired. To this end, we again rewrite the equation for w,
using z to indicate that either w or u may appear. We have

.i@t C�/w DO
�
jwjjuj4Cjwj5Cjwjjzj3Cjwjjzj2CjwjjzjC jwj

�
:

We now use Strichartz, (3-2) and (3-3) to estimate

kwkL2tL
6
x
CkwkL4tL

3
x
CkwkL1t L

2
x

. kwu4k
L
10=9
t L

30=17
x
Ckw5k

L2tL
6=5
x
Ckwz3k

L2tL
6=5
x
Ckwz2k

L
4=3
t L

3=2
x
CkwzkL1tL

2
x
CkwkL1tL

2
x

. kuk4
L10t;x
kwkL2tL

6
x
Ckwk4

L1t L
6
x
kwkL2tL

6
x
C�

1
4 kzk3

L1t L
6
x
kwkL4tL

3
x

C�
1
2 kzk2

L1t L
6
x
kwkL4tL

3
x
C�

3
4 kzkL1t L

6
x
kwkL4tL

3
x
C�kwkL1t L

2
x

. �4kwkL2tL6xC�
1
4 kwkL4tL

3
x
C�kwkL1t L

2
x
:

Choosing �; � sufficiently small and using (3-4), we conclude that (3-5) holds and so u D Qu almost
everywhere on I �R3. As uniqueness is a local property, this yields uniqueness in the energy space for
solutions to (1-6). �

Next we develop a stability theory for (1-6), which we will need in Section 4.

Proposition 3.5 (stability theory). Fix T > 0 and let Qu W Œ�T; T ��R3! C be a solution to the perturbed
equation

.i@t C�� 2
 Re/ QuDN. Qu/C e

for some function e. Suppose that

k Quk
L1t

PH1
x .Œ�T;T ��R3/

Ckr Quk
L10t L

30=13
x .Œ�T;T ��R3/

� L (3-6)

for some constant L> 0. Let u0 2 PH 1
x .R

3/ and assume that

k Qu.0/�u0k PH1
x
C





Z t

0

ei.t�s/�re.s/ ds






L1t L

2
x\L

10=3
t;x .Œ�T;T ��R3/

� " (3-7)

for some "� "0.L; T /. Then for "0.L; T / sufficiently small there exists a solution u W Œ�T; T ��R3! C

to (1-6) with data u.0/D u0 and

kr. Qu�u/k
L1t L

2
x\L

10=3
t;x .Œ�T;T ��R3/

� C.L; T /"; (3-8)

kuk PS1.Œ�T;T �/ � C.L; T /: (3-9)

Proof. The existence of the solution u on a small neighborhood of t D 0 follows from the arguments
described in Theorem 3.3. In that setting, the solution could be extended globally due to energy control.
That argument does not apply here as u0 2 PH 1

x by itself does not guarantee finiteness of the energy;
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furthermore, we permit here large data even when 
 < 2
3

, in which case the energy need not be coercive.
However, these earlier arguments do show that if a solution should blow up in finite time, then the
PS1-norm must diverge. Consequently, we can prove that the solution exists and obeys (3-8) and (3-9) on

the whole interval Œ�T; T � by showing that it obeys (3-8) and (3-9) on any subinterval 0 3 I � Œ�T; T �
on which it does exist. This is what we do.

For brevity, we define the following norm: given a time interval Œa; b�� R,

kukY.Œa;b�/ WD krukL1t L
2
x\L

10=3
t;x .Œa;b��R3/

:

Given 0 < � < 1 to be chosen later, we divide I into intervals J where

jJ j � � and kr Quk
L10t L

30=13
x .J�R3/

� �: (3-10)

The number K of such intervals depends only on L, T , and �. Below we will show that for � sufficiently
small,

inf
t02J
k Qu.t0/�u.t0/k PH1

x
� � D) kQu�ukY.J / � A inf

t02J
k Qu.t0/�u.t0/k PH1

x
(3-11)

for some absolute constant A on such intervals J. Iterating this completes the proof of (3-8) and yields
constants

"0 D A
�K.L;T;�/� and C.L; T /DK.L; T; �/AK.L;T;�/:

We now verify (3-11). Writing uD QuC v, we use Strichartz and (3-7) to estimate

kvkY.J / . inf
t02J
kv.t0/k PH1

x
C


rŒN. QuC v/�N. Qu/�

 PN 0.J /CjJ jkvkL1t PH1

x
C ";

where N. � / denotes the nonlinearity, as in (1-6). Moreover,



rŒN. QuC v/�N. Qu/�

 PN 0.J / . kr QukL10t L30=13x
kvk

L10t;x

5X
kD2

jJ j
5�k
4

�
k Qukk�2

L10t;x
Ckvkk�2

L10t;x

�
Ckrvk

L10t L
30=13
x

5X
kD2

jJ j
5�k
4

�
k Qukk�1

L10t;x
Ckvkk�1

L10t;x

�
;

where all space-time norms are over J �R3. Using Sobolev embedding and (3-10), we therefore obtain

kvkY.J / . inf
t02J
kv.t0/k PH1

x
C

5X
kD1

�
5�k
4 kvkkY.J /C ":

Choosing � sufficiently small, a simple bootstrap argument yields (3-11).
Using the fact that u is a solution to (1-6), a further application of the Strichartz inequality gives (3-9). �

We also record the following corollary.

Corollary 3.6 (small-data space-time bounds). Given T > 0 there exists �.T / > 0 such that

ku0k PH1
x
� �.T / D) kuk PS1.Œ�T;T �/ .T ku0k PH1

x
;

where u denotes the solution to (1-6) with data u.0/D u0.
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Proof. We apply Proposition 3.5 with QuD eit�u0. By the Strichartz inequality,

k Quk
L1t

PH1
x .Œ�T;T ��R3/

Ckr Quk
L10t L

30=13
x .Œ�T;T ��R3/

. ku0k PH1
x
;

while a little computation yields



Z t

0

ei.t�s/�e.s/ ds






PS1.Œ�T;T �/

.
5X
kD1

T
5�k
4 ku0k

k
PH1
x

:

Proposition 3.5 now gives the claim, provided �.T / is taken sufficiently small. �

4. Well-posedness in the weak topology

In this section we prove the following well-posedness result in the weak PH 1
x topology. As described in

the Introduction, this theorem will play a key role in the proof of Theorem 1.1 in Section 6.

Theorem 4.1 (weak topology well-posedness). Let 
 2 .0; 1/ and let fun.0/gn�1 be a bounded sequence
in E . Assume that un.0/ * u0 weakly in PH 1

x .R
3/. If 
 2

�
0; 2
3

�
we assume additionally that

kr Reun.0/kL2x � ı
 and E.un.0//�
1
4
ı
 ;

where ı
 is as in Theorem 3.3. Then there exists a unique solution u 2 C.RI E/ to (1-6) with u.0/D u0,
and for all t 2 R we have

un.t/ * u.t/ weakly in PH 1
x .R

3/; (4-1)

where un 2 C.RI E/ denotes the solution to (1-6) with initial data un.0/, whose existence is guaranteed
by Theorem 3.3.

We begin with the following lemma, which guarantees that the limit u0 belongs to the energy space
and obeys the necessary smallness conditions when 
 2

�
0; 2
3

�
, so that the existence and uniqueness of

the solution u 2 C.RI E/ follow from Theorem 3.3.

Lemma 4.2. Fix 
 2 .0; 1/ and suppose fungn�1 is a bounded sequence in E that satisfies un.x�xn/*
u0.x/ weakly in PH 1

x .R
3/ for some sequence fxngn�1 � R3. Then u0 2 E . Moreover, if 
 � 2

3
, then

E.u0/� lim inf
n!1

E.un/: (4-2)

If 
 2
�
0; 2
3

�
and kr Reunk2

L2x
� ı
 , then kr Reu0k2

L2x
� ı
 and (4-2) holds. Here ı
 is as in Theorem 3.3.

Proof. Without loss of generality, we may assume that xn � 0.
To prove that u0 2 E , it suffices to show that q.u0/ 2 L2x . As un*u0 weakly in PH 1

x .R
3/, invoking

Rellich–Kondrashov and passing to a subsequence, we deduce that un! u0 in Lpx .K/ for any 2� p < 6
and any compact set K � R3. Therefore, for any ball B � R3,Z

B

jq.u0.x//j
2 dx D lim

n!1

Z
B

jq.un.x//j
2 dx � lim inf

n!1

Z
R3
jq.un.x//j

2 dx <1:

As the bound does not depend on B , this proves q.u0/ 2 L2x .
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Proceeding similarly and using (weak) lower semicontinuity of the PH 1
x - and L6x-norms, we obtainZ

B

1
2
jru0j

2
C
1
4

q.u0/

2
C
1
6
q.u0/

3 dx � lim inf
n!1

Z
B

1
2
jrunj

2
C
1
4

q.un/

2
C
1
6
q.un/

3 dx

for any ball B . It is crucial here that the sextic term in the energy appears with a positive coefficient.
When 
 2

�
2
3
; 1
�
, the energy density is positive and so the right-hand side above is majorized by

lim infE.un/. When 
 2
�
0; 2
3

�
, we use instead (3-1) to reach the same conclusion. As u0 2 E , the

dominated convergence theorem yields (4-2). �

We next prove a linear profile decomposition adapted to (1-12) for PH 1
x -bounded sequences. Beginning

with the profile decomposition for the linear Schrödinger equation, we group the profiles according to
the behavior of their associated parameters. We also show that the error term vanishes in the limit under
propagation by V �1e�itHV (in addition to propagation by eit�).

Proposition 4.3 (linear profile decomposition). Suppose ffngn�1 is a bounded sequence in PH 1
x .R

3/ and
let T > 0. Passing to a subsequence, there exists J � 2 f0; 1; 2; : : :g[ f1g and for each finite 1� j � J �

there exist a nonzero profile �j 2 PH 1
x .R

3/, scales f�jngn�1� .0;1/, and positions f.tjn ; x
j
n/gn�1�R�R3

conforming to one of the following two scenarios:

� �
j
n � 1 and tjn � 0,

� �
j
n! 0 as n!1 and either tjn � 0 or tjn .�

j
n/
�2!˙1 as n!1,

so that for any finite 0� J � J � we have the decomposition

fn.x/D

JX
jD1

e�it
j
n�

�
.�jn/

� 1
2�j

�
x� x

j
n

�
j
n

��
CwJn .x/

satisfying the following properties:

.�jn/
1
2

�
eit

j
n�fn

�
.�jnxC x

j
n/ * �j weakly in PH 1

x ; (4-3)

lim
J!J�

lim sup
n!1

�

V �1e�itHVwJn 

L10t;x.Œ�T;T ��R3/
Ckeit�wJn kL10t;x.Œ�T;T ��R3/

�
D 0; (4-4)

sup
J

lim sup
n!1

�
kfnk

2
PH1
x

�

JX
jD1

k�j k2
PH1
x

�kwJn k
2
PH1
x

�
D 0; (4-5)

.�jn/
1
2 .eit

j
n�wJn /.�

j
nxC x

j
n/ * 0 weakly in PH 1

x for all 1� j � J; (4-6)

lim
n!1

�
j
n

�ln
C
�ln

�
j
n

C
jx
j
n � x

l
nj
2

�
j
n�
l
n

C
jt
j
n � t

l
nj

�
j
n�
l
n

D1 for all j ¤ l: (4-7)

Proof. Using the linear profile decomposition for the Schrödinger propagator for bounded sequences in
PH 1
x (see, for example, [Keraani 2001] or [Visan 2014, Theorem 4.1]), we obtain a decomposition

fn.x/D

JX
jD1

e�it
j
n�

�
.�jn/

� 1
2�j

�
x� x

j
n

�
j
n

��
C rJn .x/ (4-8)
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satisfying (4-3), (4-5), (4-6), and (4-7) (with wJn replaced by rJn ), as well as

lim
J!J�

lim sup
n!1

keit�rJn kL10t;x.Œ�T;T ��R3/ D 0: (4-9)

We will first show that we may assume the parameters conform to the two scenarios described above;
in particular, we will show that we may absorb any other bubbles of concentration into the error rJn , while
maintaining condition (4-9). To complete the proof of the proposition, we will show that condition (4-9)
(for the new error term) suffices to prove (4-4). Note that it is essential in what follows that we work on a
compact time interval.

We will use the notation

�jn .x/ WD e
�it

j
n�

�
.�jn/

� 1
2�j

�
x� x

j
n

�
j
n

��
:

We begin with the following lemma.

Lemma 4.4. If jtjn jC�
j
n!1 as n!1, then

lim
n!1

keit��jnkL10t;x.Œ�T;T ��R3/ D 0:

Proof. A direct computation gives

keit��jnkL10t;x.Œ�T;T ��R3/ D ke
it��j kL10t;x.I�R3/;

where

I D

�
�t
j
n �T

.�
j
n/
2
;
�t
j
n CT

.�
j
n/
2

�
:

If �jn !1, then the lengths of the time intervals appearing on the right-hand side of the equality
above shrink to zero; consequently, by the dominated convergence theorem combined with the Strichartz
inequality, we deduce the claim.

Passing to a subsequence, we may henceforth assume that �jn! �j 2 Œ0;1/. In this case, we have
jt
j
n j ! 1, and so the time intervals escape to infinity. Thus the claim follows once again from the

dominated convergence theorem combined with the Strichartz inequality. �

Discarding the bubbles of concentration whose parameters satisfy the hypotheses of Lemma 4.4, we can
now see that we may reduce attention to the two scenarios described in Proposition 4.3. Indeed, passing to
a subsequence, we may assume that �jn! �j 2 Œ0;1/ and tjn ! tj 2 .�1;1/. If �j ¤ 0, then we may
assume that �jn � 1 and tjn � 0 by redefining the corresponding profile to be .�j /�

1
2 e�it

j�Œ�j . � =�j /�.
The error incurred by this modification can be absorbed into rJn ; indeed, we have



�jn � .�j /� 12 e�itj���j�x� xjn�j

��




PH1
x

�





.�jn/� 12�j� x
�
j
n

�
� .�j /�

1
2�j

�
x

�
j

�




PH1
x

C





.e�itjn�� e�itj�/�.�j /� 12�j� x
�
j

��




PH1
x

;
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which tends to zero as n!1 by the strong convergence of the linear Schrödinger propagator. If instead
�j D 0, then passing to a further subsequence we may assume that either tjn � 0 or tjn .�

j
n/
�2!˙1

as n!1. Indeed, if there is a subsequence along which tjn .�
j
n/
�2! � 2 .�1;1/, then we redefine

the profile to be e�i���j and tjn � 0. It is easy to see that the resulting error can be absorbed into rJn .
It remains to prove that the new error wJn (which consists of rJn plus the bubbles of concentration whose

parameters satisfy the hypotheses of Lemma 4.4) obeys (4-4). This is a consequence of the following: if

lim
J!J�

lim sup
n!1

keit�wJn kL10t;x.Œ�T;T ��R3/ D 0;

then
lim
J!J�

lim sup
n!1



V �1e�itHVwJn 

L10t;x.Œ�T;T ��R3/
D 0:

To prove this final implication, we argue as follows: In view of the representation (2-4) and the boundedness
of U and PhiU

�1, it suffices to verify that e�itH e�it� and PloU
�1 sin.tH/e�it� are Mikhlin multipliers

with bounds that are uniform for t 2 Œ�T; T �. In the former case, this follows from (2-7); with regard to
the latter, see (2-6).

This completes the proof of Proposition 4.3. �

In the proof of Theorem 4.1, we will construct solutions to (1-6) associated to each �jn . For profiles
conforming to the first scenario in Proposition 4.3, we can achieve this by an application of Lemma 4.2
and Theorem 3.3. For profiles conforming to the second scenario, this is a more difficult problem, which
we address in the following proposition.

Proposition 4.5 (highly concentrated nonlinear profiles). Let � 2 PH 1
x .R

3/ and T >0. Assume f�ngn�1�
.0;1/ and f.tn; xn/gn�1 � R � R3 satisfy �n ! 0 and either tn � 0 or tn��2n ! ˙1. Then for n
sufficiently large, there exists a solution un to (1-6) with initial data

un.0; x/D �n.x/ WD e
�itn�

�
�
� 1
2

n �

�
x� xn

�n

��
satisfying

kunk PS1.Œ�T;T �/ � C.k�k PH1
x
/: (4-10)

Moreover, for all " > 0 there exist �";  " 2 C1c .Œ�T; T ��R3/ such that

lim sup
n!1





un.t; x/� e�i
 t�� 12n �"

�
t � tn

�2n
;
x� xn

�n

�




L10t;x.Œ�T;T ��R3/

� "; (4-11)

lim sup
n!1





run.t; x/� e�i
 t�� 32n  "

�
t � tn

�2n
;
x� xn

�n

�




L
10
3
t;x.Œ�T;T ��R3/

� ": (4-12)

Proof. As (1-6) is space-translation invariant, without loss of generality we may assume that xn � 0.
We proceed via a perturbative argument. Specifically, using a solution to the defocusing energy-critical

NLS, we will construct an approximate solution Qun to (1-6) with initial data asymptotically matching �n.
This approximate solution will have good space-time bounds inherited from the solution to the defocusing
energy-critical NLS. Using the stability result Proposition 3.5, we will then deduce that for n sufficiently
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large, there exist true solutions un to (1-6) with un.0/D �n that inherits the space-time bounds of Qun,
thus proving (4-10). We turn to the details.

If tn � 0, let v be the solution to the defocusing energy-critical NLS

.i@t C�/v D jvj
4v (4-13)

with initial data v.0/D �. If tn��2n !˙1, let v be the solution to (4-13) which scatters in PH 1
x to eit��

as t !˙1. By the main result in [Colliander et al. 2008], we have

kvk PS1.R/ � C.k�k PH1
x
/:

We are now in a position to introduce the approximate solutions Qun to (1-6). For n� 1, we define

Qun.t; x/ WD e
�i
 t�

� 1
2

n v

�
t � tn

�2n
;
x

�n

�
:

The phase factor e�i
 t is necessary. It replaces the linear factor in (1-6) by a nonresonant term; see (4-15).
Note that

k Qunk PS1.R/ D kvk PS1.R/ � C.k�k PH1
x
/: (4-14)

Moreover, Qun.0/ asymptotically matches the initial data un.0/D �n; indeed, by construction, we have

k Qun.0/��nk PH1
x
D





v�� tn�2n
�
� e�i.tn=�

2
n/��






PH1
x

! 0 as n!1:

To invoke the stability result Proposition 3.5 and deduce claim (4-10), it remains to show that Qun is an
approximate solution to (1-6) on the interval Œ�T; T � as n!1. A computation yields

en WD .i@t C�� 2
 Re/ Qun�N. Qun/D�
 Qun�
4X

jD2

Nj . Qun/: (4-15)

To establish (4-10), we have to verify that the error en satisfies the smallness condition in (3-7) for n
sufficiently large.

Let ı > 0 to be chosen later. There exist T1; T2 > 0 sufficiently large so that

kvkL10t;x.fjt j>T1g�R3/ < ı; (4-16)

kv.t/� eit�v˙k PH1
x
< ı for ˙ t > T2; (4-17)

where v˙ denote the asymptotic states for the solution v. Note that the existence of v˙ is a consequence
of the global space-time bounds for v, as discussed in [Colliander et al. 2008].

We first estimate the contribution of the higher-order terms appearing in en on the space-time slab
Œ�T; T ��R3. Defining

In D
˚
jt � tnj � �

2
nT1

	
\ Œ�T; T � and I cn D

˚
jt � tnj> �

2
nT1

	
\ Œ�T; T �;
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we use Strichartz, Hölder, (4-14) and (4-16) to obtain



Z t

0

ei.t�s/�r

4X
kD2

Nk. Qun/.s/ ds






L1t L

2
x\L

10
t L

30=13
x

. krN2. Qun/kL20=19t L
30=16
x
CkrN3. Qun/kL5=4t L

30=19
x
CkrN4. Qun/kL20=13t L

30=22
x

. kr QunkL10t L30=13x

˚
k QunkL20=17t L10x .In�R3/

Ck QunkL20=17t L10x .I
c
n�R3/

	
Ckr QunkL10t L

30=13
x
k QunkL10t;x

˚
k QunkL5=3t L10x .In�R3/

Ck QunkL5=3t L10x .I
c
n�R3/

	
Ckr QunkL10t L

30=13
x
k Qunk

2

L10t;x

˚
k QunkL20=7t L10x .In�R3/

Ck QunkL20=7t L10x .I
c
n�R3/

	
.k�k PH1x

4X
kD2

˚
.�2nT1/

5�k
4 CT

5�k
4 ı

	
:

Taking ı sufficiently small depending on T and n sufficiently large, we see this contribution is acceptable.
Next we consider the contribution of the linear term appearing in en, again on the space-time slab

Œ�T; T ��R3. First, we observe that by Strichartz and (4-14), we have



Z t

0

ei.t�s/� Qun.s/ ds






L2t
PH
1;6
x .Œ�T;T ��R3/

. k QunkL1t PH1
x .Œ�T;T ��R3/

.k�k PH1x
T: (4-18)

To continue, using (4-17) we cover R by three disjoint intervals I 0n and I˙n such that

jI 0n j � 2�
2
nT2 and





 Qun� e�i
 tei.t�tn/���� 12n v˙

�
�

�n

��




L1t

PH1
x .I
˙
n �R3/

< ı: (4-19)

By Strichartz, Hölder, (4-14), and (4-19), we have



Z t

0

ei.t�s/��I0n .s/ Qun.s/ ds






L1t

PH1
x .Œ�T;T ��R3/

. k QunkL1t PH1
x .I

0
n�R3/

.k�k PH1x
�2nT2: (4-20)

Using the triangle inequality, Strichartz, and (4-19),



Z t

0

ei.t�s/��
I˙n
.s/ Qun.s/ ds






L1t

PH1
x .Œ�T;T ��R3/

. T ıC




Z t

0

ei.tCtn�2s/��
I˙n
.s/ei
s�

� 1
2

n v˙

�
�

�n

�
ds






L1t

PH1
x .Œ�T;T ��R3/

: (4-21)

Now for any �T � a < b � T , an application of Plancherel gives



Z b

a

eis.
�2�/�
� 1
2

n v˙

�
�

�n

�
ds






PH1
x

D





Z b

a

eis.
C2j�j
2/
j�j�

5
2
n
cv˙.��n/ ds





L2
�

.


.
 C 2j�j2/�1j�j� 52ncv˙.��n/

L2

�

.




 �2n
2j�j2C 
�2n

j�jcv˙.�/




L2
�

; (4-22)
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which converges to zero as n!1 by the dominated convergence theorem. Collecting (4-20), (4-21),
and (4-22), we obtain that



Z t

0

ei.t�s/� Qun.s/ ds






L1t

PH1
x .Œ�T;T ��R3/

.k�k PH1x
�2nT2CT ıC o.1/ as n!1:

Interpolating with (4-18) and taking ı sufficiently small depending on T and taking n sufficiently large,
we see that the contribution of the linear term in en is also acceptable. This completes the proof of (4-10).

Finally, we turn to (4-11) and (4-12). For " > 0, we approximate v by �";  " 2 C1c .R�R3/ such that

kv��"kL10t;x.R�R3/ <
1
2
" and krv� "kL10=3t;x .R�R3/

< 1
2
"

and take n sufficiently large so that

kun� QunkL10t;x\L
10=3
t

PH
1;10=3
x .Œ�T;T ��R3/

< 1
2
":

The two claims now follow easily from the triangle inequality. �

Finally we turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. As mentioned above, by Lemma 4.2 and Theorem 3.3 we have that u and all of the
un are global-in-time solutions to (1-6).

Fix T > 0. We will show that for any subsequence in n there exists a further subsequence so that
along that subsequence, un.t/ * u.t/ weakly in PH 1

x for all t 2 Œ�T; T �. As the limit is independent of
the original subsequence, this will prove the theorem.

Given a subsequence in n, we apply Proposition 4.3 to un.0/�u0 and pass to a further subsequence
to obtain the decomposition

un.0/�u0 D

JX
jD1

�jn Cw
J
n with �jn .x/ WD e

�it
j
n�

�
.�jn/

� 1
2�j

�
x� x

j
n

�
j
n

��
;

which satisfies the conclusions of that proposition. By hypothesis, un.0/�u0*0 weakly in PH 1
x ; using

also (4-6) and (4-7), this implies that for all j � 1 we must have

wJn *0 weakly in PH 1
x and .�jn/

�1
Cjtjn jC jx

j
n j !1 as n!1: (4-23)

Indeed, one can first prove the divergence of the parameters by a contradiction argument. Briefly, if some
.�
j
n/
�1Cjt

j
n jC jx

j
n j were to remain bounded as n!1 then one could use (4-6) and (4-7) to deduce

that �j D 0, a contradiction. Once the divergence of the parameters is established, the weak convergence
of wJn to zero then follows.

Throughout the proof we write

�0n.x/ WD e
�it0n�

�
.�0n/

� 1
2u0

�
x� x0n
�0n

��
with parameters �0n � 1; t

0
n � 0; x

0
n � 0:
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In view of (4-23), the decomposition

un.0/D

JX
jD0

�jn Cw
J
n

satisfies the conclusions of Proposition 4.3.
We next construct nonlinear profiles associated to each �jn . If j conforms to the first scenario described

in Proposition 4.3, then (4-3) and Lemma 4.2 guarantee that �jn 2 E and moreover, kr Re�jnkL2x � ı

and E.�jn / � 1

4
ı
 if 
 2

�
0; 2
3

�
. Thus by Theorem 3.3 there exists a unique solution ujn to (1-6) with

data ujn.0/ D �
j
n ; in particular, kujnk PS1.Œ�T;T �/ <1. Note that u0n is simply the solution u from the

statement of Theorem 4.1.
If j conforms to the second scenario described in Proposition 4.3, we let ujn denote the solution to

(1-6) with data ujn.0/D �
j
n constructed in Proposition 4.5.

In either scenario, for all " > 0 there exists �j" ;  
j
" 2 C

1
c .Œ�T; T ��R3/ such that

lim sup
n!1





ujn.t; x/� e�i
 t .�jn/� 12�j" � t � tjn
.�
j
n/
2
;
x� x

j
n

�
j
n

�




L10t;x.Œ�T;T ��R3/

� "; (4-24)

lim sup
n!1





rujn.t; x/� e�i
 t .�jn/� 32 j" � t � tjn
.�
j
n/
2
;
x� x

j
n

�
j
n

�




L
10=3
t;x .Œ�T;T ��R3/

� ": (4-25)

Note that the phase e�i
 t has no significance for j conforming to the first scenario described in
Proposition 4.3; we simply incorporate it so as to treat both cases uniformly. For these j, both �j"
and  jn are chosen to approximate ei
 tujn.

As a consequence of (4-24), (4-25), and the asymptotic orthogonality of parameters given by (4-7), for
all j ¤ l we have

kujnu
l
nkL5t;x

Ckujnru
l
nkL5tL

15=8
x
Ckrujnru

l
nkL5tL

15=13
x

! 0; (4-26)

where all space-time norms are over Œ�T; T ��R3.
We next claim that for j � 1 we have

ujn.t/ * 0 weakly in PH 1
x .R

3/ as n!1 for every t 2 Œ�T; T �: (4-27)

Indeed, if j conforms to the first scenario, then (4-23) implies that jxjn j !1 and hence (4-27) follows
from the space-translation invariance of (1-6) together with uniqueness. If j conforms to the second
scenario, then we have �jn ! 0; however, as (1-6) is not scale invariant, the argument just described
does not apply directly. For this case, we recall that according to the construction in Proposition 4.5,
u
j
n are asymptotically close in L1t PH

1
x (up to a phase factor) to rescaled solutions to the defocusing

energy-critical NLS as n!1. Using the scaling symmetry and uniqueness for (4-13), we see that these
rescaled solutions converge weakly to 0 in PH 1

x at each time; by construction, ujn inherit this property.
To continue, we define

uJn .t/D

JX
jD0

ujn.t/CV
�1e�itHVwJn :
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Note that uJn .0/ D un.0/. In what follows we will prove that for n and J sufficiently large, uJn is
an approximate solution to (1-6) with uniform space-time bounds on Œ�T; T ��R3. An application of
Proposition 3.5 will then yield that for any " > 0 there exist n and J sufficiently large so that

kun�u
J
n kL1t

PH1
x .Œ�T;T ��R3/

� ":

On the other hand, using (4-23) and (4-27) and recalling uDu0n, we see that for J fixed, uJn .t/�u.t/*0

weakly in PH 1
x for all t 2 Œ�T; T �. Thus by the triangle inequality, for any ' 2 C1c .R

3/, we haveˇ̌
hun.t/�u.t/; 'i

ˇ̌
�
ˇ̌
hun.t/�u

J
n .t/; 'i

ˇ̌
C
ˇ̌
huJn .t/�u.t/; 'i

ˇ̌
� kun.t/�u

J
n .t/k PH1

x
k'k PH�1x

C
ˇ̌
huJn .t/�u.t/; 'i

ˇ̌
.' "C o.1/ as n!1;

which proves the claim in Theorem 4.1.
Thus it remains to show that for n and J sufficiently large, uJn are approximate solutions to (1-6) with

uniform space-time bounds on Œ�T; T ��R3.
Our first step in this direction is the following lemma.

Lemma 4.6 (finite space-time bounds). Given T > 0, we have

sup
J

lim sup
n!1

�
kuJn kL10t;x.Œ�T;T ��R3/Ckru

J
n kL10t L

30=10
x .Œ�T;T ��R3/

�
. 1: (4-28)

Moreover, for any � > 0 there exists J 0 D J 0.�/ sufficiently large so that

lim sup
n!1

�



 JX
jDJ 0

ujn






L10t;x.Œ�T;T ��R3/

C





 JX
jDJ 0

rujn






L10t L

30=10
x .Œ�T;T ��R3/

�
� � (4-29)

uniformly in J � J 0.

Proof. By the asymptotic decoupling of the PH 1
x -norm in (4-5), there exists J0 D J0.T / such that for all

j � J0 we have k�j k PH1
x
� �.T /, where �.T / is as in Corollary 3.6. In particular,

kujnk PS1.Œ�T;T � .T k�
j
k PH1

x
for all j � J0: (4-30)

On the space-time slab Œ�T; T ��R3 we use Lemma 2.6 to estimate

kuJn k
2

L10t;x
. kV �1e�itHVwJn k

2

L10t;x
C





� JX
jD0

ujn

�2




L5t;x

.T kwJn k
2
PH1
x

C

JX
jD0

kujnk
2
L10t;x
C

X
j¤l

kujnu
l
nkL5t;x

:

This suffices to show that the first term on the left-hand side of (4-28) is finite. Indeed, we use (4-5)
and (4-30) to bound the first two summands and (4-26) to bound the last (double) sum. An analogous
argument yields that the second term on the left-hand side of (4-28) is also bounded.
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To prove (4-29) one argues as above, taking J 0 � J0 large enough thatX
j�J 0

k�j k2
PH1
x

. �:

Note that this is possible because of (4-5). �

We next prove that the uJn are indeed approximate solutions to (1-6).

Lemma 4.7 (asymptotic solution to (1-6)). We have

lim
J!J�

lim sup
n!1



r�.i@t C�� 2
 Re/uJn �N.u
J
n /
�


PN 0.Œ�T;T �/

D 0:

Proof. Throughout the proof of the lemma, all space-time norms will be over Œ�T; T ��R3. Writing
QwJn WD V

�1e�itHVwJn , we have

eJn WD .i@t C�� 2
 Re/uJn �N.u
J
n /

D

JX
jD0

N.ujn/�N

� JX
jD0

ujn

�
CN

�
uJn � Qw

J
n

�
�N.uJn /:

Computations similar to those employed in the proof of Proposition 3.5 yield



r� JX
jD0

N.ujn/�N

� JX
jD0

ujn

��




PN 0
.

5X
kD2

X
j¤l

JX
mD0

T
5�k
4 kulnru

j
nkL5tL

15=8
x
kumn k

k�2
L10t;x

;

which converges to zero as n!1 in view of (4-26) and (4-30).
Thus, it remains to show that

lim
J!J�

lim sup
n!1



r�N.uJn � QwJn /�N.uJn /�

 PN 0.Œ�T;T �/ D 0: (4-31)

We argue as follows: First, we estimate

r�N.uJn � QwJn /�N.uJn /�

 PN 0.Œ�T;T �/
. kruJn kL10t L30=13x

k QwJn kL10t;x

5X
kD2

T
5�k
4

�
kuJn k

k�2
L10t;x
Ck QwJn k

k�2
L10t;x

�
Ckr QwJn kL10t L

30=13
x

5X
kD2

T
5�k
4 k QwJn k

k�1
L10t;x
CkuJnr Qw

J
n kL5tL

15=8
x

5X
kD2

T
5�k
4 kuJn k

k�2
L10t;x

:

That the first two summands above go to zero as n!1 and then J!1 follows from (4-4) and Lemma 4.6.
Thus, (4-31) will follow from Lemma 4.6 once we establish

lim
J!J�

lim sup
n!1

kuJnr Qw
J
n kL5tL

15=8
x .Œ�T;T ��R3/

D 0: (4-32)
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We will prove that the left-hand side of (4-32) is . � for arbitrary � > 0. By the definition of uJn , the
triangle inequality, and Hölder, we estimate

kuJnr Qw
J
n kL5tL

15=8
x

. k QwJn kL10t;xkr Qw
J
n kL10t L

30=13
x
C





 JX
jDJ 0

ujn






L10t;x

kr QwJn kL10t L
30=13
x
C





J
0�1X
jD0

ujnr Qw
J
n






L5tL

15=8
x

;

where J 0DJ 0.�/ is as in the statement of Lemma 4.6. Using (4-4) and (4-29), we see that the contribution
of the first two summands on the right-hand side of the formula above is acceptable.

It remains to prove that

lim
J!J�

lim sup
n!1

kujnr Qw
J
n kL5tL

15=8
x .Œ�T;T ��R3/

D 0 for each 0� j < J 0: (4-33)

Assume first that 0 � j < J 0 conforms to the first scenario in Proposition 4.3. Fix " > 0. Invoking
(4-24) and using the triangle inequality, Hölder, interpolation, and Corollary 2.8, we estimate

kujnr Qw
J
n kL5tL

15=8
x
�


ujn.t;x/�e�i
 t�j" .t;x�xjn/

L10t;xkr QwJn kL10t L30=13x

Ck�j" r Qw
J
n .xCx

j
n/kL5tL

15=8
x

. "Ck�j" kL1t L12x kr Qw
J
n .xCx

j
n/k

1
4

L2t;x.supp�j" /
kr QwJn k

3
4

L10t L
30=13
x

.
�
j
"
"Ck QwJn k

1
12

L10t;x
kwJn k

1
6

PH1
x

kr QwJn k
3
4

L10t L
30=13
x

:

By (4-4), we see that (4-33) follows in this case.
Now assume that 1 � j < J 0 conforms to the second scenario in Proposition 4.3. We split QwJn into

low and high frequencies and estimate them separately, starting with the low-frequency piece. Fix " > 0.
Arguing as before, using (4-24), Hölder, and Bernstein, we estimate

kujnP�.�jn/�1
r QwJn kL5tL

15=8
x
. "C





.�jn/� 12�j" � t � tjn
.�
j
n/
2
;
x� x

j
n

�
j
n

�




L10t L

30=13
x

kP
�.�

j
n/�1
r QwJn kL10t;x

. "Ck�j" kL10t L30=13x
k QwJn kL10t;x

:

In view of (4-4), this contribution is acceptable.
We now consider the high-frequency piece. Using (2-7) we can deduce

P�N �P�N eit.
��/V �1e�itHV 

 PH1

x! PH
1
x
.T N�2

uniformly for N � 1 and t 2 Œ�T; T �. Thus

kujnrP�.�jn/�1
QwJn kL5tL

15=8
x .Œ�T;T ��R3/

.T kujnP�.�jn/�1re
it�wJn kL5tL

15=8
x .Œ�T;T ��R3/

C .�jn/
2
kujnkL10t;x.Œ�T;T ��R3/kw

J
n k PH1

x

.T "Ck�j" re
it�fnkL5tL

15=8
x .In�R3/

C o.1/ as n!1;

where
fn.x/D P�1.�

j
n/
1
2wJn .�

j
nxC x

j
n/ and In D fjt � t

j
n j � .�

j
n/
2T g:
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To continue, we estimate in much the same manner as for j conforming to the first scenario:

k�j" re
it�fnkL5tL

15=8
x .In�R3/

. k�j" kL1t L12x kre
it�fnk

1
4

L2t;x.supp�j" \In�R3/
kreit�fnk

3
4

L10t L
30=13
x .In�R3/

.
�
j
"
keit�fnk

1
12

L10t;x.In�R3/
kfnk

1
6

PH1
x

kreit�fnk
3
4

L10t L
30=13
x .In�R3/

.
�
j
"
keit�wJn k

1
12

L10t;x.Œ�T;T ��R3/
kwJn k

1
6

PH1
x

kreit�wJn k
3
4

L10t L
30=13
x .Œ�T;T ��R3/

;

where we have again used Corollary 2.8. Recalling (4-4), we see that the contribution of the high-frequency
piece is acceptable. This completes the proof of (4-33) and hence the proof of Lemma 4.7. �

The final step in checking the hypotheses of Proposition 3.5, which will finish the proof of Theorem 4.1,
is to verify that

lim sup
J!J�

lim sup
n!1

kuJn kL1t PH
1
x .Œ�T;T ��R3/

.T 1:

In view of Lemma 2.6, we have

kuJn kL1t PH
1
x .Œ�T;T ��R3/

.T kuJn .0/k PH1
x
CkreJn k PN 0.Œ�T;T �/CkrN.u

J
n /k PN 0.Œ�T;T �/:

The requisite bounds on the right-hand side now follow from Lemmas 4.6 and 4.7. �

5. Normal form transformation

In this section we discuss the normal form transformation that we use throughout the rest of the paper. The
use of normal form transformations originates in work of Shatah [1985] and has since become a widely
used technique in the setting of nonlinear dispersive equations. The transformation we use is similar to
the one used by Gustafson et al. [2006; 2007; 2009] in the setting of the Gross–Pitaevskii equation.

Suppose u is a solution to (1-6). As mentioned in the Introduction, the quadratic terms in the nonlinearity
are the most problematic when it comes to questions of long-time behavior; in particular, the worst terms
are those containing u2 D Imu, since in the diagonal variables we have u2 D U�1v2. We would like to
find a normal form transformation that eliminates if not all, at least the worst quadratic terms.

To this end, we let B1Œ � ; � � and B2Œ � ; � � be arbitrary bilinear Fourier multiplier operators defined as in
(2-1), with symmetric real-valued symbols B1.�1; �2/ and B2.�1; �2/. Then

Qu WD uCB1Œu1; u1�CB2Œu2; u2�

satisfies the equation

.i@t C�/ Qu� 2
 Qu1 D

.3
 C 4/u21� .2
 ��/B1Œu1; u1� (5-1)

C 
u22� .2
 ��/B2Œu2; u2� (5-2)

C 2i
�

u1u2CB1Œu1;��u2��B2Œu2; .2
 ��/u1�

�
(5-3)

C cubic and higher order terms.
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While the symmetry of B1 and B2 makes it impossible to eliminate all of the quadratic terms, we see
that if we choose

B2.�1; �2/D 
.2
 Cj�1C �2j
2/�1; i.e., B2Œf; g�D 
hri�2.fg/;

then (5-2) D 0. This allows us to eliminate the worst quadratic term, namely, the one containing two
copies of u2. Moreover, choosing B1 D B2 we get

QuD uC 
hri�2juj2;

with
(5-1)D .2
 C 4/u21 and (5-3)D�4i
hri�2r � Œu1ru2�:

The derivative appearing in front of u2 is a welcome addition in light of the problem at low frequencies.
Similarly one can compute the higher-order terms. In general, one finds that for k 2 f3; 4; 5g the terms

of order k are given by

Nk.u/C 2i
˚
B1Œu1; Im.Nk�1.u//��B2Œu2;Re.Nk�1.u//�

	
;

where theNk are as in (1-6). Notice that there are no sixth-order terms, sinceB1DB2 and u1 Im.N5.u//D
u2 Re.N5.u//.

Finally, we employ the transformation V uD u1C iUu2 to diagonalize the equation. Our normal form
transformation is therefore given by

z WDM.u/ WD V uC 
hri�2juj2; (5-4)

and z satisfies the equation
.i@t �H/z DNz.u/ (5-5)

with

ReŒNz.u/�D U ReŒN.u/� 
 juj2�

D U
�
.2
 C 4/u21C .
 C 8/u

3
1C .
 C 4/u1u

2
2C .5u

4
1C 6u

2
1u
2
2Cu

4
2/Cjuj

4u1/
�
;

ImŒNz.u/�D�
r

hri2
�
�
4
u1ru2Cr.
 juj

2u2C q
2u2/

�
D�

r

hri2
�
�
4
u1ru2

�
CU 2

�
.
 C 4/u21u2C 
u

3
2C 4u1u2juj

2
Cjuj4u2/

�
:

We should briefly pause to point out the improvements present in (5-5) with respect to (1-6). Firstly,
(5-5) does not contain a quadratic term involving two copies of u2. Secondly, the remaining quadratic
terms involving u2 exhibit a derivative of this problematic term. Lastly, all the remaining terms appear
with a derivative at low frequencies, which is helpful throughout.

We next discuss the invertibility of the transformation (5-4). Note that by using the definition of hri�2

we can rewrite the transformation as

M.u/D U 2u1C 
hri
�2qC iUu2; (5-6)

where q D q.u/D 2u1Cjuj2.
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This normal form transformation is a homeomorphism from a neighborhood of zero in E onto a
neighborhood of zero in H 1

x . To prove this, we make use of the neighborhoods

ME0;"0 WD fu 2 E WE.u/�E
2
0 ; kukL6x � "0g;

NE 00;"00 WD ff 2H
1
x W kf kH1

x
� CE 00; kf kL6x � C"

0
0g;

where C denotes an absolute constant depending on 
 .

Proposition 5.1. Fix E0 > 0 and "0 > 0.

(i) If 
 2
�
2
3
; 1
�
, then M WME0;"0 !NE0;"0C"20 continuously.

(ii) If 
 D 2
3

, then M WME0;"0 !NE0CE30 ;"0C"20 continuously.

(iii) If 
 2
�
0; 2
3

�
, then M WME0;"0 \ fkru1k

2
2 � ı
g ! NE0;"0C"20 continuously, where ı
 is as in

Lemma 3.2.

(iv) Given E1 > 0, there exists "1 D "1.E1/ and a continuous mapping

R WNE1;"1 ! E

such that M ıRD Id on NE1;"1 and kR.f /kE .E1 for f 2NE1;"1 .

(v) Suppose 
 � 2
3

. Given E2 > 0, there exists "2 D "2.E2/ so that M is a homeomorphism of ME2;"2

onto a subset of H 1
x .R

3/ and has inverse R. In particular, M is injective on ME2;"2 . If 
 < 2
3

, then
the analogous assertions hold on ME2;"2 \fkru1k

2
2 � ı
g.

Remark 5.2. We warn the reader that just because M.u/ is small in L6x , one cannot guarantee that
uD .R ıM/.u/. However, this would follow if u were sufficiently small in L6x . This subtlety contributes
nontrivially to the complexity of the proof of Theorem 1.1.

Proof. The proofs of the first three claims parallel one another closely. We will only present the details
when 
 2

�
2
3
; 1
�
.

Let u 2ME0;"0 . Recall from Lemma 3.1 that

kuk2E .E.u/.E
2
0 :

We first show that M.u/ 2NE0;"0C"20 . Using the representation (5-6), we estimate

kM.u/kH1
x
. kU 2u1kH1

x
Ckhri

�2qkH1
x
CkUu2kH1

x
. kuk PH1

x
CkqkL2x .E0:

Using the representation (5-4) and Sobolev embedding, we estimate

kM.u/kL6x . ku1kL6x CkUu2kL6x C


hri�2juj2



L6x

. kukL6x C


jrj1=2hri�2juj2



L3x

. kukL6x Ckuk
2

L6x

. "0C "20:

Collecting these estimates, we conclude M.u/ 2NE0;"0C"20 .
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To prove the continuity of M , we note that for u; v 2 E we may write

M.u/�M.v/D U 2.u1� v1/C 
hri
�2Œq.u/� q.v/�C iU.u2� v2/:

Estimating as above we find

kM.u/�M.v/kH1
x
. dE.u; v/:

We turn now to the fourth claim in the statement of the proposition. Let f 2NE1;"1 . We aim to show
that for "1 D "1.E1/ > 0 sufficiently small, we can find a unique u 2 E such that M.u/D f , that is,�

u2 D U
�1f2;

u1 D f1� 
hri
�2ŒU�1f2�

2� 
hri�2u21:

To this end, we define

Rf .u1/ WD f1� 
hri
�2ŒU�1f2�

2
� 
hri�2u21:

We will show that for "1 D "1.E1/ sufficiently small, Rf is a contraction on

B WD
˚
u1 2 PH

1
x W ku1k PH1

x
� CE1; ku1kL6x � C."1C "

1
2

1E
3
2

1 /
	

with respect to the metric d.u1; v1/D ku1� v1k PH1
x

, where C denotes an absolute constant depending
on 
 .

We first show that Rf W B! B . We have

kRf .u1/kL6x . kf1kL6x C


hri�2ŒU�1f2�2

L6x Ckhri�2u21kL6x : (5-7)

The first term in (5-7) is controlled by "1 by assumption. For the second term in (5-7), we use Sobolev
embedding, Bernstein, and interpolation to estimate

hri�2ŒU�1f2�2

L6x .





 rhri2 ŒPloU
�1f2�

2






L2x

C





 rhri2 �.PhiU
�1f2/Ø.U�1f2/

�




L2x

. krPloU
�1f2kL3xkU

�1f2kL6x CkPhiU
�1f2kL3xkU

�1f2kL6x

. kf k
1
2

L6x
kf k

3
2

H1
x

:

For the third term in (5-7), we have

khri
�2u21kL6x .



jrj 12 hri�2u21

L3x . ku1k2L6x :
Thus, for u1 2 B and "1 D "1.E1/ sufficiently small we obtain

kRf .u1/kL6x � C."1C "
1
2

1E
3
2

1 /:

To continue, we estimate

kRf .u1/k PH1
x
. kf1k PH1

x
C


hri�2�U�1f2�2

 PH1

x
Ckhri

�2u21k PH1
x
: (5-8)
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The first term in (5-8) is controlled by E1 by assumption. For the second term in (5-8), we argue as above
to find

hri�2ŒU�1f2�2

 PH1

x
.




 rhri2 ŒPloU

�1f2�
2






L2x

C





 rhri2 �.PhiU
�1f2/Ø.U�1f2/

�




L2x

.kf k
1
2

L6x
kf k

3
2

H1
x

:

For the third term in (5-8) we estimate

khri
�2u21k PH1

x

.


jrj 32 hri�2u21

L3=2x . ku1kL6xkru1kL2x :

Thus for u1 2 B and "1 D "1.E1/ sufficiently small we have

kRf .u1/k PH1
x
� CE1:

Collecting these estimates, we conclude that Rf W B! B .
Next we show that Rf is a contraction with respect to the PH 1

x -norm. We first use Sobolev embedding,
Bernstein, and interpolation to estimate



 1

hri2

�
.u1C v1/.u1� v1/

�




PH1
x

.




 jrj 32hri2

�
.u1C v1/Phi.u1� v1/

�




L
3=2
x

C





 1

hri2

�
Plo.u1C v1/ Plo.u1� v1/

�




PH1
x

C





 1

hri2

�
Phi.u1C v1/ Plo.u1� v1/

�




PH1
x

. ku1C v1kL6xkPhi.u1� v1/kL2x CkrPlo.u1C v1/kL3xku1� v1kL6x

Cku1C v1kL6xkrPlo.u1� v1/kL3x CkPhi.u1C v1/kL3xku1� v1kL6x

.
�
ku1k

1
2

L6x
ku1k

1
2

PH1
x

Ckv1k
1
2

L6x
kv1k

1
2

PH1
x

�
ku1� v1k PH1

x
: (5-9)

In particular, for "1 D "1.E1/ sufficiently small we deduce that

kRf .u1/�Rf .v1/k PH1
x
�
1
2
ku1� v1k PH1

x
:

Therefore, by the contraction mapping theorem there exists a unique u1 2 B such that Rf .u1/D u1.
We define R.f / WD u1C iU�1f2. By construction, we have M.R.f //D f .

It remains to see that u WDR.f / 2 E with kukE .E1. As u1 2 B , we have

kuk PH1
x
. ku1k PH1

x
CkU�1f2k PH1

x
.E1Ckf2kH1

x
.E1:

Moreover, by Hölder,

kq.u/kL2x D k2f1CU
2
juj2kL2x . kf kL2x CkU.juj

2/kL2x

.E1CkrØŒ.Plou/
2�kL2x CkØ.uPhiu/kL2x

.E1CkrPloukL2xkPloukL1x CkukL6xkPhiukL3x

.E1Ckuk PH1
x

�
kPloukL1x CkPhiukL3x

�
:



1558 ROWAN KILLIP, JASON MURPHY AND MONICA VISAN

Using Bernstein, Hölder, and interpolation, we estimate

kPloukL1x . ku1kL6x CkPloU
�1f2kL10x . ku1kL6x Ckf2kL30=13x

. ku1kL6x Ckf2k
1
5

L6x
kf2k

4
5

L2x

and
kPhiukL3x . kPhiu1kL3x CkPhif2kL3x . ku1k

1
2

L6x
ku1k

1
2

PH1
x

Ckf2k
1
2

L6x
kf2k

1
2

PH1
x

:

Taking "1 D "1.E1/ sufficiently small, this proves kq.u/kL2x .E1.
To complete the proof of the proposition, it remains to address part (v). From (5-4) and (5-9), we see

that M is injective on ME2;"2 provided "2 is sufficiently small depending on E2. By shrinking "2, if
necessary, we can further ensure that M.ME2;"2/ is contained in a region where R is defined (this relies
on all the other parts of the proposition). It then follows that M is a homeomorphism on M.ME2;"2/

with inverse R. �

The last result of this section relates the energy and the inverse of the normal form transformation; this
will be useful in the proof of Theorem 1.1.

Lemma 5.3. Let fzngn�1 �H 1
x be uniformly bounded and assume that zn! 0 in L6x . Then

E.R.zn//D
1
2
kznk

2
H1
x
C o.1/ as n!1:

Proof. By Proposition 5.1 (and its proof), we have that R.zn/ exists for n large and

lim sup
n
kR.zn/kE . 1 and lim

n!1
kReR.zn/kL6x D 0: (5-10)

We first claim that
R.zn/D V

�1znC o.1/ in PH 1
x as n!1. (5-11)

Indeed, from the construction of R via the fixed point argument in Proposition 5.1, this amounts to
proving that

khri
�2ŒU�1 Im zn�

2
k PH1

x
Ckhri

�2ŒReR.zn/�2k PH1
x
D o.1/ as n!1.

To see this, we use the decomposition

ŒU�1 Im zn�
2
D ŒPloU

�1 Im zn�
2
CØ

�
.U�1 Im zn/PhiU

�1 Im zn
�

(5-12)

together with Bernstein, Hölder, (5-10), and the hypotheses of the lemma to estimate

hri�2ŒU�1 Im zn�
2



PH1
x
.


jrjŒPloU

�1 Im zn�
2



L2x
C


.U�1 Im zn/PhiU

�1 Im zn



L2x

. k Im znkL3xkU
�1 Im znkL6x

. kznk
1
2

L6x
kznk

1
2

L2x
kznkH1

x
D o.1/ as n!1,

hri�2ŒReR.zn/�2




PH1
x
.


jrj 32 hri�2ŒReR.zn/�2




L
3=2
x

. kr ReR.zn/kL2xkReR.zn/kL6x D o.1/ as n!1.

This completes the proof of (5-11).
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We now turn our attention to the terms in the formula for E.R.zn// containing q.R.zn//. Using the
representation (5-6), we observe that

M.u/D 1
2
q.u/� 1

2
U 2.juj2/C iU Imu and so q.R.zn//D 2Re znCU 2.jR.zn/j2/:

We next claim that

q.R.zn//D 2Re znC o.1/ in L2x as n!1. (5-13)

To prove this, we note that ImR.zn/ D U
�1 Im zn and use the decomposition (5-12), as well as the

analogous decomposition for ReR.zn/. Arguing as for (5-11), we estimate

kU 2ŒU�1 Im zn�
2
kL2x
.


jrjŒPloU

�1 Im zn�
2



L2x
C


.U�1 Im zn/PhiU

�1 Im zn



L2x
D o.1/;

kU 2ŒReR.zn/�2kL2x .


jrjŒPlo ReR.zn/�2




L
3=2
x
C


.ReR.zn//Phi ReR.zn/




L2x

. kr ReR.zn/kL2xkReR.zn/kL6x CkReR.zn/kL6xkPhi ReR.zn/kL3x

. krR.zn/kL2xkReR.zn/kL6x D o.1/ as n!1.

This completes the proof of (5-13).
Finally, we note that

q.R.zn//D o.1/ in L3x as n!1. (5-14)

Indeed, arguing as above we find

kRe znkL3x . kznk
1
2

L2x
kznk

1
2

L6x
D o.1/ as n!1,

kU 2ŒReR.zn/�2kL3x . kReR.zn/k2L6x D o.1/ as n!1,

kU 2ŒImR.zn/�
2
kL3x
.


jrjŒPloU

�1 Im zn�
2



L3x
C


.U�1 Im zn/PhiU

�1 Im zn



L3x

. k Im znkL6x



jrj�1 Im zn



L6x
CkU�1 Im znkL6xk Im znkL6x

. kznkL6xkznkH1
x
D o.1/ as n!1.

Putting together (5-11), (5-13), and (5-14) completes the proof of the lemma. �

6. Proof of the main result

In this section we prove the main result, Theorem 1.1. As discussed in the Introduction, the proof is
based off of a strategy of Nakanishi; see especially Theorem 1.3 and the sketch of proof thereafter. For
the convenience of the reader, we restate the main theorem here.

Theorem 6.1. Suppose 
 2
�
2
3
; 1
�
. For any uC 2H 1

realC i
PH 1

real, there exists a global solution u2C.RI E/
to (1-6) such that

lim
t!1

ku.t/�ulin.t/k PH1
x
D 0; (6-1)
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where ulin.t/ WD V
�1e�itHV uC. Moreover,

lim
t!1

dE
�
u.t/; ulin.t/� 
hri

�2
julin.t/j

2
�
D 0: (6-2)

For 
 2
�
0; 2
3

�
, these conclusions hold if kuCkH1

realCi
PH1

real
is sufficiently small.

Proof of Theorem 6.1. Let uC 2H 1
realC i

PH 1
real. We define zC D V uC 2H 1

x and we let E0 WD kzCkH1
x

.
We first claim that

lim
t!1

ke�itH zCkL6x D 0: (6-3)

Indeed, given � > 0 we may find ' 2 S.R3/ such that kzC� 'k PH1
x
< �. Using the dispersive estimate

(2-3) and Sobolev embedding, we find

ke�itH zCkL6x . ke
�itH'kL6x CkzC�'k PH1

x
. jt j�1k'k

L
6=5
x
C �;

which yields (6-3).
Next, we choose "0 sufficiently small depending on E0 as in Proposition 5.1. By (6-3), there exists

T0 > 0 such that e�itH zC 2NE0;"0 for t � T0; thus for any T � T0, we may define R.e�iTH zC/ 2 E
so that M.R.e�iTH zC//D e�iTH zC, with kR.e�iTH zC/kE .E0.

By Theorem 3.3, there exists a global solution uT 2 C.RI E/ to (1-6) with uT .T / D R.e�iTH zC/.
Note that when 
 2

�
0; 2
3

�
, we require E0 to be sufficiently small to guarantee that

kr Re.uT .0//k2
L2x
� ı
 and E.uT .0//� 1

4
ı
 (6-4)

uniformly in T, where ı
 is as in Theorem 3.3. We define

qT WD q.uT /D 2uT1 Cju
T
j
2 and zT WDM.uT /:

Note that .uT ; zT / solves (5-4)–(5-5) with zT .T /D e�iTH zC. Furthermore, we have

kzT .t/kH1
x
CkuT .t/k PH1

x
CkqT .t/kL2x\L3x Cku

T
1 .t/kL3x\L6x .E0 1 (6-5)

uniformly in t and T.
As a consequence of (6-5), there exists a sequence Tn ! 1 and a function u0 2 PH 1

x such that
uTn.0/*u0 weakly in PH 1

x . As (6-5) and (6-4) imply that fuTn.0/g satisfy the hypotheses of Theorem 4.1,
we may apply this theorem to deduce that

uTn.t/ * u1.t/ weakly in PH 1
x for all t 2 R, (6-6)

where u1 2 C.RI E/ denotes the solution to (1-6) with initial data u1.0/D u0 2 E .
We define z1 WDM.u1/ and note that .u1; z1/ solves (5-4)–(5-5). We will prove that u1 is a

solution to (1-6) that satisfies the conclusions of Theorem 1.1. A first step in this direction is the following
weak convergence result.

Proposition 6.2. We have

eitH z1.t/ * zC weakly in H 1
x as t !1.
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Assuming Proposition 6.2 for now, we proceed with the proof of Theorem 1.1. We begin by upgrading
the weak convergence from Proposition 6.2 to strong convergence, namely,

lim
t!1

kz1.t/� e�itH zCkH1
x
D 0: (6-7)

Using Lemma 4.2 combined with (6-6) and Lemma 5.3 combined with (6-3), we can first write

E.u1/� lim inf
n!1

E.uTn/D lim inf
n!1

E.R.e�iTnH zC//D
1
2
kzCk

2
H1
x
: (6-8)

At this moment, it is tempting to attempt a Radon–Riesz-style argument. Recall that the Radon–Riesz
theorem says that if xn * x weakly in some Banach space X and lim supF.xn/ � F.x/ for some
uniformly convex function F WX ! R, then xn! x in norm. (This is most often quoted in the case of a
uniformly convex Banach space with F being the norm.)

The ideas just sketched were adapted beautifully to the Gross–Pitaevskii setting treated in [Gustafson
et al. 2009]. As discussed in the Introduction, those authors exploit

EGP .u/D
1
2
kM.u/k2

H1
x
C
1
4
kU juj2k2

L2x
�
1
2
kM.u/k2

H1
x
;

which holds under no additional hypotheses. As also discussed there (see (1-23), in particular) the energy
functional for the cubic-quintic problem admits no such global inequality. Correspondingly, we need to
keep track of the structure of z1.tn/ as tn!1 and then demonstrate the requisite coercivity is available
in this particular limiting regime. To achieve this goal we will use the following lemma. Note that the
result on QE plays a key role in controlling the kinetic energy of the real part when 
 < 2

3
.

Lemma 6.3. Let fungn�1 � E be uniformly bounded. Assume that we may write un D �nC rn, where �n
satisfies

sup
n
k�nkH1

realCi
PH1

real
. 1 and lim

n!1
k�nkL3x\L6x D 0:

Then
E.un/DE.rn/C

1
2
kV �nk

2

H1
x
CRehM.rn/; V �niH1

x
C o.1/ as n!1: (6-9)

Furthermore, if QE denotes the reduced energy defined via

QE.f / WD

Z
1
4
jrf j2C 1

8

 jq.f /j2 dx D 1

2
E.f /� 1

12

Z
q.f /3 dx;

then
QE.un/D QE.rn/C

1
4
kV �nk

2
H1
x
C
1
2

RehM.rn/; V �niH1
x
C o.1/ as n!1: (6-10)

Proof. We will only prove (6-9). Claim (6-10) can be read off from the proof we give below.
To begin we observe that

q.un/D q.rn/C 2Re �nCj�nj2C 2Re. N�nrn/:

By hypothesis, rn D un� �n is uniformly bounded in L6x . Using this and our assumptions on �n, we see

q.un/D q.rn/C 2Re �nC o.1/ in L2x as n!1;

q.un/D q.rn/C o.1/ in L3x as n!1:
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Moreover, as un is bounded in E and Re �n is bounded in L2x , we deduce that q.rn/ is uniformly bounded
in both L2x and L3x .

Therefore, we obtain

E.un/DE.rn/C

Z
1
2
jr�nj

2
CRe.r N�nrrn/C 
q.rn/Re �nC 
.Re �n/2 dxC o.1/

DE.rn/C
1
2
kV �nk

2
H1
x
CRe

˝
.2
 ��/M.rn/; V �n

˛
L2x
C o.1/ as n!1: �

We return now to the proof of (6-7). Let us begin by showing that

E.u1/� 1
2
kzCk

2

H1
x
; (6-11)

which combined with (6-8) fully identifies E.u1/. While natural, this is not (in and of itself) essential
to the argument; it does, however, force us to control the contributions of parts of the energy with the
unhelpful sign. It will be this control that will ultimately allows us to complete the proof of (6-7).

Let tn!1 be an arbitrary sequence. We apply Lemma 6.3 with

un WD u
1.tn/ and �n WD .Id˚P�Nn/V

�1e�itnH zC; (6-12)

where Nn 2 2Z converges to zero sufficiently slowly to guarantee that

k�nkL3x\L6x ! 0 as n!1. (6-13)

Note that this is possible because of (6-3). In view of (6-9), we obtain

E.u1/DE.rn/C
1
2



.Id˚P�Nn/e�itnH zC

2H1
x

CRe
˝
M.rn/; .Id˚P�Nn/e

�itnH zC
˛
H1
x
C o.1/ as n!1. (6-14)

By Proposition 6.2, eitnHM.u1.tn// D eitnH z1.tn/ * zC weakly in H 1
x . On the other hand, by

(6-13), we have

M.u1.tn//D e
�itnH zCCM.rn/�P�Nn Im e�itnH zCC 
hri

�2Œj�nj
2
C 2Re. N�nrn/�

D e�itnH zCCM.rn/C o.1/ in H 1
x as n!1. (6-15)

Thus, we may deduce that

eitnHM.rn/ * 0 weakly in H 1
x as n!1.

Combining this with the dominated convergence theorem (which allows us to replace P�Nn by Id), (6-14)
becomes

E.u1/DE.rn/C
1
2
kzCk

2
H1
x
C o.1/ as n!1. (6-16)

Arguing similarly and using (6-10) in place of (6-9), we obtain

QE.u1/D QE.rn/C
1
4
kzCk

2
H1
x
C o.1/ as n!1. (6-17)
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Note that (6-11) follows immediately from (6-16), provided that E.rn/� 0. By Lemma 3.1, this is im-
mediate if 
 2

�
2
3
; 1
�
. In view of Lemma 3.2, if 
 2

�
0; 2
3

�
we simply have to verify that kr Re rnk2

L2x
� ı
 .

This, however, follows from (6-8) and (6-17), provided E0 is chosen sufficiently small depending on 
 .
Combining (6-8) with (6-11) and (6-16), we deduce that

E.u1/D 1
2
kzCk

2
H1
x

and E.rn/! 0 as n!1.

By the argument in the preceding paragraph, this implies

krnkE ! 0 as n!1. (6-18)

Therefore, using the representation (5-6) for M, we see that

kM.rn/kH1
x
. kU Im rnkH1

x
CkU 2 Re rnkH1

x
Ckhri

�2q.rn/kH1
x

. krnk PH1
x
Ckq.rn/kL2x ! 0 as n!1.

Combining this with (6-15), we get

kz1.tn/� e
�itnH zCkH1

x
! 0 as n!1.

As the sequence tn!1 was arbitrary, this completes the proof of (6-7).
We next prove that (6-7) implies the conclusions of Theorem 6.1. We first show that (6-7) implies

(6-1). Let tn!1 be an arbitrary sequence and define un and �n as in (6-12). Using (6-13) and (6-18),
we deduce that u1.tn/! 0 in L6x . Furthermore, by (6-7) and (6-3), we have that z1.tn/! 0 in L6x .
Using Proposition 5.1(v), we find that u1.tn/ D R.z1.tn// for n sufficiently large. Arguing as in
Lemma 5.3 and using (5-11), we may write u1.tn/D V �1z1.tn/C o.1/ in PH 1

x , which together with
(6-7) yields (6-1).

We now turn to (6-2). We begin with the following strengthening of (6-3):

lim
t!1

kU�1e�itH zCkL6x D 0: (6-19)

Given 0 < N < 1, we have

kU�1P�N e
�itH zCkL6x . krU

�1P�N e
�itH zCkL2x. kP�N zCkL2x ;

kU�1P>N e
�itH zCkL6x .N

�1
ke�itH zCkL6x :

In view of (6-3), choosing N sufficiently small and then sending t !1 yields (6-19).
Using (6-19), we now show that the modification 
hri�2julinj

2 appearing in (6-2) is negligible in the
PH 1
x -norm. Indeed, we have the stronger statement

hri�1julin.t/j

2



PH1
x
.


jrj 12ulin.t/




L3x
kulin.t/kL6x

. krulin.t/kL2xkU
�1e�itH zCkL6x

. kzCkH1
x
kU�1e�itH zCkL6x ! 0 as t !1: (6-20)
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It remains to show

lim
t!1



q�u1.t/�� q�ulin.t/� 
hri
�2
julin.t/j

2
�


L2x
D 0: (6-21)

As demonstrated above, u1.t/ D R.z1.t// for t sufficiently large and z1.t/! 0 in L6x as t !1.
Thus, arguing as for (5-13) and using (6-7), we deduce that

q.u1.t//D 2Reulin.t/C o.1/ in L2x as t !1:

On the other hand, a straightforward computation yields

q
�
ulin.t/� 
hri

�2
julin.t/j

2
�

D 2Reulin.t/CU
2
julin.t/j

2
C
�

hri�2julin.t/j

2
�2
� 2


�
hri
�2
julin.t/j

2
�

Reulin.t/:

Thus, to prove (6-21) it suffices to show that the last three terms on the right-hand side above are o.1/
in L2x as t !1. Indeed, we may estimate

kU 2julin.t/j
2
kL2x
. khri�1julin.t/j

2
k PH1

x
;

�hri�2julin.t/j

2
�2



L2x
.


jrj 14 hri�2julin.t/j

2


2
L3x
. kU�1e�itH zCk4L6x ;

�hri�2julin.t/j

2
�

Reulin.t/



L2x
. kU�1e�itH zCk3L6x ;

and so by (6-19) and (6-20), we have

q
�
ulin.t/� 
hri

�2
julin.t/j

2
�
D 2Reulin.t/C o.1/ in L2x as t !1:

This completes the proof of (6-21) and hence that of Theorem 1.1. �

It remains to prove Proposition 6.2.

Proof of Proposition 6.2. We first claim that

zTn.t/ * z1.t/ weakly in PH 1
x for all t 2 R. (6-22)

This relies in an essential way on Theorem 4.1 via (6-6). Henceforth, we let t 2 R be fixed. Using (6-6)
and Rellich–Kondrashov and passing to a subsequence, we have uTn.t/! u1.t/ strongly in L2x.K/ for
any compact K � R3. Now fix ' 2 C1c .R

3/. Then hri�2' 2 S.R3/; in particular, for any " > 0 there
exists Q'" 2 C1c .R

3/ such that
khri

�2' � Q'"kL3=2x
� ":

Using this, Hölder, (6-5), and (6-6), we obtain

hzTn.t/; 'i D huTn.t/; V'iC 
hjuTn.t/j2; Q'"iC 

˝
juTn.t/j2; hri�2' � Q'"

˛
D huTn.t/; V'iC 
hjuTn.t/j2; Q'"iCO."/

! hu1.t/; V'iC 
hju1.t/j2; Q'"iCO."/

D hz1.t/; 'iCO."/:

As " > 0 was arbitrary, this proves (6-22).
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To continue, we write

eitH z1.t/�zC

D
�
eitH z1.t/�eiT0H z1.T0/

�
C
�
eiT0H z1.T0/�e

iT0H zTn.T0/
�
C
�
eiT0H zTn.T0/�e

iTnH zTn.Tn/
�
:

As the above is bounded in H 1
x , it suffices to prove weak convergence when testing against a dense

set of functions in H�1x . In this role, we take ' 2 S.R3/ with O' 2 C1c .R
3 n f0g/. To continue, we

choose N0 2 2Z so that supp O' � fj�j � 100N0g and fix " > 0. By (6-22), there exists n sufficiently large
(depending on T0) so that ˇ̌˝

eiT0H z1.T0/� e
iT0H zTn.T0/; '

˛ˇ̌
� ": (6-23)

To handle the remaining two differences, we will prove the inequalityˇ̌˝
eit2H z.t2/� e

it1H z.t1/; '
˛ˇ̌
.' jt1j�

1
4 (6-24)

uniformly for t2 > t1, where z denotes any of the functions zTn. In view of (6-22), we see that (6-24)
also holds (with the same implicit constant) for z D z1. Thus, taking T0 large enough depending on "
and then n large enough so that Tn > T0 and (6-23) holds, we get

sup
t>T0

jheitH z1.t/� zC; 'ij.' ":

As " > 0 was arbitrary, this proves Proposition 6.2.
It remains to verify (6-24). By Duhamel’s formula, we haveˇ̌˝

eit2H z.t2/� e
it1H z.t1/; '

˛ˇ̌
�

Z t2

t1

jhNz.u.s//; e
�isH'ij ds: (6-25)

To continue, we decompose the nonlinearity as

Nz.u/DN
1
z .u/� 
N

2
z .u/;

where

N 1
z .u/DU

�
1
2

C2q2Cq2u1�
u

3
1�

1
2

 juj4

�
�2
ihri�2r�Œqru2�u

2
1ru2�CiU

2Œ
u21u2Cq
2u2�;

N 2
z .u/DU.u1u

2
2/�

1
3
iU 2.u32/:

We first estimate the contribution of N 1
z .u/ to (6-25). By Hölder and the dispersive estimate (2-3), we

can estimate Z t2

t1

ˇ̌
hN 1
z .u.s//; e

�isH'i
ˇ̌
ds .

Z t2

t1

kN 1
z .u.s//kL12=11x

ke�isH'kL12x ds

.'
Z t2

t1

jsj�
5
4 kN 1

z .u.s//kL12=11x
ds:

Most of the terms appearing in Re.N 1
z / can be handled using Hölder and (6-5):

U �1

2

 C 2q2C q2u1� 
u

3
1

�


L
12=11
x
. kqk2

L
24=11
x

Ckqk2
L
8=3
x

ku1kL6x Cku1k
3

L
36=11
x

. 1:
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To estimate the remaining term in Re.N 1
z / we also use the fractional chain rule and Sobolev embedding:

kU.juj4/k
L
12=11
x
.


jrj 34 .juj4/



L
12=11
x
.


jrj 34u



L
12=5
x
kuk3

L6x
. kruk4

L2x
. 1:

To estimate the terms in Im.N 1
z /, we use Hölder and (6-5):

hri�2r � Œqru2�u21ru2�

L12=11x

. kru2kL2xkqkL12=5x
Ckru2kL2xku1k

2

L
24=5
x

. 1;

U 2Œ
u21u2C q2u2�

L12=11x
. kr.u21u2/kL12=11x

Ckq2u2kL12=11x

. ku1kL4xkukL6xkrukL2x Ckqk
2

L
8=3
x

ku2kL6x . 1:

Putting everything together, we findZ t2

t1

ˇ̌
hN 1
z .u.s//; e

�isH'i
ˇ̌
ds .' jt1j�

1
4 :

We turn now to estimating the contribution of N 2
z .u/ to (6-25). To complete the proof of (6-24) and so

that of the proposition, we must show thatZ t2

t1

ˇ̌
hN 2
z .u.s//; e

�isH'i
ˇ̌
ds .' jt1j�

1
4 : (6-26)

Recalling that supp O' � fj�j � 100N0g, we see that

hP�20N0N
2
z .u.s//; e

�isH'i � 0:

Writing u2 D P�N0u2CP>N0u2, we may decompose the remaining part of N 2
z .u/ as

P>20N0N
2
z .u/D P>20N0UØ

�
u1u2P>N0u2

�
CP>20N0U

2Ø
�
u2ŒP>N0u2�

2
�

CP>20N0U
˚
ŒP>8N0u1�ŒP�N0u2�

2
� iU

�
ŒP>8N0u2�ŒP�N0u2�

2
�	
:

Writing u1 D NvC iUu2 (with v D V u) and a WD ŒP�N0u2�
2, we arrive at the decomposition

P>20N0N
2
z .u/D

P>20N0UØ
�
u1u2P>N0u2

�
CP>20N0U

2Ø
�
u2ŒP>N0u2�

2
�

(6-27)

C iP>20N0U
˚
aU.P>8N0u2/�U

�
aP>8N0u2

�	
(6-28)

CP>20N0U
˚
aP>8N0 Nv

	
: (6-29)

As we will see, the terms in (6-27) and (6-28) are small. However, there is no reason to believe that
(6-29) is small pointwise in time; instead, we will show that this term is nonresonant.

We first consider (6-27). Using Hölder, Bernstein, and (6-5), we estimate

k(6-27)k
L
12=11
x
. ku1kL4xku2kL6xkP>N0u2kL2x Cku2kL6xkP>N0u2k

2

L
8=3
x

.N0 ku1kL4xkru2k
2
L2x
Ckru2k

3
L2x
.N0 1:

Thus, the contribution of this term to (6-26) is acceptable.
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We now turn to (6-28), which includes the commutator Œa; U �. We regard this term as a bilinear
operator T .a; P>8N0u2/ with symbol given by�
1��

�
�

20N0

��
U.�/ŒU.�2/�U.�/��

�
�1

4N0

�
D

�
�2


U.�/.�1C 2�2/

h�ih�2i.j�2jh�iC j�jh�2i/

�
1��

�
�

20N0

��
�

�
�1

4N0

��
� �1;

where � denotes the standard Littlewood–Paley multiplier. Observing that the multiplier inside the braces
is amenable to Lemma 2.3, we may estimate

k(6-28)k
L
12=11
x
. krak

L
3=2
x
kP>8N0u2kL4x .N0 krP�N0u2kL2xkP�N0u2kL6xkru2kL2x :

In view of (6-5), the contribution of this term to (6-26) is acceptable.
Finally, we consider (6-29). Using (1-11), we find

i@t

D
aP>8N0 Nv; e

�itH U

2H
'
E
D
˝
U.aP>8N0 Nv/; e

�itH'
˛
C

D
aP>8N0Nv.u/; e

�itH U

2H
'
E

C

D
Œa;H�P>8N0 Nv; e

�itH U

2H
'
E
C i

D
PaP>8N0 Nv; e

�itH U

2H
'
E
:

By the fundamental theorem of calculus, we may thus estimate the contribution of (6-29) to (6-26) asZ t2

t1

ˇ̌
hU.aP>8N0 Nv/; e

�isH'i
ˇ̌
ds

. sup
t�t1

ˇ̌˝
aP>8N0 Nv; e

�itH
hri
�2'

˛ˇ̌
C

Z t2

t1

ˇ̌˝
aP>8N0Nv.u/; e

�isH
hri
�2'

˛ˇ̌
ds

C

Z t2

t1

ˇ̌˝
hri
�2
�
Œa;H�P>8N0 Nv

�
; e�isH'

˛ˇ̌
dsC

Z t2

t1

ˇ̌˝
PaP>8N0 Nv; e

�isH
hri
�2'

˛ˇ̌
ds: (6-30)

To estimate the terms on the right-hand side of (6-30), we note that in view of (6-5),

kra.t/k
L
3=2
x \L

1
x
Cka.t/kL3x\L1x Ckrv.t/kL2x Ckv.t/kL3x\L6x .N0 1 (6-31)

uniformly for t 2 R. Using this, Hölder, and (2-3), we estimate the first term on the right-hand side of
(6-30) as

sup
t�t1

ˇ̌
haP>8N0 Nv; e

�itH
hri
�2'i

ˇ̌
. kakL1t L3xkvkL1t L3x sup

t�t1

ke�itH hri�2'kL3x .';N0 jt1j
� 1
2 :

Thus, the contribution of this term to (6-26) is acceptable.
Next we consider the second term on the right-hand side of (6-30). By Hölder and (2-3),Z t2

t1

ˇ̌˝
aP>8N0Nv.u/; e

�isH
hri
�2'

˛ˇ̌
ds .' jt1j�

1
2 kaP>8N0Nv.u/kL1t L

1
x
:

Note that

Nv.u/D

5X
kD2

UØ.uk/CØ.uk/:
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To estimate the contribution of the quadratic terms in Nv.u/, we use Bernstein, (6-5), and (6-31):

aP>8N0�UØ.u2/CØ.u2/
�


L1t L

1
x
.N0 kakL1t L3xkrØ.u2/k

L1t L
3=2
x

.N0 kakL1t L3xkrukL1t L2xkukL1t L6x .N0 1:

Similarly, we can estimate the cubic terms in Nv.u/ via

aP>8N0�UØ.u3/CØ.u3/
�


L1t L

1
x
.N0 kakL1t L6xkrØ.u3/k

L1t L
6=5
x

.N0 kakL1t L6xkrukL1t L2xkuk
2
L1t L

6
x
.N0 1:

We estimate the quartic and quintic terms in Nv.u/ using Hölder, (6-5), and (6-31):

aP>8N0�UØ.u4/CØ.u4/
�


L1t L

1
x
. kakL1t L3xkuk

4

L1t L
6
x
. 1;

aP>8N0�UØ.u5/CØ.u5/

�


L1t L

1
x
. kakL1t L6xkuk

5
L1t L

6
x
. 1:

Putting everything together, we see that the contribution of the second term on the right-hand side of
(6-30) to (6-26) is acceptable.

We now turn to the third term on the right-hand side of (6-30). By Hölder and (2-3),Z t2

t1

ˇ̌˝
hri
�2
�
Œa;H�P>8N0 Nv

�
; e�isH'

˛ˇ̌
ds .' jt1j�

1
4



hri�2�Œa;H�P>8N0 Nv�

L1t L12=11x
:

We regard the term on the right-hand side above as a bilinear operator T .a; v/ with symbol given by

H.�2/�H.�/

h�i2
�

�
�1

4N0

��
1��

�
�2

8N0

��
Dm.�1; �2/ � �1;

where

m.�1; �2/D�
.2
 Cj�j2Cj�2j

2/.�1C 2�2/

h�i2.j�2jh�2iC j�jh�i/
�

�
�1

4N0

��
1��

�
�2

8N0

��
is a bounded bilinear multiplier in view of Lemma 2.3. Using also (6-31), we get

hri�2�Œa;H�P>8N0 Nv�

L1t L12=11x

. krak
L1t L

3=2
x
kvkL1t L

4
x
.N0 1:

Thus, the contribution of the third term on the right-hand side of (6-30) to (6-26) is acceptable.
We now turn to the fourth and last term on the right-hand side of (6-30). By Hölder, (2-3), and

Bernstein,Z t2

t1

ˇ̌˝
PaP>8N0 Nv; e

�isH
hri
�2'

˛ˇ̌
ds .' jt1j�

1
2 k PakL1t L

2
x
kP>8N0vkL1t L

2
x

.';N0 jt1j
� 1
2 kP�N0 Pu2kL1t L

3
x
ku2kL1t L

6
x
krvkL1t L

2
x
:
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In view of (6-5) and (6-31), we need only bound P�N0 Pu2 in L1t L
3
x . To this end, we use (1-6), Bernstein,

and (6-5):

kP�N0 Pu2kL1t L
3
x
. kP�N0.2
 ��/u1kL1t L3x C

5X
kD2

kP�N0Ø.uk/kL1t L3x

.N0 ku1kL1t L3x C
5X
kD2

kukk
L1t L

6
x
.N0 1:

Thus, the contribution of the fourth term on the right-hand side of (6-30) to (6-26) is acceptable. This
completes the justification of (6-26) and so the proof of Proposition 6.2. �

7. Proof of Theorem 1.4

In this section we prove Theorem 1.4 and Corollary 1.7. We recall the norm

kukXT WD sup
t�T

t
1
2 ku.t/k

H
1;3
x .R3/

:

The proof of Theorem 1.4 will be effected by running a contraction mapping argument simultaneously
for u and z DM.u/. The necessity of exploiting the normal form transformation can be seen when one
endeavors to estimate the quadratic terms appearing in the nonlinearity.

Proof of Theorem 1.4.. We define maps8̂<̂
:
Œˆ1.u; z/�.t/D V

�1z.t/� 
hri�2ju.t/j2;

Œˆ2.u/�.t/D e
�itHV uCC i

Z 1
t

e�i.t�s/HNz.u.s// ds;

where Nz is as in (5-5).
We will show that the map .u; z/ 7! ˆ.u; z/ WD .ˆ1.u; z/;ˆ2.u// is a contraction on a suitable

complete metric space, and so deduce that ˆ has a unique fixed point .u; z/ in this space, which then
necessarily solves (5-4)–(5-5).

For 0 < � < 1 and T > 1 to be determined below, we define

B1 D
˚
u W kuk

L1t .H
1
realCi

PH1
real/
� 4kuCkH1

realCi
PH1

real
; kukXT � 4�

	
;

and
B2 D

˚
z W kzkL1t H

1
x
� 2kuCkH1

realCi
PH1

real
; kV �1zkXT � 2�

	
;

where here and in what follows all space-time norms are taken over .T;1/�R3 unless stated otherwise.
We define B D B1 �B2 and equip B with the metric

d..u; z/; . Qu; Qz//D ku� QukXT C 8kV
�1.z� Qz/kXT :

We first show that ˆ W B! B . By Sobolev embedding, for .u; z/ 2 B and t > T � 1,

hri�2ju.t/j2


H1
x
C


hri�2ju.t/j2



H
1;3
x
.


ju.t/j2



L
3=2
x
. ku.t/k2

L3x
. �2t�1:
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Thus choosing T D T .kuCkH1
realCi

PH1
real
/ large enough, we have

Œˆ1.u; z/�.t/

H1

realCi
PH1

real
� kV �1z.t/k

H1
realCi

PH1
real
C 




hri�2ju.t/j2


H1
x
� 2kzkL1t H

1
x
:

Similarly, 

Œˆ1.u; z/�.t/

H1;3
x
� kV �1z.t/k

H
1;3
x
C 




hri�2ju.t/j2


H
1;3
x
� 4�t�

1
2 ;

provided � is chosen small enough. Thus ˆ1 W B! B1.
We next show that ˆ2 W B1! B2. We first estimate Nz.u/, which satisfies

U�1Nz.u/D Ø.u2Cu3Cu4Cu5/CU�1 r
hri2

�Ø.uru/CUØ.u3Cu4Cu5/: (7-1)

We estimate the quadratic terms at fixed time t > T � 1, as


hØ.u2/CU�1 r
hri2

�Ø.uru/
i
.t/




H
1;3=2
x

. t�1kuk2XT . t
�1�2:

Similarly, for k 2 f2; 3; 4g we have

�Ø.ukC1/CUØ.ukC1/
�
.t/



H
1;3=2
x

. ku.t/kk
L3kx
ku.t/k

H
1;3
x

. kjrj1�
1
k u.t/kk

L3x
ku.t/k

H
1;3
x
. t�

kC1
2 kukkC1XT

. t�
kC1
2 �kC1: (7-2)

Combining the above, we deduce that

kU�1Nz.u.t//kH1;3=2
x
.

4X
kD1

t�
kC1
2 �kC1 uniformly for t > T � 1. (7-3)

To continue, we use Strichartz and (7-3) to estimate

kˆ2.u/kL1t H
1
x
� kV uCkL1t H

1
x
CCkNz.u/kL4=3t H

1;3=2
x

� kuCkH1
realCi

PH1
real
CC

4X
kD1

T �
2k�1
4 �kC1 � 2kuCkH1

realCi
PH1

real
;

provided T D T .kuCkH1
realCi

PH1
real
/ is chosen sufficiently large.

We turn to estimating V �1ˆ2.u/ in the X-norm for u 2 B1. By hypothesis, the dispersive estimate
(2-3), and (7-3), for t > T � 1 we have

kŒV �1ˆ2.u/�.t/kH1;3
x
�kV �1e�itHV uCkH1;3

x
C





Z 1
t

V �1Œie�i.t�s/HNz.u.s//�ds






H
1;3
x

� �t�
1
2 C

Z 1
t



e�i.t�s/HU�1Nz.u.s//�

H1;3
x
ds

� �t�
1
2CC

Z 1
t

jt � sj�
1
2

4X
kD1

s�
kC1
2 �kC1ds� �t�

1
2CC

4X
kD1

t�
k
2 �kC1� 2�t�

1
2 ;

provided � is chosen sufficiently small. This completes the proof that ˆ W B! B .
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We next claim thatˆ is a contraction with respect to the metric defined above. First, for .u; z/; . Qu; Qz/2B ,
we estimate

ˆ1.u; z/�ˆ1. Qu; Qz/

XT � kV �1.z� Qz/kXT C 


hri�2.juj2� j Quj2/

XT

�
1
8
d..u; z/; . Qu; Qz//CC sup

t�T

t
1
2



.uC Qu/.t/.u� Qu/.t/


L
3=2
x

�
1
8
d..u; z/; . Qu; Qz//CC�T �

1
2 ku� QukXT

�
1
4
d..u; z/; . Qu; Qz//;

provided � is sufficiently small.
By (2-3), for t > T � 1 we estimate

V �1Œˆ2.u/�ˆ2. Qu/�.t/

H1;3

x
�





Z 1
t

V �1
�
ie�i.t�s/H ŒNz.u.s//�Nz. Qu.s//�

�
ds






H
1;3
x

�

Z 1
t

jt � sj�
1
2



U�1ŒNz.u.s//�Nz. Qu.s//�

H1;3=2
x

ds:

Writing w to indicate that either u or Qu may appear, we have

U�1ŒNz.u/�Nz. Qu/�D

4X
kD1

ØŒwk.u� Qu/�C
U�1r

hri2
� Œ.u� Qu/rwCwr.u� Qu/�CU

4X
kD2

ØŒwk.u� Qu/�:

We estimate the contribution of the quadratic terms viaZ 1
t

jt � sj�
1
2





ØŒw.u� Qu/�.s/C
U�1r

hri2
� Œ.u� Qu/rwCwr.u� Qu/�.s/






H
1;3=2
x

ds

. kwkXT ku� QukXT
Z 1
t

jt � sj�
1
2 s�1 ds . t�

1
2�ku� QukXT :

Arguing as in (7-2), we obtainZ 1
t

jt � sj�
1
2





 4X
kD2

ØŒwk.u� Qu/�.s/CUØŒwk.u� Qu/�.s/





H
1;3=2
x

ds

. kwkkXT ku� QukXT
Z 1
t

jt � sj�
1
2 s�

kC1
2 ds . t�

k
2 �kku� QukXT :

Thus for � sufficiently small we get

8


V �1Œˆ2.u/�ˆ2. Qu/�

XT � 1

4
d..u; z/; . Qu; Qz//:

This completes the proof that ˆ is a contraction on B . Hence there exists a unique .u; z/ 2 B such
that ˆ.u; z/D .u; z/. In particular z DM.u/ and .u; z/ solves (5-4)–(5-5) on .T;1/�R3. We note that
by construction we have u1 2H 1

x and u 2 L3x \L
6
x . In particular, q.u/D juj2C 2u1 2 L2x and hence

u.t/ 2 E for t > T .
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For 
 2
�
2
3
; 1
�
, Theorem 3.3 guarantees that the solution u can be extended (in a unique way) to be

global in time. For 
 2
�
0; 2
3

�
, global existence follows from [Killip et al. 2012, Theorem 1.3], while

uniqueness in the energy space follows from Theorem 3.3 (see also Remark 3.4).
Next we show that (1-25) holds; indeed, we prove the stronger claim (1-26). We first note that Strichartz

combined with (7-3) gives

kz.t/� e�itHV uCkH1
x
. t�

1
4 ;

which in turn implies 

V �1z.t/�V �1e�itHV uC

H1
realCi

PH1
real
. t�

1
4 :

As z DM.u/, for t > T we have

V �1z.t/�u.t/


H1

realCi
PH1

real
.


hri�2ju.t/j2



H1
x
.


ju.t/j2



L
3=2
x
. t�1kuk2XT :

Therefore, by the triangle inequality we may conclude that

u.t/�V �1e�itHV uC

H1
realCi

PH1
real
. t�

1
4 :

By the arguments presented so far, it is clear that u is the unique solution in B1 that obeys (1-25). This
is slightly weaker than is claimed in Theorem 1.4, which places no restrictions on the H 1

realC i
PH 1

real-norm
of alternate solutions v.t/, nor any restriction on the value of T for which kvkXT � 4�; however, any
solution v.t/ obeying (1-25) must have

kvk
L1t .ŒT;1/IH

1
realCi

PH1
real/
� 4kuCkH1

realCi
PH1

real

for some T large enough. Thus the equality of v.t/ and u.t/ follows from the contraction mapping
argument above with T large enough combined with uniqueness in the energy space. �

Finally, we prove Corollary 1.7.

Proof of Corollary 1.7. The proof consists of showing that smallness of the weighted norms implies the
smallness condition (1-24). In view of (2-4), it suffices to show

ke˙itHuCkH1;3
x
. jt j�

1
2� and ke˙itHU�1 ReuCkH1;3

x
. jt j�

1
2�:

By the dispersive estimate (2-3) and Hölder,

ke˙itHuCkH1;3
x
. jt j�

1
2 khriuCkL3=2x

. jt j�
1
2



hxi 12ChriuC

L2x
and

ke˙itHU�1 ReuCkH1;3
x
. jt j�

1
2



U� 56 hriReuC



L
3=2
x
:

Using Hölder and Sobolev embedding, we obtain

krU�
5
6 ReuCkL3=2x . khriuCkL3=2x . khxi

1
2
C
hriuCkL2x ;

kU�
5
6 ReuCkL3=2x .



jrj 56U� 56 ReuC



L
18=17
x
.


hxi 43Chri 56 ReuC




L2x
: �
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