
ANALYSIS & PDE

msp

Volume 9 No. 6 2016

YEHUDA PINCHOVER AND GEORGIOS PSARADAKIS

ON POSITIVE SOLUTIONS OF THE ( p, A)-LAPLACIAN WITH
POTENTIAL

IN MORREY SPACE



ANALYSIS AND PDE
Vol. 9, No. 6, 2016

dx.doi.org/10.2140/apde.2016.9.1317 msp

ON POSITIVE SOLUTIONS OF THE ( p, A)-LAPLACIAN WITH POTENTIAL
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We study qualitative positivity properties of quasilinear equations of the form

Q′A,p,V [v] := −div(|∇v|p−2
A A(x)∇v)+ V (x)|v|p−2v = 0, x ∈�,

where � is a domain in Rn , 1< p <∞, A = (ai j ) ∈ L∞loc(�;R
n×n) is a symmetric and locally uniformly

positive definite matrix, V is a real potential in a certain local Morrey space (depending on p), and

|ξ |2A := A(x)ξ · ξ =
n∑

i, j=1

ai j (x)ξiξ j , x ∈�, ξ = (ξ1, . . . , ξn) ∈ Rn.

Our assumptions on the coefficients of the operator for p ≥ 2 are the minimal (in the Morrey scale) that
ensure the validity of the local Harnack inequality and hence the Hölder continuity of the solutions. For
some of the results of the paper we need slightly stronger assumptions when p < 2.

We prove an Allegretto–Piepenbrink-type theorem for the operator Q′A,p,V , and extend criticality
theory to our setting. Moreover, we establish a Liouville-type theorem and obtain some perturbation
results. Also, in the case 1< p ≤ n, we examine the behaviour of a positive solution near a nonremovable
isolated singularity and characterize the existence of the positive minimal Green function for the operator
Q′A,p,V [u] in �.
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1. Introduction

Let � be a domain in Rn , n ≥ 2. The Allegretto–Piepenbrink (AP) theorem asserts that under some
regularity assumptions on a real symmetric matrix A and a real potential V , the nonnegativity of the
Dirichlet energy, ∫

�

(
|∇u|2A+ V (x)|u|2

)
dx ≥ 0 for all u ∈ C∞c (�),
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is equivalent to the existence of a positive weak solution of the Schrödinger equation

−div(A(x)∇v)+ V (x)v = 0 in �, (1-1)

where

|ξ |2A := A(x)ξ · ξ =
n∑

i, j=1

ai j (x)ξiξ j ≥ 0 for all x ∈�, ξ = (ξ1, . . . , ξn) ∈ Rn. (1-2)

After the original results in [Allegretto 1974; Piepenbrink 1974], a sequence of papers gradually
relaxed the assumptions on A and V (see [Piepenbrink 1977; Moss and Piepenbrink 1978; Allegretto
1979; 1981]). It was established by Agmon [1983] that if A ∈ L∞loc(�;R

n×n) is symmetric and locally
uniformly positive definite in �, and V ∈ Lq

loc(�) with q > 1
2 n, then the AP theorem holds true. If A is

the identity matrix, further relaxation on the regularity of V is established in [Simon 1982, §C8], albeit
some global condition on V− is required there. We refer to [Lenz et al. 2009] and references therein for
an up-to-date account.

A generalization of the AP theorem to certain quasilinear equations with A being the identity matrix
and V ∈ L∞loc(�) has been carried out in [Pinchover and Tintarev 2007]. This was recently extended
in [Pinchover and Regev 2015] to include Agmon’s assumptions on the matrix A. More precisely,
for 1< p <∞, A as above, and V ∈ L∞loc(�), the nonnegativity of the energy functional,

Q A,p,V [u] :=
∫
�

(
|∇u|pA+ V (x)|u|p

)
dx ≥ 0 for all u ∈ C∞c (�), (1-3)

is proved to be equivalent to the existence of a positive weak solution to the corresponding Euler–Lagrange
quasilinear equation

Q′A,p,V [u] := −div
(
|∇v|

p−2
A A(x)∇v

)
+ V (x)|v|p−2v = 0 in �. (1-4)

Clearly, the quasilinear equation (1-4) satisfies the homogeneity property of (1-1) but not the additivity
(such an equation is sometimes called half-linear). Consequently, one expects that positive solutions of
(1-4) would share some properties of positive solutions of (1-1).

An essential common implication of the various assumptions on A and V in the aforementioned results
is the validity of the local Harnack inequality for positive solutions of (1-1) and (1-4). For instance,
Agmon’s assumption on V is optimal in the Lebesgue class of potentials for the Harnack inequality to be
true. We stress that, when the Harnack inequality fails, the AP theorem might not be valid. Indeed, denote
by p′ := p/(p−1) the conjugate index of p and suppose that A is the identity matrix. Let V ∈D−1,p′

loc (�),
where D−1,p′(�) is the dual of D1,p

0 (�), which is in turn defined as the closure of C∞c (�) under the
seminorm ‖∇u‖L p(�;Rn). If in addition to the nonnegativity of the energy functional one has that

κ〈V, |u|p〉 ≤
∫
�

|∇u|p dx for all u ∈ C∞c (�)

for some positive constant κ , then the equation

−div(|∇v|p−2
∇v)+αV |v|p−2v = 0 in � (1-5)
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admits a positive solution (in a certain weak sense) for any α ∈ (0, p]), where p] < 1 is given explicitly
and depends only on p (see [Jaye et al. 2013, Theorem 1.2(i)], or [Jaye et al. 2012, Theorem 1.1(i)] for
p= 2). Moreover, this range for α is optimal, as examples involving the Hardy potential reveal (see [Jaye
et al. 2013, Remark 1.3], or [Jaye et al. 2012, Example 7.3] for p = 2). We note that under the above
assumptions the local Harnack inequality for positive solutions of (1-5) is in general not valid.

The first aim of the present paper is to extend the AP theorem for the operator Q′A,p,V by relaxing
significantly the condition V ∈ L∞loc(�). In particular, under Agmon’s (minimal) assumptions on the
matrix A, we require V to lie in a certain local Morrey space, the largest such that the Harnack inequality
for positive solutions (and hence the local Hölder continuity of solutions) holds true. This means that we
assume (see for instance [Trudinger 1967, §5; Rakotoson and Ziemer 1990; Malý and Ziemer 1997] and
also [Di Fazio 1988] for (1-1))

sup
y∈ω

0<r<diam(ω)

ϕq(r)
∫
ω∩Br (y)

|V | dx <∞ for all ω b�, (1-6)

where ϕq(r) has the following behaviour near 0:

ϕq(r)∼r→0


r−n(q−1)/q with q > n/p if p < n,
logq(n−1)/n(1/r) with q > n if p = n,
1 if p > n.

(1-7)

We prove, in addition, that the assertions of the AP theorem are equivalent to the existence of a weak
solution T ∈ L p′

loc(�;R
n) of the first-order (nonlinear) divergence-type equation

−div(AT )+ (p− 1)|T |p
′

A = V .

We refer to [Jaye et al. 2012, Theorem 1.3] for a related result, where A is the identity matrix and p = 2.
Recall that in general, functions in Morrey spaces cannot be approximated by functions in C∞(�), nor

even by continuous functions (see [Zorko 1986]). Therefore, we cannot use an approximation argument
to extend the AP theorem to our setting. Consequently, we need to start our study from the beginning of
the topic and present in detail proofs involving new ideas.

Another aim of the paper is to extend to the above class of operators several classical results and tools
that hold true in general bounded domains (see [Allegretto and Huang 1998; García-Melián and Sabina de
Lis 1998; Pinchover and Regev 2015], where stronger regularity assumptions on the coefficients and the
boundary are assumed). In particular, we prove the existence of the principal eigenvalue, establish its
main properties, and study the relationships between the positivity of principal eigenvalue, the weak and
strong maximum principles, and the (unique) solvability of the Dirichlet problem.

We then proceed to our main goal: establishing criticality theory for (1-4) with A and V satisfying
the above assumptions. To present the main results of the paper, let us recall that if the inequality (1-3)
holds true but cannot be improved, in the sense that one cannot add to its right-hand side a term of the
form

∫
�

W |u|p dx with a nonnegative function W 6≡ 0, then the nonnegative functional Q A,p,V is called
critical in �. Furthermore, a sequence {uk}k∈N ⊂W 1,p

0 (�) is called a null sequence with respect to the
nonnegative functional Q A,p,V in � if
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(a) uk ≥ 0 for all k ∈ N;

(b) there exists a fixed open set K b� such that ‖uk‖L p(K ) = 1 for all k ∈ N;

(c) limk→∞ Q A,p,V [uk] = 0.

A positive function φ ∈ W 1,p
loc (�) is called a ground state of Q A,p,V in � if φ is an L p

loc(�) limit of
a null sequence. Finally, a positive solution u of the equation Q′A,p,V [u] = 0 in � is a global minimal
solution if for any smooth compact subset K of �, and any positive supersolution v ∈ C(� \ intK ) of the
equation Q′A,p,V [u] = 0 in � \ K , we have the implication

u ≤ v on ∂K =⇒ u ≤ v in � \ K .

The central result of this paper is summarized in the following theorem.

Main Theorem. Let � be a domain in Rn , where n ≥ 2, and suppose that the functional Q A,p,V is
nonnegative on C∞c (�), where A is a symmetric and locally uniformly positive definite matrix in �, and{

A ∈ L∞loc(�;R
n×n) and V satisfies (1-6) with ϕq as in (1-7) if p ≥ 2,

A ∈ C0,γ
loc (�;R

n×n), γ ∈ (0, 1) and V satisfies (1-6) with ϕq ∼r→0 rq , q > n if p < 2.

Then the following assertions are equivalent:

(1) Q A,p,V is critical in �.

(2) Q A,p,V admits a null sequence in �.

(3) There exists a ground state φ which is a positive weak solution of (1-4).

(4) There exists a unique (up to a multiplicative constant) positive supersolution v of (1-4) in �.

(5) There exists a global minimal solution u of (1-4) in �.

In particular, φ = c1v = c2u for some positive constants c1, c2.
Moreover, if 1< p ≤ n, then the above assertions are equivalent to

(6) Equation (1-4) does not admit a positive minimal Green function.

Remark 1.1. The additional regularity assumptions on A and V for the case 1< p<2 in the Main Theorem
seems to be technical, and might be nonessential. However, these assumptions guarantee the Lipschitz
continuity of solutions of (1-4) (in fact they guarantee that solutions are C1,α; see [Lieberman 1993,
Theorem 5.3]), a property which (as in [Pinchover and Tintarev 2007; Pinchover and Regev 2015]) is
essential for the proof of the Main Theorem in this range of p. On the other hand, throughout the paper
we do not use the boundary point lemma, which was an essential tool in [García-Melián and Sabina de
Lis 1998; Pinchover and Tintarev 2007; Pinchover and Regev 2015].

The structure of the article is presented next. In Section 2A we define the local Morrey space of
potentials V we are going to work with, and also present an uncertainty-type inequality for such potentials
due to C. B. Morrey for p = 2, and D. R. Adams (see [Malý and Ziemer 1997, §1.3]) for 1< p <∞,
that holds true in this space. This is the key property that is used in [Malý and Ziemer 1997; Trudinger
1967] in order to extend Serrin’s elliptic regularity theory [1964] for such equations. In Section 2C we
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recall several well-known local regularity and compactness properties of (sub/super)solutions of equation
(1-4) found in [Malý and Ziemer 1997; Pucci and Serrin 2007].

In Section 3 we deal with bounded domains. Firstly, in Section 3A we establish some helpful lemmas,
including the estimate (3-6) that extends to our case, a well-known inequality of P. Lindqvist [1990]
proved for the p-Laplace equation and concerns the positivity of the corresponding I functional of Anane
[1987] (see also [Díaz and Saá 1987]). We note that (3-6) replaces throughout our paper Picone’s identity
of Allegretto and Huang [1998]; a key tool in [Pinchover and Tintarev 2007; Pinchover and Regev 2015].
In addition, we prove in Section 3A the weak lower semicontinuity and the coercivity for two functionals
related to the solvability of the Dirichlet problem in bounded domains. In Section 3B we use the results
from Section 3A to prove the existence, simplicity and isolation of the principal eigenvalue λ1 in a general
bounded domain. Then we extend the main result in [García-Melián and Sabina de Lis 1998] concerning
the equivalence of λ1 being positive, the validity of the weak/strong maximum principle, and the existence
of a unique positive solution for the Dirichlet problem

Q′A,p,V [v] = g in ω, v ∈W 1,p
0 (ω), where g ∈ L p′(p;ω) is nonnegative.

In passing from local to global, the results in bounded domains of Section 3 are exploited in the last
two sections. More precisely, in Section 4A we establish the AP theorem while in Section 4B we prove
among other results the equivalence of the first four statements of the Main Theorem. In addition, we
prove a Poincaré-type inequality for critical operators, and a Liouville comparison principle, generalizing
results in [Pinchover and Tintarev 2007] and [Pinchover 2007; Pinchover et al. 2008], respectively (see
also [Pinchover and Regev 2015]).

The last two statements of the Main Theorem are treated in Section 5C after establishing a suitable
weak comparison principle (WCP) in Section 5A, and the behaviour of positive solutions near an isolated
singularity in Section 5B.

We emphasize here, that generally speaking, we omit straightforward proofs that follow exactly the
same steps as in the aforementioned papers, provided the needed tools have been obtained.

2. Preliminaries

In this section we fix our setting and notation, introduce some definitions, and review basic local regularity
results of solutions of the equation (1-4).

Throughout the paper we assume that

• 1< p <∞.

• � is a domain (an open and connected set) in Rn , where n ≥ 2.

• A = (ai j ) ∈ L∞loc(�;R
n×n) is a symmetric and locally uniformly positive definite matrix.

The assumptions on A imply in particular that

ai j (x)= a j i (x) for a.e. x ∈� and i, j = 1, . . . , n, (S)

∀ω b� ∃θω > 0 θω|ξ | ≤ |ξ |A ≤ θ
−1
ω |ξ | for a.e. x ∈ ω and all ξ ∈ Rn, (E)
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where we have set

|ξ |A :=
√

A(x)ξ · ξ =

√
n∑

i, j=1
ai j (x)ξiξ j for a.e. x ∈� and ξ = (ξ1, . . . , ξn) ∈ Rn.

Moreover, we adopt the following notation:

• q ′ is the conjugate index of q ∈ (1,∞), i.e., q ′ = q/(q − 1).

• ω b� means ω is a subdomain of � with compact closure in �.

• Br (y) := {x ∈ Rn
: |x − y|< r}, where r > 0 and y ∈ Rn .

• Ln(E) is the Lebesgue measure of a measurable set E ⊂ Rn .

• 〈 f 〉ω is the mean value of a function f in ω.

• supp{ f } is the support of f .

• f + :=max{ f, 0} and f − := −min{ f, 0} are the positive and negative parts of f , respectively.

• γ and γ ′ will always stand for numbers in (0, 1).

• In is the identity matrix of size n× n.

• C(a, b, . . . ) is a positive constant depending only on a, b, . . . , and may be different from line to
line.

2A. Local Morrey spaces. In the present subsection we introduce a certain class of Morrey spaces that
depend on the index p, where 1< p <∞. It is the class of spaces where the potential V of the operator
Q′A,p,V belongs to.

Definition 2.1. Let q ∈ [1,∞] and ωbRn . For a measurable, real valued function f defined in ω, we set

‖ f ‖Mq (ω) := sup
y∈ω

r<diam(ω)

1
rn/q ′

∫
ω∩Br (y)

| f | dx .

We write then f ∈ Mq
loc(�) if for any ω b� we have ‖ f ‖Mq (ω) <∞.

Remark 2.2. Note that M1
loc(�)≡ L1

loc(�) and M∞loc(�)≡ L∞loc(�), but Lq
loc(�) ( Mq

loc(�) ( L1
loc(�)

for any q ∈ (1,∞).

For the regularity theory of equations with coefficients in Morrey spaces we refer to the monographs
[Malý and Ziemer 1997; Morrey 1966], and also to [Rakotoson 1991; Byun and Palagachev 2013] for
further regularity issues. For generalizations of the Morrey spaces and other applications to analysis and
systems of equations we refer to [Peetre 1969; Adams and Xiao 2012; 2013].

Next we define a special local Morrey space Mq
loc(p;�) which depends on the values of the exponent

p.

Definition 2.3. For p 6= n, we define

Mq
loc(p;�) :=

{
Mq

loc(�) with q > n/p if p < n,
L1

loc(�) if p > n,
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while for p = n, f ∈ Mq
loc(n;�) means that for some q > n and any ω b� we have

‖ f ‖Mq (n;ω) := sup
y∈ω

0<r<diam(ω)

ϕq(r)
∫
ω∩Br (y)

| f | dx <∞,

where ϕq(r) := log(diam(ω)/r)q/n′ and 0< r < diam(ω).

In what follows we will frequently use the following key fact (sometimes called an uncertainty-type
inequality) originally due to Morrey and further generalized by Adams (see [Morrey 1966, Lemmas 5.2.1
and 5.4.2] for p = 2, [Trudinger 1967, Lemma 5.1] for 1 < p < n, and [Rakotoson and Ziemer 1990;
Malý and Ziemer 1997, Corollary 1.95]).

Theorem 2.4 (Morrey–Adams theorem). Let ω b Rn , and suppose that V ∈ Mq(p;ω).

(i) There exists a constant C(n, p, q) > 0 such that, for any δ > 0 and all u ∈W 1,p
0 (ω),∫

ω

|V ||u|p dx ≤ δ‖∇u‖p
L p(ω;Rn)+

C(n, p, q)
δn/(pq−n) ‖V ‖

pq/(pq−n)
Mq (p;ω) ‖u‖

p
L p(ω). (2-1)

(ii) For any ω′ b ω with Lipschitz boundary there exist positive constant C(n, p, q, ω′, ω) and δ0 such
that, for any 0< δ ≤ δ0 and all u ∈W 1,p(ω′),∫

ω′
|V ||u|p dx ≤ δ‖∇u‖p

L p(ω′;Rn)+C(n, p, q, δ, ‖V ‖Mq (p;ω))‖u‖
p
L p(ω′).

Proof. (i) The case where p ≤ n is contained in [Malý and Ziemer 1997]. In particular, for p < n this
follows from [Malý and Ziemer 1997, Corollary 1.95] (see also inequality (3.11) therein), while for p= n
one repeats that proof using Theorem 1.94 instead of Theorem 1.93 of that work. Thus, we only need to
argue for p> n. In this case our assumption reads V ∈ L1(ω). Recall also that by the Sobolev embedding
theorem we have W 1,p

0 (ω)⊂ C(ω). It follows that∫
ω

|V ||u|p dx ≤ ‖V ‖L1(ω)‖u‖
p
L∞(ω) ≤ C(n, p)‖V ‖L1(ω)‖∇u‖nL p(ω;Rn)‖u‖

p−n
L p(ω),

where we have used the Gagliardo–Nirenberg inequality (see for example [DiBenedetto 2002, §IX,
Theorem 1.1]). The result follows by applying Young’s inequality:

ab ≤ δa p/n
+

p−n
p

( n
pδ

)n/(p−n)
bp/(p−n),

with a = ‖∇u‖nL p(ω), b = C(n, p)‖V ‖L1(ω)‖u‖
p−n
L p(ω).

(ii) Let ω′ b ω with ∂ω′ being Lipschitz. We may then consider the extension operator (see for example
[Evans and Gariepy 1992, §4.4])

E :W 1,p(ω′)→W 1,p
0 (ω)
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such that for any u ∈W 1,p(ω′) to have
Eu = u in ω′,
‖Eu‖L p(ω) ≤ C(n, p, ω′, ω)‖u‖L p(ω′),

‖∇(Eu)‖L p(ω;Rn) ≤ C(n, p, ω′, ω)‖u‖W 1,p(ω′;Rn).

(2-2)

Thus, if δ > 0 and u ∈W 1,p(ω′), it follows from (2-1) that∫
ω

|V ||Eu|p dx ≤ δ‖∇(Eu)‖p
L p(ω;Rn)+

C(n, p, q)
δn/(pq−n) ‖V ‖

pq/(pq−n)
Mq (p;ω) ‖Eu‖p

L p(ω).

Applying (2-2) to the latter inequality yields (ii). �

2B. Regularity assumptions on A and V. We are now ready to introduce our regularity hypotheses on
the coefficients of the operator Q′A,p,V . Throughout the paper we assume that

the matrix A satisfies (S), (E), and the potential V is in Mq
loc(p;�). (H0)

In the sequel, in the case 1< p < 2, we sometimes make the following stronger hypothesis:

A ∈ C0,γ
loc (�;R

n×n) satisfies (S), (E), and V ∈ Mq
loc(�), where q > n. (H1)

2C. The ( p, A)-Laplacian with a potential term in Mq
loc( p;�). For a vector field T ∈ L1

loc(�;R
n) we

define

divAT := div(AT ),

where div(AT ) is meant in the distributional sense.
In this paper we are interested in the (p, A)-Laplacian equation plus a potential term, that is

Q′A,p,V [v] := −divA(|∇v|
p−2
A ∇v)+ V |v|p−2v = 0 in �. (2-3)

This is the Euler–Lagrange equation associated with the functional

Q A,p,V [u] :=
∫
�

(|∇u|pA+ V |u|p) dx, u ∈ C∞c (�). (2-4)

Definition 2.5. Assume that A and V satisfy (H0). A function v ∈W 1,p
loc (�) is a solution of (2-3) in � if∫

�

|∇v|
p−2
A A∇v · ∇u dx +

∫
�

V |v|p−2vu dx = 0 for all u ∈ C∞c (�), (2-5)

a supersolution of (2-3) in � if∫
�

|∇v|
p−2
A A∇v · ∇u dx +

∫
�

V |v|p−2vu dx ≥ 0 for all nonnegative u ∈ C∞c (�), (2-6)

and a subsolution if the reverse inequality holds. A strict supersolution of (2-3) in � is a supersolution
which is not a solution.
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Remark 2.6. The above definition makes sense because of condition (E), the Morrey–Adams theorem
(Theorem 2.4), and Hölder’s inequality. In light of our assumptions on A and V , and by a density
argument, one can replace C∞c (�) in Definition 2.5 by W 1,p

c (�), the space of all L p(�) functions having
compact support in � and first-order weak partial derivatives in L p(�).

The following theorem follows from [Malý and Ziemer 1997, Theorem 3.14] for the case p ≤ n, and
from [Pucci and Serrin 2007, Theorem 7.4.1] for the case p > n.

Theorem 2.7 (Harnack inequality). Under hypothesis (H0), any nonnegative solution v of (2-3) in �
satisfies the local Harnack inequality. Namely, for any ω′ b ω b� there holds

sup
ω′
v ≤ C inf

ω′
v, (2-7)

where C is a positive constant depending only on n, p, q, dist(ω′, ω), θω, and ‖V ‖Mq (ω) (and not on v).

Remark 2.8 (local Hölder continuity). A standard consequence of Theorem 2.7 is the following regularity
assertion, found in [Malý and Ziemer 1997, Theorem 4.11] for p ≤ n and in [Pucci and Serrin 2007,
Theorem 7.4.1 ] for p > n:

Under hypothesis (H0), any solution v of (2-3) in � is locally Hölder continuous of order γ
(depending on n, p, q, and θω), and for any ω′ b ω b�, we have

[v]γ,ω′ ≤ C sup
ω

|v|, (2-8)

where C is a positive constant depending only on n, p, q, dist(ω′, ω), θω, and ‖V ‖Mq (ω). Here
[v]γ,ω′ is the Hölder seminorm of v in ω′.

Remark 2.9 (local Lipschitz continuity). Later on, when proving Theorem 4.12 for p < 2, we will need
conditions under which the local Lipschitz continuity of solutions is guaranteed. In other words, in the
case p < 2 we will need conditions that ensure the local boundedness of the modulus of the gradient of a
solution of (2-3). This and more are provided by [Lieberman 1993, Theorem 5.3]:

Under hypothesis (H1), any solution v of (2-3) in � is of class C1,γ ′
loc (�) for some γ ′ ∈ (0, 1)

depending only on n, p, γ , q and θω.

In particular, we will use the fact that, whenever ω′ b ω b�,

sup
ω′
|∇v| ≤ C sup

ω

|v|

for some positive constant C , depending only on n, p, γ, q, dist(ω′, ω), θω, ‖A‖C0,γ (ω), and ‖V ‖Mq (ω).

Remark 2.10 (weak Harnack inequality). For p > n, Theorem 2.7 holds true verbatim if v is merely a
nonnegative supersolution of (2-3) in � (see [Pucci and Serrin 2007, Theorem 7.4.1]). For p ≤ n we only
have [Malý and Ziemer 1997, Theorem 3.13]:
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Let p≤ n and set s= n(p−1)/(n− p). Under hypothesis (H0), any nonnegative supersolution v
of (2-3) in � satisfies the weak Harnack inequality, namely, for any ω′ b ωb� and 0< t < s,

‖v‖L t (ω′) ≤ C inf
ω′
v, (2-9)

where C is a positive constant depending only on n, p, t , dist(ω′, ω), Ln(ω′) and ‖V ‖Mq (ω).

We conclude the section with the following important result that will be used several times throughout
the paper.

Proposition 2.11 (Harnack convergence principle). Consider a matrix A ∈ L∞(�;Rn×n) which satisfies
conditions (S) and (E). Let {ωi }i∈N be a sequence of Lipschitz domains such that ωi b �, ωi b ωi+1

for i ∈ N, and
⋃

i∈N ωi = �, and fix a reference point x0 ∈ ω1. Assume also that {Vi }i∈N ⊂ Mq(p;ωi )

converges in Mq
loc(p;�) to V ∈ Mq

loc(p;�). For each i ∈N, let vi be a positive solution of the equation
Q′A,p,Vi

[v] = 0 in ωi such that vi (x0)= 1.
Then there exists 0 < β < 1 such that, up to a subsequence, {vi } converges in C0,β

loc (�) to a positive
solution v of the equation Q′A,p,V [v] = 0 in �.

Proof. The convergence in C0,β
loc (�) follows by the Arzelà–Ascoli theorem from the local Harnack

inequality (2-7) and the local Hölder estimate (2-8).
Now pick an arbitrary ω b �. We will show that a subsequence of {vi }i∈N converges weakly in

W 1,p(ω) to a positive solution of Q′A,p,V [u] = 0 in �. Recall first that the definition of vi being a positive
weak solution to Q′A,p,Vi

[v] = 0 in ωi reads as∫
ωi

|∇vi |
p−2
A A∇vi · ∇u dx +

∫
ωi

Viv
p−1
i u dx = 0 for all u ∈W 1,p

0 (ωi ). (2-10)

By Remark 2.8, vi is also continuous for all i ∈ N. Fix k ∈ N. For u ∈ C∞c (ωk) we may thus pick
vi |u|p ∈W 1,p

c (ωk). i ≥ k, as a test function in (2-10) to get∥∥|∇vi |Au
∥∥p

L p(ωk)
≤ p

∫
ωk

|∇vi |
p−1
A |u|

p−1vi |∇u|A dx +
∫
ωk

|Vi |v
p
i |u|

p dx .

On the first term of the right-hand side we apply Young’s inequality: pab ≤ εa p′
+ [(p− 1)/ε]p−1bp,

ε ∈ (0, 1), with a = |∇vi |
p−1
A |u|

p−1 and b = vi |∇u|A. On the second term we apply the Morrey–Adams
theorem (Theorem 2.4). We arrive at

(1− ε)
∥∥|∇vi |Au

∥∥p
L p(ωk)

≤ ((p− 1)/ε)p−1∥∥vi |∇u|A
∥∥p

L p(ωk)
+ δ‖∇(vi u)‖

p
L p(ωk ;Rn)+C(n, p, q, δ, ‖V‖Mq (p;ωk+1))‖vi u‖

p
L p(ωk)

.

By (E) and the simple fact that

‖∇(vi u)‖
p
L p(ωk ;Rn) ≤ 2p−1(

‖vi∇u‖p
L p(ωk ;Rn)+‖u∇vi‖

p
L p(ωk ;Rn)

)
,
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we end up with the following Caccioppoli estimate valid for all i ≥ k and any u ∈ C∞c (ωk):

((1− ε)θ p
ωk
− 2p−1δθ−p

ωk
)
∥∥|∇vi |u

∥∥p
L p(ωk)

≤
(
((p− 1)/ε)p−1θ−p

ωk
+ 2p−1δ

)∥∥vi |∇u|
∥∥p

L p(ωk)
+C(n, p, q, δ, ‖V‖Mq (p;ωk+1))‖vi u‖

p
L p(ωk)

. (2-11)

Without loss of generality we assume that ω contains x0. Picking ω′ b� such that ω ⊂ ω′, we find k ≥ 1
such that ω′ ⊂ ωk . Next we choose δ < (1− ε)21−pθ

2p
ωk and specialize u ∈ C∞c (ωk) such that

supp{u} ⊂ ω′, 0≤ u ≤ 1 in ω′, u = 1 in ω and |∇u| ≤ 1/dist(ω′, ω) in ω. (2-12)

Applying this to the Caccioppoli inequality (2-11), and using the fact that {vi }i∈N is bounded in the
L∞(ω)-norm uniformly in i (due to the local Harnack’s inequality (2-7)), we conclude

‖∇vi‖
p
L p(ω;Rn)+‖vi‖

p
L p(ω) ≤ C(n, p, q, ε, δ, dist(ω′, ω), θωk , ‖V‖Mq (p;ωk+1)) for all i ≥ k.

So {vi }i∈N is bounded in W 1,p(ω). By weak compactness of W 1,p(ω), there exists a subsequence, still
denoted by {vi }i∈N, that converges weakly in W 1,p(ω) to a nonnegative function v with v(x0)= 1.

Next we show that v is a solution of Q′A,p,V [u] = 0 in ω̃ b ω such that x0 ∈ ω̃. First note that for a
subsequence (that once more we do not rename) we have vi→ v a.e. in ω and in L p(ω). For the potential
term of the equation we note first that (up to a subsequence) Vi → V a.e. in ω. Thus, Viv

p−1
i → Vv p−1

a.e. in ω, while |Viv
p−1
i | ≤ c|V| a.e. in ω, where c is independent of i . Since |V| ∈ Mq

loc(p;�)⊂ L1
loc(�)

we may apply the dominated convergence theorem to get∫
ω

Viv
p−1
i u dx→

∫
ω

Vv p−1u dx for all u ∈ C∞c (ω). (2-13)

It remains to prove that

ξi := |∇vi |
p−2
A A∇vi ⇀i→∞ |∇v|

p−2
A A∇v =: ξ in L p′(ω̃;Rn). (2-14)

To this end, letting u be as in (2-12) but with ω and ω′ replaced by ω̃ and ω respectively, we take u(vi−v)

as a test function in (2-10) to obtain∫
ω

uξi · ∇(vi − v) dx =−
∫
ω

(vi − v)ξi∇u dx −
∫
ω

Viv
p−1
i u(vi − v) dx . (2-15)

We claim that ∫
ω

uξi · ∇(vi − v) dx→i→∞ 0. (2-16)

Indeed, by an argument similar to the one leading to (2-13), the second integral on the right of (2-15)
converges to 0 as i→∞. For the first one, apply Holder’s inequality to get∣∣∣∣−∫

ω

(vi − v)ξi∇u dx
∣∣∣∣≤ θ p/p′

ω ‖(vi − v)∇u‖L p(ω;Rn)‖∇vi‖
p/p′

L p(ω;Rn)

≤ C(p, θω, dist(ω̃, ω))‖vi − v‖L p(ω)‖∇vi‖
p/p′

L p(ω;Rn),

which also converges to 0 as i→∞ since the ‖∇vi‖L p(ω;Rn) are uniformly bounded and vi→ v in L p(ω).
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Notice that, as in the case where A = In , we have, for any X , Y ∈ Rn , n ≥ 1,

(|X |p−2
A AX − |Y |p−2

A AY ) · (X − Y )= |X |pA− |X |
p−2
A AX · Y + |Y |pA− |Y |

p−2
A AY · X

≥ |X |pA− |X |
p−1
A |Y |A+ |Y |

p
A− |Y |

p−1
A |X |A

= (|X |p−1
A − |Y |p−1

A )(|X |A− |Y |A)≥ 0. (2-17)

The above considerations imply that

0≤ Ii :=

∫
ω̃

(ξi − ξ) · ∇(vi − v) dx ≤
∫
ω

u(ξi − ξ) · ∇(vi − v) dx→i→∞ 0,

where we have used (2-16) and the weak convergence in L p′(ω;Rn) of ∇vi to ∇v. Thus limi→∞ Ii = 0
and invoking a celebrated lemma of Maz’ya [1970] (see also Lemma 3.73 of [Heinonen et al. 1993]),
(2-14) follows.

Hence, using Harnack’s inequality, we have that v is a positive weak solution of Q′A,p,V [u] = 0 in ω̃
with v(x0) = 1. We now use a standard Harnack chain argument and a diagonalization procedure to
obtain a new subsequence (once again not renamed) {vi }i∈N such that vi ⇀v in W 1,p

loc (�) (and locally
uniformly in �), where v is a positive weak solution of Q′A,p,V [u] = 0 in �. �

3. Principal eigenvalue and the maximum principle

Throughout the present section we fix a bounded domain ω in Rn and suppose that A is a uniformly
elliptic, bounded matrix in ω and V ∈ Mq(p;ω). We consider, in ω, the operator Q′A,p,V defined in (2-3)
and, for u ∈ C∞c (ω), we let

Q A,p,V [u;ω] :=
∫
ω

(
|∇u|pA+ V (x)|u|p

)
dx .

Definition 3.1. We say that λ ∈ R is an eigenvalue with an eigenfunction v of the Dirichlet eigenvalue
problem {

Q′A,p,V [w] = λ|w|
p−2w in ω,

w = 0 on ∂ω,
(3-1)

if v ∈W 1,p
0 (ω) \ {0} satisfies∫
ω

|∇v|
p−2
A A∇v · ∇u dx +

∫
ω

V |v|p−2vu dx = λ
∫
ω

|v|p−2vu dx for all u ∈ C∞c (ω). (3-2)

Definition 3.2. A principal eigenvalue is an eigenvalue of (3-1) with a nonnegative eigenfunction.

The existence of a principal eigenvalue for the problem (3-1) and its variational characterization by the
Rayleigh–Ritz variational formula

λ1 = λ1(Q A,p,V ;ω) := inf
u∈W 1,p

0 (ω)\{0}

Q A,p,V [u;ω]
‖u‖p

L p(ω)

(3-3)

is established in Theorem 3.9 below.
Consider first the equation

Q′A,p,V [v] = g in ω, where g ∈ Mq(p;ω) is nonnegative. (3-4)
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By a solution of (3-4) we mean a function v ∈W 1,p
loc (ω) such that∫

ω

|∇v|
p−2
A A∇v · ∇u dx +

∫
ω

V |v|p−2vu dx =
∫
ω

gu dx for all u ∈ C∞c (ω).

A function v ∈W 1,p
loc (ω) is a supersolution of (3-4) if∫

ω

|∇v|
p−2
A A∇v · ∇u dx +

∫
ω

V |v|p−2vu dx ≥
∫
ω

gu dx for all nonnegative u ∈ C∞c (ω),

and a subsolution if the reverse inequality holds. One of our targets in the next subsection is to characterize,
in terms of the strict positivity of the principal eigenvalue of problem (3-1), the following properties:

(a) the solvability in W 1,p
0 (ω) of (3-4);

(b) the (generalized) weak maximum principle for (3-4);

(c) the strong maximum principle for (3-4).

Recall at this point that the (generalized) weak maximum principle for the operator Q′A,p,V asserts that a
solution of (3-4) which is nonnegative on ∂ω is nonnegative in ω, while the strong maximum principle
asserts that, in addition to the weak maximum principle, a solution of (3-4) which is nonnegative on ∂ω
is either identically zero or strictly positive in ω.

3A. Preparatory material. We start with the following technical lemma, which generalizes computations
found in [Anane 1987; Díaz and Saá 1987; Lindqvist 1990], where the case V1 = V2 ≡ 0 and A = In is
considered. This useful lemma replaces Picone’s identity, which is a key tool in [Pinchover and Tintarev
2007; Pinchover and Regev 2015]. We note that in the present paper the lemma is used only for the
case V1 = V2, but this assumption does not affect at all the volume of computations of the general case.

Lemma 3.3. Let gi , Vi ∈ Mq(p;ω), where i = 1, 2. There exists a positive constant cp, depending only
on p, such that the following assertions hold true:

(i) Suppose that w1, w2 ∈W 1,p
0 (ω) \ {0} are nonnegative solutions of

Q′A,p,V1
[w;ω] = g1 and Q′A,p,V2

[w;ω] = g2, (3-5)

respectively, and let wi,h := wi + h, where h is a positive constant, and i = 1, 2. Then

Ih :=

∫
ω

(
g1− V1w

p−1
1

w
p−1
1,h

−
g2− V2w

p−1
2

w
p−1
2,h

)
(w

p
1,h −w

p
2,h) dx

≥ cp


∫
ω

(w
p
1,h +w

p
2,h)

∣∣∣∣∇ log
w1,h

w2,h

∣∣∣∣p

A
dx if p ≥ 2,∫

ω

(w
p
1,h +w

p
2,h)

∣∣∣∣∇ log
w1,h

w2,h

∣∣∣∣2
A

(
|∇ logw1,h|A+ |∇ logw2,h|A

)p−2 dx if p < 2.

(3-6)

(ii) In the particular case of nonnegative eigenfunctions, i.e.,

w1 := wλ, w2 := wµ, g1 := λ|wλ|
p−2wλ, g2 = µ|wµ|

p−2wµ,
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with λ,µ ∈ R, we have∫
ω

((λ−µ)− (V1− V2))(w
p
λ −w

p
µ) dx

≥ cp


∫
ω

(w
p
λ +w

p
µ)

∣∣∣∣∇ log
wλ

wµ

∣∣∣∣p

A
dx if p ≥ 2,∫

ω

(w
p
λ +w

p
µ)

∣∣∣∣∇ log
wλ

wµ

∣∣∣∣2
A

(
|∇ logwλ|A+ |∇ logwµ|A

)p−2 dx if p < 2.

(iii) Suppose further that ω is Lipschitz, and let w1, w2 ∈W 1,p(ω) be positive solutions of (3-5) such that
w1 = w2 > 0 on ∂ω, in the trace sense. Then∫
ω

(
g1

w
p−1
1

−
g2

w
p−1
2

− (V1− V2)

)
(w

p
1 −w

p
2 ) dx

≥ cp


∫
ω

(w
p
1 +w

p
2 )

∣∣∣∣∇ log
w1

w2

∣∣∣∣p

A
dx if p ≥ 2,∫

ω

(w
p
1 +w

p
2 )

∣∣∣∣∇ log
w1

w2

∣∣∣∣2
A

(
|∇ logw1|A+ |∇ logw2|A

)p−2 dx if p < 2.

Proof. Set ψ1,h := (w
p
1,h−w

p
2,h)w

1−p
1,h . It is easily seen that ψ1,h ∈W 1,p

0 (ω) and, using it as a test function
in the definition of w1 being a solution of the first equation of (3-5), we get∫
ω

(w
p
1,h −w

p
2,h)|∇(logw1,h)|

p
A dx − p

∫
ω

w
p
2,h|∇(logw1,h)|

p−2
A A∇(logw1,h) · ∇

(
log

w2,h

w1,h

)
dx

=

∫
ω

g1− V1w
p−1
1

w
p−1
1,h

(w
p
1,h −w

p
2,h) dx .

In the same fashion we set ψ2,h := (w
p
2,h −w

p
1,h)w

1−p
2,h and use it as a test function in the definition of w2

being a solution of the second equation of (3-5) to obtain∫
ω

(w
p
2,h −w

p
1,h)|∇(logw2,h)|

p
A dx − p

∫
ω

w
p
1,h|∇(logw2,h)|

p−2
A A∇(logw2,h) · ∇

(
log

w1,h

w2,h

)
dx

=

∫
ω

g2− V2w
p−1
2

w
p−1
2,h

(w
p
2,h −w

p
1,h) dx .

Adding these we arrive at∫
ω

w
p
1,h

(
|∇(logw1,h)|

p
A− |∇(logw2,h)|

p
A− p|∇(logw2,h)|

p−2
A A∇(logw2,h) · ∇

(
log

w1,h

w2,h

))
dx

+

∫
ω

w
p
2,h

(
|∇(logw2,h)|

p
A− |∇(logw1,h)|

p
A

− p|∇(logw1,h)|
p−2
A A∇(logw1,h) · ∇

(
log

w2,h

w1,h

))
dx = Ih . (3-7)
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Now we use the following inequality, found in [Lindqvist 1990, Lemma 4.2] for A being the identity
matrix In; cf. [Pinchover et al. 2008, (2.19)] (the proof is essentially the same and we omit it):

For all vectors α, β ∈ Rn and a.e. x ∈ ω, we have

|α|
p
A− |β|

p
A− p|β|p−2

A A(x)β · (α−β)≥ C(p)
{
|α−β|

p
A if p ≥ 2,

|α−β|2A(|α|A+ |β|A)
p−2 if p < 2.

(3-8)

Applying this to both terms of the left-hand side of (3-7), we obtain the inequality of part (i).
To prove part (ii), take g1 = λ|w1|

p−2w1 and g2 = µ|w2|
p−2w2 for some λ,µ ∈ R, and rename w1

and w2 to wλ and wµ, respectively. The integrand of Ih in this case satisfies, for all 0< h < 1,∣∣∣∣((λ− V1)

(
wλ

wλ,h

)p−1

− (µ− V2)

(
wµ

wµ,h

)p−1 )
(w

p
λ,h −w

p
µ,h)

∣∣∣∣
≤ (|λ− V1| + |µ− V2|)((wλ+ 1)p

+ (wµ+ 1)p) ∈ L1(ω),

by Theorem 2.4(i). As h→ 0, we have(
(λ− V1)

(
wλ

wλ,h

)p−1

− (µ− V2)

(
wµ

wµ,h

)p−1 )
(w

p
λ,h −w

p
µ,h)→ (λ−µ− V1+ V2)(w

p
λ −w

p
µ)

a.e. in ω. By applying the dominated convergence theorem and the Fatou lemma to the inequality of
part (i), we get the desired estimate. Part (iii) follows from part (i) by setting h = 0. �

We modify to our case a well-known lemma on the negative part of a supersolution (see [Agmon 1983,
Lemma 2.7] or [Pinchover et al. 2008, Lemma 2.4], for example).

Lemma 3.4. Let V ∈ Mq
loc(p;�). If v ∈W 1,p

loc (�) is a supersolution of Q′A,p,V [u] = 0 in �, then v− is a
W 1,p

loc (�) subsolution of the same equation.

Proof. Though this argument is quite standard, we add it for completeness and since it requires the use
of the Morrey–Adams theorem in the final limit argument. Following the steps of the proof in [Agmon
1983], we define

ϕε :=
vε − v

2vε
ϕ and vε := (v

2
+ ε2)1/2,

with ϕ being an arbitrary nonnegative function in C∞c (�). It is straightforward to see that

∇vε · ∇ϕ ≤ ∇v · ∇
(
v

vε
ϕ
)

a.e. in �,

and then
1
2∇(vε − v) · ∇ϕ ≤−∇vε · ∇ϕε a.e. in �. (3-9)

Thus, taking ϕε ∈W 1,p
c (�) as a test function in the definition of v ∈W 1,p

loc (�) being a supersolution of
Q′A,p,V [u] = 0 in �, and then applying (3-9), we conclude that we only need to show that we can take
the limit ε→ 0 in the inequality

1
2

∫
�

|∇v|
p−2
A A∇(vε − v) · ∇ϕ dx −

∫
�

V|v|p−2vϕε dx ≤ 0. (3-10)
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Note that, since ∇(vε − v)/2→∇v− and vϕε→−v−ϕ as ε→ 0, this would readily give∫
�

|∇v−|
p−2
A A∇v− · ∇ϕ dx +

∫
�

V|v−|p−2v−ϕ dx ≤ 0 for all nonnegative ϕ ∈ C∞c (�).

However, the justification of taking the limit inside both integrals in (3-10) is verified by the dominated
convergence theorem. For the first one we use Hölder’s inequality, while for the second we apply first
Hölder’s inequality and then the Morrey–Adams theorem. �

Definition 3.5. Let (X, ‖ · ‖X ) be a Banach space. A functional J : X→ R∪ {∞} is said to be coercive
if J [u] →∞ as ‖u‖X →∞. The functional J is said to be (sequentially) weakly lower semicontinuous
if J [u] ≤ lim infk→∞ J [uk] whenever uk ⇀ u.

We have:

Proposition 3.6. (a) Let ω b Rn , V ∈ Mq(p;ω) and G ∈ L p′(ω). Define the functional

J :W 1,p
0 (ω)→ R∪ {∞}, J [u] := Q A,p,V [u;ω] −

∫
ω

Gu dx . (3-11)

Then J is weakly lower semicontinuous in W 1,p
0 (ω).

(b) Let ω b ω′ b Rn with ω Lipschitz, and let G,V ∈ Mq(p;ω′). Define the functional

J :W 1,p(ω)→ R∪ {∞}, J [u] := Q A,p,V [u;ω] −
∫
ω

G|u| dx . (3-12)

Then J is weakly lower semicontinuous in W 1,p(ω).

Proof. We first prove statement (b). Let u, {uk}k∈N ⊂W 1,p(ω) be such that uk ⇀ u in W 1,p(ω). By the
uniform boundedness principle, we have

K := sup
k∈N

‖uk‖W 1,p(ω) <∞,

and thus, by the compact embedding of W 1,p(ω) in L p(ω), and by passing to a subsequence we may
assume that uk→ u in L p(ω) and a.e. in ω.

Let δ > 0. By Minkowski’s inequality and the Morrey–Adams theorem (Theorem 2.4(ii)), we have(∫
ω

V±|uk |
p dx

)1/p

−

(∫
ω

V±|u|p dx
)1/p

≤

(∫
ω

V±|uk − u|p dx
)1/p

≤
(
δ‖∇(uk − u)‖p

L p(ω;Rn)+C(n, p, q, δ, ‖V±‖Mq (p;ω′))‖uk − u‖p
L p(ω)

)1/p

≤ δ1/p(K +‖∇u‖L p(ω;Rn))+C(n, p, q, δ, ‖V±‖Mq (p;ω′))‖uk − u‖L p(ω). (3-13)

This shows that

lim sup
k→∞

∫
ω

V±|uk |
p dx ≤

∫
ω

V±|u|p dx .
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On the other hand, by Fatou’s lemma, we have∫
ω

V±|u|p dx ≤ lim inf
k→∞

∫
ω

V±|uk |
p dx .

The last two inequalities imply

lim
k→∞

∫
ω

V|uk |
p dx =

∫
ω

V|u|p dx,

The weak lower semicontinuity of the gradient term follows from the convexity of the Lagrangian
ζ 7→ |ζ |

p
A(x). We deduce then

Q A,p,V [u] ≤ lim inf
k→∞

Q A,p,V [uk]. (3-14)

For the last term of J , we work similarly:∫
ω

G±|uk | dx −
∫
ω

G±|u| dx

≤ ‖G±‖1/p′

L1(ω)

(∫
ω

G±|uk − u|p dx
)1/p

≤ δ1/p
‖G±‖1/p′

L1(ω)
(K +‖∇u‖L p(ω;Rn))+C(n, p, q, δ, ‖G±‖Mq (p;ω′))‖uk − u‖L p(ω),

and thus

lim sup
k→∞

∫
ω

G±|uk | dx ≤
∫
ω

G±|u| dx .

On the other hand, ∫
ω

G±|u| dx ≤ lim inf
k→∞

∫
ω

G±|uk | dx .

The last two inequalities imply

lim
k→∞

∫
ω

G|uk | dx =
∫
ω

G|u| dx,

and thus J is weakly lower semicontinuous in W 1,p(ω).
For the proof of the weak lower semicontinuity of J in W 1,p

0 (ω), one follows the same steps, but uses
Theorem 2.4(i) in (3-13), in order to obtain (3-14). Note that, since we require in this case that G ∈ L p′(ω),
the functional I (u) :=

∫
ω
Gu dx is weakly continuous since it is a bounded linear functional. �

Proposition 3.7. (a) Let ωb ω′ b Rn , where ω is Lipschitz, and G,V ∈ Mq(p;ω′). If V is nonnegative,
then for any f ∈W 1,p(ω) we have that J is coercive in

A := {u ∈W 1,p(ω) | u = f on ∂ω}.

(b) Let ω b Rn , V ∈ Mq(p;ω) and G ∈ L p′(ω). Assume that for some ε > 0 we have

Q A,p,V [u;ω] ≥ ε‖u‖
p
L p(ω) for all u ∈W 1,p

0 (ω). (3-15)

Then J is coercive in W 1,p
0 (ω).
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Proof. (a) Fix t ∈ R, and suppose that u ∈A is such that J [u] ≤ t . It is enough to prove that

‖u‖W 1,p(ω) := ‖u‖L p(ω)+‖∇u‖L p(ω;Rn) ≤ C, (3-16)

with C independent of u. To this end, from J [u] ≤ t and since V ≥ 0 a.e. in ω, we readily deduce∫
ω

|∇u|pA dx ≤ t +
∫
ω

G|u| dx ≤ t +‖G‖1/p′

L1(ω)

(∫
ω

|G||u|p dx
)1/p

≤ t +C‖u‖W 1,p(ω) (3-17)

for some positive constant C that depends only on n, p, q , ω, ‖G‖Mq (p;ω′) and ‖G‖L1(ω), where we have
used Theorem 2.4(ii) in the last inequality. Thus, applying also assumption (E), we obtain

‖∇u‖p
L p(ω;Rn) ≤ c1+ c2‖u‖W 1,p(ω), (3-18)

where c1 and c2 are positive constants independent of u. Next observe that u− f ∈W 1,p
0 (ω), so that

‖u‖L p(ω) ≤ ‖u− f ‖L p(ω)+‖ f ‖L p(ω) ≤ CP‖∇(u− f )‖L p(ω;Rn)+‖ f ‖L p(ω)

for a positive constant CP depending only on n and ω, because of the Poincaré inequality in W 1,p
0 (ω).

Using (E) we have, successively,

‖u‖L p(ω) ≤ CP
(
‖∇u‖L p(ω;Rn)+‖∇ f ‖L p(ω;Rn)

)
+‖ f ‖L p(ω)

≤
CP

θω

((∫
ω

|∇u|pA dx
)1/p

+‖∇ f ‖L p(ω;Rn)

)
+‖ f ‖L p(ω)

≤
CP

θω

(
(t +C‖u‖W 1,p(ω))

1/p
+‖∇ f ‖L p(ω;Rn)

)
+‖ f ‖L p(ω),

with C as in (3-17). This implies the estimate

‖u‖p
L p(ω) ≤ c3+ c4‖u‖W 1,p(ω), (3-19)

where c3 and c4 are positive constants independent of u. Now, (3-18) and (3-19) give

‖u‖p
W 1,p(ω)

≤ c5+ c6‖u‖W 1,p(ω),

for some positive constants c5 and c6 that are independent of u. This implies, in turn, ‖u‖W 1,p(ω) ≤

max{1, (c5+ c6)
1/(p−1)

}, and (3-16) is proved.

(b) Let us prove the coercivity of J in W 1,p
0 (ω). Assume that J [u] ≤ t in (3-15); then, by applying

Hölder’s inequality, we obtain

ε‖u‖p
L p(ω) ≤ t +

∫
ω

Gu dx ≤ t +‖G‖L p′ (ω)‖u‖L p(ω).

This implies the estimate

‖u‖L p(ω) ≤ m :=max
{

1,
( t +‖G‖L p′ (ω)

ε

)1/(p−1)}
. (3-20)
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From J [u] ≤ t , applying once more Hölder’s inequality and the Morrey–Adams theorem (Theorem 2.4(i))
we get ∫

ω

|∇u|pA dx ≤ t +
∫
ω

Gu dx +
∫
ω

|V||u|p dx

≤ t +‖G‖L p′ (ω)‖u‖L p(ω)+ δ‖∇u‖p
L p(ω;Rn)+C ′‖u‖p

L p(ω), (3-21)

where C ′ = Cn,p,qδ
−n/(pq−n)

‖V‖pq/(pq−n)
Mq (p;ω) . Thus, from (3-20), (3-21) and assumption (E) we have,

for δ < θ p
ω ,

(θ p
ω − δ)‖∇u‖p

L p(ω;Rn) ≤ t +‖G‖L p′ (ω)m+C ′m p,

which, together with (3-20), implies ‖u‖W 1,p(ω) ≤ C . �

Remark 3.8. Propositions 3.6 and 3.7 will be used to prove the existence of a minimizer for the Rayleigh–
Ritz variational problem (3-3), and to establish the weak comparison principle using the sub/supersolution
method (see Section 5A).

3B. Existence, properties and characterization of the positivity of λ1. The following theorem general-
izes several results in the literature concerning the principal eigenvalue λ1 (see [Allegretto and Huang
1998, Theorem 2.1; Anane 1987, Proposition 2; García-Melián and Sabina de Lis 1998, Lemma 3;
Pinchover and Regev 2015, Lemma 6.4], for example). Note that our results apply to a general bounded
domain, and in particular, the boundary point lemmas are not used in the proof (cf. [García-Melián
and Sabina de Lis 1998, Lemma 3] and [Pinchover and Regev 2015]). In addition, we do not need any
further regularity assumption on the entries of the matrix A as in the aforementioned references, while
the potential V is far from being bounded.

Theorem 3.9. Let ω be a bounded domain in Rn , and assume that A is a uniformly elliptic, bounded
matrix in ω, and V ∈ Mq(p;ω). Then the operator Q′A,p,V in ω admits a principal eigenvalue λ1 given
by the Rayleigh–Ritz variational formula (3-3). Moreover, λ1 is the only principal eigenvalue, it is simple
and an isolated eigenvalue in R.

Proof. We define λ1 by (3-3) and prove that it is a principal eigenvalue. Using the Morrey–Adams theorem
(Theorem 2.4) with δ = θ p

ω one sees that

λ1 ≥−C(n, p, q)θ−np/(pq−n)
ω ‖V ‖pq/(pq−n)

Mq (p;ω) >−∞.

In particular, setting V := V − λ1+ ε, with ε > 0, we get that

Q A,p,V [u;ω] ≥ ε‖u‖
p
L p(ω) for all u ∈W 1,p

0 (ω).

Applying Propositions 3.6(a) and 3.7(b) with G ≡ 0, we get that Q A,p,V−λ1+ε[ · ;ω] is coercive and
weakly lower semicontinuous in W 1,p

0 (ω) and, consequently, also in W 1,p
0 (ω)∩ {‖u‖L p(ω) = 1}. Hence,

the infimum

ε = inf
u∈W 1,p

0 (ω)\{0}

Q A,p,V−λ1+ε[u;ω]
‖u‖p

L p(ω)
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is attained in W 1,p
0 (ω) \ {0} (see [Struwe 2008, Theorem 1.2], for example), and thus λ1 is attained

in W 1,p
0 (ω) \ {0}.

Let v1 be a minimizer of (3-3). It is quite standard to see that v1 is a solution of (3-1) with λ = λ1.
Since |v1| ∈W 1,p

0 (ω) \ {0}, it follows that
∣∣∇(|v1|)

∣∣
A = |∇v1|A a.e. in ω. This implies that |v1| is also a

minimizer of (3-3) and thus a nonnegative solution of (3-1) with λ= λ1. By the Harnack inequality, and
the Hölder continuity of |v1|, we obtain that |v1| is strictly positive in ω. In light of the homogeneity of
the eigenvalue problem (3-1), we may assume that v1 is strictly positive in ω.

To prove the simplicity of λ1, we assume that v2∈W 1,p
0 (ω) is another eigenfunction of (3-1) with λ=λ1.

Hence, v2 is a minimizer of (3-3), and thus has a definite sign. Without loss of generality, we may assume
that v2 > 0 in ω. Applying Lemma 3.3(ii) with V1 = V2 = V , λ = µ = λ1 and wλ = v1, wµ = v2 we
obtain

0≥ cp


∫
ω

(v
p
1 + v

p
2 )

∣∣∣∣∇ log
v1

v2

∣∣∣∣p

A
dx if p ≥ 2,∫

ω

(v
p
1 + v

p
2 )

∣∣∣∣∇ log
v1

v2

∣∣∣∣2
A
(|∇ log v1|A+ |∇ log v2|A)

p−2 dx if p < 2,

from which, because of (E), we deduce |v2∇v1−v1∇v2| = 0 a.e. in ω, which in turn implies the existence
of a positive constant c such that v2 = cv1 a.e. in ω.

Next we show that λ1 is the only eigenvalue possessing a nonnegative eigenfunction associated to it. If
λ > λ1 is an eigenvalue with eigenfunction εvλ ≥ 0, where ε > 0 is small, then, by Lemma 3.3(ii) with
V1 = V2 = V , µ= λ1 and wµ = v1,

(λ− λ1)

∫
ω

(εv
p
λ − v

p
1 ) dx ≥ 0,

which is a contradiction for ε small enough.
It remains thus to prove that λ1 is an isolated eigenvalue in R. Suppose that there exists a sequence

of eigenvalues {λk}k∈N ⊂ R such that λk ↓ λ1, as k→∞. Let {vk}k∈N be a sequence of the associated
normalized eigenfunctions. We claim that {vk}k∈N is bounded in W 1,p

0 (ω). Indeed, by the Morrey–Adams
theorem, we obtain for some 0< δ < 1 that∫

ω

|∇vk |
p
A dx ≤ |λk | +

∫
ω

|V ||vk |
p dx ≤ δ‖∇vk‖

p
L p(ω;Rn)+C, (3-22)

which implies our claim. Therefore, up to a subsequence, vk converges weakly in W 1,p
0 (ω) and also

in L p(ω).
Next we claim that vk → w in W 1,p

0 (ω). Since vk ⇀ w in W 1,p
0 (ω), it is enough to show that

{‖∇vk‖L p(ω;Rn)} is a Cauchy sequence. Let ε > 0 be arbitrary. The inequality

|a p
− bp
| ≤ p|a− b|(a p−1

+ bp−1), a, b ≥ 0,

together with the Hölder inequality and the Morrey–Adams theorem imply, for all sufficiently large
k, l ∈ N,
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ω

|∇vk |
p
A dx −

∫
ω

|∇vl |
p
A dx

∣∣∣∣
≤ |λk − λl | +

∫
ω

|V |
∣∣|vk |

p
− |vl |

p
∣∣ dx

≤ ε+ p
∫
ω

|V ||vk − vl |
∣∣|vk |

p−1
+ |vl |

p−1∣∣ dx .

≤ ε+C(p)
(∫

ω

|V ||vk − vl |
p dx

)1/p(∫
ω

|V ||vk |
p dx +

∫
ω

|V ||vl |
p dx

)1/p′

. (3-23)

Applying first the Morrey–Adams theorem and then (3-22), we see that both integrals on the second
factor of (3-23) are uniformly bounded in k and l, respectively. For the first factor we use again the
Morrey–Adams theorem to arrive at∣∣∣∣∫

ω

|∇vk |
p
A dx−

∫
ω

|∇vl |
p
A dx

∣∣∣∣≤ ε+C1

(
ε

∫
ω

|∇(vk−vl)|
p dx+C2ε

n/(n−pq)
∫
ω

|vk−vl |
p dx

)1/p

, (3-24)

where C1 and C2 are positive constants independent of k and l. The convergence in L p(ω) of vk to v
implies that there exists mε ∈ N such that∫

ω

|vk − vl |
p dx ≤ εn/(pq−n)+1 for all k, l ≥ mε.

Coupling this with (3-24) implies that {‖∇vk‖L p(ω;Rn)} is a Cauchy sequence.
By a similar argument, one shows that

Q A,p,V [w] = λ1‖w‖
p
L p(ω) ,

hence, w is a minimizer of the Rayleigh–Ritz variational problem (3-3), and hence an eigenfunction of
(3-1) with λ= λ1. The simplicity of λ1 implies that w =±v, where v > 0 is the normalized principal
eigenfunction with an eigenvalue λ1. Without loss of generality, we may assume that vk→ v in W 1,p

0 (ω).
Set ω−k := {x ∈ ω | vk < 0}. By Lemma 3.4 (with V = V − λk) we have that v−k is a subsolution of

Q′A,p,V−λk
[u] = 0 in ω, and thus, from (3-2),∫
ω

|∇v−k |
p
A dx ≤

∫
ω

|V − λk ||v
−

k |
p dx

≤ δ‖∇v−k ‖
p
L p(ω;Rn)+C(n, p, q)δ−n/(pq−n)

‖V − λk‖
pq/(pq−n)
Mq (p;ω) ‖v

−

k ‖
p
L p(ω)

for any δ > 0, where we have used Theorem 2.4. For δ < θ p
ω we deduce, because of assumption (E), that

(θ p
ω − δ)‖∇v

−

k ‖
p
L p(ω;Rn) ≤ C(n, p, q)δ−n/(pq−n)

‖V − λk‖
pq/(pq−n)
Mq (p;ω) ‖v

−

k ‖
p
L p(ω).

Since v−k ≡ 0 in ω \ω−k , we use Poincaré’s inequality

‖v−k ‖L p(ω) ≤

(
Ln(ω−k )

Ln(B1)

)1/n

‖∇v−k ‖L p(ω;Rn), (3-25)
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to get

(θ p
ω − δ)‖∇v

−

k ‖
p
L p(ω;Rn) ≤ C(n, p, q)δ−n/(pq−n)

‖V − λk‖
pq/(pq−n)
Mq (p;ω)

(
Ln(ω−k )

Ln(B1)

)p/n

‖∇v−k ‖
p
L p(ω;Rn).

Canceling ‖∇v−k ‖
p
L p(ω;Rn), rearranging and raising to the power n/p, we arrive at

Ln(ω−k )≥ C(n, p, q)Ln(B1)(θ
p
ω − δ)

n/pδn2/[p(pq−n)]
‖V − λk‖

−nq/(pq−n)
Mq (p;ω) . (3-26)

Notice that ‖V −λ1‖Mq (p;ω) is a strictly positive number. Indeed, assume that ‖V −λ1‖Mq (p;ω)= 0. Then
v1 is a nontrivial solution of the Dirichlet problem for the (p, A)-Laplace operator which is false under
our assumptions on A (see [Heinonen et al. 1993; Pucci and Serrin 2007], for example).

On the other hand, ‖V − λk‖Mq (p;ω)→ ‖V − λ1‖Mq (p;ω) as k→∞. Therefore, there exists C > 0
such that

‖V − λk‖Mq (p;ω) ≥ C‖V − λ1‖Mq (p;ω) for all k ≥ k0. (3-27)

Consequently, (3-27) applied to (3-26) implies that

Ln(ω−k )≥ C > 0 for all k ≥ k0

for a positive constant C independent on k.
With this at hand, the rest of the proof follows [Anane 1987, Théorème 2]. We include it for complete-

ness: Let η > 0. Recalling that v is continuous in ω, we may pick a compact set ωη b ω and mη > 0,
such that Ln(ω \ωη) < η and v(x) ≥ mη for every x ∈ ωη. Up to subsequence that we don’t rename,
vk converges to v a.e. in ω, and thus in ωη. By the Egoroff theorem (see [Evans and Gariepy 1992, §1.2])
we have the existence of a measurable set ω′ ⊂ ωη with Ln(ω′) < η such that vk converges uniformly to
v on ωη \ω′. Since v ≥ mη > 0 in ωη we deduce that for any k large enough we have vk ≥ 0 on ωη \ω′.
Thus, ω−k ⊂ ω

′
∪ (ω \ωη), which implies that Ln(ω−k )≤ 2η. Since η > 0 is arbitrary, for k large enough

this contradicts our estimate Ln(ω−k )≥ C1. �

We are now ready to prove the main result of this section. Extending the corresponding results in
[García-Melián and Sabina de Lis 1998; Pinchover and Regev 2015], we have:

Theorem 3.10. Let ω be a bounded domain, and assume that A is a uniformly elliptic, bounded matrix
in ω, and V ∈ Mq(p;ω). Consider the following assertions:

(α1) Q′A,p.V satisfies the weak maximum principle in ω.

(α2) Q′A,p.V satisfies the strong maximum principle in ω.

(α3) λ1 > 0.

(α4) The equation Q′A,p,V [v] = 0 admits a positive strict supersolution in W 1,p
0 (ω).

(α′4) The equation Q′A,p,V [v] = 0 admits a positive strict supersolution in W 1,p(ω).

(α5) For 0≤ g ∈ L p′(ω), there exists a unique nonnegative solution in W 1,p
0 (ω) of Q′A,p,V [v] = g.

Then α1⇐⇒ α2⇐⇒ α3 =⇒ α4 =⇒ α′4, and α3 =⇒ α5 =⇒ α4.
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Remark 3.11. In Corollary 4.14 we prove (imposing stronger regularity assumptions on A and V
when p < 2) that in fact, α′4 =⇒ α3. Hence, under these additional assumptions for p < 2, all the above
assertions are equivalent.

Proof. α1=⇒α2: Let v ∈W 1,p(ω) be a solution of (3-4) and suppose v≥ 0 on ∂ω. The nonnegativity of g
and the weak maximum principle implies that v is a nonnegative supersolution of (2-3) in ω. Suppose that
for some x0, x1 ∈ ω we have v(x0) 6= 0 and v(x1)= 0 and let ω′ b ω contain both x0 and x1. Recalling
Remark 2.10, we apply the weak Harnack inequality if p ≤ n, or the Harnack inequality if p > n, to get
v ≡ 0 in ω′. This contradicts the assumption that v(x0) 6= 0. Thus, if v 6= 0 we necessarily have v > 0
in ω.

α2 =⇒ α3: Suppose that λ1 ≤ 0 and let v ∈W 1,p
0 (ω) be the corresponding principal eigenfunction. Then

u := −v is a supersolution of (2-3) in ω, satisfying u = 0 on ∂ω, and u 6= 0. By the strong maximum
principle, u is positive, which is absurd.

α3 =⇒ α1: Let v ∈W 1,p(ω) be a solution of (3-4) such that v ≥ 0 on ∂ω. Taking v− ∈W 1,p
0 (ω) as a test

function we see that
Q A,p,V [v

−
;ω] =

∫
ω−

gv dx,

where ω− := {x ∈ ω | v < 0}. The nonnegativity of g gives Q A,p,V [v
−
;ω] ≤ 0, which implies that λ1 ≤ 0.

Thus, we must have v− = 0 a.e. in ω, or in other words v ≥ 0 a.e. in ω.

α3 =⇒ α4: Since λ1 > 0, it follows that the principal eigenfunction is a positive strict supersolution
of (2-3) in ω.

α4 =⇒ α′4: This is trivial.

α3 =⇒ α5: Consider the functional

J [u] := Q A,p,V [u;ω] −
∫
ω

gu dx, u ∈W 1,p
0 (ω).

By Proposition 3.6(a), J is weakly lower semicontinuous in W 1,p
0 (ω) and, by Proposition 3.7(b), J is

coercive. Therefore, the corresponding Dirichlet problem admits a solution v1 ∈W 1,p
0 (ω) (see [Struwe

2008, Theorem 1.2], for example). Since α3 =⇒ α2, this solution is either zero or strictly positive.
If v1 = 0, then g = 0, and by the uniqueness of the principal eigenvalue, equation (2-3) in ω does not

admit a positive solution in W 1,p
0 (ω). So, we may assume that v1 > 0 and let v2 ∈W 1,p

0 (ω) be another
positive solution. Applying Lemma 3.3(i) with g1 = g2 = g and V1 = V2 = V , we obtain

0≥
∫
ω

g
(

1

v
p−1
1,h

−
1

v
p−1
2,h

)
(v

p
1,h − v

p
2,h) dx ≥

∫
ω

V
((

v1

v1,h

)p−1

−

(
v2

v2,h

)p−1 )
(v

p
1,h − v

p
2,h) dx .

The integrand of the integral on the right converges to 0 a.e. in ω, and also it satisfies the following
estimate for every h < 1:∣∣∣∣V(( v1

v1,h

)p−1

−

(
v2

v2,h

)p−1 )
(v

p
1,h − v

p
2,h)

∣∣∣∣≤ 2|V |((v1+ 1)p
+ (v2+ 1)p) ∈ L1(ω).
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Thus

lim
h→0

∫
ω

g
(

1

v
p−1
1,h

−
1

v
p−1
2,h

)
(v

p
1,h − v

p
2,h) dx = 0,

which, together with Fatou’s lemma, implies that the right-hand side of (3-6) equals zero. Thus, v2 = v1

a.e. in ω.

α5 =⇒ α4: Let v ∈W 1,p
0 (ω) be a positive solution of (3-4) with g ≡ 1. Then v is readily a positive strict

supersolution of (2-3) in ω. �

4. Positive global solutions

In the present section we pass from local to global properties of positive solutions of the equation (2-3)
in �. In Section 4A we establish the AP theorem, while in Section 4B we prove among other results the
equivalence of the first four statements of the Main Theorem.

4A. The AP theorem. In this subsection we prove the AP theorem for the operator Q′A,p,V under
hypothesis (H0). We will add a couple of equivalent assertions to this theorem, regarding the first-order
equation

−divAT + (p− 1)|T |p
′

A = V in �, (4-1)

where divAT = div(AT ) and T ∈ L p′

loc(�;R
n); see [Jaye et al. 2012, Theorem 1.3] for a similar study

when A = In and p = 2.

Definition 4.1. Suppose that the matrix A satisfies (S) and (E) and let V ∈ L1
loc(�). A vector field

T ∈ L p′

loc(�;R
n) is a solution of (4-1) in � if∫

�

AT · ∇u dx + (p− 1)
∫
�

|T |p
′

A u dx =
∫
�

V u dx for all u ∈ C∞c (�), (4-2)

a subsolution of (4-1) in � if∫
�

AT · ∇u dx + (p− 1)
∫
�

|T |p
′

A u dx ≤
∫
�

V u dx for all nonnegative u ∈ C∞c (�), (4-3)

and a supersolution if the reverse inequality holds.

Remark 4.2. The additional assumption V ∈ Mq
loc(p;�) allows the replacement of C∞c (�) by W 1,p

c (�)

in Definition 4.1.

Theorem 4.3 (the AP theorem). Under hypothesis (H0), the following assertions are equivalent:

(A1) Q A,p,V [u] ≥ 0 for all u ∈ C∞c (�).

(A2) Q′A,p,V [w] = 0 admits a positive solution v ∈W 1,p
loc (�).

(A3) Q′A,p,V [w] = 0 admits a positive supersolution ṽ ∈W 1,p
loc (�).

(A4) (4-1) admits a solution T ∈ L p′

loc(�;R
n).

(A5) (4-1) admits a subsolution T̃ ∈ L p′

loc(�;R
n).
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Proof. We prove A1 =⇒A2 =⇒A j =⇒A5 =⇒A1, where j = 3, 4.

A1 =⇒A2: We fix a point x0 ∈� and let {ωi }i∈N be a sequence of Lipschitz domains such that x0 ∈ ω1,
ωi b ωi+1 b�, i ∈ N, and

⋃
i∈N ωi =�. For i ≥ 2, we consider the problem{

Q′A,p,V+1/ i [u] = fi in ωi ,

u = 0 on ∂ωi ,
(4-4)

where fi ∈ C∞c (ωi \ωi−1) \ {0} are nonnegative. Assertion A1 implies

λ1(Q A,p,V+1/ i ;ωi )≥
1
i

for all i ∈ N,

so that by Theorem 3.10 there exists a positive solution vi ∈W 1,p
0 (ωi ) of (4-4). Since supp{ fi }⊂ωi \ωi−1,

setting ω′i = ωi−1 we have∫
ωi

|∇vi |
p−2
A A∇vi · ∇u dx +

∫
ωi

(V + 1/ i)v p−1
i u dx = 0 for all u ∈W 1,p

0 (ω′i ). (4-5)

By Theorem 2.7, the solutions vi we have obtained are continuous. We may thus normalize fi so that
vi (x0)= 1 for all i ∈ N. To arrive to the desired conclusion we apply the Harnack convergence principle
(Proposition 2.11) with Vi := V + 1/ i .

A2 =⇒A3: This is immediate with ṽ = v.

A2 =⇒A4 and A3 =⇒A5: Let v be a positive (super)solution of (2-3). By the weak Harnack inequality
(Remark 2.10) if p ≤ n, or by the Harnack inequality if p > n, we have 1/v ∈ L∞loc(�). Set

T := −|∇ log v|p−2
A ∇ log v,

and let u ∈ C∞c (�). We may thus pick |u|pv1−p
∈W 1,p

c (�) as a test function in (2-6) to get

(p− 1)
∫
�

|T |p
′

A |u|
p dx ≤ p

∫
�

|T |A|u|p−1
|∇u|A dx +

∫
�

V |u|p dx . (4-6)

Note that from (4-6) we obtain A1 just by using Young’s inequality pab ≤ (p − 1)a p′
+ bp with

a = |T |A|u|p−1 and b = |∇u|A in the first term of the right-hand side. Towards A3, we use instead
Young’s inequality

pab ≤ ηa p′
+

( p−1
η

)p−1
bp, (4-7)

with η ∈ (0, p− 1) and the above a, b. We arrive at

(p− 1− η)
∫
�

|T |p
′

A |u|
p dx ≤

( p−1
η

)p−1
∫
�

|∇u|pA dx +
∫
�

|V ||u|p dx .

This, together with (E) and Theorem 2.4 imply, by specializing u, that T ∈ L p′

loc(�;R
n). Next we show

that T is a (sub)solution of (4-1). To this end, for u ∈ C∞c (�), or for nonnegative u ∈ C∞c (�), we pick
uv1−p

∈W 1,p
c (�) as a test function in (2-5) or (2-6), respectively, to obtain

−

∫
�

AT · ∇u dx − (p− 1)
∫
�

|T |p
′

A u dx +
∫
�

V u dx = 0,
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or ≥ in the supersolution case.

A4 =⇒A5: This is immediate with T̃ = T .

A5 =⇒A1: Suppose now that T ∈ L p′

loc(�;R
n) and let u ∈ C∞c (�). We compute

−

∫
�

AT · ∇(|u|p) dx =−p
∫
�

|u|p−1 AT · ∇|u| dx

≤ p
∫
�

|u|p−1
|T |A|∇u|A dx

≤ (p− 1)
∫
�

|u|p|T |p
′

A dx +
∫
�

|∇u|pA dx,

where we have also used Young’s inequality pab≤ (p−1)a p′
+bp, with a = |u|p−1

|T |A and b= |∇u|A.
This readily implies∫

�

|∇u|pA dx ≥−
∫
�

AT · ∇(|u|p) dx − (p− 1)
∫
�

|T |p
′

A |u|
p dx for all u ∈ C∞c (�). (4-8)

If T is a subsolution of (4-1) then, testing (4-3) by |u|p, one readily sees from (4-8) that Q A,p,V [u] is
nonnegative for any u ∈ C∞c (�). �

Remark 4.4. Inequality (4-8) with A = In has been obtained in [Fleckinger et al. 1999].

4B. Criticality theory. In the present subsection we generalize several global positivity properties of the
functional Q A,p,V , where A and V satisfy (at least) our regularity assumption (H0). For the convenience
of the reader, we recall the following terminology:

Definition 4.5. Assume that Q A,p,V is nonnegative in � (that is, Q A,p,V [u] ≥ 0 for all u ∈ C∞c (�))
with coefficients satisfying hypothesis (H0). Then Q A,p,V is called subcritical in � if there exists a
nonnegative weight function W ∈ Mq

loc(p;�) \ {0} such that

Q A,p,V [u] ≥
∫
�

W |u|p dx for all u ∈ C∞c (�). (4-9)

If this is not the case, then Q A,p,V is called critical in �.
The functional Q A,p,V is called supercritical in � if Q A,p,V is not nonnegative in � (that is, there

exists u ∈ C∞c (�) such that Q A,p,V [u]< 0).

Definition 4.6. A sequence {uk} ⊂ W 1,p
0 (�) is called a null sequence with respect to the nonnegative

functional Q A,p,V in � if

(a) uk ≥ 0 for all k ∈ N,

(b) there exists a fixed open set K b� such that ‖uk‖L p(K ) = 1 for all k ∈ N,

(c) limk→∞ Q A,p,V [uk] = 0.

We call a positive φ ∈ W 1,p
loc (�) a ground state of Q A,p,V in � if φ is an L p

loc(�) limit of a null
sequence.



ON POSITIVE SOLUTIONS OF THE (p, A)-LAPLACIAN WITH POTENTIAL IN MORREY SPACE 1343

Remark 4.7. Let ω ⊂ Rn be a bounded domain, and suppose that A is a uniformly elliptic and bounded
matrix in ω, and V ∈ Mq(p;ω). Let v1 be the principal eigenfunction with eigenvalue λ1. Set
CK := ‖v1‖L p(K ), where K b ω is fixed. Then the constant sequence {C−1

K v1} is a null sequence
and C−1

K v1 is a ground state of Q A,p,V−λ1 in ω.

The following proposition states an elementary positivity property of the functional Q A,p,V :

Proposition 4.8. Suppose that V2 ≥ V1 a.e. in � and Ln({V2 > V1}) > 0.

(a) If Q A,p,V1 is nonnegative in �, then Q A,p,V2 is subcritical in �.

(b) If Q A,p,V2 is critical in �, then Q A,p,V1 is supercritical in �.

Proof. Part (b) follows from part (a) by contradiction, and, from the obvious relation

Q A,p,V2[u] = Q A,p,V1[u] +
∫
�

(V2− V1)|u|p dx for all u ∈ C∞c (�),

part (a) is evident. �

Note here that Definitions 4.5 and 4.6, and also Proposition 4.8 make perfect sense if V is merely in
L1

loc(�) for all values of p.
Now we connect the (sub)criticality of the functional Q A,p,V in � with the existence of positive weak

(super)solutions for equation (2-3) in �, through the existence of ground states. Towards this we need
to give sufficient conditions on A and V , under which a null sequence with respect to the nonnegative
functional Q A,p,V will converge in L p

loc to a function in W 1,p
loc .

We need the following definition for the case 1< p < 2.

Definition 4.9. Suppose that 1< p< 2. A positive supersolution v of (2-3) will be called regular provided
that v and |∇v| are locally bounded a.e. in �.

Remark 4.10. Under hypothesis (H1) for 1 < p < 2, any positive supersolution v of (2-3) satisfying
Q A,p,V [v] = g ≥ 0 with g ∈ L p′

loc(�) is regular (see Remark 2.9).

We start with the following proposition, which gives us the intuition that any null sequence converges
in some sense to any positive (regular if p < 2) (super)solution. Note that our proof for the case p < 2 is
considerably shorter than the corresponding proof in [Pinchover and Tintarev 2007; Pinchover and Regev
2015].

Proposition 4.11. Suppose that {uk} ⊂ W 1,p
0 (�) is a null sequence with respect to a nonnegative func-

tional Q A,p,V in � with coefficients satisfying hypothesis (H0).
Let v be a positive supersolution of the equation (2-3) in �. If 1< p < 2 we assume further that v is

regular. Set wk := uk/v. Then {wk} is bounded in W 1,p
loc (�), and ∇wk→ 0 in L p

loc(�;R
n).

Proof. Let K b� be the set such that the null sequence {uk} satisfies ‖uk‖L p(K ) = 1 for all k ∈ N. Fix a
Lipschitz domain ω such that K b ω b�.
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By the Minkowski and Poincaré inequalities, and the weak Harnack inequality, we have

‖wk‖L p(ω) ≤ ‖wk −〈wk〉K‖L p(ω)+〈wk〉K (Ln(ω))1/p

≤ C(n, p, ω, K )‖∇wk‖L p(ω;Rn)+
1

infK v
〈uk〉K (Ln(ω))1/p.

Since ‖uk‖L p(K ) = 1, applying Holder’s inequality we deduce

‖wk‖L p(ω) ≤ C(n, p, ω, K )‖∇wk‖L p(ω;Rn)+
1

infK v

(
Ln(ω)

Ln(K )

)1/p

. (4-10)

Let

I (v,wk) := C(p)


∫
�

v p
|∇wk |

p
A dx, p ≥ 2,∫

�

|∇wk |
2
A
(
|∇(vwk)|A+wk |∇v|A

)p−2 dx, 1≤ p < 2,

where C(p) is the constant in (3-8). We now use (3-8) with α =∇(wkv)=∇uk and β =wk∇v to obtain

I (v,wk)≤

∫
�

|∇uk |
p
A dx −

∫
�

w
p
k |∇v|

p
A dx −

∫
�

v|∇v|
p−2
A A∇v · ∇(w p

k ) dx

=

∫
�

|∇uk |
p
A dx −

∫
�

|∇v|
p−2
A A∇v · ∇(w p

k v) dx . (4-11)

Since v is a positive supersolution, we get

I (v,wk)≤

∫
�

|∇uk |
p
A dx +

∫
�

V u p
k dx = Q A,p,V [uk]. (4-12)

Suppose now that p ≥ 2. Using the definition of I , and the weak Harnack inequality, we obtain from
(4-12) that

c
∫
ω

|∇wk |
p dx ≤ C(p)

∫
�

v p
|∇wk |

p
A dx ≤ Q A,p,V [uk] → 0 as k→∞, (4-13)

where c > 0 is a positive constant. By the weak compactness of W 1,p(ω), we get for p ≥ 2 that (up to a
subsequence)

∇wk→ 0 in L p
loc(�;R

n). (4-14)

By (4-10) and (4-13), we have that wk is bounded in W 1,p
loc (�) for any p ≥ 2.

On the other hand, if p < 2, then by the definition of I and (4-12), we get

C(p)
∫
�

v2
|∇wk |

2
A(

|∇(vwk)|A+wk |∇v|A
)2−p dx ≤ Q A,p,V [uk] → 0 as k→∞.
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For convenience we set qk = Q A,p,V [uk]. By Hölder’s inequality with conjugate exponents 2/p and
2/(2− p), we get∫

ω

v p
|∇wk |

p
A dx ≤

(∫
�

v2
|∇wk |

2
A(

|∇(vwk)|A+wk |∇v|A
)2−p dx

)p/2(∫
ω

(
|∇(vwk)|A+wk |∇v|A

)p dx
)1−p/2

≤ C(p)−1q p/2
k

(∫
ω

v p
|∇wk |

p
A dx +

∫
ω

w
p
k |∇v|

p
A dx

)1−p/2

≤ C(p)−1q p/2
k

(∫
ω

v p
|∇wk |

p
A dx +

∫
ω

w
p
k |∇v|

p
A dx + 1

)
.

Since v is locally bounded and locally bounded away from zero, |∇v| is locally bounded, and A is
uniformly elliptic and bounded in ω, we get using (4-10) that, for some positive constants c j , 1≤ j ≤ 4,
that are independent of k,

c1

∫
ω

|∇wk |
p dx ≤ c2q p/2

k

(∫
ω

|∇wk |
p dx +

∫
ω

w
p
k dx + 1

)
≤ c2q p/2

k

(
c3

∫
ω

|∇wk |
p dx + c4

)
.

Since qk→ 0 as k→∞, we conclude that also in the case p < 2 we have

∇wk→ 0 in L p
loc(�;R

n),

and thus by (4-10) we have that wk is bounded in W 1,p
loc (ω) for any p < 2. �

Several consequences follow. In the following statement, uniqueness is meant up to a positive multi-
plicative constant.

Theorem 4.12. Suppose that Q A,p,V is nonnegative in� with A and V satisfying hypothesis (H0) if p≥2,
or (H1) if 1< p < 2. Then any null sequence with respect to Q A,p,V converges, in L p

loc and a.e. in �, to
a unique positive (regular if p < 2) supersolution of (2-3) in �. In particular, a ground state is the unique
positive solution and the unique positive (regular if p < 2) supersolution of (2-3) in �, and so the ground
state is Cγ if p ≥ 2, or C1,γ if 1< p < 2.

Remark 4.13. At this point we need to add the stronger assumption (H1) on A and V in the case 1< p<2,
since in this case we assume the existence of a positive regular (super)solution. In fact, the proof presented
here for p < 2 applies under the least assumptions on A and V that ensure the Lipschitz continuity of
positive solutions. This fails if we just keep the assumption (E) on the matrix A, even for V ≡ 0 (see
[Jin et al. 2009]). To our knowledge, the least known assumptions on A and V ensuring the Lipschitz
continuity of solutions are due to Lieberman [1993] (see our Remark 2.9).

Proof of Theorem 4.12. From the AP theorem we may fix a positive (regular if p < 2) supersolution
v ∈ W 1,p

loc (�) and a positive (regular if p < 2) solution ṽ ∈ W 1,p
loc (�) of (2-3). Setting wk = uk/v, we

have, by Proposition 4.11, that ∇wk→ 0 in L p
loc(�;R

n). The Rellich–Kondrachov theorem implies (see
the proof of [Lieb and Loss 2001, Theorem 8.11]) that, up to a subsequence, wk → c for some c ≥ 0
in W 1,p

loc (�). This implies in turn that, up to a further subsequence, uk→ cv a.e. in � and also in L p
loc(�).

Consequently, c = 1/‖v‖L p(K ) > 0. It follows that any null sequence {uk} converges (up to a positive
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multiplicative constant) to the same positive (regular if p < 2) supersolution v. Since the solution ṽ is a
(regular if p < 2) supersolution, we see that v = C ṽ for some C > 0, and therefore it is also the unique
positive solution of (2-3) in �. �

We can now close the chain of implications between the assertions of Theorem 3.10 (see Remark 3.11).

Corollary 4.14. Let ω b Rn and suppose that A is uniformly elliptic and bounded matrix in ω, and
V ∈ Mq(p;ω). If 1< p < 2, we suppose in addition that A and V satisfy hypothesis (H1).

If the equation Q′A,p,V [v] = 0 admits a positive, regular, strict supersolution in W 1,p(ω), then the
principal eigenvalue is strictly positive.

Hence, all assertions of Theorem 3.10 are equivalent (if by a supersolution we mean, when p < 2, a
regular one).

Proof. α′4 =⇒ α3: From the AP theorem we get Q A,p,V [u;ω] ≥ 0 for all u ∈ C∞c (ω), which implies
that λ1 ≥ 0. Suppose that λ1 = 0. Then, by Remark 4.7 and Theorem 4.12, the principal eigenfunction,
which is a positive (regular if p < 2) solution of (2-3) in ω is the unique (regular if p < 2) positive
supersolution of that equation. This shows that this equation cannot have a positive strict (regular if p< 2)
supersolution. �

In the next theorem we state characterizations of criticality, subcriticality and existence of a null
sequence. We also state a useful Poincaré inequality in the case where Q A,p,V is critical. It generalizes
the corresponding results in [Pinchover and Tintarev 2006; 2007; 2008; Pinchover and Regev 2015; Takáč
and Tintarev 2008].

Theorem 4.15. Suppose that Q A,p,V is nonnegative on C∞c (�) with A and V satisfying hypothesis (H0)
if p ≥ 2, or (H1) if 1< p < 2. Then

(i) Q A,p,V is critical in � if and only if Q A,p,V admits a null sequence.

(ii) Q A,p,V admits a null sequence if and only if (2-3) admits a unique positive (regular if p < 2)
supersolution.

(iii) Q A,p,V is subcritical in � if and only if there exists a strictly positive weight function W ∈ C0(�)

such that (4-9) holds true.

(iv) If Q A,p,V admits a ground state φ, then there exists a strictly positive weight function W ∈ C0(�)

such that, for every ψ ∈ C∞c (�) with
∫
�
φψ dx 6= 0, the following Poincaré-type inequality holds:

Q A,p,V [u] +C
∣∣∣∣∫
�

uψ dx
∣∣∣∣p

≥
1
C

∫
�

W |u|p dx for all u ∈W 1,p
0 (�)

and some positive constant C > 0.

Remark 4.16. In the sequel (Lemma 4.22) we add the following accompaniment to (i): if Q A,p,V is
critical in �, then there exists a null sequence that converges locally uniformly in � to the ground state.
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Proof of Theorem 4.15. (i) If Q A,p,V is critical in �, we claim that, for any ∅ 6= K b�,

cK := inf
0≤u∈C∞c (�)
‖u‖L p (K )=1

Q A,p,V [u] = 0. (4-15)

To see this, pick W ∈ C∞c (K ) \ {0} such that 0≤W ≤ 1. Then

cK

∫
�

W |u|p dx ≤ cK ≤ Q A,p,V [u] for all u ∈ C∞c (�) with ‖u‖L p(K ) = 1,

a contradiction to the criticality of Q A,p,V in case cK > 0. Picking one such K , (4-15) implies the
existence of a null sequence with respect to Q A,p,V .

If Q A,p,V admits a null sequence then, by Theorem 4.12, (2-3) admits a unique positive solution v,
which is also its unique (regular if p < 2) positive supersolution. Suppose now, to the contrary, that
Q A,p,V is subcritical in � with a nonzero nonnegative weight W . By the AP theorem we obtain a positive
solution w of the equation Q′A,p,V−W [u] = 0, which is readily another positive supersolution of (2-3).
This contradicts the uniqueness of v, and thus Q A,p,V has to be critical in �.

(ii) The sufficiency is captured by Theorem 4.12. To prove the necessity, let v be the unique positive
(super)solution of Q′A,p,V in �. By part (i) we have that the nonexistence of null sequences with respect
to Q A,p,V implies that Q A,p,V is subcritical in �. Now the same argument as in the proof of the necessity
of the first statement of part (i) implies that v is not unique, a contradiction.

(iii) The necessity follows by the definition of subcriticality. On the other hand, the proof of the sufficiency
of the first statement of (i) implies that cK > 0 for any domain K b �. Using a standard partition of
unity argument we arrive at a strictly positive W that satisfies (4-9) (see [Pinchover and Tintarev 2007,
Lemma 3.1]).

(iv) The proof is identical to [Pinchover and Tintarev 2007, Theorem 1.6(4)] (and also [Pinchover and
Regev 2015]). �

Corollary 4.17. Suppose that for i = 0, 1 the functional Q A,p,Vi is nonnegative in � with A and Vi

satisfying hypothesis (H0) if p ≥ 2, or (H1) if 1< p < 2. For t ∈ (0, 1) set

Vt := (1− t)V0+ tV1.

Then Q A,p,Vt is nonnegative in � for all t ∈ [0, 1]. Moreover, if Ln({V0 6= V1}) > 0, then Q A,p,Vt is
subcritical in � for any t ∈ (0, 1).

Proof. The nonnegativity of Q A,p,Vt for t ∈ (0, 1) follows from the obvious relation

Q A,p,Vt [u] = (1− t)Q A,p,V0[u] + t Q A,p,V1[u]. (4-16)

Suppose now that {uk} ⊂ C∞c (�) is a null sequence with respect to Q A,p,Vt in � for some t ∈ (0, 1) such
that uk→ φ in L p

loc(�). It follows from (4-16) that {uk} is also a null sequence for Q A,p,V0 and Q A,p,V1

in �. By Theorem 4.12, φ is a solution of Q′A,p,Vi
[u] = 0 in �, for both values of i , which is impossible

since Ln({V0 6= V1}) > 0. �
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Finally, we state generalizations of the corresponding results in [Pinchover and Tintarev 2007; Pinchover
and Regev 2015]. We skip their proofs since they are essentially the same.

Proposition 4.18. Suppose �′ (� is a domain. Let A and V satisfy hypothesis (H0) if p ≥ 2, or (H1) if
1< p < 2.

(a) If Q A,p,V is nonnegative in �, then Q A,p,V is subcritical in �′.

(b) If Q A,p,V is critical in �′, then Q A,p,V is supercritical in �.

Proposition 4.19. Suppose that Q A,p,V is subcritical in � with A and V satisfying hypothesis (H0)
if p ≥ 2, or (H1) if 1< p < 2. Let U ∈ L∞(�) \ {0} be such that U 6≥ 0 and supp{U }b�. Then there
exist τ+ > 0 and τ− ∈ [−∞, 0) such that Q A,p,V+tU is subcritical in � if and only if t ∈ (τ−, τ+) and
Q A,p,V+τ+U is critical in �.

Proposition 4.20. Suppose that Q A,p,V is critical in � with A and V satisfying hypothesis (H0) if p ≥ 2,
or (H1) if 1 < p < 2. Denote by φ the corresponding ground state. Consider U ∈ L∞(�) such that
supp{U } b �. Then there exists 0 < τ+ ≤∞ such that Q A,p,V+tU is subcritical in � for t ∈ (0, τ+) if
and only if

∫
�

U |φ|p dx > 0.

The following theorem extends the corresponding theorems in [Pinchover 2007; Pinchover and Regev
2015; Pinchover et al. 2008]; see some applications therein.

Theorem 4.21 (Liouville comparison theorem). Suppose that for i = 1, 2 the functional Q Ai ,p,Vi is
nonnegative in � with Ai and Vi satisfying hypothesis (H0) if p ≥ 2, or (H1) if 1< p < 2. Suppose in
addition that:

(1) Q A2,p,V2 admits a ground state φ in �.

(2) The equation Q′A1,p,V1
[u] = 0 in � admits a weak subsolution ψ with ψ+ 6= 0.

(3) There exists M > 0 such that the matrix (Mφ(x))2 A2(x)− (ψ+(x))2 A1(x) is nonnegative-definite
in Rn for almost every x ∈�.

(4) There exists N > 0 such that |∇ψ |p−2
A1(x) ≤ N p−2

|∇φ|
p−2
A2(x) for almost every x in �∩ {ψ > 0}.

Then the functional Q A1,p,V1 is critical in�, and ψ is the unique positive supersolution of Q′A1,p,V1
[u] = 0

in �.

We close this section by showing that the ground state is a locally uniform limit of a null sequence.
This is a generalization of the second statement of [Pinchover and Regev 2015, Theorem 6.1(2)]. We give
a detailed proof, as it utilizes many of the results presented above.

Lemma 4.22. Suppose Q A,p,V is critical in � with A and V satisfying hypothesis (H0) if p ≥ 2, or (H1)
if 1< p < 2. Then Q A,p,V admits a null sequence that converges locally uniformly to the ground state.

Proof. Let {ωi }i∈N be a sequence of Lipschitz domains such that ωi b �, ωi b ωi+1 for i ∈ N, and⋃
i∈N ωi =�. We fix x0∈ω1 and a nonnegative U ∈C∞c (�)\{0}with supp{U }⊂ω1. By Proposition 4.19,

for every i ∈N there exists ti > 0 such that the functional Q A,p,V−ti U is critical in ωi . For i ∈N we denote
by φi ∈W 1,p(ωi ) the corresponding ground states, normalized by φi (x0)= 1. The sequence of the ti is
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strictly decreasing with i . Indeed, we have by Proposition 4.18 that Q A,p,V−ti U has to be supercritical
in ωi+1. There thus exists u ∈ C∞c (ωi+1) such that Q A,p,V−ti U [u;ωi+1]< 0. This in turn implies that

Q A,p,V−ti+1U [u;ωi+1]< (ti − ti+1)

∫
ωi+1

U |u|p dx .

The criticality of Q A,p,V−ti+1U in ωi+1 implies by definition that Q A,p,V−ti+1U is nonnegative in ωi+1

and thus ti > ti+1. Setting t∞ := limi→∞ ti , by Harnack’s convergence principle (Proposition 2.11),
up to a subsequence, {φi }i∈N converges locally uniformly to a positive solution v of the equation
Q′A,p,V−t∞U [u] = 0 in �. The AP theorem (Theorem 4.3) implies that Q A,p,V−t∞U is nonnegative
in �. Clearly, t∞ ≥ 0. Let us show that in fact t∞ = 0. If not then V − t∞U ≤ V a.e. in � and, since
by our assumptions Q A,p,V is critical in �, Proposition 4.8(b) gives that Q A,p,V−t∞U is supercritical,
contradicting its nonnegativity.

Summarizing, for each i ∈ N we have obtained a ground state φi ∈ W 1,p(ωi ) of Q A,p,V−ti U in ωi ,
and the sequence {φi }i∈N converges locally uniformly to a positive solution v of the equation (2-3)
in �. To conclude, we will show that {φi }i∈N is in fact a null sequence. Consider the principal
eigenvalue λ1(Q A,p,V−ti Ui ;ωi ), i ∈ N, which is nonnegative. Suppose that for some i ∈ N we had
λ1(Q A,p,V−ti Ui ;ωi ) > 0. Then the principal eigenfunction vωi

1 ∈ W 1,p
0 (ωi ) would be a positive, strict

supersolution of the equation Q′A,p,V−ti U [v;ωi ]=0, which contradicts the fact that φi is the unique positive
supersolution and also a solution of Q′A,p,V−ti U [v;ωi ] = 0 (see Theorem 4.12). Thus, for each i ∈ N,
λ1(Q A,p,V−ti Ui ;ωi )= 0 and, since φi is also the unique positive solution of Q′A,p,V−ti U [v;ωi ] = 0 (see
Theorem 4.12 again), we conclude φi = v

ωi
1 ∈W 1,p

0 (ωi ). Consequently,

lim
i→∞

Q A,p,V [φi ] = lim
i→∞

ti

∫
�1

Uφ p
i dx = 0.

After a further normalization, we may assume that for some ∅ 6= K b�, there also holds ‖φi‖L p(K ) = 1
for all i ∈ N. �

5. Positive solutions of minimal growth at infinity

The present section is devoted to the existence of positive solutions of the equation Q′A,p,V [v] = 0 in
� \ {x0} that have minimal growth at infinity in �, and their role in criticality theory. For this purpose
we extend in the following subsection the weak comparison principle (WCP) (cf. [García-Melián and
Sabina de Lis 1998; Pinchover and Regev 2015]). Section 5B is devoted to the study of the behaviour
of positive solutions near an isolated singularity. Finally, in Section 5C we study positive solutions of
minimal growth at infinity in �, and prove the last two parts of the Main Theorem.

5A. Weak comparison principle (WCP). We prove first a simple version of the WCP that holds true for
the p-Laplacian operator with a nonnegative potential (see [Pucci and Serrin 2007, Theorem 2.4.1], for
instance).

Lemma 5.1. Let ω be a Lipschitz domain in Rn . Suppose that A is a uniformly elliptic and bounded
matrix in ω, and G,V ∈ Mq(p;ω) with V ≥ 0 a.e. in �. Suppose that v1 (respectively v2) is a subsolution
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(respectively supersolution) of the equation

Q′A,p,V [v] = G in ω. (5-1)

If v1 ≤ v2 a.e. on ∂ω in the trace sense, then v1 ≤ v2 a.e. in ω.

Proof. Our assumption that v1 ≤ v2 a.e. on ∂ω implies (v2−v1)
−
∈W 1,p

0 (ω). Using this as a test function
in the definitions of v1 and v2 being, respectively, sub- and supersolutions of (5-1), and subtracting the
two resulting inequalities, we obtain∫
ω

(|∇v1|
p−2
A A∇v1−|∇v2|

p−2
A A∇v2) · ∇(v2− v1)

− dx +
∫
ω

V(|v1|
p−2v1−|v2|

p−2v2)(v2− v1)
− dx ≤ 0.

In other words,∫
{v2<v1}

(
(|∇v1|

p−2
A A∇v1−|∇v2|

p−2
A A∇v2)·(∇v1−∇v2) dx+V(|v1|

p−2v1−|v2|
p−2v2)(v1−v2)

)
dx ≤ 0.

By (2-17) we have that each term of the sum of the integrand is nonnegative, with equality if and only if
∇v1 =∇v2 a.e. in the set {v2 < v1}, or equivalently if (v2− v1)

−
= c ≥ 0 a.e. in ω. Since (v2− v1)

−
= 0

a.e. on ∂ω in the trace sense, we conclude v1 ≤ v2 a.e. in ω. �

The following proposition deals with the sub/supersolution technique:

Proposition 5.2. Let ω be a Lipschitz domain in Rn . Assume that A is a uniformly elliptic and bounded
matrix in ω, and g, V ∈ Mq(p;ω), where g ≥ 0 a.e. in ω. Let f, ϕ, ψ ∈ W 1,p(ω)∩C(ω), where f ≥ 0
a.e. in ω, and 

Q′A,p,V [ψ] ≤ g ≤ Q′A,p,V [ϕ] in ω, in the weak sense,
ψ ≤ f ≤ ϕ on ∂ω,
0≤ ψ ≤ ϕ in ω.

Then there exists a nonnegative solution u ∈W 1,p(ω)∩C(ω) of{
Q′A,p,V [u] = g in ω,
u = f on ∂ω,

(5-2)

such that ψ ≤ u ≤ ϕ in ω.
Moreover, if f > 0 a.e. in ∂ω, then the solution u is the unique solution of (5-2).

Proof. Consider the set

K := {v ∈W 1,p(ω)∩C(ω) | 0≤ ψ ≤ v ≤ ϕ in ω}.

For any x ∈ ω and v ∈ K we define

G(x, v) := g(x)+ 2V−(x)(v(x))p−1.

Note that G ∈ Mq(p;ω) and G ≥ 0 a.e. in ω. The map T : K→W 1,p(ω) defined by T (v)= u, where
u is the solution of {

Q′A,p,|V |[u] = G(x, v) in ω,
u = f in the trace sense on ∂ω,

(5-3)
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is well-defined by Propositions 3.6 and 3.7. Indeed, consider the functionals

J, J :W 1,p(ω)→ R∪ {∞}

defined in (3-12) and (3-11), respectively, with V = |V | and G = G(x, v). Let

{uk}k∈N ⊂A := {u ∈W 1,p(ω) | u = f on ∂ω}

be such that
J [uk] ↓ m := inf

u∈A
J [u].

Since f ≥ 0, we have that {|uk |}k∈N ⊂A as well, which implies m ≤ J [|uk |] = J [uk] ≤ J [uk], the latter
inequality holds since G ≥ 0 a.e. in ω. In particular, it follows that infu∈A J [u] = m. Letting k→∞, we
deduce

J [uk] → m.

But, by Proposition 3.6(b), we have that J is weakly lower semicontinuous and, by Proposition 3.7(a), it
is also coercive. Since A is weakly closed, it follows (see [Struwe 2008, Theorem 1.2], for example) that
m is achieved by a nonnegative function u ∈A that satisfies J (u)= m. Moreover, J (u)= J (u)= m. So
u is a minimizer of J on A and hence a solution of (5-3).

Observe that the map T is monotone. Indeed, let v1, v2 ∈ K be such that v1 ≤ v2. Then, since G(x, v)
is increasing in v, we have

Q′A,p,|V |[T (v1);ω] = g(x, v1)≤ g(x, v2)= Q′A,p,|V |[T (v2);ω]

and, since T (v1) = f = T (v2) on ∂ω, we get from Lemma 5.1 with V = |V | and G = g(x, v1) that
T (v1)≤ T (v2) in ω.

Let v ∈W 1,p(ω)∩C(ω) be a subsolution of (5-2). Then Q′A,p,|V |[v] = Q′A,p,V [v]+G(x, v)− g(x)≤
G(x, v) in ω, in the weak sense, and thus v is a subsolution of (5-3). On the other hand, T (v) is a solution
of (5-3). Lemma 5.1 with V = |V | and G = G(x, v) gives v ≤ T (v) a.e. in ω. This implies in turn that

Q′A,p,V [T (v)] = g+ 2V−
(
|v|p−2v− |T (v)|p−2T (v)

)
≤ g in ω,

in the weak sense.
Summarizing, if v is a subsolution of (5-2), then T (v) is a subsolution of (5-2) such that v ≤ T (v)

a.e. in ω. In the same fashion, we can show that if v ∈W 1,p(ω)∩C(ω) is a supersolution of (5-2) then
T (v) is a supersolution of (5-2) such that v ≥ T (v) a.e. in ω.

Defining the sequences

u0 := ψ, un := T (un−1)= T (n)(ψ) and u0 := ϕ, un := T (un−1)= T (n)(ϕ), n ∈ N,

we get from the above considerations that {un} and {un} increases and decreases, respectively, to functions
u and u for every x ∈ ω. Moreover, the convergence is clearly also in L p(ω) (by Theorem 1.9 in [Lieb
and Loss 2001]). Then, using an argument similar to the proof of Proposition 2.11, it follows that u and
u are fixed points of T , and both solve (5-2) and satisfy ψ ≤ u ≤ u ≤ ϕ in ω.

The uniqueness claim follows from Lemma 3.3(iii). �
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Finally, we extend the WCP (cf. [García-Melián and Sabina de Lis 1998; Pinchover and Regev 2015;
Pucci and Serrin 2007]):

Theorem 5.3 (weak comparison principle). Let ω ⊂ Rn be a bounded Lipschitz domain. Suppose
that A is a uniformly elliptic and bounded matrix in ω, and g, V ∈ Mq(p;ω) with g ≥ 0 a.e. in ω.
Assume that λ1 > 0, where λ1 is the principal eigenvalue of the operator Q′A,p,V defined by (3-3). Let
u2 ∈W 1,p(ω)∩C(ω) be a solution of{

Q′A,p,V [u2] = g in ω,
u2 > 0 on ∂ω.

If u1 ∈W 1,p(ω)∩C(ω) satisfies {
Q′A,p,V [u1] ≤ Q′A,p,V [u2] in ω,
u1 ≤ u2 on ∂ω,

then u1 ≤ u2 in ω.

Proof. Since u2 is a supersolution of (2-3) in ω that is positive on ∂ω, the strong maximum principle
implies u2 > 0 in ω. Let c :=max{1,maxω u1/minω u2}, then u1 ≤ cu2 in ω. Consider now the problem{

Q′A,p,V [v] = g in ω,
v = u2 on ∂ω.

(5-4)

By the choice of c and our assumption we have that cu2 is a supersolution of (5-4) such that u1≤ u2≤ cu2

on ∂ω, while u1 is a subsolution of (5-4). Applying Proposition 5.2 with ψ = u1 and ϕ = cu2, we get a
unique solution v of (5-4) such that u1 ≤ v ≤ cu2 in ω and v = u2 on ∂ω, in the trace sense. Clearly, v is
a supersolution of (2-3) in ω that is positive on ∂ω. Again, by the strong maximum principle, we get
v > 0 in ω. By the uniqueness of the boundary problem (5-4) (Proposition 5.2), we have v = u2. Hence,
u1 ≤ u2 in ω. �

5B. Behaviour of positive solutions near an isolated singularity. Using the weak comparison principle
of Theorem 5.3 we study the behaviour of positive solutions near an isolated singular point. We have:

Theorem 5.4. Let p ≤ n and x0 ∈ �. Suppose A and V satisfy hypothesis (H0) in �, and let u be a
nonnegative solution of the equation Q′A,p,V [v] = 0 in � \ {x0}.

(1) If u is bounded near x0, then u can be extended to a nonnegative solution in �.

(2) If u is unbounded near x0, then limx→x0 u(x)=∞.

Proof. (1) This is a special case of [Malý and Ziemer 1997, Theorem 3.16], which is in turn an extension
to V ∈ Mq

loc(p;�) of [Serrin 1964, Theorem 10], where V is assumed to be in Lq
loc(�) for some q > n/p.

In particular, this part of the theorem holds true for solutions of arbitrary sign in � \ o, where o is a set
having zero p-capacity.

(2) We follow the argument in [Fraas and Pinchover 2011] (for a slightly different argument see [Serrin
1964, p. 278]). Without loss of generality, we assume that x0 = 0 and B1(0)b�. For r > 0, we write the
ball as Br := Br (0), and the corresponding sphere as Sr := ∂Br .
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Since lim supx→0 u(x)=∞, there exists a sequence {xk}k∈N⊂� converging to 0 such that u(xk)→∞

as k→∞. Let rk = |xk |, where k = 1, 2, . . . , and consider the annular domains Ak := B3rk/2 \ Brk/2. For
each k we scale Ak to the fixed annulus A′ := B3/2(0) \ B1/2(0). Note next that if u is a solution of the
equation Q′A,p,V [v] = 0 in � \ {0} then, for any positive R, the function u R(x) := u(Rx) satisfies the
equation

Q′AR,p,VR
[u R] := −divAR

(
|∇u R|

p−2
AR

AR(x)∇u R
)
+ VR(x)|u R|

p−2u R = 0 in �R, (5-5)

where AR(x) := A(Rx), VR(x) := R pV (Rx) and �R := {x/R | x ∈� \ {0}}. Applying thus the Harnack
inequality in A′, we have, for k sufficiently large,

sup
x∈Ak

u(x)= sup
x∈A′

urk (x)≤ C inf
x∈A′

urk (x)= C inf
x∈Ak

u(x), (5-6)

where the positive constant C is independent of rk . To see this, for example in the case p < n, observe
that ‖VR‖Mq (A′) = R p−n/q

‖V ‖Mq (AR) and, by our assumptions on q, we have that the exponent on R is
nonnegative (it is in fact positive). Now from (5-6) we may readily deduce

min
Srk

u(x)→∞ as k→∞. (5-7)

Let v be a fixed positive solution of the equation Q′A,p,V [w] = 0 in B1 and set, for 0< r < 1,

mr :=min
Sr

u(x)
v(x)

.

Then, as in [Fraas and Pinchover 2011, Lemma 4.2], the WCP implies that the function mr is monotone
as r → 0. This, together with (5-7), implies that mr is monotone nonincreasing near 0. Therefore,
limr→0 mr =∞ and, thus, limx→0 u(x)=∞. �

Remark 5.5. The asymptotic behaviour of positive solutions of the equation Q′A,p,V [v] = 0 near an
isolated singular point remains open for further studies (see [Fraas and Pinchover 2011; 2013; Pinchover
and Tintarev 2008] and the references therein for partial results).

5C. Positive solutions of minimal growth and Green’s function. The following notion was introduced
by Agmon [1983] in the linear case and was extended to p-Laplacian-type equations of the form (1-4) in
[Pinchover and Tintarev 2007; Pinchover and Regev 2015].

Definition 5.6. Let K0 be a compact subset of �. A positive solution u of (2-3) in � \ K0 is said to be a
positive solution of minimal growth in a neighbourhood of infinity in �, and denoted by u ∈M�;K0 if,
for any smooth compact subset of � with K0 b int K and any positive supersolution v ∈ C(� \ int K )
of (2-3) in � \ K , we have

u ≤ v on ∂K =⇒ u ≤ v in � \ K .

If u ∈M�;∅, then u is called a global minimal solution of (2-3) in �.

We first prove that if Q A,p,V is nonnegative in � then M�;{x0} 6=∅ for any x0 ∈�. This result extends
the corresponding results in [Pinchover and Tintarev 2007; 2008; Pinchover and Regev 2015].
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Theorem 5.7. Suppose that Q A,p,V is nonnegative in �, where A and V satisfy hypothesis (H0). Then,
for any x0 ∈�, the equation Q′A,p,V [v] = 0 admits a solution u ∈M�;{x0}.

Proof. We fix a point x0 ∈ � and let {ωi }i∈N be a sequence of Lipschitz domains such that x0 ∈ ω1,
ωi b ωi+1 b� for i ∈ N and

⋃
i∈N ωi =�. Setting r1 := supx∈ω1

dist(x; ∂ω1) (the inradius of ω1), we
define the open sets

Ui := ωi \ Br1/(i+1)(x0).

Pick a fixed reference point x1 ∈U1 and note that Ui bUi+1, i ∈ N, and also
⋃

i∈N Ui =� \ {x0}. Also
let fi ∈ C∞c

(
Br1/ i (x0) \ Br1/(i+1)(x0)

)
\ {0} be a sequence of nonnegative functions. The nonnegativity of

Q A,p,V implies λ1(Q A,p,V+1/ i ;Ui ) > 0, and thus, by Theorem 3.10, we obtain for each i ∈ N a positive
solution vi of {

Q′A,p,V+1/ i [v] = fi in Ui ,

v = 0 on ∂Ui .

Normalizing by ui (x) := vi (x)/vi (x1), the Harnack convergence principle (Proposition 2.11) implies that
{ui }i∈N admits a subsequence converging uniformly in compact subsets of � \ {x0} to a positive solution
u of the equation Q′A,p,V [w] = 0 in � \ {x0}.

We claim that u ∈M�;{x0}. To this end, let K be a compact smooth subset of � such that x0 ∈ intK ,
and let v ∈C(�\ intK ) be a positive supersolution of (2-3) in �\K with u ≤ v on ∂K . Let δ > 0. There
then exists iK ∈N such that supp{ fi }b K for all i ≥ iK and, in addition, ui ≤ (1+δ)v on ∂(ωi \K ). The
WCP (Theorem 5.3) implies ui ≤ (1+ δ)v in ωi \ K and letting i→∞ we obtain u ≤ (1+ δ)v in � \ K .
Since δ > 0 is arbitrary, we conclude u ≤ v in � \ K . �

Definition 5.8. A function u ∈M�,{x0} having a nonremovable singularity at x0 is called a minimal
positive Green function of Q′A,V in � with a pole at x0. We denote such a function by G�

A,V (x, x0).

The following theorem states that criticality is equivalent to the existence of a global minimal solution,
that is, (1)⇐⇒ (5) in the Main Theorem presented in the introduction. It extends [Pinchover and Regev
2015, Theorem 9.6] and also [Pinchover and Tintarev 2007, Theorem 5.5; 2008, Theorem 5.8].

Theorem 5.9. Suppose that Q A,p,V is nonnegative in � with A and V satisfying hypothesis (H0) if p≥ 2,
or (H1) if 1< p< 2. Then Q A,p,V is subcritical in � if and only if (2-3) does not admit a global minimal
solution in �. In particular, φ is a ground state of (2-3) in � if and only if φ is a global minimal solution
of (2-3) in �.

Proof. To prove necessity, let Q A,p,V be subcritical in �. Clearly (by the AP theorem) there exists a
continuous positive strict supersolution v of (2-3) in �. We proceed by contradiction. Suppose there
exists a global minimal solution u of (2-3) in � and fix K to be a compact smooth subset of �. Let
ε∂K :=min∂K v/max∂K u. Then ε∂K u ≤ v, and ε−1

∂Kv is also a positive continuous supersolution of (2-3)
in �. Using it as a comparison function in the definition of u ∈M�;∅, we get ε∂K u ≤ v in �\K . Letting
also εK :=minK v/maxK u, we readily have εK u ≤ v in K . Consequently, by setting ε :=min{ε∂K , εK }

we have
εu ≤ v in �.
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Now we define

ε0 :=max{ε > 0 | εu ≤ v in �}

and note that, since ε0u and v are, respectively, a continuous solution and a continuous strict supersolution
of (2-3) in �, we have ε0u 6≡ v. There thus exist x1 ∈� and δ, r > 0 such that Br (x1)⊂� and

(1+ δ)ε0u(x)≤ v(x) for all x ∈ Br (x1).

But, since u ∈M�;∅, it follows that

(1+ δ)ε0u(x)≤ v(x) for all x ∈� \ Br (x1).

Consequently, (1+ δ)ε0u(x) ≤ v(x) in �, which contradicts the definition of ε0. We note that in the
proof of this part we did not use the further regularity assumption (H1).

To prove sufficiency, assume that Q A,p,V is critical in � with ground state φ satisfying φ(x1)= 1 for
some x1 ∈�. We will prove that φ ∈M�;∅. To this end, consider an exhaustion {ωi }i∈N of � such that
x0 ∈ ω1 and x1 ∈� \ω1. Fix j ∈ N and let f j ∈ C∞c (Br1/j (x0)) \ {0} satisfy 0≤ f j (x)≤ 1, where, as in
the previous proof, we write r1 for the inradius of ω1. Let vi, j be a positive solution of{

Q′A,p,V [v] = f j in ωi ,

v = 0 on ∂ωi .

The WCP (Theorem 5.3) ensures that the sequence {vi, j }i∈N is nondecreasing. If {vi, j (x1)} is bounded,
then the sequence converges to v j , where v j is such that Q′A,p,V [v j ] = f j in �. Thus v j would be a strict
supersolution of (2-3), which contradicts Theorem 4.15, since the ground state φ is the only positive
supersolution of Q′A,p,V [w] = 0 in �. Therefore, vi, j (x1)→∞ as i→∞. Defining thus the normalized
sequence ui, j (x) := vi, j (x)/vi, j (x1), by the Harnack convergence principle (Proposition 2.11) we may
extract a subsequence of {ui, j } that converges as i→∞ to a positive solution u j of the equation (2-3)
in �. Once again, by the uniqueness of the ground state, we have u j = φ.

Now let K be a smooth compact set of� and assume that x0 ∈ int(K ). Let v ∈C(�\intK ) be a positive
supersolution of (2-3) in � \ K such that φ ≤ v on ∂K . Let j ∈ N be large enough that supp{ f j }b K .
For any δ > 0 there exists iδ ∈ N such that, for i ≥ iδ,

0= Q′A,p,V [ui, j ] ≤ Q′A,p,V [v] in ωi \ K ,
Q′A,p,V [v] ≥ 0 in ωi \ K ,
0≤ ui, j ≤ (1+ δ)v on ∂(ωi \ K ),

which implies that φ = u j ≤ (1+ δ)v in � \ K . Letting δ→ 0 we obtain φ ≤ v in � \ K . �

To conclude the paper, it remains to establish the equivalence between (1) and (6) of the Main Theorem.

Theorem 5.10. Suppose that Q A,p,V is nonnegative in� with A and V satisfying hypothesis (H0) if p≥2,
or (H1) if 1< p < 2. Let u ∈M�,{x0} for some x0 ∈�.

(a) If u has a removable singularity at x0, then Q A,p,V is critical in �.
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(b) Let 1< p ≤ n and suppose that u has a nonremovable singularity at x0; then Q A,p,V is subcritical
in �.

(c) Let p>n and suppose that u has a nonremovable singularity at x0. Assume also that limx→x0 u(x)=c,
where c is a positive constant. Then Q A,p,V is subcritical in �.

Proof. (a) If u has a removable singularity at x0, its continuous extension is a global minimal solution
in �, and Theorem 5.9 assures that Q A,p,V is critical in �.

(b) Assume that u has a nonremovable singularity at x0 and suppose for the sake of contradiction that
Q A,p,V is critical in �. Theorem 5.9 implies the existence of a global minimal solution v of (2-3) in �.
By Theorem 5.4 we have limx→x0 u(x)=∞ and thus, by comparison, v≤ εu in �, where ε is an arbitrary
positive constant. This implies that v = 0, a contradiction.

(c) Suppose that Q A,p,V is critical in � and let v > 0 be the corresponding global minimal solution. We
may assume that v(x0)= c. Since both u and v are continuous at x0, it follows that for any ε > 0 there
exists δε > 0 such that, for all 0< δ < δε,

(1− ε)u(x)≤ v(x)≤ (1+ ε)u(x) for all x ∈ ∂Bδ(x0).

Since u and v are positive solutions (in � \ {x0} and �, respectively) of minimal growth at infinity in �,
the above inequality implies that

(1− ε)u(x)≤ v(x)≤ (1+ ε)u(x) for all x ∈� \ {x0}.

Letting ε→ 0, we get u= v in �, which contradicts our assumption that u has a nonremovable singularity
at x0. �

Remark 5.11. For sufficient conditions ensuring that in the subcritical case with p > n the limit of the
Green function G�

A,V (x, x0) as x→ x0 always exists and is positive, see [Fraas and Pinchover 2013].
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