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Abstract. In this paper, we relate the existence of certain projections, com-
muting with a bounded linear operator T ∈ L(X) acting on Banach space X,
with the generalized Kato decomposition of T . We also relate the existence of
these projections with some properties of the quasi-nilpotent part H0(T ) and
the analytic core K(T ). Further results are given for the isolated points of
some parts of the spectrum.

1. Introduction and preliminaries

This paper relates the existence of certain projections which commute with
a bounded linear operator, defined on a complex Banach space, to the isolated
points of certain parts of the spectrum σ(T ), as the approximative point spectrum
σap(T ), or the surjective spectrum σs(T ). The existence of such projections is also
related to the properties of some spectral subspaces, as the quasi-nilpotent part
H0(T ) and the analytic core K(T ) of T . It is well-known, that 0 is an isolated
point of σ(T ) exactly when X = H0(T ) ⊕ K(T ) and H0(T ) is nonempty. We
generalize this result by considering isolated points of σap(T ) and σs(T ), or more
generally by considering isolated points of the Kato spectrum. In particular, we
show that an operator T ∈ L(X) admits the generalized Kato decomposition
(GKD) if and only if there exists a commuting projection P such that T + P is
semiregular and TP is quasi nilpotent. By considering the particular case that
T +P is bounded below (respectively, onto) and TP is quasi nilpotent, we derive
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some known results. We also establish some results in the case when the quasi-
nilpotent part H0(T ) is closed. This article has as a partial motivation, that of
commenting upon some results claimed in [11] (without a proof), which seem to
be not true, or that was given without a correct proof An important tool in this
paper is the so-called single valued extension property’s introduced by Dunford
in [6], [7]. This property has an important role in the local spectral theory and
the Fredholm theory; see the recent monographs by Laursen and Neumann [15]
and [1].

Definition 1.1. Let X be a complex Banach space, and let T ∈ L(X). The
operator T is said to have the single valued extension property at λ0 ∈ C (abbre-
viated SVEP at λ0), if for every open disc U of λ0, the only analytic function
f : U → X, which satisfies the equation (λI − T )f(λ) = 0 for all λ ∈ U , is the
function f ≡ 0.
An operator T ∈ L(X) is said to have SVEP if T has SVEP at every point λ ∈ C.

Evidently, T ∈ L(X) has SVEP at every point of the resolvent ρ(T ) := C\σ(T ).
Moreover, the identity theorem for analytic function entails that T has SVEP at
every point of the boundary ∂σ(T ) of the spectrum σ(T ). In particular, T has
SVEP at every isolated point of the spectrum. Note that the SVEP is inherited
by the restriction to closed invariant subspaces; that is, if T has SVEP at λ0 and
M is a closed T -invariant subspace of X, then T |M has SVEP at λ0.

For a bounded linear operator T defined on a complex Banach space X, the
local resolvent set of T at the point x ∈ X, denoted by ρT (x), is defined as
the union of all open subsets U of C such that there exists an analytic function
f : U → X, which satisfies

(λI − T )f(λ) = x for all λ ∈ U . (1.1)

The local spectrum σT (x) of T at x is the set defined by σT (x) := C \ ρT (x), and
obviously, we have σT (x) ⊆ σ(T ), where σ(T ) denotes the spectrum of T .

For every subset F of C, the analytic spectral subspace of T associated with F
is the set

XT (F) := {x ∈ X : σT (x) ⊆ F}.
It is easily seen from the definition that XT (F) is a linear subspace T -invariant
of X. Furthermore, for every closed F ⊆ C, we have

(λI − T )XT (F) = XT (F) for all λ ∈ C \ F ; (1.2)

see [15, Proposition 1.2.16].
The quasi-nilpotent part of T is defined as follows:

H0(T ) = {x ∈ X : lim
n→∞

∥ T n(x) ∥1/n= 0}.

It is easily seen that N(T n) ⊆ H0(T ) for every n ∈ N, so N∞(T ) ⊆ H0(T ), where
N∞(T ) =

∪∞
n=1N(T n) denotes the hyper-kernel of T.

For a bounded operator T ∈ L(X), the analytic core K(T ) is the set of all
x ∈ X such that there exist a constant c > 0 and a sequence (xn)n=0,1,... ⊂ X,
such that x0 = x, Txn = xn−1, and ∥ xn ∥< cn ∥ x ∥ for all n ∈ N. Note that
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K(T ) ⊆ R∞(T )) ⊆ R(T n), where R∞(T ) =
∩∞

n=0R(T n) denotes the hyper-range
of T and T (K(T )) = K(T ); see [1, Theorem 1.21]. It should be noted that
K(T ) = XT (C \ {0}); see [1, Theorem 2.19].

It is easily seen from the definition of a quasi-nilpotent part that

x ∈ H0(T ) ⇔ Tx ∈ H0(T ). (1.3)

The two subspaces H0(T ) and K(T ) are in general not closed, and by [2],

H0(λI − T ) closed =⇒ T has SVEP at λ (1.4)

and

H0(λI − T ) ∩K(λI − T ) closed ⇒ Thas SVEP at λ. (1.5)

Two classical quantities in operator theory are defined as follows. The ascent of
an operator T is the smallest non-negative integer p := p(T ) such that N(T p) =
N(T p+1). If such integer does not exist we put p(T ) = ∞. Analogously, the descent
of T is the smallest non-negative integer q := q(T ) such that R(T q) = R(T q+1),
and if such integer q does not exist, we put q(T ) = ∞. It is well known that if
p(T ) and q(T ) are both finite, then p(T ) = q(T ); see [1, Theorem 3.3]. Moreover,
0 < p(λI − T ) = q(λI − T ) < ∞ exactly when λ is a pole of the resolvent of T ;
see [10, Proposition 50.2]. Furthermore, if λ ∈ isoσ(T ), then the decomposition
X = H0(λI − T ) ⊕ K(λI − T ) holds; see [1, Theorem 3.74]. If λ is a pole of
the resolvent of T of order p, then H0(λI − T ) = N(λI − T )p and K(λI − T ) =
R(λI − T )p; see [1, Theorem 3.74].
In what follows, we denote the dual of T by T ∗. We have

p(λI − T ) < ∞ ⇒ T has SVEP at λ, (1.6)

and dually

q(λI − T ) < ∞ ⇒ T ∗ has SVEP at λ; (1.7)

see [1, Theorem 3.8].
Recall that T ∈ L(X) is said to be bounded below, if T is injective and T (X)

is closed. Let

σap(T ) := {λ ∈ C : λI − T is not bounded below}.

denote the approximate point spectrum, and let σs(T ) denote the surjectivity spec-
trum of T . It is well-known that

σap(T
∗) = σs(T ) and σap(T ) = σs(T

∗).

It is also well-known that if T is bounded below, then T n is bounded below for
every n ∈ N. From the definition of the localized SVEP and from the identity
σap(T

∗) = σs(T ), we easily obtain that

σap(T ) does not cluster at λ ⇒ T has SVEP at λ, (1.8)

and dually

σs(T ) does not cluster at λ ⇒ T ∗ has SVEP at λ. (1.9)
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Definition 1.2. An operator T ∈ L(X) is said to be left Drazin invertible, if
p := p(T ) < ∞ and T p+1(X) is closed. T ∈ L(X) is said to be right Drazin
invertible, if q := q(T ) < ∞ and T q(X) is closed. An operator T ∈ L(X) is said
to be Drazin invertible, if T is both left and right Drazin invertible, or equivalently
p(T ) = q(T ) < ∞.

Evidently, if T is Drazin invertible, either T is invertible or 0 is a pole of the
resolvent. The concept of pole may be sectioned as follows. If λI − T is left
Drazin invertible and λ ∈ σap(T ), then λ is said to be a left pole of T , and dually,
if λI − T is right Drazin invertible and λ ∈ σs(T ), then λ is said to be a left pole
of T .

Every upper semi-Browder operator is left Drazin invertible. The following
elementary lemma is well-known. Recall first that if X = M ⊕ N , M and N
are closed subspaces, then the pair (M,N) reduces T (i.e. both M and N are
T -invariant) if and only if the projection P onto M along N commutes with T .

Lemma 1.3. If M and N are closed T -invariant subspaces of X and X = M⊕N ,
then T is bounded below if and only if the restrictions T |M and T |N are bounded
below. Analogously, T is onto if and only if the restrictions T |M and T |N are
onto. Consequently, σap(T ) = σap(T |M) ∪ σap(T |N) and σs(T ) = σs(T |M) ∪
σs(T |N).

A bounded operator T ∈ L(X) is said to be semi-regular, if ker T n ⊆ T (X) for
every n ∈ N and T (X) is closed. Evidently, every bounded below operator, as
well every onto operator, is semiregular. Moreover, if T is bounded below, then
H0(T ) = {0}. The Kato spectrum is defined as

σk(T ) := {λ ∈ C : λI − T is not semi-regular}.
A well-known result shows that σkT ) is a nonempty compact subset of C con-
taining the boundary ∂σ(T ) of the spectrum σ(T ); see [1, Theorem 1.75].

Lemma 1.4. Let M and N be closed T -invariant subspaces of X, and let X =
M ⊕N . Then T is semiregular if and only if both T |M and T |N are semiregular.
Consequently, σk(T ) = σk(T |M) ∪ σk(T |N).

Proof. Observe first that ker T |M = M ∩ ker T . We also have T (M) = M ∩
T (X). To see this observe first that the inclusion T (M) ⊆ M ∩ T (X) is obvious.
Conversely, if y ∈ M ∩ T (X), then y ∈ M and y = Tx. Write x = x1 + x2, with
x1 ∈ M and x2 ∈ N . Then y = Tx = Tx1 + Tx2, and since Tx1 ∈ M , we have
Tx2 = y − Tx1 ∈ M ∩N = {0}; so y = Tx1 ∈ T (M).

By induction we have T n(M) = M ∩ T n(X) for every n ∈ N. Assume that T
is semiregular. Then

kerT |M = M ∩ ker T ⊆ M ∩ T n(X) = (T |M)n(M)

for every n ∈ N. Moreover, since T (X) = T (M) ⊕ T (N), T (X) is closed if and
only if T (M) and T (N) are closed. □

A bounded linear operator T ∈ L(X) is said to admit a generalized Kato
decomposition, abbreviated as a GKD, if there exists a pair of T -invariant closed
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subspaces M and N such that X = M ⊕ N , T |M is semiregular and T |N is
quasi nilpotent. The operator T ∈ L(X) is said to to be of Kato type if in the
decomposition above T |N is nilpotent. It is known that every semi-Fredholm
operator is of Kato type.

For the proof of the following, see [1, Theorem 1.68] and [1, Corollary 1.69].

Lemma 1.5. If T ∈ L(X), then the following statements hold:

(i) T is quasi nilpotent ⇔ H0(T ) = X.

(ii) If (M,N) is a GKD for T , then H0(T ) = H0(T |M)⊕H0(T |N) = H0(T |M)⊕
N.

Observe that if (M,N) is a GKD for T , then the pair of annihilator (N⊥,M⊥)
is a GKD for the dual T ∗; see [1, Theorem 1.43]. In what follows, let isoK denote
the set of all isolated points of a subset K ⊆ C.

Lemma 1.6. Suppose that T ∈ L(X) admits a GKD (M.N) and that 0 ∈ σ(T ).
Then

(i) T has SVEP at 0 if and only if 0 ∈ isoσap(T ).

(ii) T ∗ has SVEP at 0 if and only if 0 ∈ isoσs(T ).

Proof. (i) The implication (⇐) has been observed above. To show the reverse
implication assume that T has SVEP at 0 and that (M,N) is a GKD for T .
Then the restriction T |M has SVEP at 0 and H0(T ) = N ; see [1, Theorem
3.14]. So X = M ⊕ H0(T ). Since ker T |M = ker T ∩ M ⊆ M ∩ H0(T ) = {0},
we then have that T |M is injective. Since T |M is semiregular, then T (M) is
closed; so T |M is bounded below. By assumption T |N is quasi nilpotent, so
σap(T |N) = {0}. Therefore,

σap(T ) = σap(T |M) ∪ σap(T |N) = σap(T |M) ∪ {0}.
But 0 /∈ σap(T |M), and σap(T |M) is closed, from which, we conclude that 0 is an
isolated point of σap(T ).

(ii) We have only to show the implication (⇐). The pair (N⊥,M⊥) is a GKD
for T ∗, and hence if T ∗ has SVEP at 0, then T ∗|N⊥ has SVEP at 0, and as above
it then follows that T ∗|N⊥ is injective. By [1, Lemma 3.12], we then conclude
that T |M is onto. Since T |N is quasi nilpotent, then σs(T ) = {0}. Finally

σs(T ) = σs(T |M) ∪ σs(T |N) = σs(T |M) ∪ {0}.
But 0 /∈ σs(T |M), and σs(T |M) is closed, from which we conclude that 0 is an
isolated point of σs(T ). □

2. Projections

The isolated points of the spectrum σ(T ) have been characterized by Koliha
[12] and [13] as follows:

Theorem 2.1. Let T ∈ L(X). Then there exists a projection 0 ̸= P ∈ L(X)
commuting with T such that T + P is invertible and TP is quasi nilpotent if and
only if 0 ∈ isoσ(T ).
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An operator T for which either T is invertible or 0 ∈ iso σ(T ) is said some
time to be generalized Drazin invertible. The result of Theorem 2.1 has been
established in the more abstract framework of Banach algebras. The methods
used in this paper will be those of local spectral theory involving the spectral
subspaces H0(T ) and K(T ) and may be considered a refinement of result of
Theorem 2.1.

An important question in local spectral theory and the Fredholm theory is to
find conditions which ensure that H0(T ) or K(T ) is closed. It should be noted
that if 0 ∈ isoσ(T ), then H0(T ) is closed, since it coincides with the range P (X)
of the spectral projection P associated with the set {0}, while K(T ) is closed
since coincides with the kernel ker P . Precisely, we have

0 ∈ isoσ(T ) ⇔ H0(T ) and K(T ) are closed and X = H0(T )⊕K(T ), (2.1)

where ⊕ is the topological direct sum; see Mbekhta [16]. In this case T |K(T ) is
invertible and T |H0(T ) is quasi nilpotent. Mbekhta’s result has been improved
by Schmoeger [18], in the following way:

0 ∈ iso σ(T ) ⇔ X = H0(T )⊕K(T ), K(T ) is closed, H0(T ) ̸= {0}, (2.2)

where here ⊕ denotes the algebraic direct sum.

The operators which admit a GKD may be characterized by means of commut-
ing projection in the following way.

Theorem 2.2. If T ∈ L(X), the following statements are equivalent:

(i) T admits a GKD;

(ii) there exists a commuting projection P such that T + P is semiregular and
TP is quasi nilpotent.

In this case K(T ) = ker P . If 0 ∈ σ(T ), then 0 ∈ isoσk(T ).

Proof. (i) ⇒ (ii) Suppose that T has a GKD (M,N). Then T |M is semiregular
and T |N is quasi nilpotent. Let P be the projection of X onto N along M .
Then M = ker P and N = P (X). The pair (M,N) reduces T , so PT = TP .
Since also T + P and TP are reduced by (M.N), by Lemma 1.4, the restriction
(T + P )|M = T |M is also semiregular. Furthermore,

(T + P )|N = (T + P )|P (X) = T |N + I|N

is invertible, hence T + P = (T + P )|M ⊕ (T + P )|N is semiregular. We have,
by part (ii) of Lemma 1.5 and since T |N is quasi nilpotent,

H0(TP ) = H0((TP )|M)⊕H0((TP )|N) = H0(0)⊕H0(T |N) = M ⊕N = X;

so, by part (i) of Lemma 1.5, TP is quasi nilpotent.

(ii) ⇒ (i) Suppose that P is a commuting projection for which T + P is
semiregular and TP is quasi nilpotent. Then X = ker P ⊕ P (X), and the pair
(ker P, P (X)) reduces T and hence reduces also T + P and TP . By Lemma 1.4,
the restriction (T + P )| ker P = T | ker P is semiregular.
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We show now that the restriction T |P (X) is quasi nilpotent. Let x ∈ P (X) be
arbitrary chosen. Then

∥(T |P (X))n∥
1
n = ∥T nP nx∥

1
n = ∥(TP )nx∥

1
n → 0 as n → ∞,

so x ∈ H0(T |P (X)) and hence P (X) ⊆ H0(T |P (X)). The reverse inclusion
H0(T |P (X)) ⊆ P (X) is obvious, so H0(T |P (X)) = P (X), and this implies, by
Lemma 1.5, that T |P (X) is quasi nilpotent. Therefore, the pair (ker P, P (X))
is a GKD for T , and hence K(T ) = K(T | ker P ); see [1, Theorem 1.41]. On the
other hand, since the restriction T | ker P is semiregular, by [1, Theorem 1.24], it
then follows that K(T ) is closed.

Suppose that 0 belongs to σ(T ). We know that T |P (X) is quasi nilpotent, and
the Kato spectrum is nonempty; so σk(T |P (X)) = {0}. By Lemma 1.4 we then
have

σk(T ) = σk(T | ker P ) ∪ σk(T |P (X)) = σk(T | ker P ) ∪ {0}.
Since 0 /∈ σk(T | ker P ) and σk(T | ker P ) is closed, it then follows that 0 is an
isolated point of σk(T ). □

Corollary 2.3. If T ∈ L(X), the following statements are equivalent:

(i) T is of Kato type;

(ii) there exists a commuting projection P such that T + P is semiregular and
TP is nilpotent.

Proof. (i) ⇒ (ii) Let (M,N) be a GKD for T such that T |N is nilpotent. If P is
the projection of X onto N along M , we have (TP )|M = (TP )| ker P = 0. Let
ν ∈ N be such that ((T |N)ν = (TP )|P (X)))ν = 0. Then

(TP )ν = ((TP )|M)nu⊕ (TP |N)ν = 0,

so TP is nilpotent.
(ii) ⇒ (i) Suppose that P is a commuting projection such that T + P is semi-
regular and TP is nilpotent. As in the proof of Theorem 2.2, the pair (ker P, P (X)
is a GKD for T . Furthermore, T |P (X) = (TP )|P (X) is nilpotent. □

The proof of the following result may be found in [1, Theorem 2.31].

Theorem 2.4. Suppose that H0(T ) is closed or that H0(T ) ∩ K(T ) is closed.
Then H0(T ) ∩K(T ) = {0}.

In the case of semiregular operators we can say the following.

Corollary 2.5. If T ∈ L(X) is semiregular and either H0(T ) or H0(T ) ∩K(T )
is closed, then H0(T ) = {0}. In this case T is bounded below.

Proof. If T is semiregular, then T (H0(T )) = H0(T ); see [1, Corollary 1.71]. Sup-
pose first that H0(T ) is closed. Then H0(T ) ⊆ K(T ), and hence, by Theorem
2.4, H0(T ) = H0(T ) ∩K(T ) = {0}. Consider the other case that H0(T ) ∩K(T )
is closed. Since T is semiregular, then ker T ⊆ T n(X) for every n ∈ N and this is
equivalent to say that N∞(T ) ⊆ T∞(X); see [1, Corollary 1.6]. Moreover, by [1,



PROJECTIONS AND ISOLATED POINTS OF PARTS OF THE SPECTRUM 875

Theorem 1.24], K(T ) = T∞(X) is closed. The semiregularity of T also implies,
by [1, Theorem 1.70], that

H0(T ) ⊆ H0(T ) = N∞(T ) ⊆ T∞(X) = K(T ) = K(T ),

and hence H0(T ) ∩K(T ) = H0(T ) is closed. From the first part of the proof, we
then obtain H0(T ) = {0}. Finally, from the inclusion ker T ⊆ H0(T ) = {0}, we
see that T is injective, and since T (X) is closed, we conclude that T is bounded
below. □

The implication
H0(T )closed ⇒ H0(T ) = {0}

for a semiregular operator has been first noted in [16]. The conditionH0(T ) closed
is satisfied by several classes of operators; for instance, for every multiplier T on
a commutative semisimple Banach algebra, we have H0(T ) = ker T , in particular
for every convolution operator defined on a group algebra L1(G), where G is
a locally compact Abelian group. Also every H(p) operator (i.e., operators for
which H0(λI − T ) = ker (λI − T )p for some p ∈ N) has closed quasi-nilpotent
part, in particular every generalized scalar operator ; see [17] for details. Every
spectral operator (in the sense of Dunford [8]) has closed quasi-nilpotent part;
see [16, Lemma 2.13].

Theorem 2.6. Let T ∈ L(X). Then the following statements are equivalent:

(i) there exists a pair of proper subspaces (M,N) which reduces T such that
T = T |M ⊕ T |N , T |M is bounded below, and T |N is quasi nilpotent;

(ii) there exists a commuting projection P ̸= 0 such that T+P is bounded below
and TP is quasi nilpotent;

(iii) H0(T ) is complemented with a T -invariant closed subspace M such that
T (M) is closed;

In this case both subspaces H0(T ) and K(T ) are closed. Precisely, for every
projection P which satisfies (ii), we have H0(T ) = P (X). Moreover,

(iv) H0(T ) ∩K(T ) = {0}.
(v) 0 ∈ isoσap(T ).

Proof. (i) ⇒ (ii) Clearly, (M,N) is a GKD for T , since every bounded below
operator is semiregular. As in the proof of Theorem 2.2, if P is the projection
of T onto N along M , then M = ker P , N = P (X), and TP is quasi nilpotent.
Moreover, T +P = (T +P )|M⊕(T +P )|N , where (T +P )|M = T |M is bounded
below, by Lemma 1.3, while (T + P )|N = T |N + IN , IN the identity on N is
invertible, and hence also bounded below. Therefore, again by Lemma 1.3, T +P
is bounded below.
(ii) ⇒ (i) Take M := ker P and N := P (X). As in the proof of Theorem 2.2, the
restriction T |M = (T + P )|M is bounded below, while T |N = T |P (X) is quasi
nilpotent.
(iii) ⇔ (ii) see [4].

To conclude the proof observe that K(T ) is closed by Theorem 2.2. To show
thatH0(T ) is closed, observe that, by Lemma 1.5, we haveH0(T ) = H0(T |M)⊕N .
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Since T |M is bounded below, we have H0(T |M) = {0}, so H0(T ) = {0}⊕N = N
is closed.

(iv) H0(T ) ∩K(T ) is closed, so, by Theorem 2.4, H0(T ) ∩K(T ) = {0}.
(v) Since H0(T ) is closed, then T has SVEP at 0. By Lemma 1.6, then 0 ∈

isoσap(T ). □
The next result is dual, in a sense, to that of Theorem 2.6.

Theorem 2.7. Let T ∈ L(X). Then the following statements are equivalent:

(i) there exists a pair of closed subspaces (M,N) which reduces T such that
T = T |M ⊕ T |N , T |M is onto, and T |N quasi nilpotent;

(ii) there exists a commuting projection P ̸= 0 such that T +P is onto and TP
is quasi nilpotent;

(iii) K(T ) is complemented by a T -invariant subspace N contained in H0(T ).

Furthermore, if one of the equivalent conditions (i)–(iii) is satisfied we have

(iv) K(T ) is closed and X = H0(T ) +K(T ).

(v) 0 ∈ isoσs(T ).

Proof. The equivalence (i) ⇔ (iii) has been proved in [4]. (i) ⇒ (ii) Since every

surjective operator is semiregular, then the pair (M,N) is a GKD for T . If P
is the projection of X onto N along M , then (T + P )|M = T |M is onto, while
(T +P )|N = T |N + IN , is invertible, and hence onto. By Lemma 1.3 then T +P
is onto, and, as in the proof of Theorem 2.2, TP is quasi nilpotent.

(ii) ⇒ (i) Also here take M. = ker P and N := P (X). Then, by arguing as
in the proof of Theorem 2.2, we obtain that T |M = (T + P )|M is onto, while
T |N = T |P (X) is quasi nilpotent.

(iv) Suppose that the equivalent conditions (i)–(iii) are satisfied. Then K(T )
is closed by Theorem 2.2. Now,

H0(T ) = H0(T |M)⊕H0(T |N) = H0(T |M)⊕N ⊇ N,

while K(T ) = K(T |M) = M , since T |M is onto. Therefore, X = M ⊕ N ⊆
K(T ) +H0(T ) and hence X == K(T ) +H0(T ).

(v) The condition X == K(T ) +H0(T ) entails that T
∗ has SVEP at 0; see [1,

Theorem 2.33]. So, by Lemma 1.6, 0 ∈ isoσs(T ). □
Actually, in [9], it has been proved that if 0 ∈ σ(T ), then

X = H0(T ) +K(T ) ⇔ 0 ∈ iso σs(T ).

Theorem 2.8. Suppose that either H0(T ) or H0(T ) ∩ K(T ) is closed. Then
each one of the condition (i)–(iii) of Theorem 2.7 is equivalent to the condition
0 ∈ isoσ(T ), or is equivalent to the condition 0 ∈ isoσs(T ).

Proof. If 0 ∈ iso σ(T ), then (ii) of Theorem 2.7 trivially holds, by Theorem 2.1.
Conversely, if (ii) of Theorem 2.7 holds, we have X = H0(T )+K(T ). Moreover,

since 0 ∈ isoσs(T ), then H0(T ) ̸= {0}, otherwise if were H0(T ) = {0}, we would
have X = K(T ), and hence 0 /∈ σs(T ). Our assumption that H0(T ) is closed, or
H0(T ) ∩K(T ) is closed, entails, by Theorem 2.4, that H0(T ) ∩K(T ) = {0}, so
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X is the algebraic sum of H0(T ) and K(T ). Since K(T ) is closed, by Theorem
2.7 and H0(T ) ̸= {0}, then Schmoeger’s result (2.2) entails that 0 ∈ iso σ(T ).
Clearly, 0 ∈ iso σ(T ) implies 0 ∈ iso σs(T ), since every isolated point of the
spectrum belongs to σs(T ). The argument above shows that if 0 ∈ isoσs(T ), then
0 ∈ iso σ(T ); so the proof is complete. □
Example 2.9. The assumption that H0(T ) is closed is essential in Theorem 2.8.
To see this, let R denote the right shift on the Hilbert space ℓ2(N), defined as

R(x1, x2, . . . ) := (0, x1, x2, . . . ) for all (xn) ∈ ℓ2(N).
The Hilbert space adjoint of R is the left shift L defined as

L(x1, x2, . . . ) := (x2, , x3, . . . ) for all (xn) ∈ ℓ2(N).
The operator L is onto, precisely we have σap(R) = σs(L)) = Γ, where Γ

denotes the unit circle of C and σ(L) = D(0, 1), the unit closed disc of C.
Define T := L ⊕ Q, where Q is any quasi-nilpotent operator on ℓ2(N). Note

that the quasi-nilpotent part H0(T ) is not closed, otherwise T would have SVEP
at 0, by the implication (1.4), and hence, by [1, Theorem 2.9], also L has SVEP
at 0, and it is well known that this is not true; see[1, p. 71]. Now, 0 ∈ σs(T ), by
Theorem 2.7, while

σ(T ) = σ(L) ∪ σ(Q) = D(0, 1),

thus 0 /∈ isoσ(T ).

Remark 2.10. The class of operators, which satisfies the condition (iii) of Theo-
rem 2.6, has been introduced in [11]. These operators have been called the left
generalized Drazin invertible operators. In the same article, every T ∈ L(X),
which satisfies the condition (i) of Theorem 2.7, was called a right generalized
Drazin invertible operator. We are convinced that [11] contains mistakes.

(i) On pages 1637–8 of [11] the authors asserted that if T is left generalized
Drazin invertible, then T is generalized Drazin invertible. This is not true. For
instance, if T = L⊕Q is as in Remark 2.9, then, by using the definition of [11], T
is right generalized Drazin invertible, but not generalized Drazin invertible, since
0 is not isolated in σ(T ). The adjoint T ∗ is left generalized Drazin invertible, but
not generalized Drazin invertible.

(ii) The authors said (without proof) that T is left generalized Drazin invertible
if and only if 0 ∈ isoσap(T ) [11, Theorem 3.16], and that T is right generalized
Drazin invertible [11, Theorem 3.17] if and only if 0 ∈ isoσs(T ). As observed
before, the condition 0 ∈ iso σs(T ) is only equivalent to say that 0 ∈ isoσ(T ) and
X = H0(T )+K(T ), so the claimed equivalences without additionally assumptions
seem not be justified.

(iii) On page 1642 of [11] the authors said that the left (respectively, right)
generalized Drazin spectrum is contained in the left (respectively, right) Drazin
spectrum, in other worlds if T is left (respectively, right) Drazin invertible, then
T is left (respectively, right) generalized Drazin invertible. Also this implication
appears not justified for Banach space operators. If T is left Drazin invertible,
then H0(T ) is closed, since H0(T ) = {0} if 0 /∈ σap(T ), while if 0 ∈ σap(T ), then
0 is a left pole of T and hence H0(T ) = ker T p, where p is the ascent of T ; see [3,
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Theorem 2.4]. But we do not see why H0(T ) is complemented by a T -invariant
subspace M for which T (M) is closed. The same can be said for right Drazin
invertible operators. In this case, K(T ) = X if T is surjective, while if 0 ∈ σap(T ),
then K(T ) = T q(X), q the descent of T [3, Theorem 2.4]. But we do not see why
K(T ) is complemented by a T -invariant subspace N for which N ⊆ H0(T ).

However, in presence of SVEP we have the following.

Corollary 2.11. If T ∈ L(X) has SVEP, then each one of the conditions (i)–
(iii) of Theorem 2.7 is equivalent to the condition 0 ∈ isoσs(T ), and analogously,
if T ∗ has SVEP, then the each one of the conditions (i)–(iii) of Theorem 2.6 is
equivalent to the condition 0 ∈ isoσap(T ).

Proof. If T has SVEP, then σ(T ) = σs(T ), while if T ∗ has SVEP, then σ(T ) =
σap(T ); see [1, Corollary 2.45]. The statements then immediately follow from
Theorem 2.1. □

For Hilbert space operators we also have the following theorem.

Theorem 2.12. Every left (respectively right), Drazin invertible operator defined
on a Hilbert space is left (respectively right), generalized Drazin invertible.

Proof. From [3], any left Drazin invertible operator defined on a Hilbert space
admits the decomposition T = T1 ⊕ T2, where T1 is bounded below and T2 is
nilpotent. Analogously, any right Drazin invertible operator defined on a Hilbert
space admits the decomposition T = T1⊕T2, where T1 is onto and T2 is nilpotent.
Therefore, Theorems 2.6 and 2.7 apply. □

We consider now the case where TP is nilpotent.

Theorem 2.13. Let T ∈ L(X). Then the following statements are equivalent:

(i) there exists a pair of closed subspaces (M,N), which reduces T such that
T = T |M⊕T |N , T |M is bounded below (respectively, onto), and T |N is nilpotent;

(ii) there exists a commuting projection P ̸= 0 such that T+P is bounded below
(respectively, onto) and TP is nilpotent.

In this case 0 is a left pole of T (respectively, 0 is a right pole of T ).

Proof. (i) ⇔ (ii) If T = T |M ⊕ T |N , where T |M is bounded below and T |N
is nilpotent, then, as in the proof of Theorem 2.6, T + P is bounded below
and, evidently, TP = T |P (X) = T |N is nilpotent. Conversely, if T satisfies (ii)
M := ker P , N := P (X), then T |M is bounded below. Let ν be the order of
nilpotency of TP ; that is, (TP )ν = 0. If x ∈ P (X), then

(T |P (X))νx = T νP νx = (TP )νx = 0,

so T |N is nilpotent of order ν.
To show that 0 is a left pole of T , observe first that p(T |M) = 0, since T |M

is injective, while p(T |N) = ν. From the decomposition X = M ⊕ N , we have
p(T ) = p(T |M) + p(T |N) = p(T |N) = ν. Furthermore,

T ν+1(X) = (T | ker T )ν+1(ker P )⊕ (T |P (X))ν+1(P (X)

= (T | ker T )ν+1(ker P )⊕ {0}.
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But (T | ker T ) is bounded below entails that also (T | ker T )ν+1 is bounded below,
so (T | ker T )ν+1(ker P ) is closed and hence T ν+1(X) is closed. Since by Theorem
2.6, 0 ∈ σap(T ); it then follows that 0 is a left pole of the resolvent of T .

The case when T + P is onto is similar to T | ker P is onto, so the descent
q(T | ker T ) = 0 while q(T |P (X)) = ν, and hence

q(T ) = q(T | ker T ) + q(T |P (X)) = q(T |P (X)) = ν,

Since, by Theorem 2.7, 0 ∈ σs(T ); it then follows that 0 is a right pole of the
resolvent of T .

□
Corollary 2.14. If T ∈ L(X), the following statements are equivalent:

(i) there exists a commuting projection P ̸= 0 such that T +P is invertible and
TP is nilpotent;

(ii) 0 is a pole of the resolvent of T .

Proof. The implication (i) ⇒ (ii) is clear from Theorem 2.13. Suppose that 0 is
a pole of order p of the resolvent of T , and let P denote the spectral projection
associated with {0}. Then PT = TP and H0(T ) = P (X) = ker T p, while
K(T ) = ker P = T p(X); see [1, Theorem 3.74]. From the spectral decomposition
theorem, we also know that σ(T |P (X)) = {0}; that is, T |P (X) is quasi nilpotent,
and T +P | ker P = T | ker P is invertible. Now, (T +P )|P (X) = T |P (X)+IP (X),
IP (X) the identity on P (X), so also (T+P )|P (X) is invertible, and hence T+P =
(T + P )| ker P ⊕ (T + P )|P (X) is invertible. Finally, (TP )px = T pPx = 0 for
every x ∈ X; so TP is nilpotent of order p. □

Recall that λ ∈ C is said to be a Riesz point of T , if λ is pole of the resolvent of
T and λI − T is Fredholm (i.e. α(λI − T ) := dim ker(λI − T ) and β(λI − T ) :=
codim (λI − T )(X) are both finite).

Corollary 2.15. If T ∈ L(X), the following statements are equivalent:

(i) there exists a commuting finite rank projection P such that T+P is invertible
and TP is nilpotent;

(ii) 0 is a Riesz point of T .

Proof. The equivalence is obvious, if 0 /∈ σ(T ) (in this case P = 0). Assume that
0 ∈ σ(T ). (i) ⇒ (ii). By Theorem 2.14, then 0 is a pole of the resolvent and hence
has ascent and descent both finite. Furthermore, since T | ker P is invertible, we
have

α(T ) = α(T | ker P ) + α(T |P (X) = α(T |P (X) < ∞.

This implies that β(T ) = α(T ) < ∞, by [1, Theorem 3.4].

(ii) ⇒ (i) If 0 is a Riesz point, then 0 is a pole of T , so there exists a commuting
projection P ̸= 0 such that T + P is invertible and TP is nilpotent. Moreover, if
p is the order of the pole, then P (X) = kerT p is finite-dimensional, since kerT
is finite-dimensional. □
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spectraux (French) [[Generalization of the Kato decomposition to paranormal and spectral
operators]], Glasgow Math. J. 29 (1987), 159–175.

17. M. OudghiriWeyl’s and Browder’s theorem for operators satisfying the SVEP, Studia Math.
163 (2004), no. 1, 85–101.

18. C. Schmoeger On isolated points of the spectrum of a bounded operator, Proc. Amer. Math.
Soc. 117 (1993), no. 3, 715–719.

1Dipartimento di Metodi e Modelli Matematici, Facoltà di Ingegneria, Uni-
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