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Abstract. Main properties of the regular (or extended) spectrum of elements
in topological algebras (introduced by L. Waelbroeck and G. R. Allan for unital
locally convex algebras) are presented. Descriptions of the relationship between
the usual spectrum and the regular spectrum of elements in topological algebras
with jointly continuous multiplication are given. It is shown that the usual
spectrum and the regular spectrum of elements coincide for Hausdorff locally
convex Waelbroeck algebras. Main properties of the disolvent map of elements
in topological algebras are studied.

1. Preliminaries

Let A be a topological algebra over C with separately continuous multiplication
(in short, a topological algebra). In particular, when the multiplication as a
map A× A → A is continuous, we speak about a topological algebra with jointly
continuous multiplication. A topological algebra A is locally convex, if A has a
base of neighborhoods of zero, consisting of absolutely convex neighborhoods.

Let InvA denote the set of all invertible elements in A, and QinvA is the set of
all quasi-invertible elements in A (that is, of elements a ∈ A for which there is an
element a−1

q (the quasi-inverse of a) such that a+a−1
q = aa−1

q = a−1
q a). A topolog-

ical algebra A is called a Q-algebra if the set QinvA (for unital algebras InvA) is
open in A, and a Q-algebra is called a Waelbroeck algebra, if the quasi-inversion
a → a−1

q (in the case of unital algebra, the inversion a → a−1) is continuous.
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In 1954 the notion of Waelbroeck algebra is introduced by Waelbroeck in [15]
under the name “continuous inverse algebra” for unital locally convex Hausdorff
algebras, but in 1965 the name “Waelbroeck algebra” is used first by Ouzulou in
[10]. Moreover, a topological algebra A is locally complete (in locally convex case
Allan used in [4, p. 401], the term pseudo-complete algebra) if every subalgebra
of A, generated by a closed, bounded, idempotent, and absolutely pseudocon-
vex subset U , is complete (remember, U is idempotent, if UU ⊂ U ; absolutely
k-convex, if

U = Γk(U) =
{ n∑

v=1

αvuv : n ∈ N, u1, . . . , un ∈ U, α1, . . . , αn ∈ C,
n∑

v=1

|αv|k ⩽ 1
}
,

and absolutely pseudoconvex, if U is absolutely k-convex for some k ∈ (0, 1]). In
addition, A is a topological algebra with idempotently pseudoconvex von Neumann
bornology if, for every idempotent and bounded subset U of A, there is a number
k ∈ (0, 1] such that Γk(U) is bounded in A.

2. Introduction

1. Bounded elements in topological algebras. Let A be a unital locally
convex algebra over the field C of complex numbers, and let eA denote the unit
element of A. In 1954 Waelbroeck introduced in [14] (see also [13]) the notion of
regular element of algebra. He said that a ∈ A is regular if there is a neighborhood
O of ∞ such that the resolvent map Ra of a, defined by

Ra(λ) = (a− λeA)
−1

for each λ ̸∈ spA(a), has a bounded limit in O.
After that, in 1956, Warner said in [18] that an element a is idempotently

bounded in a locally m-convex algebra A, if there is a λ > 0 such that

I({λa}) =
∪
n∈N

{λa}n

is bounded in A.
Next, in 1965, Allan in [4] said that an element a ∈ A is bounded, if the set

S(a, λ) =
{(a

λ

)n

: n ∈ N
}

(2.1)

is bounded in A for some λ > 0. Hence, every idempotently bounded element of a
locally m-convex algebra is bounded and vice versa. Moreover (see, for example,
[17, Proposition 11]), these three notions, given by Waelbroeck, Warner, and
Allan, are the same in case of a unital b-algebra (that is, of a unital locally
convex algebra, the von Neumann bornology of which has a base of completant,
idempotent, and absolutely convex sets). In case, when (2.1) holds for an element
of arbitrary topological (that is, not necessarily unital and locally convex) algebra
with separately continuous multiplication, we use the term “bounded element”
and the set of all bounded elements in A is denoted, as it was used in [4], by A0.
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2. Regular spectrum of elements in topological algebras. Let A be a
unital algebra over C. The spectrum spA(a) of a ∈ A is defined by

spA(a) = {λ ∈ C : a− λeA ̸∈ InvA},
and in case, when A is not necessarily a unital algebra, then by

spA(a) = {λ ∈ C \ {0} :
a

λ
̸∈ QinvA} ∪ {0}.

In 1954, Waelbroeck introduced in [13] the notion “regular spectrum of an ele-
ment” in a unital commutative locally convex algebra A. He said that the set
spr

A(a), defined by

spr
A(a) = {λ ∈ C : a− λeA is not a regular in A} ∪ S

(where S = {∞} if and only if a is not regular and S = {∅} otherwise), is a
regular spectrum of a ∈ A.

Allan defined in [4] the extended spectrum of a in locally convex algebras sim-
ilarly, using only instead of the term “regular element of a” the name “bounded
element of a”, that is in case of unital locally convex algebra A

sprA(a) = spA(a) ∪ {λ ∈ C : a− λeA ∈ InvA but (a− λeA)
−1 ̸∈ A0} ∪ S, (2.2)

where S = {∞} if and only if a ̸∈ A0 and S = {∅} otherwise. Since W. Żelazko
used in [19, p. 130], the name “extended spectrum of an element” in the other
sense, we shall use later on throughout this paper the term “regular spectrum of
an element” of a unital topological algebra to refer to the set given by (2.2).

Next, we generalize that notion to the case of a (not necessarily unital) topo-
logical algebra A with separately continuous multiplication.

We say that the set

sprA(a) = spA(a) ∪ {λ ∈ C \ {0} :
a

λ
∈ QinvA but

(a
λ

)−1

q
̸∈ A0} ∪ S, (2.3)

where S = {∞} if and only if a ̸∈ A0 and S = {∅} otherwise, is the regular
specrum of a ∈ A. That is, spr

A(a) of a ∈ A consists of all λ ∈ C∞ = C ∪ {∞}
such that either a

λ
has not quasi-inverse in A or a

λ
has in A the quasi-inverse, but

it does not belong to A0.
We show first that the sets in the right side of (2.3) and of (2.2) coincide if A

is a unital topological algebra. For that, we need the following result.

Proposition 2.1. Let A be a unital topological algebra over C. Then
(a) a ∈ QinvA if and only if eA − a ∈ InvA

and

(b) a ∈ QinvA and a−1
q ∈ A0 if and only if eA−a ∈ InvA and (eA−a)−1 ∈ A0.

Proof. a) Since (eA − a)−1 = eA − a−1
q for each a ∈ QinvA, then the statement

(a) holds.

b) Let now a ∈ QinvA, a−1
q ∈ A0, n ∈ N, and let O be a neighborhood of zero

in A, and let O1 be a balanced neighborhood of zero in A such that

O1 + · · ·+O1︸ ︷︷ ︸
n+ 1 summands

⊂ O.
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Then there is a λ0 > 1 such that the set S(a−1
q , λ0) is bounded in A. Therefore,

there is a µ > 0 such that (a−1
q

λ0

)n

∈ µO1

for each n ∈ N. Since

(eA − a−1
q )n =

n∑
v=0

(
n

k

)
(−1)n−v(a−1

q )n−v

=
n∑

v=0

(
n

v

)
(−1)n−vλn−v

0

(a−1
q

λ0

)n−v

∈ µ(1 + λ0)
n

n∑
v=0

αvO1,

where

αv =

(
n
v

)
(−1)n−vλn−v

0

(1 + λ0)n

for each 1 ⩽ v ⩽ n,

|αv| =
(
n
v

)
(λ0)

n−v

(1 + λ0)n
⩽

∑n
v=0

(
n
v

)
(λ0)

n−v

(1 + λ0)n
= 1,

and O1 is balanced, then

(eA − a−1
q )n ∈ µ(1 + λ0)

n(O1 + · · ·+O1︸ ︷︷ ︸
n+ 1 summands

) ⊂ µ(1 + λ0)
nO.

Hence, ((eA − a)−1

1 + λ0

)n

=
(eA − a−1

q

1 + λ0

)n

∈ µO,

because (eA − a)−1 = eA − a−1
q . As n was arbitrary, then eA − a ∈ InvA and

(eA − a)−1 ∈ A0.
The converse part of the proof is similar, because a−1

q = eA − (eA − a)−1 if
eA − a ∈ InvA. □
Corollary 2.2. For any topological unital algebra A the regular spectrum spr

A(a)
of a ∈ A, defined by (2.3), coincides with the regular spectrum spr

A(a), defined
by (2.2).

Proof. Because (eA − a)−1 = eA − a−1
q for each a ∈ QinvA = eA − InvA and

a− λeA = −λ(eA − λ−1a) for every λ ∈ C0 = C \ {0}, then

{λ ∈ C0 : a− λeA ̸∈ InvA} = {λ ∈ C0 :
a

λ
̸∈ QinvA}

and

{λ ∈ C0 :a−λeA ∈ InvA, (a−λeA)−1 ̸∈ A0} = {λ ∈ C0 :
a

λ
∈ QinvA,

(a
λ

)−1

q
̸∈ A0},

by Proposition 2.1. Hence the regular spectrum spr
A(a) of a ∈ A, defined by (2.3),

coincides with the regular spectrum spr
A(a), defined by (2.2). □

In case, when A has not the unit element, instead of A, we shall use the
unitization A1 = A× C of A.
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Proposition 2.3. Let A be a topological algebra without unit element; then

sprA(a) = spr
A1
((a, 0)) (2.4)

for each a ∈ A.

Proof. Let a ∈ A. For proving the equality (2.4), we can consider only nonzero
elements of these spectra, because 0 ∈ spr

A(a), for each a ∈ A, by the definition
of the regular spectrum of elements and 0 ∈ spr

A1
((a, 0)) for each a ∈ A because

A × {0} is a two-sided ideal in A1. Therefore, let first, λ ∈ spr
A(a) \ {0}. Then

a
λ
̸∈ QinvA or a

λ
∈ QinvA but

(
a
λ

)−1

q
̸∈ A0. Let first a

λ
̸∈ QinvA. Suppose that

(a,−λ) = (a, 0) − λ(θA, 1) ∈ InvA1. Then there exists an element (b, µ) ∈ A1

such that
(ab− λb+ µa,−λµ) = (a,−λ)(b, µ) = (θA, 1),

from what follows that µ = − 1
λ
and a

λ
◦ λb = θA. Hence, a

λ
∈ QinvA. As this is

impossible, then (a,−λ) ̸∈ InvA1 or λ ∈ spA1
((a, 0).

Let now a
λ
∈ QinvA and

(
a
λ

)−1

q
̸∈ A0. Then there exists

(a,−λ)−1 =
(1
λ

(a
λ

)−1

q
,−1

λ

)
= −1

λ

(
−

(a
λ

)−1

q
, 1
)

in A1. Suppose that (a,−λ)−1 ∈ (A1)0. Then there exists a number M > 0 such
that the set S((a,−λ)−1,M) is bounded in A1. Since

(θA, 1)−
(a
λ
, 0
)
=

(
− a

λ
, 1
)
= −1

λ
(a,−λ),

then (
− a

λ
, 1
)
∈ InvA1.

Moreover, S((− a
λ
, 1)−1, |λ|M) = S(− λ

|λ|(a,−λ)
−1,M). Hence,

(
− a

λ
, 1
)−1 ∈ (A1)0.

Therefore, ( a
λ
, 0) ∈ QinvA1 and ( a

λ
, 0)−1

q ∈ (A1)0 by Proposition 2.1 (b). Hence,(
a
λ

)−1

q
∈ A0, because( 1

Mn

((a
λ

)−1

q

)n

, 0
)
=

1

Mn

((a
λ
, 0
)−1

q

)n

for each n ∈ N and M > 0. As this is impossible, then (a,−λ)−1 ̸∈ (A1)0 or
λ ∈ spr

A1
((a, 0)). Consequently, spr

A(a) ⊆ spr
A1
((a, 0)) for each a ∈ A.

Let now λ ∈ spr
A1
((a, 0)) \ {0}. Then (a,−λ) = (a, 0) − λ(θA, 1) ̸∈ InvA1 or

(a,−λ) ∈ InvA1 but (a,−λ)−1 ̸∈ (A1)0. First we consider the case, when

(a,−λ) ̸∈ InvA1.

If a
λ
∈ QinvA, then

(a,−λ)−1 =
(1
λ

(a
λ

)−1

q
,−1

λ

)
but this is not possible by assumption. Hence, a

λ
̸∈ QinvA. It means that

λ ∈ spA(a).
Let next (a,−λ) ∈ InvA1 and (a,−λ)−1 ̸∈ (A1)0. Then there are b ∈ A and

µ ∈ K such that (a,−λ)(b, µ) = (θA, 1). Hence
a
λ
∈ QinvA and

(
a
λ

)−1

q
= λb. Since
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a
λ
, 0
)−1

q
=

((
a
λ

)−1

q
, 0
)
, then ( a

λ
, 0) ∈ QinvA1. Suppose that

(
a
λ
, 0
)−1

q
∈ (A1)0.

Then
(
− a

λ
, 1
)
∈ InvA1 and

(
− a

λ
, 1
)−1 ∈ (A1)0 by Proposition 2.1 (b). Hence,

there exists a numberM > 0 such that S(
(
− a

λ
, 1
)−1

,M
)
is bounded in A1. Since(

− a

λ
, 1
)−1

= −λ(a,−λ)−1

and S
(
(a,−λ)−1, M|λ|

)
= S

(
− |λ|

λ

(
− a

λ
, 1
)−1

,M
)
, then (a,−λ)−1 ∈ (A1)0 what is

impossible. Hence,
(
a
λ
, 0
)−1

q
=

((
a
λ

)−1

q
, 0
)
̸∈ (A1)0, because of which

(
a
λ

)−1

q
̸∈ A0;

Thus, λ ∈ spr
A(a). Consequently, sp

r
A1
((a, 0)) ⊆ spr

A(a) for each a ∈ A. □
Properties of the regular spectrum spr

A(a) of a, of the resolvent map Ra of
a ∈ A, defined above, and of the map fa, defined by

fa(λ) = (eA − λa)−1

for each λ ∈ Λa = {λ ∈ C : eA−λa ∈ InvA}, have been studied in several papers
(see, for example, [2], [4], and [16]) in case when A is a unital topological (mostly
locally convex) algebra. Next we describe properties of the regular spectrum
spr

A(a) by the resolvent map Ra of a, and by the disolvent map Da of a ∈ A,
defined by

Da(λ) =
(a
λ

)−1

q

for every λ ∈ C \ spA(a) if A is not unital.

3. Properties of the regular spectrum

For describing the main properties of the regular spectrum of elements in topo-
logical algebras over C, we need the following result.

Lemma 3.1. If

(a) A is a unital Waelbroeck algebra
or

(b) A is a unital topological algebra with jointly continuous multiplication,

then the power map µn : A → A with fixed natural number n ⩾ 2, defined by
µn(a) = an for every a ∈ A, is continuous in A.

Proof. We use here the idea from [7]. Let, first A be a unital Waelbroeck algebra.
Since the set InvA is open in A, then there is a balanced neighborhood O of zero
such that eA + a, eA − a ∈ InvA for every a ∈ O. Therefore,

a2 = eA − 2((eA + a)−1 + (eA − a)−1)−1

for each a ∈ O. Let ε denote the inversion of elements in A (that is, ε(a) = a−1

for each a ∈ InvA), let l be the addition of elements in A (that is, l((a, b)) = a+ b
for each a, b ∈ A), let ga with fixed a ∈ A be the map, defined by ga(b) = a + b
for each b ∈ A,let hα with fixed α ∈ C be the map, defined by hα(a) = αa for
each a ∈ A, and let (f, g) be the map, defined by (f, g)(a) = (f(a), g(a)) for each
a ∈ A and maps f : A→ A and g : A→ A. Since

µ2 = geA ◦ h−2 ◦ ε ◦ l ◦ ((ε ◦ geA), (ε ◦ geA ◦ h−1))
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and every component in this composition is continuous, then µ2 is a continuous
map.

Let now A be a topological algebra with jointly continuous multiplication, let
a0 ∈ A, and let O an arbitrary neighborhood of zero in A. Then there is another
neighborhood O1 of zero in A such that O1O1 +O1a0 + a0O1 ⊂ O. Since

µ2(a)− µ2(a0) = (a− a0)(a+ a0)− aa0 + a0a

= (a− a0)((a− a0) + 2a0)− (a− a0)a0 + a0(a− a0)

∈ O1O1 +O1a0 + a0O1 ⊂ O

for every a ∈ a0 +O1, then the map µ2 is continuous.
To show that the map µn is continuous for n ⩾ 3, we use the induction, where

µn+1 = fa ◦ µn for each n ⩾ 2 and fa denotes the map, defined by fa(b) = ab for
each b ∈ A. □
Corollary 3.2 (Turpin [12]). Let A be a commutative unital Waelbroeck algebra.
Then the multiplication in A is jointly continuous.

The next proposition gives a similar result as in [4, Lemma 3.6] for not necessary
locally convex algebra over C.

Proposition 3.3. Let A be a unital topological algebra over C with jointly con-
tinuous multiplication. If

(a) the inversion a→ a−1 is continuous on InvA,

then
a) for every a ∈ A and λ ∈ K = C \ clCspA(a), the complex derivative R

(n)
a of

the resolvent map Ra of a has the form

R(n)
a (λ) = n!Ra(λ)

n+1 (3.1)

for every natural number n ⩾ 1;

b) for every a ∈ A and λ ∈ Λa. the complex derivative f
(n)
a of the map fa

(defined in the introduction) has the form

f (n)
a (λ) = n!anfa(λ)

n+1 (3.2)

and

(Ra ◦ ε)(n)(λ) = −n!an−1fa(λ)
n+1 (3.3)

for any natural number n ⩾ 1 (here ε(λ) = 1
λ
if λ ̸= 0).

Proof. Let a ∈ A and λ0 ∈ K. Then there is an open neighborhood O(λ0) ⊂ K.
Since

Ra(λ)−Ra(λ0) = (λ− λ0)Ra(λ)Ra(λ0)

for every λ ∈ O(λ0) \ {λ0}, then

R′
a(λ0) = lim

λ→λ0

Ra(λ)−Ra(λ0)

λ− λ0
= Ra(λ0)

2

by the condition (a). Now

R′
a(λ)−R′

a(λ0) = Ra(λ)
2 −Ra(λ0)

2 = (Ra(λ)−Ra(λ0))(Ra(λ) +Ra(λ0)) + S1,
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where

S1 = Ra(λ0)Ra(λ)−Ra(λ)Ra(λ0) = θA,

because Ra(λ) and Ra(µ) commute for every λ, µ ∈ K. Therefore (due to the
joint continuity of multiplication in A)

R′′
a(λ0) = lim

λ−λ0

Ra(λ)−Ra(λ0)

λ− λ0
lim
λ−λ0

(Ra(λ) +Ra(λ0))

= 2R′
a(λ0)Ra(λ0) = 2Ra(λ0)

3.

To prove by the induction that equality (3.1) holds for every n, we assume that

R(n)
a (λ0) = n!Ra(λ0)

n+1.

By the formula

an+1 − bn+1 = (a− b)
n+1∑
k=1

an+1−kbk−1 +
n∑

k=1

[ban+1−kbk−1 − an+1−kbk]

for each n ⩾ 2 and a, b ∈ A, we have

R(n)
a (λ)−R(n)

a (λ0) = n!(Ra(λ)
n+1 −Ra(λ0)

n+1)

= n!(Ra(λ)−Ra(λ0))
n+1∑
k=1

Ra(λ)
n+1−kRa(λ0)

k−1 + Sn,

where

Sn = n!
n∑

k=1

[Ra(λ0)Ra(λ)
n+1−kRa(λ0)

k−1 −Ra(λ)
n+1−kRa(λ0)

k] = θA,

because Ra(λ) and Ra(µ) commute for all λ, µ ∈ K. Taking this, the joint conti-
nuity of the multiplication in A and the continuity of power maps into account,

R(n+1)
a (λ0) = n! lim

λ→λ0

Ra(λ)−Ra(λ0)

λ− λ0
lim
λ→λ0

[ n−1∑
k=1

µn+1−k(Ra(λ))Ra(λ0)
k−1

+Ra(λ)Ra(λ0)
n−1 +Ra(λ0)

n
]

= n!Ra(λ0)
2(n+ 1)Ra(λ0)

n

= (n+ 1)!Ra(λ0)
n+2

by Lemma 3.1. Consequently, the equality (3.1) holds by the mathematical in-
duction for all n ∈ N.

Similarly, using the mathematical induction, it is not difficult to show that the
equalities (3.2) and (3.3) hold for every n ∈ N. □

By Corollary 3.2,we have the following result.

Corollary 3.4. Let A be a commutative unital Waelbroeck algebra over C. Then
equalities (3.1)–(3.3) hold.

To prove the next result, we need the following.
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Lemma 3.5. Let A be a nonunital topological algebra with nontrivial continuous
linear functionals. Then every weakly bounded subset in the unitization A1 of A
is bounded if every weakly bounded subset in A is bounded.

Proof. Let f ∈ A∗ (the topological dual of A) be nontrivial. Then Ff , defined
by Ff ((a, λ)) = f(a) + λ for each (a, λ) ∈ A1, is a nontrivial continuous linear
functional on A1. (Since f is nontrivial, then there is an element a0 ∈ A such
that f(a0) ̸= 0. Therefore, Ff (a0, f(a0)) = 2f(a0) ̸= 0, that is, Ff is not trivial.)

Let S be a weakly bounded subset in A1, and let AS = {a ∈ A : (a, λ) ∈ S}
and CS = {λ ∈ C : (a, λ) ∈ S}. Then Ff (S) is a bounded subset in C for each
f ∈ A∗. Therefore, f(AS) for each f ∈ A∗ and CS are bounded in C. Since every
weakly bounded subset in A is bounded, then AS is a bounded subset in A. Now,
from S ⊆ AS × CS, it follows that S is bounded in A1. □
Proposition 3.6. Let A be a topological algebra over C with jointly continuous
multiplication which satisfies the conditions

(a’) the quasi-inversion a→ a−1
q on QinvA is continuous;

(b) the topological dual space A∗ of A contains at least one nonzero element
and

(c) every weakly bounded set in A is bounded in A.

Then
spA(a) ⊆ spr

A(a) ⊆ clC∞(spA(a)) (3.4)

for every a ∈ A.

Proof. Let a ∈ A. The inclusion spA(a) ⊆ spr
A(a) follows from the definition of

spr
A(a). First we consider the case, when A is a unital topological algebra. If

clC∞(spA(a)) = C∞, then spr
A(a) ⊆ clC∞(spA(a)). Let now clC∞(spA(a)) ̸= C∞,

and take a λ0 ∈ C∞ \ clC∞(spA(a)). If λ0 ̸= ∞; then there exists a neighborhood
O(λ0) of λ0 in C such that O(λ0) ⊂ C \ clC∞(spA(a)). Hence, Ra(λ) exists in A
for all λ ∈ O(λ0). By the condition (b) there is at least one nonzero continuous
linear functional f on A. Let φf be the nonzero continuous functional on O(λ0),
defined by φf (λ) = f(Ra(λ)) for each λ ∈ O(λ0). Since A satisfies the conditions
(a) (from (a’) follows (a), because (eA − a)−1 = eA − a−1

q ), Ra is infinitely many
times differentiable at λ0 and

R(n)
a (λ0) = n!Ra(λ0)

n+1

for every natural number n ⩾ 1 by Proposition 3.3, then φf is infinitely many
times differentiable at λ0 and

φ
(n)
f (λ0) = n!f(Ra(λ0)

n+1)

for each n ∈ N. Therefore, φf is an analytic function on some neighborhood
Of (λ0) of λ0 and its Taylor series

∞∑
k=1

f [(Ra(λ0)
k+1](λ− λ0)

k. (3.5)

converges in every point of Of (λ0). Let ρf > 0 and

Oρf (λ0) = {λ ∈ C; |λ− λ0| < ρf} ⊂ Of (λ0).
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Then ρf < Rf , where Rf denotes the radius of convergence of the power series
(3.5). Therefore,

lim sup
n→∞

n
√
|f [Ra(λ0)n+1]| = 1

Rf

<
1

ρf
<∞.

Hence, there exists a natural number Nf such that

n
√
|f [Ra(λ0)n+1]| ⩽ 1

ρf

for every n > Nf . So, the set S = {(f [Ra(λ0)])
n+1 : n ∈ N} is bounded in C

for every f ∈ A∗. Hence, Ra(λ0) ∈ A0 by the condition (c), because of which
λ0 ̸∈ spr

A(a). Hence, from λ0 ∈ C∞ \ clC∞(spA(a)) and λ0 ̸= ∞, it follows that
λ0 ̸∈ spr

A(a) for each a ∈ A. It means that spr
A(a) ⊆ clC∞(spA(a)).

Let now λ0 = ∞. To show that φf , for f ∈ A∗, is analytic at ∞, we show that
the function ψf , defined by ψf (λ) = f

[
Ra

(
1
λ

)]
, is analytic at zero. Since

ψ
(n)
f (0) = lim

λ→0
f
[
(Ra ◦ εA)(n)(λ)

]
= −n!f(an−1)

for every n ∈ N by Proposition 3.3, then ψf is analytic at zero and the Taylor
series

−
∞∑
n=0

f(an−1)λn

of ψf converges pointwise in every point of some neighborhood Of of zero. Let
now νf > 0 be such that Oνf ⊂ Of . Then νf < Rf (the radius of convergence of
this power series). As

lim sup
n→∞

n
√

|f(an−1)| = 1

Rf

<
1

|νf |
<∞,

then there are Nf ∈ N and M > 0 such that |f((λ1a)n))| ⩽M for every n > Nf .
Hence, the set {|λ1f(an)| : n ∈ N} is bounded for each f ∈ A∗. Therefore, the
set {|λ1an| : n ∈ N} is bounded in A by the condition (c). Similarly as above, we
have that a ∈ A0. So, ∞ ̸∈ spr

A(a). Consequently, from ∞ ∈ C∞ \ clC∞(spA(a)),
it follows that ∞ ̸∈ spr

A(a) for each a ∈ A. In this way, we have shown that the
inequalities (3.4) hold.

Next we consider the case, when A has not the unit element. Instead of A, we
consider the unitization A1 = A × C of A. Then (see, for example, [6, p. 156]
), A1 satisfies the condition (a) for every (a, λ) ∈ InvA1 by the condition (a’).
Moreover, by the condition (b), there is a nonzero continuous linear functional f
on A. Let Ff be as in Lemma 3.5. Then Ff is a nonzero continuous C-valued
linear functional on A1, that is, A1 satisfies the condition (b), and every weakly
bounded set in A1 is bounded by Lemma 3.5.

Hence, by Proposition 2.3 and the part above, we have that

spr
A(a) = spr

A1
((a, 0)) ⊆ clC∞ [spA1

((a, 0))] = clC∞ [spA(a)]. □
Next we need the following results which are partly known (at least in unital

case)
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Lemma 3.7. Let A be a topological Hausdorff algebra, and let B be the maximal
commutative subalgebra of A. Then

a) B is closed;

b) QinvB = B ∪QinvA
and

c) spB(b) = spA(b) and spr
B(b) = spr

A(b) for every b ∈ B.

Proof. a) Let a ∈ clAB. Then there is a net (bλ)λ∈λ in B such that (bλ)λ∈λ
converges to a. Since A is a Hausdorff space, the multiplication in A is separately
continuous and bbλ = bλb for each b ∈ B and λ ∈ λ, then ab = ba for each b ∈ B.
Hence, the linear span of {a} ∪B is a commutative subalgebra in A. Because B
is the maximal commutative subalgebra in A, then a ∈ B. Hence, B is closed.

b) We show that B ∪ QinvA ⊆ QuinvB. For this, let b ∈ B ∪ QinvA, and let
b′ be an arbitrary element of B. Since

b−1
q ◦b′ = (b−1

q ◦b′)◦θA = (b−1
q ◦b′)◦ (b◦b−1

q ) = b−1
q ◦ (b′ ◦b)◦b−1

q = b−1
q ◦ (b◦b′)◦b−1

q

= (b−1
q ◦ b) ◦ (b′ ◦ b−1

q ) = θA ◦ (b′ ◦ b−1
q ) = b′ ◦ b−1

q ,

then b−1
q b′ = b′b−1

q . As in above, the linear span of {b−1
q } ∪ B is a commutative

subalgebra in A. Because B is the maximal commutative subalgebra in A, then
b−1
q ∈ B. Hence, b ∈ QinvB.

c) Let b ∈ B and λ ∈ spA(b). If λ ̸= 0, then b
λ
̸∈ QinvA. Therefore, b

λ
̸∈ QinvB

by equality b). Hence, λ ∈ spB(b). Thus, spA(b) ⊆ spB(b). The converse inclusion
is similar.

Let now λ ∈ spr
A(b). If λ ∈ spA(b), then λ ∈ spB(b) as above. Let now

b
λ
∈ QinvA but ( b

λ
)−1
q ̸∈ A0. Then b

λ
∈ QinvB by the equality b) and ( b

λ
)−1
q ̸∈

B0. Hence, λ ∈ spr
B(b). Consequently, spr

A(b) ⊆ spr
B(b). Converse inclusion is

similar. □
Corollary 3.8. Let A be a locally convex algebra over C. If, in addition,

a) the multiplication in A is jointly continuous and the quasi-inversion is con-
tinuous,

then the inequality (3.4) holds for every a ∈ A;

b) A is a Waelbroeck and Hausdorff algebra, then spr
A(a) = spA(a) for every

a ∈ A.

Proof. a) Since A is locally convex, then the conditions (b) and (c) in Proposition
3.6 have been fulfilled (see, for example, Corollary of Theorem 3.4 and Proposition
3.18 in [11] ). Therefore, the statement holds by Proposition 3.6.

b) Let first A be a commutative unital locally convex Waelbroeck algebra.
Then the condition a) is fulfilled and the multiplication in A is jointly continuous
by Corollary 3.2. Moreover, since A is locally convex, then (b) and (c) have been
fulfilled (see the proof of part a)). Therefore, every element in A is bounded by
Theorem 1 in [3]. Hence, spr

Aa) = spA(a) for every a ∈ A by the definition of the
regular spectrum.

Let now A be an arbitrary unital Hausdorff locally convex Waelbroeck alge-
bra, a be an element in A, Ba be the subalgebra of A, generated by a and eA,
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and Ma be the maximal commutative unital subalgebra of A. Then Ba ⊂ Ma

and Ma is a commutative unital Hausdorff locally convex Waelbroeck algebra by
Lemma 3.7 b). Hence,

spr
A(a) = spr

Ma
(a) = spMa

(a) = spA(a)

for every a ∈ A by the first part of the proof and Lemma 3.7 c).
Next we coincide the case when A has not unit. Instead of A we coincide the

unitization A1 of A. Since A is a Waelbroeck algebra, then A1 is a Waelbroeck
algebra with unit element by Proposition 3.6.28 in [6]. Moreover, A1 is a Hausdorff
space. Hence,

spr
A(a) = spr

A1
((a, 0)) = spA1

((a, 0))] = spA(a)

by Proposition 2.3. □
Corollary 3.8 a) has been given in [4, Theorem 4.1] for unital locally convex

algebras. In [5] has been given a unital commutative locally convex Q-algebras
in which the usual spectrum and the regular spectrum of elements coincide.

4. Properties of the disolvent map

For any topological algebra A over C, let
σr
A(a) = C∞ \ spr

A(a)

for each a ∈ A. Later on we need the following results.

Lemma 4.1. Let A be a topological algebra over C, and let a ∈ A and λ, µ ∈
C \ spA(a). Then

1) aDa(λ) = Da(λ)a = a+ λDa(λ)

and

2) Da(λ)Da(µ) = Da(µ)Da(λ).

Proof. 1) Since λ ̸= 0 and
a

λ
◦Da(λ) = θA = Da(λ) ◦

a

λ
,

then
Da(λ)

a

λ
=
a

λ
+Da(λ) =

a

λ
Da(λ).

Hence, the statement 1) holds.
2) Since λ, µ ̸∈ σA(a), then λ ̸= 0, µ ̸= 0 and a

λ
∈ QinvA. Moreover,

a

µ
◦Da(λ) = Da(λ) ◦

a

µ
.

Therefore, from

Da(λ) ◦Da(µ) =
(
Da(µ) ◦

a

µ

)
◦ (Da(λ) ◦Daµ) = Da(µ) ◦

(a
µ
◦Da(λ)

)
◦Da(µ)

=(Da(µ) ◦Da(λ)) ◦
(a
µ
◦Da(µ)

)
= Da(µ) ◦Da(λ)

it follows that Da(λ)Da(µ) = Da(µ)Da(λ). □
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Proposition 4.2. Let A be a topological algebra over C, let λ0 ∈ C\ clC(spA(a)),
and let O(λ0) be a neighborhood of λ0 such that O(λ0) ⊂ C \ clC(spA(a)). Then

Da(λ) =
λ0
λ
Da(λ0) +

λ0
λ
Da(λ0)

n∑
v=1

(λ− λ0
λ

)v

Da(λ0)
v)

+
(λ− λ0

λ

)n+1

Dn+1
a (λ0)Da(λ) (4.1)

for each λ ∈ O(λ0) and n ∈ N. Moreover, if O is a neighborhood of ∞ such that
O ∩ spA(a) is empty, then

Da(λ) = −
n∑

v=1

av

λv
+
(a
λ

)n

Da(λ) (4.2)

for each λ ∈ O and n ∈ N.

Proof. Dividing both sides of the equation

a

λ
+Da(λ)−

a

λ
Da(λ) = θA (4.3)

by λ0 and both sides of the equation

a

λ0
+Da(λ0)−

a

λ0
Da(λ0) = θA (4.4)

by λ and then subtracting from the first new equation the second new equation,
we obtain the equation

Da(λ)

λ0
− Da(λ0)

λ
=
a(Da(λ)−Da(λ0))

λλ0
. (4.5)

Now multiplying both sides of the equation (4.3) from the left by λDa(λ0) and
both sides of the equation (4.4) from the right by λ0Da(λ) and then subtracting
from the first new equation the second new equation, we obtain by Lemma 4.1
the equation

a(Da(λ)−Da(λ0)) = (λ− λ0)Da(λ0)Da(λ). (4.6)

Hence, from (4.5) and (4.6) follows that

Da(λ) =
λ0
λ
Da(λ0) +

(λ− λ0
λ

)
Da(λ0)Da(λ). (4.7)

By relation (4.7) one gets that relation (4.1) is true for n = 1.
Let now the formula (4.1) hold, when n = m. To show that this formula holds

also when n = m+ 1, we put the value of Da(λ) in (4.7) to the right part of the
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formula (4.1). Then

Da(λ) =
λ0
λ
Da(λ0) +

λ0
λ
Da(λ0)

m∑
v=1

(λ− λ0
λ

)v

Da(λ0)
v)

+
(λ− λ0

λ

)m+1

Dm+1
a (λ0)

(λ0
λ
Da(λ0) +

(λ− λ0
λ

)
Da(λ0)Da(λ)

)
=
λ0
λ
Da(λ0) +

λ0
λ
Da(λ0)

m+1∑
v=1

(λ− λ0
λ

)v

Da(λ0)
v)+

+
(λ− λ0

λ

)m+2

Dm+2
a (λ0)Da(λ).

Hence, by the induction, the formula (4.1) holds for every n ∈ N.
Let now λ ∈ O ∩ (C \ spA(a)). Then λ ̸= 0 and, from (4.3), it follows that the

equality (4.2) holds for n = 1. Similarly as above it is easy to show by induction
that the equality (4.2) holds for each n ∈ N. □

Corollary 4.3. Let A be a topological algebra over C with continuous quasi-
inversion, a ∈ A, and let λ0 ∈ C \ spA(a). Then

lim
λ→λ0

λDa(λ)− λ0Da(λ0)

λ− λ0
= D2

a(λ0) (4.8)

in a neighborhood of λ0.

Proof. The equality (4.8) holds by (4.7) because the quasi-inversion in A is con-
tinuous. □

For any topological algebra, A let Bk denote the collection of all closed, bounded,
idempotent, and absolutely k-convex subsets in A.

Proposition 4.4. Let A be a locally complete topological Hausdorff algebra with
idempotently pseudoconvex von Neumann bornology, and let a ∈ A \ {θA}. Then

(a) for any λ0 ∈ σr
A(a) ∩ C, there exist a number k(λ0) ∈ (0, 1], an open

neighborhood O(λ0) ⊂ σr
A(a) of λ0, and a set B(λ0) ∈ Bk(λ0) such that Da(λ) ∈

AB(λ0) for each λ ∈ O(λ0);
(b) if ∞ ∈ σr

A(a), then there exist numbers t > 0, k ∈ (0, 1], an open neighbor-
hood O of ∞, and a set C ∈ Bk such that Da(λ) ∈ AC whenever λ ∈ O ⊂ σr

A(a).
Moreover,

lim
|λ|→∞

Da(λ) = θA.

Proof. Let A be a (not necessarily unital) locally complete topological Hausdorff
algebra with idempotently pseudoconvex von Neumann bornology, and let a ∈ A\
{θA} and λ0 ∈ σr

A(a)∩C. Then Da(λ0) ∈ A0. Hence, there exists a number µ > 0
such that S(Da(λ0), µ) is a bounded and idempotent subset in A. Therefore,
there is a number k = k(λ0) ∈ (0, 1] such that Γk(S(Da(λ0), µ)) is also bounded
in A. Hence, B = clA(Γk(S(Da(λ0), µ)) is a closed, absolutely k-convex, bounded,
and idempotent subset in A (see [8, p. 103] and [9, Lemma 1.3]). Thereby the



REGULAR SPECTRUM OF ELEMENTS IN TOPOLOGICAL ALGEBRAS 851

subalgebra AB of A, generated by B, is by [1, Proposition 2.2], a k-normed algebra
with respect to the submultiplicative norm pB, defined by

pB(a) = inf{|µ|k : a ∈ µB}
for every a ∈ AB. Since a ̸= θ and λ0 ̸= 0, then Da(λ0) ̸= θA. Therefore,
pB(Da(λ0)) > 0.

Let ε ∈ (0, 1) and

O(λ0) =
{
λ ∈ C \ {0} :

∣∣∣λ− λ0
λ

∣∣∣ < ε

pB(Da(λ0))
1
k

}
.

ThenO(λ0) is a neighborhood of λ0 in C. Indeed, λ0 ∈ O(λ0) andO(λ0) is an open
subset of C (if λ′ ∈ clC(C \O(λ0)), then there exists a sequence (λn) ∈ C \O(λ0)
such that (λn) converges to λ

′. Hence, if λ′ ̸= 0, then from

|λn − λ0| ⩾ |λn|
ε

pB(Da(λ0))
1
k

for each n ∈ N, it follows that λ′ ∈ C \ O(λ0) and if λ′ = 0, then λ′ ∈ C \ O(λ0)
by the definition of O(λ0). Hence λ

′ ∈ C \O(λ0)).
Let λ ∈ (O(λ0) ∩ σr

A(a)) \ {λ0} and

Tn(a, λ) =
n∑

v=1

(λ− λ0
λ

)v

Da(λ0)
v

for each n ∈ N. Then Tn(a, λ) ∈ AB,

0 < q(λ) =
∣∣∣λ− λ0

λ

∣∣∣kpB(Da(λ0)) < εk < 1,

Da(λ) =
λ0
λ
Da(λ0) +

λ0
λ
Da(λ0)Tn(a, λ) +

(λ− λ0
λ

)n+1

Dn+1
a (λ0)Da(λ)

for each n ∈ N, by Proposition 4.2, and

Tn+m(a, λ)− Tn(a, λ) =
n+m∑
v=n+1

(λ− λ0
λ

)v

Da(λ0)
v

=
(λ− λ0

λ

)n

Da(λ0)
n

m∑
v=1

(λ− λ0
λ

)v

Da(λ0)
v

for each n,m ∈ N. Therefore

pB(Tn+m(a, λ)− Tn(a, λ)) ⩽
∣∣∣λ− λ0

λ

∣∣∣knpB(Da(λ0))
n

m∑
v=1

∣∣∣λ− λ0
λ

∣∣∣kvpB(Da(λ0))
v

= q(λ)n
m∑
v=1

q(λ)v < εkn
∞∑
v=1

εkv =
1

1− εk
εkn

for each n,m ∈ N. Thus
lim
n→∞

pB(Tn+m(a, λ)− Tn(a, λ)) = 0

for each m ∈ N. It means that (Tn(a, λ)) is a Cauchy sequence in AB. Thereby,
(Tn(a, λ)) is a convergent (and bounded) sequence in AB for each
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λ ∈ O(λ0) ∩ σr
A(a) (because AB is complete by assumption). Hence, there is

a number M(λ) > 0 such that

Tn(a, λ) ∈M(λ)B

for each n ∈ N and

lim
n→∞

Ta(a, λ) =
∞∑
v=1

(λ− λ0
λ

)v

Da(λ0)
v ∈M(λ)B

for each λ ∈ O(λ0)∩σr
A(a) because A is a Hausdorff space and B is closed. Since

pB

[(λ− λ0
λ

)n

Da(λ0)
n
]
⩽ q(λ)n < εkn

for each n ∈ N and λ ∈ O(λ0) ∩ σr
A(a), then the sequence

((
λ−λ0

λ

)n
Da(λ0)

n
)

vanishes in AB for each fixed λ ∈ O(λ0) ∩ σr
A(a), hence also in A, because the

topology on AB defined by pB is not weaker than the subset topology on AB

(see [1, Proposition 2.2]). It means that

Xλ = lim
n→∞

(λ− λ0
λ

)n

Da(λ0)
nDa(λ) = θA

for each fixed λ ∈ O(λ0) ∩ σr
A(a). Taking this into account,

Da(λ) = lim
n→∞

Da(λ) =
λ0
λ
Da(λ0) +

λ0
λ
Da(λ0) lim

n→∞
Tn(a, λ) +Xλ

=
λ0
λ
Da(λ0) +

λ0
λ
Da(λ0)

∞∑
v=1

(λ− λ0
λ

)v

Da(λ0)
v ∈ AB

for each λ ∈ O(λ0) ∩ σr
A(a). Because AB ⊂ A0 (see [1, Proposition 2.3 ]), then

O(λ0) ⊂ σr
A(a) by the definition of the regular spectrum.

Let now ∞ ∈ σr
A(a). Then ∞ ̸∈ spr

A(a) Therefore, a ∈ A0. Hence, there
are numbers ρ > 0 and k ∈ (0, 1] such that Γk(S(a, ρ)) is bounded in A by the
assumption. Now C = cl(Γk(S(a, ρ)) is a closed, absolutely k-convex, bounded,
and idempotent set in A and a ∈ AC . Again (AC , pC) is a k-normed subalgebra
of A by Proposition 2.2 in [1].

Let ε > 0,

O = {λ ∈ C : |λ| > max{ε, pC(a)
1
k }},

λ ∈ O ∩ σr
A(a),

ψ(λ) =
pC(a)

|λ|k
, and

Wn(a, λ) = −
n∑

v=1

av

λv

for each n ∈ N. Then Wn(a, λ) ∈ AC for each n ∈ N,

Da(λ) = Wn(a, λ) +
(a
λ

)n

Da(λ)
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for each n ∈ N by (4.2), and pC(Da(λ)) > 0 because a ̸= θA. Now

pC [Wn+m(a, λ)−Wn(a, λ)] ⩽ ψ(λ)n
∞∑
n=0

ψ(λ)v = ψ(λ)n
1

1− ψ(λ)

= ψ(λ)n−1 pC(a)

|λ|k − pC(a)
.

Since 0 < ψ(λ) < 1 for each λ ∈ O ∩ σr
A(a), then (Wn(a, λ)) is a Cauchy (hence

a bounded) sequence in AC . Because A is locally complete, then the sequence
(Wn(a, λ)) converges in AC . Since pC

((
a
λ

)n) ⩽ ψ(λ)n for each n ∈ N, then
(
a
λ

)n
vanishes in the topology of AC (hence, also in the topology of A). Therefore,((

a
λ

)n
Da(λ)

)
vanishes in A for each λ ∈ O ∩ σr

A(a). Hence

Da(λ) = lim
n→∞

Wn(a, λ) + lim
n→∞

(a
λ

)n

Da(λ) = −
∞∑
v=1

av

λv

for each λ ∈ O∩σr
A(a) since A is a Hausdorff space. As the sequence (Wn(a, λ)) is

bounded in AC , then there exists a numberN(λ) > 0 such thatWn(a, λ) ∈ N(λ)C
for each n ∈ N. Consequently, Da(λ) ∈ N(λ)C ∈ AC (because C is closed).
Similarly as above, O ⊂ σr

A(a).
Since,

pC(Da(λ)) ⩽
pC(a)

|λ|k
|λ|k

|λ|k − pC(a)
=

pC(a)

|λ|k − pC(a)
for every λ ∈ O, then

lim
|λ|→∞

Da(λ) = θA

in AC . The topology on AC , defined by the norm pC , is not weaker than the
subset topology on AC (see [1, Proposition 2.2]). Therefore, this limit holds also
in A. □

Similar result for the resolvent map in unital case has been proved in [2, Propo-
sition 2.1].

Corollary 4.5. Let A be a locally complete Hausdorff algebra over C with idem-
potent pseudoconvex von Neumann bornology. Then the regular spectrum spr

A(a)
is closed in C∞ and not empty for every a ∈ A.

Proof. The regular spectrum spr
A(a) is closed in C∞ by Proposition 4.3 and

nonempty by the definition and, in unital case, by Proposition 2.2 in [2]. □
Corollary 4.6. Let A be a locally complete locally convex Hausdorff algebra over
C with jointly continuous multiplication and continuous quasi-inversion. Then

spr
A(a) = clC∞(spA(a))

for each a ∈ A.

Proof. This statement is true by Corollaries 3.8 and 4.5. □
Corollary 4.7. Let A be a locally complete locally convex Hausdorff algebra over
C with jointly continuous multiplication and continuous quasi-inversion. Then
a ∈ A0 if and only if spA(a) is bounded.
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Proof. If a ∈ A0, then ∞ ̸∈ spr
A(a) by the definition of the regular spectrum.

Therefore, ∞ ̸∈ spA(a)). Consequently, spA(a) is bounded. Otherwise, every
n ∈ spA(a) by what ∞ ∈ spA(a) because the regular spectrum of A is closed by
Corollary 4.5.

Let now spA(a) be bounded. Then ∞ ̸∈ clC∞(spA(a)). Hence, ∞ ̸∈ spr
A(a)) by

Corollary 4.6. So, a ∈ A0 by the definition of the regular spectrum. □
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