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ABSTRACT. In this paper, we generalize some inequalities for the approxi-
mation numbers of an element in a normed (Banach) algebra X and, as an
application, we present inequalities for the quasinorms of some ideals defined
by means of the approximation numbers.

In particular, if X = L(FE) - the algebra of linear and bounded operators
T : E — E, where F is a Banach space, we obtain inequalities for certain
quasinorms of operators.

1. INTRODUCTION AND AUXILIARY RESULTS

Let (X, [|||) be a unital normed algebra and let ||-||* : X — N U {oo} such
that [[z[|" =0 iff z =0, [z + y[" < [[=[|" + [ly[", and [Jzy||" < min {||=", [ly["}.

For an arbitrary z € X, the sequence of the approximation numbers (a,(z)),
is defined as follows

a,(z) =inf{||lz —7||: T € X, |7]|" <n},neN, (1.1)

and it is obvious that we have ||z| = ai(x) > as(x) > --- > 0.

Let X = L(FE) be the algebra of all linear and bounded operators T': E — E,
where F is a Banach space. We denote ||T||" = rank(T) = dim(T(E)), for
T e L(E).
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Remark 1.1. Tt is known that |[aT'||" = ||T||*, where a # 0 is a scalar and T €
L(FE). The same result for ax, x € X, using

laz[|” = [laex|” < min{[lae][", l=[|"} < [l=[

*
ol = | 3eae]| < min {1

where e is the unit of the algebra. (For normed (Banach) algebras it can see [9].)
Definition 1.2 ([1], [4], [3]). We denote by
K={z|zeR" :21>29>--->2,>0,n€N}.

and

—eaxr

ol < Jlaz”,

An application ® : K — R is called a symmetric norming function (also referred
to as symmetric gauge function or Schatten function in the literature) if it satisfies
the following conditions:

(1) &(x) >0, for all z € K, x # 0;
2) & (Az) = AP(x), for all A € Ry, and all z € K;;
)@ (z+y) < D(x)+ P(y), for all 2,y € K;
)

k k
5) If z, y € K and Y x; < Yy, forall k =1,...,n, then ®(z) < ®(y).

1=1 =1

Example 1.3. Some examples of symmetric norming functions are indicated
below.

n

(1) Ooo(z) = 21, Qp(x) = <Z xf)p ,p>1, where x = (21, -+, z,);

i=1
(2) If @ is a symmetric norming function and p > 1, then

1
D) : K — Ry, ) () = (O (2))7
where 27 = (2, -+, 2P), is also a symmetric norming function (see [3]).

In [7] it was shown that

@): 3 a0 01+ 22) <23 (a0 (01) +0 (22). k€N

(b) nZ::l an (x1372) <2 Zi: ( ) (xg), k € N.

For r € N; r > 2, using mathematical induction it can be shown that

@) S a (S )<T12§y%m>kem

[y

i=1 n=11%
k r
(b): Y a, (H xl) <2t Z Han(xl) ke N.
n=1 i=1 n=1i=

The factor 2"~1 in the above 1nequa11tles is not the best, and it can be improved
as follows.

Proposition 1.4. The following inequalities are true:
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()n;an<i) éz o (), k€ N;
@ 3 on (o) <7 5 Tan (o), ke

Proof. (1) For € > 0 arbitrarily fixed, it follows from (1.1) that there exist
T; € X such that |7;||" < n and ||z; — T < a, (z;) + E, fori=1,...,7.
T

Since

<Y O El < rin—1) <r(n—1)+1,

r *
27
i=1

we have

T T T T T
I (z ) P PSP S
=1 =1 =1 =1 =1

Since ¢ > 0 was arbitrarily fixed, the above inequality implies

Apr—(r—1) (Z :vz> < Zan (i) -

We have

(8 <5 5 (5

n=1 =1 n= ].J n 1 r+1

< Y.
n=1 i=1
(2) For ¢ > 0 arbitrarily fixed, from (1.1) it follows that there exist T; € X
such that ||7;||" < n and ||z; — 7| < ay, (7;) + ¢, fori=1,...,r.
We have
H HZCZ |:5U1H T; — T;)
i=1 i=2

+ E Ty 21Ty (i1 — Tig) - (2, — T) (H%) xr}

Since
r r—1 r—1 *
Ty (x; —T;) + Z Ty LT (Tig1 — Tiv1) -+ (X — Tp) + (H l’z) T,
i—2 i=2 i=1
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we have

Apr—(r—1) (H xz) <

i=1

H (zi — Ti)

Since € > 0 was arbitrarily chosen, the above inequality implies

Apr—(r—1) <H xz) < H Qp, (:Cz> .
=1 =1

< [tz =zl < T] (an (@) +9).
i=1 i=1

We obtain
k r k nr r
Yo (ll-) < % 3 o(I)
n=1 i=1 n=1j=(n—1)r+1 i=1
k r
< r Z Apr—(r—1) (H xz)
n=1 1=1
k T
< Y Jfan(@).
n=1 i=1

O

We remark that an inequality of type (1) is also true for the sequences of the
errors in approximation spaces (see [2] for this notion).
The above raises the following problem.

Problem 1.5. Is r the best constant in the inequalities in Proposition 1.47

Remark 1.6. In [6] it was shown that it may happen that

k

@ (S+T) £ (an(S) +an (1)),

1 n=1

for S,T € L(F) and k € N.

It is known (the Ky Fan inequality, see [1], [3], [5], [0]) that if in addition E is
a separable Hilbert space and S,T € L(FE) are compact operators then for any
k € N we have

N

3
Il

k k
Y ai(S+T) <> (an(S)+a,(T)).

Corollary 1.7. Forz;; € X, i =1,r, j=1,s, r, s € N we have

k r s k
Zan (ZHmZJ> STSZ | an (i), k € N.
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Proof. We have

k k T s
o (S0Ta) = 30 (1)
i=1 j=1 n=1 j=1
k r s k r s
< ZZ( Han $z3>27’52 an (2i5) -
1i=1 \ j=1 n=1 i=1 j=1
U
2. APPLICATIONS TO THE IDEALS Ag(X)
For z € X and ® a symmetric norming function, following [7], [8] we define
Ap(X)={z € X : & ({an(2)}) < o0},
where
O ({an(z)}) = lim @ (ay(x),...,a,(x)) =sup ® (ai(x),...,a,(x)).

n—oo neN

We note that Ag(X) is a bilateral ideal in X and the application z — ||z||, =
® ({a,(z)}), z € X, is a quasinorm on the vector space Ag(X).

Proposition 2.1. We have the following:

,
<r2llwlle, relN;
i=1

r
1

=T H ||‘riHcI>(p,) , T € N, where — = Z —

<I>(p) =1 ? ‘ .

Proof. The first statement follows from

o (£ (f£0)
< TZ ® ({an (2:)}) = T‘Z il -

For the second statement, we use the Holder inequality for @ (see [3]):

D ({z}) < Dy (1)) By (i), 1= }9 n ;

which can be generalized as follows (see [0]):

D) (sz><H<1> _Z—

=1 lez
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™ ({% (H%)D ({EW})

concluding the proof. O

We have

.
[z
i=1

Remark 2.2. If we consider the functions ®(,), 1 < p < oo, part (1) of the above

proposition yields
' T
> §7“2||5Ui||q>(p)>
i=1 i=1

2(p)
which is a Minkowski type inequality.
In the case of 0 < p < 1, @, is a quasinorm and in this case the Minkowski

type inequality is
T T
-1
dall <) leila,
i=1

i=1
Remark 2.3. If X = L(H), where H is a separable Hilbert space, then
Ap(H)={T € L(H) : ®(a,(T)) < oo}
are the Schatten classes (see [1], [3], [4], [5]), and it is known that
15+ Tlle < [1S]le + 1Tl

Using mathematical induction it can be shown that

' T
YT <D Tl
i=1 o =l

thus without the factor r in the right side.

P (p)

3. THE CASE OF SOME SPECIAL OPERATORS
We consider B : X x X — X a bilinear and bounded operator, i.e.
B (Mz1+ Axa,y) = MB(21,y) + XA B (22,y) ,
B (z, Miy1 + Aay2) = MB(z,y1) + MB(2,92) ,

where A\, Ay are scalars, and there exists M € R such that for every x,y € X we
have || B (z,y)|| < M - ||| - [[y[|
In addition, we assume that ||B (z,y)]|" < n? if [|z||" < n and |Jy||" < n.

Proposition 3.1. Forr,k e N and z;, y; € X, i =1,...,r, we have

| - n (% HyzH + 2 |zil] anly:)
Z —an (;B(xwyz)> < 3MTZZ

n=1 n=1 i=1
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Proof. For x,y € X and ¢ > 0 exist T, ¥ € X such that ||z]|" < n, ||y||" < n and
[z = 7| < an(2) + &, ly =7l < anly) +&.
Since || B (z,y)||" < n?, we obtain

1B (z,y) = B(z,9)| = |1B(x =7,y) + B(T,y = )|
M (lz =2 - Nyl + Izl - ly = l)

M [(an(x) + &) - [lyll + (|17 = 2| + [lz]]) - (an(y) +&)]
M [(an(x) + ) - [lyll + 2 [l - (an(y) + )],

a2 (B (z,y))

VAN VAN VANRVAN

and passing to the limit with ¢ — 0 we conclude

an2 (B (2,y)) < M [an(z) [lyll + 2[|z] an(y)]

We have

k a k+1)2 1 )) k (nH)Lla-(B(x y))
P D = ) — =
n=1 n=1 n=1 i=n2

Kk
<3y e (Bly) 2 (B( < 3MZ an(x HyH +2 ||zl an(y)

n=1

Kk k

Finally, since Z Uy < Z v, implies Z I <L Z % and using part (1) of

Proposition 1. 4 and the above mequahty, We obtam

IN

SR

n=1 =1

Z %an (ZB (4, yz))

n=1

k r
an (@) |yill + 2 ||| an(y:)
< 3M .

n=1 i=1

As an application, we have the following.

Application 3.2. Let ® be a symmetric norming function. We consider the ideal

Ag(X), where
B ({an(z)}) = @ <{“"(x) }) ., 1EX.
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For z;,y; € Ag(X),i=1,...,7, r € N, and B a bilinear operator as above,
we have

r 1 r
d|<a, Z B (z,y:) = & —an Z B (i, y:)
i=1 i=1

T

< 3Mrd Z

=1

an (@) |lyill + 2 ||zl an(y:)
n

r

< 3Mrz (Nwillg - Nwill + 2 |l - Nvillg)

i=1
T

< OMrY s yls
i=1

which shows that Y B (z;,y;) € Ag(X) and

=1

Y By <OMrYlzillg - llvils -
i=1 3

) =1
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