

Adv. Oper. Theory 4 (2019), no. 1, 156–163

https://doi.org/10.15352/aot.1802-1314

ISSN: 2538-225X (electronic) https://projecteuclid.org/aot

ON SOME INEQUALITIES FOR THE APPROXIMATION NUMBERS IN BANACH ALGEBRAS

NICOLAE TIŢA* and MARIA TALPĂU DIMITRIU

Communicated by M. Mathieu

ABSTRACT. In this paper, we generalize some inequalities for the approximation numbers of an element in a normed (Banach) algebra X and, as an application, we present inequalities for the quasinorms of some ideals defined by means of the approximation numbers.

In particular, if X=L(E) - the algebra of linear and bounded operators $T:E\longrightarrow E$, where E is a Banach space, we obtain inequalities for certain quasinorms of operators.

1. Introduction and auxiliary results

Let $(X, \|\cdot\|)$ be a unital normed algebra and let $\|\cdot\|^* : X \longrightarrow \mathbb{N} \cup \{\infty\}$ such that $\|x\|^* = 0$ iff x = 0, $\|x + y\|^* \le \|x\|^* + \|y\|^*$, and $\|xy\|^* \le \min\{\|x\|^*, \|y\|^*\}$.

For an arbitrary $x \in X$, the sequence of the approximation numbers $(a_n(x))_n$ is defined as follows

$$a_n(x) = \inf \left\{ \|x - \overline{x}\| : \overline{x} \in X, \|\overline{x}\|^* < n \right\}, n \in \mathbb{N}, \tag{1.1}$$

and it is obvious that we have $||x|| = a_1(x) \ge a_2(x) \ge \cdots \ge 0$.

Let X = L(E) be the algebra of all linear and bounded operators $T : E \longrightarrow E$, where E is a Banach space. We denote $||T||^* = rank(T) = dim(T(E))$, for $T \in L(E)$.

Copyright 2019 by the Tusi Mathematical Research Group.

Date: Received: Mar 5, 2018; Accepted: Apr. 19, 2018.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A63; Secondary 47A58, 46H10.

Key words and phrases. Banach algebra, ideal, approximation number.

Remark 1.1. It is known that $||aT||^* = ||T||^*$, where $a \neq 0$ is a scalar and $T \in L(E)$. The same result for $ax, x \in X$, using

$$||ax||^* = ||aex||^* \le \min\{||ae||^*, ||x||^*\} \le ||x||^*$$

and

$$||x||^* = \left\|\frac{1}{a}eax\right\|^* \le \min\left\{\left\|\frac{e}{a}\right\|^*, ||ax||^*\right\} \le ||ax||^*,$$

where e is the unit of the algebra. (For normed (Banach) algebras it can see [9].)

Definition 1.2 ([1], [4], [3]). We denote by

$$K = \{x \mid x \in \mathbb{R}^n : x_1 \ge x_2 \ge \dots \ge x_n > 0, n \in \mathbb{N}\}.$$

An application $\Phi: K \longrightarrow \mathbb{R}$ is called a symmetric norming function (also referred to as symmetric gauge function or Schatten function in the literature) if it satisfies the following conditions:

- (1) $\Phi(x) > 0$, for all $x \in K$, $x \neq 0$;
- (2) $\Phi(\lambda x) = \lambda \Phi(x)$, for all $\lambda \in \mathbb{R}_+$, and all $x \in K$;
- (3) $\Phi(x+y) \leq \Phi(x) + \Phi(y)$, for all $x, y \in K$;
- (4) $\Phi(1,0,\cdots,0)=1$;

(5) If
$$x, y \in K$$
 and $\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} y_i$, for all $k = 1, ..., n$, then $\Phi(x) \leq \Phi(y)$.

Example 1.3. Some examples of symmetric norming functions are indicated below.

(1)
$$\Phi_{\infty}(x) = x_1$$
, $\Phi_p(x) = \left(\sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}$, $p \ge 1$, where $x = (x_1, \dots, x_n)$;

(2) If Φ is a symmetric norming function and $p \geq 1$, then

$$\Phi_{(p)}: K \longrightarrow \mathbb{R}_+, \ \Phi_{(p)}(x) = (\Phi(x^p))^{\frac{1}{p}},$$

where $x^p = (x_1^p, \dots, x_n^p)$, is also a symmetric norming function (see [3]).

In [7] it was shown that

(a):
$$\sum_{n=1}^{k} a_n (x_1 + x_2) \le 2 \sum_{n=1}^{k} (a_n (x_1) + a_n (x_2)), k \in \mathbb{N};$$

(b):
$$\sum_{n=1}^{k} a_n(x_1 x_2) \le 2 \sum_{n=1}^{k} a_n(x_1) a_n(x_2), k \in \mathbb{N}.$$

For $r \in \mathbb{N}$, $r \geq 2$, using mathematical induction it can be shown that

(a'):
$$\sum_{n=1}^{k} a_n \left(\sum_{i=1}^{r} x_i \right) \le 2^{r-1} \sum_{n=1}^{k} \sum_{i=1}^{r} a_n (x_i), k \in \mathbb{N};$$

(b'):
$$\sum_{n=1}^{k} a_n \left(\prod_{i=1}^{r} x_i \right) \le 2^{r-1} \sum_{n=1}^{k} \prod_{i=1}^{r} a_n (x_i), k \in \mathbb{N}.$$

The factor 2^{r-1} in the above inequalities is not the best, and it can be improved as follows.

Proposition 1.4. The following inequalities are true:

(1)
$$\sum_{n=1}^{k} a_n \left(\sum_{i=1}^{r} x_i \right) \le r \sum_{n=1}^{k} \sum_{i=1}^{r} a_n (x_i), k \in \mathbb{N};$$

$$(2) \sum_{n=1}^{k} a_n \left(\prod_{i=1}^{r} x_i \right) \le r \sum_{n=1}^{k} \prod_{i=1}^{r} a_n \left(x_i \right), \ k \in \mathbb{N}.$$

Proof. (1) For $\varepsilon > 0$ arbitrarily fixed, it follows from (1.1) that there exist $\overline{x}_i \in X$ such that $\|\overline{x}_i\|^* < n$ and $\|x_i - \overline{x}_i\| \le a_n(x_i) + \frac{\varepsilon}{r}$, for $i = 1, \ldots, r$. Since

$$\left\| \sum_{i=1}^{r} \overline{x}_{i} \right\|^{*} \leq \sum_{i=1}^{r} \left\| \overline{x}_{i} \right\|^{*} \leq r(n-1) < r(n-1) + 1,$$

we have

$$a_{nr-(r-1)}\left(\sum_{i=1}^{r} x_i\right) \le \left\|\sum_{i=1}^{r} x_i - \sum_{i=1}^{r} \overline{x}_i\right\| \le \sum_{i=1}^{r} \|x_i - \overline{x}_i\| \le \sum_{i=1}^{r} a_n(x_i) + \varepsilon.$$

Since $\varepsilon > 0$ was arbitrarily fixed, the above inequality implies

$$a_{nr-(r-1)}\left(\sum_{i=1}^{r} x_i\right) \le \sum_{i=1}^{r} a_n\left(x_i\right).$$

We have

$$\sum_{n=1}^{k} a_n \left(\sum_{i=1}^{r} x_i \right) \leq \sum_{n=1}^{k} \sum_{j=(n-1)r+1}^{nr} a_j \left(\sum_{i=1}^{r} x_i \right)$$

$$\leq r \sum_{n=1}^{k} a_{nr-(r-1)} \left(\sum_{i=1}^{r} x_i \right)$$

$$\leq r \sum_{n=1}^{k} \sum_{i=1}^{r} a_n \left(x_i \right).$$

(2) For $\varepsilon > 0$ arbitrarily fixed, from (1.1) it follows that there exist $\overline{x}_i \in X$ such that $\|\overline{x}_i\|^* < n$ and $\|x_i - \overline{x}_i\| \le a_n(x_i) + \varepsilon$, for $i = 1, \ldots, r$. We have

$$\prod_{i=1}^{r} (x_i - \overline{x}_i) = \prod_{i=1}^{r} x_i - \left[\overline{x}_1 \prod_{i=2}^{r} (x_i - \overline{x}_i) + \sum_{i=2}^{r-1} x_1 \cdots x_{i-1} \overline{x}_i (x_{i+1} - \overline{x}_{i+1}) \cdots (x_r - \overline{x}_r) + \left(\prod_{i=1}^{r-1} x_i \right) \overline{x}_r \right].$$

Since

$$\left\| \overline{x}_1 \prod_{i=2}^r (x_i - \overline{x}_i) + \sum_{i=2}^{r-1} x_1 \cdots x_{i-1} \overline{x}_i (x_{i+1} - \overline{x}_{i+1}) \cdots (x_r - \overline{x}_r) + \left(\prod_{i=1}^{r-1} x_i \right) \overline{x}_r \right\|^*$$

$$< r(n-1) + 1,$$

we have

$$a_{nr-(r-1)}\left(\prod_{i=1}^{r} x_i\right) \leq \left\|\prod_{i=1}^{r} \left(x_i - \overline{x}_i\right)\right\| \leq \prod_{i=1}^{r} \left\|x_i - \overline{x}_i\right\| \leq \prod_{i=1}^{r} \left(a_n\left(x_i\right) + \varepsilon\right).$$

Since $\varepsilon > 0$ was arbitrarily chosen, the above inequality implies

$$a_{nr-(r-1)}\left(\prod_{i=1}^{r} x_i\right) \le \prod_{i=1}^{r} a_n\left(x_i\right).$$

We obtain

$$\sum_{n=1}^{k} a_n \left(\prod_{i=1}^{r} x_i \right) \leq \sum_{n=1}^{k} \sum_{j=(n-1)r+1}^{nr} a_j \left(\prod_{i=1}^{r} x_i \right)$$

$$\leq r \sum_{n=1}^{k} a_{nr-(r-1)} \left(\prod_{i=1}^{r} x_i \right)$$

$$\leq r \sum_{n=1}^{k} \prod_{i=1}^{r} a_n \left(x_i \right).$$

We remark that an inequality of type (1) is also true for the sequences of the errors in approximation spaces (see [2] for this notion).

The above raises the following problem.

Problem 1.5. Is r the best constant in the inequalities in Proposition 1.4?

Remark 1.6. In [6] it was shown that it may happen that

$$\sum_{n=1}^{k} a_n (S+T) \nleq \sum_{n=1}^{k} (a_n (S) + a_n (T)),$$

for $S, T \in L(E)$ and $k \in \mathbb{N}$.

It is known (the Ky Fan inequality, see [1], [3], [5], [6]) that if in addition E is a separable Hilbert space and $S, T \in L(E)$ are compact operators then for any $k \in \mathbb{N}$ we have

$$\sum_{n=1}^{k} a_n (S+T) \le \sum_{n=1}^{k} (a_n (S) + a_n (T)).$$

Corollary 1.7. For $x_{ij} \in X$, $i = \overline{1, r}$, $j = \overline{1, s}$, $r, s \in \mathbb{N}$ we have

$$\sum_{n=1}^{k} a_n \left(\sum_{i=1}^{r} \prod_{j=1}^{s} x_{ij} \right) \le rs \sum_{n=1}^{k} \sum_{i=1}^{r} \prod_{j=1}^{s} a_n (x_{ij}), \qquad k \in \mathbb{N}.$$

Proof. We have

$$\sum_{n=1}^{k} a_n \left(\sum_{i=1}^{r} \prod_{j=1}^{s} x_{ij} \right) \leq r \sum_{n=1}^{k} \sum_{i=1}^{r} a_n \left(\prod_{j=1}^{s} x_{ij} \right)$$

$$\leq r \sum_{n=1}^{k} \sum_{i=1}^{r} \left(s \prod_{j=1}^{s} a_n \left(x_{ij} \right) \right) = r s \sum_{n=1}^{k} \sum_{i=1}^{r} \prod_{j=1}^{s} a_n \left(x_{ij} \right).$$

2. Applications to the ideals $A_{\Phi}(X)$

For $x \in X$ and Φ a symmetric norming function, following [7], [8] we define

$$A_{\Phi}(X) = \{x \in X : \Phi(\{a_n(x)\}) < \infty\},\$$

where

$$\Phi\left(\left\{a_n(x)\right\}\right) = \lim_{n \to \infty} \Phi\left(a_1(x), \dots, a_n(x)\right) = \sup_{n \in \mathbb{N}} \Phi\left(a_1(x), \dots, a_n(x)\right).$$

We note that $A_{\Phi}(X)$ is a bilateral ideal in X and the application $x \mapsto ||x||_{\Phi} = \Phi(\{a_n(x)\}), x \in X$, is a quasinorm on the vector space $A_{\Phi}(X)$.

Proposition 2.1. We have the following:

(1)
$$\left\| \sum_{i=1}^{r} x_{i} \right\|_{\Phi} \leq r \sum_{i=1}^{r} \left\| x_{i} \right\|_{\Phi}, \ r \in \mathbb{N};$$
(2)
$$\left\| \prod_{i=1}^{r} x_{i} \right\|_{\Phi_{(p)}} \leq r \prod_{i=1}^{r} \left\| x_{i} \right\|_{\Phi_{(p_{i})}}, \ r \in \mathbb{N}, \ where \ \frac{1}{p} = \sum_{i=1}^{r} \frac{1}{p_{i}}.$$

Proof. The first statement follows from

$$\left\| \sum_{i=1}^{r} x_{i} \right\|_{\Phi} = \Phi\left(\left\{ a_{n} \left(\sum_{i=1}^{r} x_{i} \right) \right\} \right) \leq r \Phi\left(\left\{ \sum_{i=1}^{r} a_{n} \left(x_{i} \right) \right\} \right)$$

$$\leq r \sum_{i=1}^{r} \Phi\left(\left\{ a_{n} \left(x_{i} \right) \right\} \right) = r \sum_{i=1}^{r} \left\| x_{i} \right\|_{\Phi}.$$

For the second statement, we use the Hölder inequality for Φ (see [3]):

$$\Phi(\{x_i y_i\}) \le \Phi_{(p)}(\{x_i\}) \Phi_{(q)}(\{y_i\}), \qquad 1 = \frac{1}{p} + \frac{1}{q},$$

which can be generalized as follows (see [6]):

$$\Phi_{(p)}\left(\prod_{i=1}^{r} z_i\right) \le \prod_{i=1}^{r} \Phi_{(p_i)}(z_i), \qquad \frac{1}{p} = \sum_{i=1}^{r} \frac{1}{p_i}.$$

We have

$$\left\| \prod_{i=1}^{r} x_{i} \right\|_{\Phi_{(p)}} = \Phi_{(p)} \left(\left\{ a_{n} \left(\prod_{i=1}^{r} x_{i} \right) \right\} \right) \leq r \Phi_{(p)} \left(\left\{ \prod_{i=1}^{r} a_{n} \left(x_{i} \right) \right\} \right)$$

$$\leq r \prod_{i=1}^{r} \Phi_{(p_{i})} \left(\left\{ a_{n} \left(x_{i} \right) \right\} \right) = r \prod_{i=1}^{r} \left\| x_{i} \right\|_{\Phi_{(p_{i})}},$$

concluding the proof.

Remark 2.2. If we consider the functions $\Phi_{(p)}$, $1 \leq p < \infty$, part (1) of the above proposition yields

$$\left\| \sum_{i=1}^{r} x_i \right\|_{\Phi_{(p)}} \le r \sum_{i=1}^{r} \|x_i\|_{\Phi_{(p)}},$$

which is a Minkowski type inequality.

In the case of $0 , <math>\Phi_{(p)}$ is a quasinorm and in this case the Minkowski type inequality is

$$\left\| \sum_{i=1}^{r} x_i \right\|_{\Phi_{(p)}} \le r^{\frac{2}{p}-1} \sum_{i=1}^{r} \|x_i\|_{\Phi_{(p)}}.$$

Remark 2.3. If X = L(H), where H is a separable Hilbert space, then

$$A_{\Phi}(H) = \{ T \in L(H) : \Phi\left(a_n(T)\right) < \infty \}$$

are the Schatten classes (see [1], [3], [4], [5]), and it is known that

$$||S + T||_{\Phi} \le ||S||_{\Phi} + ||T||_{\Phi}$$
.

Using mathematical induction it can be shown that

$$\left\| \sum_{i=1}^{r} T_{i} \right\|_{\Phi} \leq \sum_{i=1}^{r} \|T_{i}\|_{\Phi},$$

thus without the factor r in the right side.

3. The case of some special operators

We consider $B: X \times X \longrightarrow X$ a bilinear and bounded operator, i.e.

$$B(\lambda_{1}x_{1} + \lambda_{2}x_{2}, y) = \lambda_{1}B(x_{1}, y) + \lambda_{2}B(x_{2}, y), B(x, \lambda_{1}y_{1} + \lambda_{2}y_{2}) = \lambda_{1}B(x, y_{1}) + \lambda_{2}B(x, y_{2}),$$

where λ_1, λ_2 are scalars, and there exists $M \in \mathbb{R}$ such that for every $x, y \in X$ we have $||B(x, y)|| \leq M \cdot ||x|| \cdot ||y||$.

In addition, we assume that $||B(x,y)||^* < n^2$ if $||x||^* < n$ and $||y||^* < n$.

Proposition 3.1. For $r, k \in \mathbb{N}$ and $x_i, y_i \in X$, i = 1, ..., r, we have

$$\sum_{n=1}^{k} \frac{1}{n} a_n \left(\sum_{i=1}^{r} B(x_i, y_i) \right) \le 3Mr \sum_{n=1}^{k} \sum_{i=1}^{r} \frac{a_n(x_i) \|y_i\| + 2 \|x_i\| a_n(y_i)}{n}.$$

Proof. For $x, y \in X$ and $\varepsilon > 0$ exist \overline{x} , $\overline{y} \in X$ such that $||x||^* < n$, $||y||^* < n$ and $||x - \overline{x}|| \le a_n(x) + \varepsilon$, $||y - \overline{y}|| \le a_n(y) + \varepsilon$. Since $||B(x, y)||^* < n^2$, we obtain

$$a_{n^{2}}(B(x,y)) \leq \|B(x,y) - B(\overline{x},\overline{y})\| = \|B(x - \overline{x},y) + B(\overline{x},y - \overline{y})\|$$

$$\leq M(\|x - \overline{x}\| \cdot \|y\| + \|\overline{x}\| \cdot \|y - \overline{y}\|)$$

$$\leq M[(a_{n}(x) + \varepsilon) \cdot \|y\| + (\|\overline{x} - x\| + \|x\|) \cdot (a_{n}(y) + \varepsilon)]$$

$$\leq M[(a_{n}(x) + \varepsilon) \cdot \|y\| + 2\|x\| \cdot (a_{n}(y) + \varepsilon)],$$

and passing to the limit with $\varepsilon \to 0$ we conclude

$$a_{n^2}(B(x,y)) \le M[a_n(x) ||y|| + 2 ||x|| a_n(y)].$$

We have

$$\sum_{n=1}^{k} \frac{a_n (B(x,y))}{n} \le \sum_{n=1}^{(k+1)^2 - 1} \frac{a_n (B(x,y))}{n} = \sum_{n=1}^{k} \sum_{i=n^2}^{(n+1)^2 - 1} \frac{a_i (B(x,y))}{i}$$
$$\le 3 \sum_{n=1}^{k} \frac{a_{n^2} (B(x,y))}{n} \le 3M \sum_{n=1}^{k} \frac{a_n(x) \|y\| + 2 \|x\| a_n(y)}{n}.$$

Finally, since $\sum_{n=1}^k u_n \leq \sum_{n=1}^k v_n$ implies $\sum_{n=1}^k \frac{u_n}{n} \leq \sum_{n=1}^k \frac{v_n}{n}$, and using part (1) of Proposition 1.4 and the above inequality, we obtain

$$\sum_{n=1}^{k} \frac{1}{n} a_n \left(\sum_{i=1}^{r} B(x_i, y_i) \right) \leq r \sum_{n=1}^{k} \sum_{i=1}^{r} \frac{a_n (B(x_i, y_i))}{n}$$

$$\leq 3Mr \sum_{n=1}^{k} \sum_{i=1}^{r} \frac{a_n(x_i) \|y_i\| + 2 \|x_i\| a_n(y_i)}{n}.$$

As an application, we have the following.

Application 3.2. Let Φ be a symmetric norming function. We consider the ideal $A_{\overline{\Phi}}(X)$, where

$$\overline{\Phi}\left(\left\{a_n(x)\right\}\right) = \Phi\left(\left\{\frac{a_n(x)}{n}\right\}\right), \quad x \in X.$$

For $x_i, y_i \in A_{\overline{\Phi}}(X)$, $i = 1, ..., r, r \in \mathbb{N}$, and B a bilinear operator as above, we have

$$\overline{\Phi}\left(\left\{a_{n}\left(\sum_{i=1}^{r}B\left(x_{i},y_{i}\right)\right)\right\}\right) = \Phi\left(\left\{\frac{1}{n}a_{n}\left(\sum_{i=1}^{r}B\left(x_{i},y_{i}\right)\right)\right\}\right) \\
\leq 3Mr\Phi\left(\left\{\sum_{i=1}^{r}\frac{a_{n}(x_{i})\|y_{i}\|+2\|x_{i}\|a_{n}(y_{i})}{n}\right\}\right) \\
\leq 3Mr\sum_{i=1}^{r}\left(\|x_{i}\|_{\overline{\Phi}}\cdot\|y_{i}\|+2\|x_{i}\|\cdot\|y_{i}\|_{\overline{\Phi}}\right), \\
\leq 9Mr\sum_{i=1}^{r}\|x_{i}\|_{\overline{\Phi}}\cdot\|y_{i}\|_{\overline{\Phi}},$$

which shows that $\sum_{i=1}^{r} B(x_i, y_i) \in A_{\overline{\Phi}}(X)$ and

$$\left\| \sum_{i=1}^r B(x_i, y_i) \right\|_{\overline{\Phi}} \le 9Mr \sum_{i=1}^r \|x_i\|_{\overline{\Phi}} \cdot \|y_i\|_{\overline{\Phi}}.$$

Acknowledgments. The authors thank to the reviewers whose suggestions have improved the form of this paper.

References

- I. Gohberg, M. Krein, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18
 American Mathematical Society, Providence, R.I. 1969
- J. Peetre, G. Sparr, Interpolation of normed Abelian groups, Ann. Mat. Pura Appl. (4) 12 (1972), 216–262.
- N. Salinas, Symmetric norm ideals and relative conjugate ideal, Trans. Amer. Math. Soc. 188 (1974), no. 2, 213–240.
- 4. R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 27 Springer-Verlag, Berlin-Göttingen-Heidelberg 1960
- 5. B. Simon, *Trace ideals and their applications*, London Mathematical Society Lecture Note Series, 35. Cambridge University Press, Cambridge-New York, 1979.
- N. Tia, Operator Ideals generated by s-numbers (in Romanian), Editura Univ. Transilvania Brasov, 1998.
- 7. N. Tia, A general view on approximation ideals, Functional analysis and its applications, 295–300, North-Holland Math. Stud., 197, Elsevier Sci. B. V., Amsterdam, 2004.
- 8. N. Tia, Subclasses of compact operators in Banach spaces, Proceedings of the Conference Classical and Functional Analysis, Buşteni, September 3th 6th 2014 (2015), series 2-3, Transilvania University Press, 17-31.
- 9. K. Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. 123. 3rd ed. Berlin-Heidelberg-New York: Springer-Verlag, 1971.

DEPARTMENT OF MATHEMATICS AND INFORMATICS, TRANSILVANIA UNIVERSITY OF BRAŞOV, EROILOR 29, 500 036 BRAŞOV, ROMANIA.

E-mail address: ttnc07@gmail.com E-mail address: mdimitriu@unitbv.ro