

Adv. Oper. Theory 3 (2018), no. 3, 731–744 https://doi.org/10.15352/aot.1804-1343 ISSN: 2538-225X (electronic) https://projecteuclid.org/aot

CHARACTERIZING PROJECTIONS AMONG POSITIVE OPERATORS IN THE UNIT SPHERE

ANTONIO M. PERALTA

Communicated by M. S. Moslehian

ABSTRACT. Let E and P be subsets of a Banach space X, and let us define the unit sphere around E in P as the set

 $Sph(E; P) := \{x \in P : ||x - b|| = 1 \text{ for all } b \in E\}.$

Given a C^* -algebra A and a subset $E \subset A$, we shall write $Sph^+(E)$ or $Sph^+_A(E)$ for the set $Sph(E; S(A^+))$, where $S(A^+)$ denotes the unit sphere of A^+ . We prove that, for every complex Hilbert space H, the following statements are equivalent for every positive element a in the unit sphere of B(H):

(a) a is a projection;

(b) $Sph_{B(H)}^+(Sph_{B(H)}^+(\{a\})) = \{a\}.$

We also prove that the equivalence remains true when B(H) is replaced with an atomic von Neumann algebra or with $K(H_2)$, where H_2 is an infinitedimensional and separable complex Hilbert space.

1. INTRODUCTION

In a recent attempt to solve a variant of Tingley's problem for surjective isometries of the set formed by all positive operators in the unit sphere of $M_n(\mathbb{C})$, the space of all $n \times n$ complex matrices endowed with the spectral norm; G. Nagy has established an interesting characterization of those positive norm-one elements in $M_n(\mathbb{C})$ which are projections (see the final paragraph in the proof of [10, Claim 1]). Motivated by the terminology employed by Nagy in the just quoted paper,

Copyright 2018 by the Tusi Mathematical Research Group.

Date: Received: Apr. 1, 2018; Accepted: Apr. 11, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A05; Secondary 47L30, 46L05.

Key words and phrases. Projection, unit sphere around a subset, bounded linear operator, compact linear operator.

we introduce here the notion of *unit sphere around a subset* in a Banach space. Let E and P be subsets of a Banach space X. We define the *unit sphere around* E in P as the set

$$Sph(E; P) := \{x \in P : ||x - b|| = 1 \text{ for all } b \in E\}.$$

If x is an element in X, we write Sph(x; P) for $Sph(\{x\}; P)$. Henceforth, given a Banach space X, let S(X) denote the unit sphere of X. The cone of positive elements in a C^* -algebra A will be denoted by A^+ . If M is a subset of X, we shall write S(M) for $M \cap S(X)$. To simplify the notation, given a C^* -algebra A and a subset $E \subset A$, we shall write $Sph^+(E)$ or $Sph^+_A(E)$ for the set $Sph(E; S(A^+))$. For each element a in A, we shall write $Sph^+(a)$ instead of $Sph^+(\{a\})$.

Let a be a positive norm-one element in $B(\ell_2^n) = M_n(\mathbb{C})$. The commented characterization established by Nagy proves that the following two statements are equivalent:

$$(i) a$$
 is a projection;

(i)
$$Sph^+_{M_n(\mathbb{C})}\left(Sph^+_{M_n(\mathbb{C})}(a)\right) = \{a\},$$

$$(1.1)$$

(see the final paragraph in the proof of [10, Claim 1]). As remarked by G. Nagy in [10, §3], the previous characterization (and the whole statement in [10, Claim 1]) remains as an open problem when H is an arbitrary complex Hilbert space. This is an interesting problem to be considered in operator theory and in the wider setting of general C^* -algebras.

In this note we extend the characterization in (1.1) to the case in which H is an arbitrary complex Hilbert space. In a first result we prove that, for any positive element a in the unit sphere of a C^* -algebra A, the equality $Sph_A^+(Sph_A^+(a)) = \{a\}$ is a sufficient condition to guarantee that a is a projection in A (see Proposition 2.2). In Theorem 2.3 we extend Nagy's characterization to the setting of atomic von Neumann algebras by showing that the following statements are equivalent for every positive norm-one element a in an atomic von Neumann algebra M (in particular when M = B(H), where H is an arbitrary complex Hilbert space):

- (a) a is a projection;
- (b) $Sph_M^+(Sph_M^+(a)) = \{a\}.$

We shall also explore whether the above characterization also holds when M is replaced with K(H), the space of all compact operators on a complex Hilbert space H. Our conclusion in this case is the following: Let H_2 be a separable complex Hilbert space, and suppose that a is a positive norm-one element in $K(H_2)$. Then the following statements are equivalent:

- (a) a is a projection;
- (b) $Sph_{K(H_2)}^+\left(Sph_{K(H_2)}^+(a)\right) = \{a\}.$

When H is a finite-dimensional complex Hilbert space, Nagy computed in [10] the second unit sphere around a positive element in the unit sphere of $B(H)^+$ and showed that the identity

$$Sph_{B(H)}^{+}\left(Sph_{B(H)}^{+}(a)\right) = \begin{cases} b \in S(B(H)^{+}) : & \operatorname{Fix}(a) \subseteq \operatorname{Fix}(b), \\ \text{and } \ker(a) \subseteq \ker(b) \end{cases}$$

holds for every element a in $S(B(H)^+)$, where for each a in $S(B(H)^+)$ we set $Fix(a) = \{\xi \in H : a(\xi) = \xi\}$, (see the beginning of the proof of [10, Claim 1]). In Theorem 2.8 we establish a generalization of this fact to the setting of compact operators. We prove that if H_2 is a separable infinite-dimensional complex Hilbert space, then the identity

$$Sph_{K(H_2)}^+\left(Sph_{K(H_2)}^+(a)\right) = \left\{b \in S(K(H_2)^+) : \frac{s_{K(H_2)}(a) \le s_{K(H_2)}(b)}{1 - r_{B(H_2)}(a) \le 1 - r_{B(H_2)}(b)}\right\},\$$

holds for every a in the unit sphere of $K(H_2)^+$, where $r_{B(H_2)}(a)$ and $s_{K(H_2)}(a)$ stand for the range and support projections of a in $B(H_2)$ and $K(H_2)$, respectively.

As we have already commented at the beginning of this introduction, the characterization obtained by Nagy in (1.1) is one of the key results to establish that every surjective isometry $\Delta : S(M_n(\mathbb{C})^+) \to S(M_n(\mathbb{C})^+)$ admits an extension to a surjective real linear or complex linear isometry on $M_n(\mathbb{C})$ (see [10, Theorem]). Another related results are known when $M_n(\mathbb{C}) = B(\ell_2^n)$ is replaced with the space $(C_p(H), \|\cdot\|_p)$ of all *p*-Schatten–von Neumann operators on a complex Hilbert space H, with $1 \leq p < \infty$. L. Molnár and W. Timmermann proved that for every complex Hilbert space H, every surjective isometry $\Delta : S(C_1(H)^+) \to S(C_1(H)^+)$ can be extended to a surjective complex linear isometry on $C_1(H)$ (see [7]). Nagy showed in [9, Theorem 1] that the same conclusion remains true for every 1 .

The results commented in the previous paragraph are subtle variants of the socalled Tingley's problem. This problem asks whether every surjective isometry between the unit spheres of two Banach spaces X and Y admits an extension to a surjective real linear isometry from X onto Y. Tingley's problem remains open after thirty years. However, in what concerns operator algebras, certain positive solutions to this problem have been recently established in the setting of finite-dimensional C^* -algebras and finite von Neumann algebras [16, 17], spaces of compact linear operators and compact C^* -algebras [13], B(H) spaces [4] (see also [3]), a wide family of von Neumann algebras [6], spaces of trace class operators [1], preduals of von Neumann algebras [8], and spaces of p-Schatten von Neumann operators with 2 [2]. The reader is referred to the survey [12] foradditional details.

After completing the description of all surjective isometries on $S(M_n(\mathbb{C})^+)$, Nagy conjectured that a similar result should also hold for surjective isometries on $S(B(H)^+)$, where H is an arbitrary complex Hilbert space (see [10, §3]). The results presented in this note are a first step towards a proof of Nagy's conjecture.

2. The results

Let us fix some notation. Along the paper, the closed unit ball and the dual space of a Banach space X will be denoted by \mathcal{B}_X and X^* , respectively. Given a subset $B \subset X$, we shall write \mathcal{B}_B for $\mathcal{B}_X \cap B$.

The cone of positive elements in a C^* -algebra A will be denoted by A^+ , while the symbol $(A^*)^+$ will stand for the set of positive functionals on A. A state of Ais a positive functional in $S(A^*)$. The set of states of A will be denoted by S_A . It

A.M. PERALTA

is well known that $\mathcal{B}_{(A^*)^+} = \mathcal{B}_{A^*} \cap (A^*)^+$ is a weak*-closed convex subset of \mathcal{B}_{A^*} . The set of *pure states* of A is precisely the set $\partial_e(\mathcal{B}_{(A^*)^+})$ of all extreme points of $\mathcal{B}_{(A^*)^+}$ (see [11, §3.2]).

Suppose a is a positive element in the unit sphere of a von Neumann algebra M. The range projection of a in M (denoted by r(a)) is the smallest projection p in M satisfying ap = a. It is known that the sequence $((1/n\mathbf{1} + a)^{-1}a)_n$ is monotone increasing to r(a), and hence it converges to r(a) in the weak*-topology of M. Actually, r(a) also coincides with the weak*-limit of the sequence $(a^{1/n})_n$ in M (see [11, 2.2.7]). It is also known that the sequence $(a^n)_n$ converges to a projection $s(a) = s_M(a)$ in M, which is called the support projection of a in M. Unfortunately, the support projection of a norm-one element in M might be zero. For example, let $\{\xi_n : n \in \mathbb{N}\}$ denote an orthonormal basis of ℓ_2 , and let a be the

positive operator in $B(\ell_2)$ given by $a = \sum_{m=1}^{\infty} \frac{m}{m+1} p_m$, where, for each m, p_m is the rank one projection $\xi_m \otimes \xi_m$. It is not hard to check that $s_{B(\ell_2)}(a) = 0$.

Elements a and b in a C^{*}-algebra A are called orthogonal (written $a \perp b$) if

ab^{*} = b^{*}a = 0. It is known that $||a + b|| = \max\{||a||, ||b||\}$ for every $a, b \in A$ with $a \perp b$. Clearly, self-adjoint elements $a, b \in A$ are orthogonal if and only if ab = 0.

We recall some geometric properties of C^* -algebras. Let p be a projection in a unital C^* -algebra A. Suppose that $x \in S(A)$ satisfies pxp = p; then

$$x = p + (1 - p)x(1 - p),$$
(2.1)

(see, for example, [5, Lemma 3.1]). Another property needed later reads as follows: Suppose that $b \in A^+$ satisfies pbp = 0; then

$$pb = bp = 0$$
, equivalently, $p \perp b$. (2.2)

To see this property let us take a positive $c \in A$ satisfying $c^2 = b$. The identity $0 \leq (pc)(pc)^* = pc^2p = pbp = 0$ and the Gelfand-Naimark axiom imply that pc = cp = 0, and hence $pb = pc^2 = 0 = c^2p = bp$.

A nonzero projection p in a C^* -algebra A is called minimal if $pAp = \mathbb{C}p$. A von Neumann algebra M is called atomic if it coincides with the weak^{*} closure of the linear span of its minimal projections. It is known from the structure theory of von Neumann algebras that every atomic von Neumann algebra M can be written in the form $M = \bigoplus_{j=1}^{\ell_{\infty}} B(H_j)$, where each H_j is a complex Hilbert space (compare [14, §2.2] or [15, §V.1]).

Let p be a nonzero projection in an atomic von Neumann algebra $M = \bigoplus_{j=1}^{\ell_{\infty}} B(H_j)$. In this case we can always find a family (q_{λ}) of mutually orthogonal minimal projections in M such that $p = w^* - \sum_{j=1}^{\infty} q_{\lambda}$ (compare [14, Definition 1.13.4]). Fur-

thermore, p is the least upper bound of the set of all minimal projections in M which are smaller than or equal to p.

The bidual, A^{**} , of a C^* -algebra A is a von Neumann algebra whose predual contains an abundant collection of pure states of A. This geometric advantage implies that the support projection in A^{**} of every element in $S(A^+)$ is a nonzero projection. Namely, if a lies in $S(A^+)$ it is well known that we can find a pure state $\phi \in \partial_e(\mathcal{B}_{(A^*)^+})$ satisfying $\phi(a) = 1$. Pure states in A^* are in one-to-one correspondence with minimal projections in A^{**} ; more concretely, for each $\phi \in$ $\partial_e(\mathcal{B}_{(A^*)^+})$ there exists a unique minimal partial isometry $p_{\phi} \in A^{**}$ satisfying $\phi(p_{\phi}) = 1$ and $p_{\phi}xp_{\phi} = \phi(x)p_{\phi}$ for all $x \in M$ (see [11, Proposition 3.13.6]). The projection p_{ϕ} is called the support projection of ϕ . Since A is weak*-dense in A^{**} and the product of the latter von Neumann algebra is separately weak*continuous (see [11, Proposition 3.6.2 and Remark 3.6.5] or [14, Theorem 1.7.8]), it can be easily seen that every minimal projection in A is minimal in A^{**} .

Let *a* be a positive norm-one element in a C^* -algebra *A*. Let us take a state $\phi \in S_A$ satisfying $\phi(a) = 1$ (compare [14, Proposition 1.5.4 and its proof]). The set $\{\psi \in \mathcal{B}_{(A^*)^+} : \psi(a) = 1\}$ is a nonempty weak^{*} closed convex subset of \mathcal{B}_{A^*} . By the Krein–Milman theorem there exists $\varphi \in \partial_e(\mathcal{B}_{(A^*)^+})$ belonging to the previous set, and hence $\varphi(a) = 1$. We consider the support projection p_{φ} of φ in A^{**} , which is a minimal projection. The condition $\varphi(a) = 1$ implies $p_{\varphi} = p_{\varphi} a p_{\varphi}$, and (2.1) assures that $a = p_{\varphi} + (1 - p_{\varphi})a(1 - p_{\varphi})$, and thus $0 \neq p_{\varphi} \leq s_{A^{**}}(a)$. We can therefore deduce that

$$s_{A^{**}}(a) \neq 0 \qquad \text{for all } a \in S(A^+). \tag{2.3}$$

In order to recall the connections with Nagy's paper, we observe that, given a norm-one positive operator a in B(H), we denote $\operatorname{Fix}(a) = \{\xi \in H : a(\xi) = \xi\}$, and we write p_a for the projection of H onto $\operatorname{Fix}(a)$. Since $a = p_a + (1 - p_a)a(1 - p_a)$, it follows that p_a is smaller than or equal to the support projection of a in $B(H)^{**}$. In some cases, p_a may be zero while $s_{B(H)^{**}}(a) \neq 0$. When H is finite dimensional p_a and s(a) coincide. If we take a positive norm-one element in the space K(H) of all compact operators on H, the element $s_{B(H)}(a) = s_{K(H)^{**}}(a) = p_a$ is a (nonzero) finite rank projection and lies in K(H). We shall write $s_{K(H)}(a)$.

If p is a nonzero projection in a C^* -algebra A, then

for each a in $S(A^+)$ such that $p \leq a$, we have $a = p + (\mathbf{1} - p)a(\mathbf{1} - p)$.

Namely, under the above hypothesis, we also have $p \leq a$ in the von Neumann algebra A^{**} . It follows that $p \leq s_{A^{**}}(a) \leq a$, and hence $s_{A^{**}}(a) - p$ is a projection in A^{**} which is orthogonal to p. Since $a = s_{A^{**}}(a) + (\mathbf{1} - s_{A^{**}}(a))a(\mathbf{1} - s_{A^{**}}(a))$, we have $pap = ps_{A^{**}}(a)p = p$, and thus $a = p + (\mathbf{1} - p)a(\mathbf{1} - p)$ (compare (2.1)).

It is part of the folklore in the theory of C^* -algebras that the distance between two positive elements a and b in the closed unit ball of a C^* -algebra A is bounded by one. Namely, since $-1 \leq -b \leq a - b \leq a \leq 1$, we deduce that $||a - b|| \leq 1$.

In our first result, which is an infinite-dimensional version of [10, Corollary], we establish a precise description of those pairs of elements in $S(A^+)$ whose distance is exactly one.

Lemma 2.1. Let A be a C^{*}-algebra, and let a and b be elements in $S(A^+)$. Then ||a - b|| = 1 if and only if there exists a minimal projection e in A^{**} such that one of the following statements holds:

(a) $e \leq a$ and $e \perp b$ in A^{**} ; (b) $e \leq b$ and $e \perp a$ in A^{**} .

Proof. Let us first assume that ||a - b|| = 1. Arguing as in the proof of (2.3), we can find $\varphi \in \partial_e(\mathcal{B}_{(A^*)^+})$ such that $|\varphi(a - b)| = 1$. Since $0 \leq \varphi(a), \varphi(b) \leq 1$, we can deduce that precisely one of the following holds:

- (a) $\varphi(a) = 1$ and $\varphi(b) = 0$;
- (b) $\varphi(b) = 1$ and $\varphi(a) = 0$.

Let $e = p_{\varphi}$ be the minimal projection in A^{**} associated with the pure state φ . In case (a) we know that eae = e and ebe = 0. Thus, by (2.1) and (2.2) it follows that $a = e + (\mathbf{1} - e)a(\mathbf{1} - e) \ge e$ and $b \perp e$ in A^{**} . Similar arguments show that in case (b) we get $e \le b$ and $e \perp a$ in A^{**} .

Suppose now that we can find a minimal projection e in A^{**} satisfying (a) or (b) in the statement of the lemma. We shall only consider the case in which statement (a) holds, the other case is identical. Let φ be the pure state in A^* associated with e. Since $a = e + (\mathbf{1} - e)a(\mathbf{1} - e)$ and $b = (\mathbf{1} - e)b(\mathbf{1} - e)$ in A^{**} , we obtain $\varphi(a - b) = \varphi(e) = 1 \le ||a - b|| \le 1$.

We are now in position to establish a sufficient condition in terms of the set $Sph_A^+(Sph_A^+(a))$, to guarantee that a positive norm-one element a in a C^* -algebra A is a projection.

Proposition 2.2. Let A be a C^{*}-algebra, and let a be a positive norm-one element in A. Suppose $Sph_{A}^{+}(Sph_{A}^{+}(a)) = \{a\}$. Then a is a projection.

Proof. Let $\sigma(a)$ denote the spectrum of a. We identify the C^* -subalgebra of A generated by a with the commutative C^* -algebra $C_0(\sigma(a))$ of all continuous functions on $\sigma(a) \cup \{0\}$ vanishing at 0. Fix an arbitrary function $c \in C_0(\sigma(a))$ with $0 \leq c \leq 1$, c(0) = 0, and c(1) = 1. We claim that any such element c satisfies the following properties:

(P1) If q is a minimal projection in A^{**} with $q \leq a$, then $q \leq c$ in A^{**} ; (P2) If q is a projection in A^{**} with $q \perp a = 0$, then qc = 0.

We shall next prove the claim. (P1) Let q be a minimal projection in A^{**} with $q \leq a$. Let $\varphi \in \partial_e(\mathcal{B}_{(A^*)^+})$ be a pure state of A satisfying $\varphi(q) = 1$. In this case a = q + (1-q)a(1-q) in A^{**} . This proves that $s_{A^{**}}(a) = q + s_{A^{**}}((1-q)a(1-q)) \geq q$ in A^{**} . The element c has been defined to satisfy $s_{C_0(\sigma(a))^{**}}(a) \leq s_{C_0(\sigma(a))^{**}}(c)$. Since $C_0(\sigma(a))^{**}$ can be identified with the weak* closure of $C_0(\sigma(a))^{**}$ in A^{**} , we can actually conclude that $q \leq s_{A^{**}}(a) = s_{C_0(\sigma(a))^{**}}(a) \leq s_{C_0(\sigma(a))^{**}}(c) = s_{A^{**}}(c)$. This implies that $\varphi(c) = 1$ and hence $q \leq c$ in A^{**} .

(P2) Any element in A^{**} , which is orthogonal to a, must be orthogonal to every element in $C_0(\sigma(a))$, because the latter is the C^* -subalgebra of A generated by a. This finishes the proof of the claim.

By Lemma 2.1, an element x lies in $Sph_A^+(a)$ if and only if there exists a minimal projection e in A^{**} such that one of the following statements holds:

(a) e < a and $e \perp x$ in A^{**} ;

(b) $e \leq x$ and $e \perp a$ in A^{**} .

In case (a), $e \perp x$ and $e \leq c$ by (P1), and Lemma 2.1 implies that ||x - c|| = 1. In case (b), $e \leq x$ and $e \perp a$, and hence $e \perp c$ by (P2). Lemma 2.1 implies that ||x - c|| = 1.

We have proved that, any function $c \in C_0(\sigma(a))$ with $0 \le c \le 1$, c(0) = 0, and c(1) = 1 belongs to $Sph_A^+(Sph_A^+(a)) = \{a\}$, which forces to $\sigma(a) = \{0, 1\}$, and hence a is a projection.

The promised characterization of nonzero projections in an atomic von Neumann algebra is established next.

Theorem 2.3. Let M be an atomic von Neumann algebra, and let a be a positive norm-one element in M. Then the following statements are equivalent:

(a) a is a projection;

(b)
$$Sph_{M}^{+}(Sph_{M}^{+}(a)) = \{a\}$$

Proof. $(a) \Rightarrow (b)$ Suppose a = p is a projection. Clearly

$$\{p\} \subseteq Sph_M^+(Sph_M^+(p)).$$

Let us take b in the set $Sph_M^+(Sph_M^+(p))$. We shall first prove that $1-p \perp b$. If 1-p=0 there is nothing to prove. Otherwise, let e be a minimal projection in M with $e \leq 1-p$. Since $||e+\frac{1}{2}(1-e)-p|| = 1$, we deduce that $||e+\frac{1}{2}(1-e)-b|| = 1$.

Lemma 2.1 proves the existence of a minimal projection $q \in M^{**}$ such that one of the next statements holds:

- (1) $q \le e + \frac{1}{2}(\mathbf{1} e)$ and $q \perp b$ in M^{**} ; (2) $q \le b$ and $q \perp e + \frac{1}{2}(\mathbf{1} e)$ in M^{**} .

We claim that case (2) is impossible. Indeed, $q \perp e + \frac{1}{2}(1-e)$ is equivalent to $q \perp r_{M^{**}}(e + \frac{1}{2}(1-e)) = 1$, which is impossible. Therefore, only case (1) holds, and thus $q \leq e$. Since e also is a minimal projection in M^{**} , we deduce from the minimality of q that $e = q \perp b$.

We have shown that for every minimal projection e in M with $e \leq 1 - p$ we have $e \perp b$. Since 1 - p is the least upper bound of all minimal projections q in M with $q \leq 1 - p$ (actually $1 - p = \sum_{i} e_{j}$, where $\{e_{j}\}$ is a family of mutually

orthogonal minimal projections in M), it follows that $1 - p \perp b$ (equivalently, pb = bp = b).

We shall next prove that b is a projection and p = b. Let $\sigma(b)$ be the spectrum of b, let \mathcal{C} denote the C^{*}-subalgebra of M generated by b and p, and let us identify \mathcal{C} with $C(\sigma(b))$, b with the function $t \mapsto t$, and p with the unit of \mathcal{C} . We shall distinguish two cases:

(i) $0 \notin \sigma(b)$ (that is, b is invertible in \mathcal{C});

(*ii*) $0 \in \sigma(b)$ (that is, b is not invertible in \mathcal{C}).

A.M. PERALTA

We deal first with case (i). If $0 \notin \sigma(b)$, let m_0 be the minimum of $\sigma(b)$. If $0 < m_0 < 1$, we consider the function $d \in \mathcal{C} \equiv C(\sigma(b))$ defined by $d(t) = \frac{1}{1-m_0}(t-m_0)$ $(t \in \sigma(b))$. It is not hard to check that $0 \leq ||b - d|| = m_0 < 1$ and ||p - d|| = 1, which contradicts that $b \in Sph_M^+(Sph_M^+(p))$. Therefore $m_0 = 1$, and hence b is invertible with $\sigma(b) = \{1\}$, witnessing that $\mathbf{1} = b \leq p \leq \mathbf{1}$. We have proved that $b = p = \mathbf{1}$.

In case (*ii*), $0 \in \sigma(b)$. If there exists $t_0 \in \sigma(b) \cap (0, 1)$, the function

$$c(t) = \begin{cases} 0 & \text{if } t \in \sigma(b) \cap [0, t_0];\\ \frac{1+t_0}{1-t_0}(t-t_0) & \text{if } t \in \sigma(b) \cap [t_0, \frac{1+t_0}{2}];\\ t & \text{if } t \in \sigma(b) \cap [\frac{1+t_0}{2}, 1], \end{cases}$$

defines a positive norm-one element in $c \in C(\sigma(b))$ such that ||p - c|| = 1 and $||b - c|| = t_0 < 1$. This contradicts that $b \in Sph_M^+(Sph_M^+(p))$. Therefore, $\sigma(b) \subseteq \{0,1\}$, and hence b is a projection. If b < p, we get ||b - b|| = 0 and ||p - b|| = 1, contradicting that $b \in Sph_M^+(Sph_M^+(p))$. Therefore p = b.

We have shown that $Sph_M^+(Sph_M^+(p)) = \{p\}.$

The implication $(b) \Rightarrow (a)$ follows from Proposition 2.2.

The next result is a clear consequence of our previous theorem and extends the characterization of projections in $M_n(\mathbb{C})$ established by G. Nagy in the final paragraph of the proof of [10, Claim 1] (compare (1.1)).

Corollary 2.4. Let H be an arbitrary complex Hilbert space, and let a be a positive norm-one element in B(H). Then the following statements are equivalent:

(a) a is a projection; (b) $Sph^+_{B(H)}\left(Sph^+_{B(H)}(a)\right) = \{a\}.$

It seems natural to ask whether the above corollary remains true if B(H) is replaced with K(H). For an infinite-dimensional separable complex Hilbert space H_2 , the conclusion of Theorem 2.3 and Corollary 2.4 can be also extended to projections in the space $K(H_2)$. The arguments in the proof of Theorem 2.3 actually require a subtle adaptation.

Theorem 2.5. Let a be a positive norm-one element in $K(H_2)$, where H_2 is a separable complex Hilbert space. Then the following statements are equivalent:

(a) a is a projection; (b) $Sph^{+}_{K(H_2)}\left(Sph^{+}_{K(H_2)}(a)\right) = \{a\}.$

Proof. When H_2 is finite-dimensional, the equivalence is proved in [10, final paragraph of the proof of Claim 1]. We can therefore assume that H_2 is infinite-dimensional.

 $(a) \Rightarrow (b)$ We assume first that $a = p \in K(H_2)$ is a projection. We can find a family $\{q_1, \ldots, q_n\}$ of mutually orthogonal minimal projections in K(H) such

that
$$p = \sum_{j=1}^{n} q_j$$
. As before, the inclusion

$$\{p\} \subseteq Sph^+_{K(H_2)}\left(Sph^+_{K(H_2)}(p)\right)$$

always holds. Let us take b in the set $Sph_{K(H_2)}^+(Sph_{K(H_2)}^+(p))$. Clearly $0 \neq \mathbf{1}-p \notin K(H_2)$. Let e be a minimal projection in $K(H_2)$ with $e \leq \mathbf{1}-p$ in $B(H_2)$. Since H_2 is separable, we can pick a maximal family $\{v_n : n \in \mathbb{N}\}$ of mutually orthogonal minimal projections in $(\mathbf{1}-e)K(H_2)(\mathbf{1}-e)$ with $\mathbf{1}-e = \sum_{n=1}^{\infty} v_n$.

The element
$$e + \sum_{n=1}^{\infty} \frac{1}{2n} v_n$$
 lies in $S(K(H_2)^+)$ and $\left\| e + \sum_{n=1}^{\infty} \frac{1}{2n} v_n - p \right\| = 1$; thus,

the hypothesis on *b* implies that $\left\| e + \sum_{n=1}^{\infty} \frac{1}{2n} v_n - b \right\| = 1$. Lemma 2.1 proves the existence of a minimal projection $q \in K(H_2)^{**} = B(H_2)$ such that one of the next statements holds:

(1)
$$q \leq e + \sum_{n=1}^{\infty} \frac{1}{2n} v_n$$
 and $q \perp b$ in $K(H_2)^{**} = B(H_2)$;
(2) $q \leq b$ and $q \perp e + \sum_{n=1}^{\infty} \frac{1}{2n} v_n$ in $K(H_2)^{**} = B(H_2)$.
In case (2), $q \perp e + \sum_{n=1}^{\infty} \frac{1}{2n} v_n$, and hence $q \perp e, v_n$ for all n , which proves that
 $q \perp e + \sum_{n=1}^{\infty} v_n = \mathbf{1}$ in $B(H_2)$, which is impossible. Therefore, case (1) holds, and

thus $q \leq e$. Since e is a minimal projection in $K(H_2)^{**} = B(H_2)$, we deduce from the minimality of q that $e = q \perp b$.

We have shown that for every minimal projection e in $B(H_2)$ with $e \leq 1 - p$ we have $e \perp b$, and then $1 - p \perp b$ (equivalently, pb = bp = b).

The above arguments show that $b, p \in pK(H_2)p \cong M_n(\mathbb{C})$. Furthermore, every $x \in Sph_{pK(H_2)p}^+(a)$ lies in $Sph_{K(H_2)}^+(a)$, and hence ||b - x|| = 1; therefore b lies in $Sph_{pK(H_2)p}^+(Sph_{pK(H_2)p}^+(p))$. It follows from [10, final paragraph of the proof of Claim 1] (see also (1.1)) that $Sph_{pK(H_2)p}^+(Sph_{pK(H_2)p}^+(p)) = \{p\}$, and hence b = p. Therefore, $Sph_{K(H_2)}^+(Sph_{K(H_2)}^+(p)) = \{p\}$.

The implication $(b) \Rightarrow (a)$ follows from Proposition 2.2.

Many consequences can be expected from the characterizations established in Theorem 2.3 and Corollary 2.4. We shall conclude this note with a first application. For a C^* -algebra A, let $\mathcal{P}roj(A)^*$ denote the set of all nonzero projections in A. The next result is an infinite-dimensional version of [10, Claim 1] which proves one of the conjectures posed at the end of the just quoted paper.

Corollary 2.6. Let $\Delta : S(M^+) \to S(N^+)$ be a surjective isometry, where M and N are atomic von Neumann algebras. Then Δ maps $\operatorname{Proj}(M)^*$ onto $\operatorname{Proj}(N)^*$, and the restriction $\Delta|_{\operatorname{Proj}(M)^*} : \operatorname{Proj}(M)^* \to \operatorname{Proj}(N)^*$ is a surjective isometry.

Proof. Let p be a nonzero projection in M. Applying Theorem 2.3 we have $Sph_{M}^{+}(Sph_{M}^{+}(p)) = \{p\}$. Since Δ is a surjective isometry, the sphere around a set $E \subset S(M^{+})$, $Sph_{M}^{+}(E)$, is always preserved by Δ ; that is, $\Delta(Sph_{M}^{+}(E)) = Sph_{N}^{+}(\Delta(E))$. We consequently have

$$\{\Delta(p)\} = \Delta(\{p\}) = \Delta\left(Sph_M^+\left(Sph_M^+(p)\right)\right) = Sph_N^+\left(Sph_N^+(\Delta(p))\right),$$

and a new application of Theorem 2.3 assures that $\Delta(p)$ is a projection in N.

We have shown that $\Delta(\mathcal{P}roj(M)^*) \subseteq \mathcal{P}roj(N)^*$. Since Δ^{-1} also is a surjective isometry, we get $\Delta(\mathcal{P}roj(M)^*) = \mathcal{P}roj(N)^*$. Clearly $\Delta|_{\mathcal{P}roj(M)^*} : \mathcal{P}roj(M)^* \to \mathcal{P}roj(N)^*$ is a surjective isometry. \Box

When in the previous proof we replace Theorem 2.3 with Theorem 2.5 the same arguments are valid to prove the following:

Corollary 2.7. Let H_2 and H_3 be separable complex Hilbert spaces, and let us assume that $\Delta : S(K(H_2)^+) \rightarrow S(K(H_3)^+)$ is a surjective isometry. Then Δ maps $\mathcal{P}roj(K(H_2))^*$ to $\mathcal{P}roj(K(H_3))^*$, and the restriction

$$\Delta|_{\mathcal{P}roj(K(H_2))^*}: \mathcal{P}roj(K(H_2))^* \to \mathcal{P}roj(K(H_3))^*$$

is a surjective isometry.

Another result established by G. Nagy in [10] asserts that for a finite-dimensional complex Hilbert space H, the equality

$$Sph_{B(H)}^{+}\left(Sph_{B(H)}^{+}(a)\right) = \left\{b \in S(B(H)^{+}): \begin{array}{c} \operatorname{Fix}(a) \subseteq \operatorname{Fix}(b), \\ \operatorname{and} \ker(a) \subseteq \ker(b) \end{array}\right\}$$

holds for every element a in $S(B(H)^+)$ (see the beginning of the proof of [10, Claim 1]). Our next result is an abstract version of Nagy's result to the space of compact operators.

Theorem 2.8. Let H_2 be a separable infinite-dimensional complex Hilbert space. Then the identity

$$Sph_{K(H_2)}^+\left(Sph_{K(H_2)}^+(a)\right) = \left\{b \in S(K(H_2)^+): \begin{array}{c} s_{K(H_2)}(a) \leq s_{K(H_2)}(b), \text{ and} \\ \mathbf{1} - r_{B(H_2)}(a) \leq \mathbf{1} - r_{B(H_2)}(b)\end{array}\right\},$$

holds for every a in the unit sphere of $K(H_2)^+$.

Proof. (⊇) We recall that, for each $b \in S(K(H_2)^+)$ we have $s_{K(H_2)}(b) = p_b \in K(H_2)$. Let $b \in S(K(H_2)^+)$ be with $s_{K(H_2)}(a) \leq s_{K(H_2)}(b)$, and let $1 - r_{B(H_2)}(a) \leq 1 - r_{B(H_2)}(b)$. We pick an arbitrary $c \in Sph^+_{K(H_2)}(a)$. Since ||a - c|| = 1, Lemma 2.1 implies the existence of a minimal projection e in $B(H_2)$ such that one of the following statements holds:

- (a) $e \le a$ and $e \perp c$ in $K(H_2)^{**} = B(H_2);$
- (b) $e \le c$ and $e \perp a$ in $K(H_2)^{**} = B(H_2)$.

In case (a), we have $e \leq s_{K(H_2)}(a) \leq s_{K(H_2)}(b)$ and $e \perp c$. Lemma 2.1 implies that ||c - b|| = 1.

In case (b), the condition $e \perp a$ implies that $e \leq \mathbf{1} - r_{B(H_2)}(a) \leq \mathbf{1} - r_{B(H_2)}(b)$, and thus $e \perp b$. Since $e \leq c$, Lemma 2.1 assures that ||c - b|| = 1.

We have shown that ||c - b|| = 1 for all $c \in Sph^+_{K(H_2)}(a)$, and thus b lies in $Sph^+_{K(H_2)}(Sph^+_{K(H_2)}(a))$.

 (\subseteq) Let us take $b \in Sph^+_{K(H_2)}\left(Sph^+_{K(H_2)}(a)\right)$.

We shall first prove that $\mathbf{1} - r_{B(H_2)}(a) \leq \mathbf{1} - r_{B(H_2)}(b)$. If $\mathbf{1} - r_{B(H_2)}(a) = 0$ there is nothing to prove. Otherwise, let e be a minimal projection in $K(H_2)$ with $e \leq \mathbf{1} - r_{B(H_2)}(a)$. Let (e_n) be a maximal family of mutually orthogonal minimal projections in $K(H_2)$ such that $\mathbf{1} - e = \sum_{n=1}^{\infty} e_n$ (here we apply that H_2 is separable). Since $\left\| e + \sum_{n=1}^{\infty} \frac{1}{2n} e_n - a \right\| = 1$ and $e + \sum_{n=1}^{\infty} \frac{1}{2n} e_n \in K(H_2)$, we deduce that $\left\| e + \sum_{n=1}^{\infty} \frac{1}{2n} e_n - b \right\| = 1$. Lemma 2.1 proves the existence of a minimal projection $q \in B(H_2)$ such that one of the next statements holds: (a) $q \leq e + \sum_{n=1}^{\infty} \frac{1}{2n} e_n$ and $q \perp b$ in $B(H_2)$; (b) $q \leq b$ and $q \perp e + \sum_{n=1}^{\infty} \frac{1}{2n} e_n$ in $B(H_2)$. We claim that case (b) is impossible. Indeed, $q \perp e + \sum_{n=1}^{\infty} \frac{1}{2n} e_n$ is equivalent to

 $q \perp r_{B(H_2)} \left(e + \sum_{n=1}^{\infty} \frac{1}{2n} e_n \right) = \mathbf{1}, \text{ which is impossible. Therefore, only case } (a)$ holds, and by the minimality of q, q coincides with e, and $e = q \perp b$ assures that $q = e \leq \mathbf{1} - r_{B(H_2)}(b).$

We have shown that for every minimal projection e in $B(H_2)$ with $e \leq 1 - r_{B(H_2)}(a)$ we have $q \leq 1 - r_{B(H_2)}(b)$. Since in $B(H_2)$ every projection is the least upper bound of all minimal projections smaller than or equal to it, we deduce that

$$1 - r_{B(H_2)}(a) \le 1 - r_{B(H_2)}(b).$$

Our next goal is to show that $s_{\kappa(H_2)}(a) \leq s_{\kappa(H_2)}(b)$. If $r_{B(H_2)}(a) - s_{B(H_2)}(a) = 0$, we have $s_{\kappa(H_2)}(a) = a = r_{B(H_2)}(a) \geq r_{B(H_2)}(b) \geq s_{B(H_2)}(b)$. In particular, a is a projection in $K(H_2)$. We shall prove that b is a projection and a = b. Let $\sigma(b)$ be the spectrum of b, let C denote the C^* -subalgebra of $K(H_2)$ generated by b and $a = r_{\kappa(H_2)}(a)$, and let us identify C with $C(\sigma(b))$ and b with the identity function on $\sigma(b)$. If there exists $t_0 \in \sigma(b) \cap (0, 1)$, then the function

$$c(t) = \begin{cases} 0 & \text{if } t \in \sigma(b) \cap [0, t_0];\\ \frac{1+t_0}{1-t_0}(t-t_0) & \text{if } t \in \sigma(b) \cap [0, t_0];\\ t & \text{if } t \in \sigma(b) \cap [\frac{1+t_0}{2}, 1], \end{cases}$$
(2.4)

defines a positive, norm-one element in $c \in C(\sigma(b)) \subset K(H_2)$ such that ||a-c|| = 1 and ||b-c|| < 1. This contradicts that $b \in Sph^+_{K(H_2)}\left(Sph^+_{K(H_2)}(a)\right)$. Therefore, $\sigma(b) \subseteq \{0, 1\}$, and hence b is a projection. If $s_{B(H_2)}(b) = b < s_{K(H_2)}(a) = a$, we get $||b-s_{K(H_2)}(b)|| = 0$, and $||a-b|| = ||a-s_{K(H_2)}(b)|| = ||s_{K(H_2)}(a) - s_{K(H_2)}(b)|| = 1$, contradicting that $b \in Sph^+_{K(H_2)}\left(Sph^+_{K(H_2)}(a)\right)$. Therefore a = b is a projection and $s_{K(H_2)}(b) = b = a = s_{K(H_2)}(a)$.

We assume next that $r_{B(H_2)}(a) - s_{K(H_2)}(a) \neq 0$. We first prove the following property.

Property $(\checkmark .1)$: for each pair of minimal projections $v, q \in B(H_2)$ with $v \leq s_{\kappa(H_2)}(a)$ and $q \leq r_{B(H_2)}(a) - s_{\kappa(H_2)}(a)$ one of the following statements holds: (1) $q \perp b$, or equivalently, $q \leq \mathbf{1} - r_{B(H_2)}(b)$; (2) $v \leq s_{B(H_2)}(b) \leq b$.

To prove the property, we consider a family (v_n) of mutually orthogonal minimal projections in $K(H_2)$ satisfying $1 - v - q = \sum_{n=1}^{\infty} v_n$, and the element $q + \sum_{n=1}^{\infty} \frac{1}{2n} v_n \in S(K(H_2)^+)$. Clearly, v is a minimal projection in $B(H_2)$ satisfying $v \leq a$ and $v \perp q, 1 - v$, and hence $v \perp q + \sum_{n=1}^{\infty} \frac{1}{2n} v_n$. Lemma 2.1 assures that $\left\| a - \left(q + \sum_{n=1}^{\infty} \frac{1}{2n} v_n \right) \right\| = 1$, and by hypothesis $\left\| b - \left(q + \sum_{n=1}^{\infty} \frac{1}{2n} v_n \right) \right\| = 1$. A new application of Lemma 2.1 assures the existence of a minimal projection $e \in B(H_2)$ such that one of the following statements holds:

(a)
$$e \leq b$$
 and $e \perp q + \sum_{n=1}^{\infty} \frac{1}{2n} v_n$ in $B(H_2)$;
(b) $e \leq q + \sum_{n=1}^{\infty} \frac{1}{2n} v_n$ and $e \perp b$ in $B(H_2)$.

In the second case $e = q \perp b$; equivalently, $q \leq \mathbf{1} - r_{B(H_2)}(b)$. In the first case $e \leq b \leq r_{B(H_2)}(b) \leq r_{B(H_2)}(a)$, and $e \perp q, \mathbf{1} - v$. Since $e \leq r_{B(H_2)}(a)$ and $r_{B(H_2)}(a) = (r_{B(H_2)}(a) - v) + v$, we deduce that $e \leq v$. The minimality of e and v proves that $e = v \leq b$, and thus $v \leq s_{B(H_2)}(b) \leq b$. This finishes the proof of *Property* (\checkmark .1).

We discuss now the following dichotomy:

- There exists a minimal projection v in $B(H_2)$ with $v \leq s_{K(H_2)}(a)$ and $v \not\leq s_{K(H_2)}(b)$;
- For every minimal projection v in $B(H_2)$ with $v \leq s_{K(H_2)}(a)$ we have $v \leq s_{K(H_2)}(b)$.

In the first case, let v be a minimal projection in $K(H_2)$ with $v \leq s_{K(H_2)}(a)$ and $v \not\leq s_{K(H_2)}(b)$. Property $(\checkmark .1)$ implies that for every minimal projection $q \in B(H_2)$ with $q \leq r_{B(H_2)}(a) - s_{K(H_2)}(a)$ we have $q \leq 1 - r_{B(H_2)}(b)$. This proves that

$$r_{{}_{B(H_2)}}(a) - s_{{}_{K(H_2)}}(a) \le \mathbf{1} - r_{{}_{B(H_2)}}(b)$$

We have therefore shown that

$$\mathbf{1} - s_{K(H_2)}(a) = (\mathbf{1} - r_{B(H_2)}(a)) + (r_{B(H_2)}(a) - s_{K(H_2)}(a)) \le \mathbf{1} - r_{B(H_2)}(b),$$

and thus $r_{B(H_2)}(b) \leq s_{K(H_2)}(a)$. In this case we have $0 \leq b \leq r_{B(H_2)}(b) \leq s_{K(H_2)}(a)$, and then ab = ba = b. If $\sigma(b) \cap (0,1) \neq \emptyset$, by considering the C^* -subalgebra of $K(H_2)$ generated by b and the definition in (2.4), we can find an element c in $S(K(H_2)^+)$ such that ||a - c|| = 1 and ||b - c|| < 1, contradicting that $b \in Sph^+_{K(H_2)}\left(Sph^+_{K(H_2)}(a)\right)$. Therefore $\sigma(b) \subseteq \{0,1\}$, and hence b is a projection with $b \leq s_{K(H_2)}(a)$. If $b < s_{K(H_2)}(a)$, we have ||b - b|| = 0 and ||a - b|| = 1 contradicting, again, that $b \in Sph^+_{K(H_2)}\left(Sph^+_{K(H_2)}(a)\right)$. We have shown that in this case $b = s_{K(H_2)}(b) = s_{K(H_2)}(a)$.

In the second case of the above dichotomy, having in mind that $s_{K(H_2)}(a)$ can be written as a finite sum of mutually orthogonal minimal projections in $K(H_2)$, we have $s_{K(H_2)}(a) \leq s_{K(H_2)}(b)$ as desired.

Remark 2.9. Let us remark that Theorem 2.5 can be derived as a straight consequence of our previous Theorem 2.8. Namely, let H_2 be a separable complex Hilbert space, and let a be an element in $S(K(H_2)^+)$. Applying Theorem 2.8 we get

$$Sph_{K(H_2)}^+\left(Sph_{K(H_2)}^+(a)\right) = \left\{b \in S(K(H_2)^+) : \begin{array}{c} s_{K(H_2)}(a) \le s_{K(H_2)}(b), \text{ and} \\ \mathbf{1} - r_{B(H_2)}(a) \le \mathbf{1} - r_{B(H_2)}(b)\end{array}\right\}.$$

If a is a projection, then $s_{K(H_2)}(a) = r_{B(H_2)}(a) = a$ and hence

$$Sph_{K(H_2)}^+\left(Sph_{K(H_2)}^+(a)\right) = \{a\}$$

If, on the other hand, $Sph_{K(H_2)}^+(Sph_{K(H_2)}^+(a)) = \{a\}$, having in mind that $s_{\kappa(H_2)}(a)$ belongs to $S(K(H_2)^+)$ and $s_{\kappa(H_2)}(a) \leq r_{B(H_2)}(a)$, we deduce that $s_{\kappa(H_2)}(a)$ lies in the set $Sph_{K(H_2)}^+(Sph_{K(H_2)}^+(a)) = \{a\}$, and hence $s_{\kappa(H_2)}(a) = a$ is a projection.

Acknowledgements. Author partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and European Regional Development Fund project no. MTM2014-58984-P and Junta de Andalucía grant FQM375.

A.M. PERALTA

References

- F. J. Fernández-Polo, J. J. Garcés, A. M. Peralta, and I. Villanueva, *Tingley's problem for spaces of trace class operators*, Linear Algebra Appl. **529** (2017), 294–323.
- F. J. Fernández-Polo, E. Jordá, and A.M. Peralta, Tingley's problem for p-Schatten von Neumann classes for 2
- F. J. Fernández-Polo and A. M. Peralta, Tingley's problem through the facial structure of an atomic JBW*-triple, J. Math. Anal. Appl. 455 (2017), 750-760.
- F. J. Fernández-Polo and A. M. Peralta, On the extension of isometries between the unit spheres of a C^{*}-algebra and B(H), Trans. Amer. Math. Soc. 5 (2018), 63–80.
- F.J. Fernández-Polo and A .M. Peralta, *Partial Isometries: a survey*, Adv. Oper. Theory 3 (2018), no. 1, 87–128.
- F.J. Fernández-Polo and A. M. Peralta, On the extension of isometries between the unit spheres of von Neumann algebras, preprint, arXiv:1709.08529v1
- L. Molnár and W. Timmermann, *Isometries of quantum states*, J. Phys. A: Math. Gen. 36 (2003), 267–273.
- 8. M. Mori, *Tingley's problem through the facial structure of operator algebras*, preprint 2017. arXiv:1712.09192v1
- G. Nagy, Isometries on positive operators of unit norm, Publ. Math. Debrecen 82 (2013), 183–192.
- G. Nagy, Isometries of spaces of normalized positive operators under the operator norm, Publ. Math. Debrecen 92 (2018), 243–254.
- G. K. Pedersen, C^{*}-algebras and their automorphism groups, London Mathematical Society Monographs Vol. 14, Academic Press, London, 1979.
- A. M. Peralta, A survey on Tingley's problem for operator algebras, Acta Sci. Math. Szeged (to appear), arXiv:1801.02473v1
- A. M. Peralta and R. Tanaka, A solution to Tingley's problem for isometries between the unit spheres of compact C^{*}-algebras and JB^{*}-triples, Sci. China Math. (to appear), arXiv:1608.06327v1.
- 14. S. Sakai, C*-algebras and W*-algebras, Springer, Berlin, 1971.
- 15. M. Takesaki, Theory of operator algebras I, Springer, New York, 2003.
- R. Tanaka, Spherical isometries of finite dimensional C^{*}-algebras, J. Math. Anal. Appl. 445 (2017), no. 1, 337–341.
- R. Tanaka, Tingley's problem on finite von Neumann algebras, J. Math. Anal. Appl. 451 (2017), 319–326.

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain.

E-mail address: aperalta@ugr.es