Adv. Oper. Theory 3 (2018), no. 3, 731-744
https://doi.org/10.15352/aot.1804-1343
ISSN: 2538-225X (electronic)
https://projecteuclid.org/aot

CHARACTERIZING PROJECTIONS AMONG POSITIVE OPERATORS IN THE UNIT SPHERE

ANTONIO M. PERALTA

Communicated by M. S. Moslehian

Abstract. Let E and P be subsets of a Banach space X, and let us define the unit sphere around E in P as the set

$$
\operatorname{Sph}(E ; P):=\{x \in P:\|x-b\|=1 \text { for all } b \in E\}
$$

Given a C^{*}-algebra A and a subset $E \subset A$, we shall write $S p h^{+}(E)$ or $S p h_{A}^{+}(E)$ for the set $S p h\left(E ; S\left(A^{+}\right)\right.$, where $S\left(A^{+}\right)$denotes the unit sphere of A^{+}. We prove that, for every complex Hilbert space H, the following statements are equivalent for every positive element a in the unit sphere of $B(H)$:
(a) a is a projection;
(b) $S p h_{B(H)}^{+}\left(S p h_{B(H)}^{+}(\{a\})\right)=\{a\}$.

We also prove that the equivalence remains true when $B(H)$ is replaced with an atomic von Neumann algebra or with $K\left(H_{2}\right)$, where H_{2} is an infinitedimensional and separable complex Hilbert space.

1. Introduction

In a recent attempt to solve a variant of Tingley's problem for surjective isometries of the set formed by all positive operators in the unit sphere of $M_{n}(\mathbb{C})$, the space of all $n \times n$ complex matrices endowed with the spectral norm; G. Nagy has established an interesting characterization of those positive norm-one elements in $M_{n}(\mathbb{C})$ which are projections (see the final paragraph in the proof of [10, Claim 1]). Motivated by the terminology employed by Nagy in the just quoted paper,

[^0]we introduce here the notion of unit sphere around a subset in a Banach space. Let E and P be subsets of a Banach space X. We define the unit sphere around E in P as the set
$$
\operatorname{Sph}(E ; P):=\{x \in P:\|x-b\|=1 \text { for all } b \in E\}
$$

If x is an element in X, we write $\operatorname{Sph}(x ; P)$ for $\operatorname{Sph}(\{x\} ; P)$. Henceforth, given a Banach space X, let $S(X)$ denote the unit sphere of X. The cone of positive elements in a C^{*}-algebra A will be denoted by A^{+}. If M is a subset of X, we shall write $S(M)$ for $M \cap S(X)$. To simplify the notation, given a C^{*}-algebra A and a subset $E \subset A$, we shall write $S p h^{+}(E)$ or $S p h_{A}^{+}(E)$ for the set $\operatorname{Sph}\left(E ; S\left(A^{+}\right)\right)$. For each element a in A, we shall write $S p h^{+}(a)$ instead of $S p h^{+}(\{a\})$.

Let a be a positive norm-one element in $B\left(\ell_{2}^{n}\right)=M_{n}(\mathbb{C})$. The commented characterization established by Nagy proves that the following two statements are equivalent:
(i) a is a projection;
(ii) $S p h_{M_{n}(\mathbb{C})}^{+}\left(S p h_{M_{n}(\mathbb{C})}^{+}(a)\right)=\{a\}$,
(see the final paragraph in the proof of [10, Claim 1]). As remarked by G. Nagy in $[10, \S 3]$, the previous characterization (and the whole statement in [10, Claim 1]) remains as an open problem when H is an arbitrary complex Hilbert space. This is an interesting problem to be considered in operator theory and in the wider setting of general C^{*}-algebras.

In this note we extend the characterization in (1.1) to the case in which H is an arbitrary complex Hilbert space. In a first result we prove that, for any positive element a in the unit sphere of a C^{*}-algebra A, the equality $S p h_{A}^{+}\left(S p h_{A}^{+}(a)\right)=\{a\}$ is a sufficient condition to guarantee that a is a projection in A (see Proposition 2.2). In Theorem 2.3 we extend Nagy's characterization to the setting of atomic von Neumann algebras by showing that the following statements are equivalent for every positive norm-one element a in an atomic von Neumann algebra M (in particular when $M=B(H)$, where H is an arbitrary complex Hilbert space):
(a) a is a projection;
(b) $S p h_{M}^{+}\left(S p h_{M}^{+}(a)\right)=\{a\}$.

We shall also explore whether the above characterization also holds when M is replaced with $K(H)$, the space of all compact operators on a complex Hilbert space H. Our conclusion in this case is the following: Let H_{2} be a separable complex Hilbert space, and suppose that a is a positive norm-one element in $K\left(H_{2}\right)$. Then the following statements are equivalent:
(a) a is a projection;
(b) $S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)=\{a\}$.

When H is a finite-dimensional complex Hilbert space, Nagy computed in [10] the second unit sphere around a positive element in the unit sphere of $B(H)^{+}$ and showed that the identity

$$
S p h_{B(H)}^{+}\left(S p h_{B(H)}^{+}(a)\right)=\left\{b \in S\left(B(H)^{+}\right): \quad \begin{array}{c}
\operatorname{Fix}(a) \subseteq \operatorname{Fix}(b), \\
\text { and } \operatorname{ker}(a) \subseteq \operatorname{ker}(b)
\end{array}\right\}
$$

holds for every element a in $S\left(B(H)^{+}\right.$), where for each a in $S\left(B(H)^{+}\right)$we set $\operatorname{Fix}(a)=\{\xi \in H: a(\xi)=\xi\}$, (see the beginning of the proof of [10, Claim 1]). In Theorem 2.8 we establish a generalization of this fact to the setting of compact operators. We prove that if H_{2} is a separable infinite-dimensional complex Hilbert space, then the identity

$$
S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)=\left\{b \in S\left(K\left(H_{2}\right)^{+}\right): \begin{array}{c}
s_{K\left(H_{2}\right)}(a) \leq s_{K\left(H_{2}\right)}(b), \text { and } \\
\mathbf{1}-r_{B\left(H_{2}\right)}(a) \leq 1-r_{B\left(H_{2}\right)}(b)
\end{array}\right\}
$$

holds for every a in the unit sphere of $K\left(H_{2}\right)^{+}$, where $r_{B\left(H_{2}\right)}(a)$ and $s_{K\left(H_{2}\right)}(a)$ stand for the range and support projections of a in $B\left(H_{2}\right)$ and $K\left(H_{2}\right)$, respectively.

As we have already commented at the beginning of this introduction, the characterization obtained by Nagy in (1.1) is one of the key results to establish that every surjective isometry $\Delta: S\left(M_{n}(\mathbb{C})^{+}\right) \rightarrow S\left(M_{n}(\mathbb{C})^{+}\right)$admits an extension to a surjective real linear or complex linear isometry on $M_{n}(\mathbb{C})$ (see [10, Theorem]). Another related results are known when $M_{n}(\mathbb{C})=B\left(\ell_{2}^{n}\right)$ is replaced with the space $\left(C_{p}(H),\|\cdot\|_{p}\right)$ of all p-Schatten-von Neumann operators on a complex Hilbert space H, with $1 \leq p<\infty$. L. Molnár and W. Timmermann proved that for every complex Hilbert space H, every surjective isometry $\Delta: S\left(C_{1}(H)^{+}\right) \rightarrow S\left(C_{1}(H)^{+}\right)$can be extended to a surjective complex linear isometry on $C_{1}(H)$ (see [7]). Nagy showed in [9, Theorem 1] that the same conclusion remains true for every $1<p<\infty$.

The results commented in the previous paragraph are subtle variants of the socalled Tingley's problem. This problem asks whether every surjective isometry between the unit spheres of two Banach spaces X and Y admits an extension to a surjective real linear isometry from X onto Y. Tingley's problem remains open after thirty years. However, in what concerns operator algebras, certain positive solutions to this problem have been recently established in the setting of finite-dimensional C^{*}-algebras and finite von Neumann algebras [16, 17], spaces of compact linear operators and compact C^{*}-algebras [13], $B(H)$ spaces [4] (see also [3]), a wide family of von Neumann algebras [6], spaces of trace class operators [1], preduals of von Neumann algebras [8], and spaces of p-Schatten von Neumann operators with $2<p<\infty$ [2]. The reader is referred to the survey [12] for additional details.

After completing the description of all surjective isometries on $S\left(M_{n}(\mathbb{C})^{+}\right)$, Nagy conjectured that a similar result should also hold for surjective isometries on $S\left(B(H)^{+}\right.$), where H is an arbitrary complex Hilbert space (see [10, $\left.\S 3\right]$). The results presented in this note are a first step towards a proof of Nagy's conjecture.

2. The Results

Let us fix some notation. Along the paper, the closed unit ball and the dual space of a Banach space X will be denoted by \mathcal{B}_{X} and X^{*}, respectively. Given a subset $B \subset X$, we shall write \mathcal{B}_{B} for $\mathcal{B}_{X} \cap B$.

The cone of positive elements in a C^{*}-algebra A will be denoted by A^{+}, while the symbol $\left(A^{*}\right)^{+}$will stand for the set of positive functionals on A. A state of A is a positive functional in $S\left(A^{*}\right)$. The set of states of A will be denoted by \mathcal{S}_{A}. It
is well known that $\mathcal{B}_{\left(A^{*}\right)+}=\mathcal{B}_{A^{*}} \cap\left(A^{*}\right)^{+}$is a weak*-closed convex subset of $\mathcal{B}_{A^{*}}$. The set of pure states of A is precisely the set $\partial_{e}\left(\mathcal{B}_{\left(A^{*}\right)^{+}}\right)$of all extreme points of $\mathcal{B}_{\left(A^{*}\right)^{+}}($see $[11, \S 3.2])$.

Suppose a is a positive element in the unit sphere of a von Neumann algebra M. The range projection of a in M (denoted by $r(a))$ is the smallest projection p in M satisfying $a p=a$. It is known that the sequence $\left((1 / n \mathbf{1}+a)^{-1} a\right)_{n}$ is monotone increasing to $r(a)$, and hence it converges to $r(a)$ in the weak*-topology of M. Actually, $r(a)$ also coincides with the weak*-limit of the sequence $\left(a^{1 / n}\right)_{n}$ in M (see [11, 2.2.7]). It is also known that the sequence $\left(a^{n}\right)_{n}$ converges to a projection $s(a)=s_{M}(a)$ in M, which is called the support projection of a in M. Unfortunately, the support projection of a norm-one element in M might be zero. For example, let $\left\{\xi_{n}: n \in \mathbb{N}\right\}$ denote an orthonormal basis of ℓ_{2}, and let a be the positive operator in $B\left(\ell_{2}\right)$ given by $a=\sum_{m=1}^{\infty} \frac{m}{m+1} p_{m}$, where, for each m, p_{m} is the rank one projection $\xi_{m} \otimes \xi_{m}$. It is not hard to check that $s_{B\left(\ell_{2}\right)}(a)=0$.

Elements a and b in a C^{*}-algebra A are called orthogonal (written $a \perp b$) if $a b^{*}=b^{*} a=0$. It is known that $\|a+b\|=\max \{\|a\|,\|b\|\}$ for every $a, b \in A$ with $a \perp b$. Clearly, self-adjoint elements $a, b \in A$ are orthogonal if and only if $a b=0$.

We recall some geometric properties of C^{*}-algebras. Let p be a projection in a unital C^{*}-algebra A. Suppose that $x \in S(A)$ satisfies $p x p=p$; then

$$
\begin{equation*}
x=p+(\mathbf{1}-p) x(\mathbf{1}-p) \tag{2.1}
\end{equation*}
$$

(see, for example, [5, Lemma 3.1]). Another property needed later reads as follows: Suppose that $b \in A^{+}$satisfies $p b p=0$; then

$$
\begin{equation*}
p b=b p=0, \text { equivalently, } p \perp b . \tag{2.2}
\end{equation*}
$$

To see this property let us take a positive $c \in A$ satisfying $c^{2}=b$. The identity $0 \leq(p c)(p c)^{*}=p c^{2} p=p b p=0$ and the Gelfand-Naimark axiom imply that $p c=c p=0$, and hence $p b=p c^{2}=0=c^{2} p=b p$.

A nonzero projection p in a C^{*}-algebra A is called minimal if $p A p=\mathbb{C} p$. A von Neumann algebra M is called atomic if it coincides with the weak* closure of the linear span of its minimal projections. It is known from the structure theory of von Neumann algebras that every atomic von Neumann algebra M can be written in the form $M=\bigoplus^{\ell_{\infty}} B\left(H_{j}\right)$, where each H_{j} is a complex Hilbert space (compare [14, §2.2] or [15, §V.1]).

Let p be a nonzero projection in an atomic von Neumann algebra $M=\bigoplus_{j}^{\ell_{\infty}} B\left(H_{j}\right)$. In this case we can always find a family $\left(q_{\lambda}\right)$ of mutually orthogonal minimal projections in M such that $p=\mathrm{w}^{*}-\sum_{\lambda} q_{\lambda}$ (compare [14, Definition 1.13.4]). Furthermore, p is the least upper bound of the set of all minimal projections in M which are smaller than or equal to p.

The bidual, $A^{* *}$, of a C^{*}-algebra A is a von Neumann algebra whose predual contains an abundant collection of pure states of A. This geometric advantage implies that the support projection in $A^{* *}$ of every element in $S\left(A^{+}\right)$is a nonzero projection. Namely, if a lies in $S\left(A^{+}\right)$it is well known that we can find a pure state $\phi \in \partial_{e}\left(\mathcal{B}_{\left(A^{*}\right)^{+}}\right)$satisfying $\phi(a)=1$. Pure states in A^{*} are in one-to-one correspondence with minimal projections in $A^{* *}$; more concretely, for each $\phi \in$ $\partial_{e}\left(\mathcal{B}_{\left(A^{*}\right)^{+}}\right)$there exists a unique minimal partial isometry $p_{\phi} \in A^{* *}$ satisfying $\phi\left(p_{\phi}\right)=1$ and $p_{\phi} x p_{\phi}=\phi(x) p_{\phi}$ for all $x \in M$ (see [11, Proposition 3.13.6]). The projection p_{ϕ} is called the support projection of ϕ. Since A is weak*-dense in $A^{* *}$ and the product of the latter von Neumann algebra is separately weak*continuous (see [11, Proposition 3.6.2 and Remark 3.6.5] or [14, Theorem 1.7.8]), it can be easily seen that every minimal projection in A is minimal in $A^{* *}$.

Let a be a positive norm-one element in a C^{*}-algebra A. Let us take a state $\phi \in \mathcal{S}_{A}$ satisfying $\phi(a)=1$ (compare [14, Proposition 1.5.4 and its proof]). The set $\left\{\psi \in \mathcal{B}_{\left(A^{*}\right)^{+}}: \psi(a)=1\right\}$ is a nonempty weak ${ }^{*}$ closed convex subset of $\mathcal{B}_{A^{*}}$. By the Krein-Milman theorem there exists $\varphi \in \partial_{e}\left(\mathcal{B}_{\left(A^{*}\right)^{+}}\right)$belonging to the previous set, and hence $\varphi(a)=1$. We consider the support projection p_{φ} of φ in $A^{* *}$, which is a minimal projection. The condition $\varphi(a)=1$ implies $p_{\varphi}=p_{\varphi} a p_{\varphi}$, and (2.1) assures that $a=p_{\varphi}+\left(\mathbf{1}-p_{\varphi}\right) a\left(\mathbf{1}-p_{\varphi}\right)$, and thus $0 \neq p_{\varphi} \leq s_{A^{* *}}(a)$. We can therefore deduce that

$$
\begin{equation*}
s_{A^{* *}}(a) \neq 0 \quad \text { for all } a \in S\left(A^{+}\right) \tag{2.3}
\end{equation*}
$$

In order to recall the connections with Nagy's paper, we observe that, given a norm-one positive operator a in $B(H)$, we denote $\operatorname{Fix}(a)=\{\xi \in H: a(\xi)=\xi\}$, and we write p_{a} for the projection of H onto $\operatorname{Fix}(a)$. Since $a=p_{a}+\left(\mathbf{1}-p_{a}\right) a(\mathbf{1}-$ p_{a}), it follows that p_{a} is smaller than or equal to the support projection of a in $B(H)^{* *}$. In some cases, p_{a} may be zero while $s_{B(H)^{* *}}(a) \neq 0$. When H is finite dimensional p_{a} and $s(a)$ coincide. If we take a positive norm-one element in the space $K(H)$ of all compact operators on H, the element $s_{B(H)}(a)=s_{K(H)^{* *}}(a)=p_{a}$ is a (nonzero) finite rank projection and lies in $K(H)$. We shall write $s_{K(H)}(a)$ for the projection $s_{B(H)}(a)$.

If p is a nonzero projection in a C^{*}-algebra A, then
for each a in $S\left(A^{+}\right)$such that $p \leq a$, we have $a=p+(\mathbf{1}-p) a(\mathbf{1}-p)$.
Namely, under the above hypothesis, we also have $p \leq a$ in the von Neumann algebra $A^{* *}$. It follows that $p \leq s_{A^{* *}}(a) \leq a$, and hence $s_{A^{* *}}(a)-p$ is a projection in $A^{* *}$ which is orthogonal to p. Since $a=s_{A^{* *}}(a)+\left(\mathbf{1}-s_{A^{* *}}(a)\right) a\left(\mathbf{1}-s_{A^{* *}}(a)\right)$, we have $p a p=p s_{A^{* *}}(a) p=p$, and thus $a=p+(\mathbf{1}-p) a(\mathbf{1}-p)$ (compare (2.1)).

It is part of the folklore in the theory of C^{*}-algebras that the distance between two positive elements a and b in the closed unit ball of a C^{*}-algebra A is bounded by one. Namely, since $-\mathbf{1} \leq-b \leq a-b \leq a \leq \mathbf{1}$, we deduce that $\|a-b\| \leq 1$.

In our first result, which is an infinite-dimensional version of [10, Corollary], we establish a precise description of those pairs of elements in $S\left(A^{+}\right)$whose distance is exactly one.

Lemma 2.1. Let A be a C^{*}-algebra, and let a and b be elements in $S\left(A^{+}\right)$. Then $\|a-b\|=1$ if and only if there exists a minimal projection e in $A^{* *}$ such that one of the following statements holds:
(a) $e \leq a$ and $e \perp b$ in $A^{* *}$;
(b) $e \leq b$ and $e \perp a$ in $A^{* *}$.

Proof. Let us first assume that $\|a-b\|=1$. Arguing as in the proof of (2.3), we can find $\varphi \in \partial_{e}\left(\mathcal{B}_{\left(A^{*}\right)^{+}}\right)$such that $|\varphi(a-b)|=1$. Since $0 \leq \varphi(a), \varphi(b) \leq 1$, we can deduce that precisely one of the following holds:
(a) $\varphi(a)=1$ and $\varphi(b)=0$;
(b) $\varphi(b)=1$ and $\varphi(a)=0$.

Let $e=p_{\varphi}$ be the minimal projection in $A^{* *}$ associated with the pure state φ. In case (a) we know that $e a e=e$ and $e b e=0$. Thus, by (2.1) and (2.2) it follows that $a=e+(\mathbf{1}-e) a(\mathbf{1}-e) \geq e$ and $b \perp e$ in $A^{* *}$. Similar arguments show that in case (b) we get $e \leq b$ and $e \perp a$ in $A^{* *}$.

Suppose now that we can find a minimal projection e in $A^{* *}$ satisfying (a) or (b) in the statement of the lemma. We shall only consider the case in which statement (a) holds, the other case is identical. Let φ be the pure state in A^{*} associated with e. Since $a=e+(\mathbf{1}-e) a(\mathbf{1}-e)$ and $b=(\mathbf{1}-e) b(\mathbf{1}-e)$ in $A^{* *}$, we obtain $\varphi(a-b)=\varphi(e)=1 \leq\|a-b\| \leq 1$.

We are now in position to establish a sufficient condition in terms of the set $S p h_{A}^{+}\left(S p h_{A}^{+}(a)\right)$, to guarantee that a positive norm-one element a in a C^{*}-algebra A is a projection.

Proposition 2.2. Let A be a C^{*}-algebra, and let a be a positive norm-one element in A. Suppose $\operatorname{Sph}_{A}^{+}\left(\operatorname{Sph}_{A}^{+}(a)\right)=\{a\}$. Then a is a projection.

Proof. Let $\sigma(a)$ denote the spectrum of a. We identify the C^{*}-subalgebra of A generated by a with the commutative C^{*}-algebra $C_{0}(\sigma(a))$ of all continuous functions on $\sigma(a) \cup\{0\}$ vanishing at 0 . Fix an arbitrary function $c \in C_{0}(\sigma(a))$ with $0 \leq c \leq 1, c(0)=0$, and $c(1)=1$. We claim that any such element c satisfies the following properties:
$(P 1)$ If q is a minimal projection in $A^{* *}$ with $q \leq a$, then $q \leq c$ in $A^{* *}$;
$(P 2)$ If q is a projection in $A^{* *}$ with $q \perp a=0$, then $q c=0$.
We shall next prove the claim. ($P 1$) Let q be a minimal projection in $A^{* *}$ with $q \leq a$. Let $\varphi \in \partial_{e}\left(\mathcal{B}_{\left(A^{*}\right)^{+}}\right)$be a pure state of A satisfying $\varphi(q)=1$. In this case $a=q+(\mathbf{1}-q) a(\mathbf{1}-q)$ in $A^{* *}$. This proves that $s_{A^{* *}}(a)=q+s_{A^{* *}}((\mathbf{1}-q) a(\mathbf{1}-q)) \geq$ q in $A^{* *}$. The element c has been defined to satisfy $s_{C_{0}(\sigma(a)) * *}(a) \leq s_{C_{0}(\sigma(a)) * *}(c)$. Since $C_{0}(\sigma(a))^{* *}$ can be identified with the weak ${ }^{*}$ closure of $C_{0}(\sigma(a))^{* *}$ in $A^{* *}$, we can actually conclude that $q \leq s_{A^{* *}}(a)=s_{C_{0}(\sigma(a))^{* *}}(a) \leq s_{C_{0}(\sigma(a))^{* *}}(c)=s_{A^{* *}}(c)$. This implies that $\varphi(c)=1$ and hence $q \leq c$ in $A^{* *}$.
$(P 2)$ Any element in $A^{* *}$, which is orthogonal to a, must be orthogonal to every element in $C_{0}(\sigma(a))$, because the latter is the C^{*}-subalgebra of A generated by a. This finishes the proof of the claim.

By Lemma 2.1, an element x lies in $S p h_{A}^{+}(a)$ if and only if there exists a minimal projection e in $A^{* *}$ such that one of the following statements holds:
(a) $e \leq a$ and $e \perp x$ in $A^{* *}$;
(b) $e \leq x$ and $e \perp a$ in $A^{* *}$.

In case $(a), e \perp x$ and $e \leq c$ by $(P 1)$, and Lemma 2.1 implies that $\|x-c\|=1$.
In case $(b), e \leq x$ and $e \perp a$, and hence $e \perp c$ by ($P 2$). Lemma 2.1 implies that $\|x-c\|=1$.

We have proved that, any function $c \in C_{0}(\sigma(a))$ with $0 \leq c \leq 1, c(0)=0$, and $c(1)=1$ belongs to $S p h_{A}^{+}\left(S p h_{A}^{+}(a)\right)=\{a\}$, which forces to $\sigma(a)=\{0,1\}$, and hence a is a projection.

The promised characterization of nonzero projections in an atomic von Neumann algebra is established next.

Theorem 2.3. Let M be an atomic von Neumann algebra, and let a be a positive norm-one element in M. Then the following statements are equivalent:
(a) a is a projection;
(b) $S p h_{M}^{+}\left(S p h_{M}^{+}(a)\right)=\{a\}$.

Proof. $(a) \Rightarrow(b)$ Suppose $a=p$ is a projection. Clearly

$$
\{p\} \subseteq S p h_{M}^{+}\left(S p h_{M}^{+}(p)\right)
$$

Let us take b in the set $S p h_{M}^{+}\left(S p h_{M}^{+}(p)\right)$. We shall first prove that $1-p \perp b$. If $1-p=0$ there is nothing to prove. Otherwise, let e be a minimal projection in M with $e \leq \mathbf{1}-p$. Since $\left\|e+\frac{1}{2}(\mathbf{1}-e)-p\right\|=1$, we deduce that $\left\|e+\frac{1}{2}(\mathbf{1}-e)-b\right\|=1$.

Lemma 2.1 proves the existence of a minimal projection $q \in M^{* *}$ such that one of the next statements holds:
(1) $q \leq e+\frac{1}{2}(\mathbf{1}-e)$ and $q \perp b$ in $M^{* *}$;
(2) $q \leq b$ and $q \perp e+\frac{1}{2}(\mathbf{1}-e)$ in $M^{* *}$.

We claim that case (2) is impossible. Indeed, $q \perp e+\frac{1}{2}(\mathbf{1}-e)$ is equivalent to $q \perp r_{M^{* *}}\left(e+\frac{1}{2}(\mathbf{1}-e)\right)=\mathbf{1}$, which is impossible. Therefore, only case (1) holds, and thus $q \leq e$. Since e also is a minimal projection in $M^{* *}$, we deduce from the minimality of q that $e=q \perp b$.

We have shown that for every minimal projection e in M with $e \leq \mathbf{1}-p$ we have $e \perp b$. Since $1-p$ is the least upper bound of all minimal projections q in M with $q \leq \mathbf{1}-p$ (actually $\mathbf{1}-p=\sum_{j} e_{j}$, where $\left\{e_{j}\right\}$ is a family of mutually orthogonal minimal projections in M), it follows that $1-p \perp b$ (equivalently, $p b=b p=b$).

We shall next prove that b is a projection and $p=b$. Let $\sigma(b)$ be the spectrum of b, let \mathcal{C} denote the C^{*}-subalgebra of M generated by b and p, and let us identify \mathcal{C} with $C(\sigma(b)), b$ with the function $t \mapsto t$, and p with the unit of \mathcal{C}. We shall distinguish two cases:
(i) $0 \notin \sigma(b)$ (that is, b is invertible in \mathcal{C});
(ii) $0 \in \sigma(b)$ (that is, b is not invertible in \mathcal{C}).

We deal first with case (i). If $0 \notin \sigma(b)$, let m_{0} be the minimum of $\sigma(b)$. If $0<$ $m_{0}<1$, we consider the function $d \in \mathcal{C} \equiv C(\sigma(b))$ defined by $d(t)=\frac{1}{1-m_{0}}\left(t-m_{0}\right)$ $(t \in \sigma(b))$. It is not hard to check that $0 \leq\|b-d\|=m_{0}<1$ and $\|p-d\|=1$, which contradicts that $b \in S p h_{M}^{+}\left(S p h_{M}^{+}(p)\right)$. Therefore $m_{0}=1$, and hence b is invertible with $\sigma(b)=\{1\}$, witnessing that $\mathbf{1}=b \leq p \leq \mathbf{1}$. We have proved that $b=p=1$.

In case $(i i), 0 \in \sigma(b)$. If there exists $t_{0} \in \sigma(b) \cap(0,1)$, the function

$$
c(t)=\left\{\begin{array}{cc}
0 & \text { if } t \in \sigma(b) \cap\left[0, t_{0}\right] ; \\
\frac{1+t_{0}}{1-t_{0}}\left(t-t_{0}\right) & \text { if } t \in \sigma(b) \cap\left[t_{0}, \frac{1+t_{0}}{2}\right] ; \\
t & \text { if } t \in \sigma(b) \cap\left[\frac{1+t_{0}}{2}, 1\right]
\end{array}\right.
$$

defines a positive norm-one element in $c \in C(\sigma(b))$ such that $\|p-c\|=1$ and $\|b-c\|=t_{0}<1$. This contradicts that $b \in \operatorname{Sph}_{M}^{+}\left(\operatorname{Sph}_{M}^{+}(p)\right)$. Therefore, $\sigma(b) \subseteq\{0,1\}$, and hence b is a projection. If $b<p$, we get $\|b-b\|=0$ and $\|p-b\|=1$, contradicting that $b \in S p h_{M}^{+}\left(S p h_{M}^{+}(p)\right)$. Therefore $p=b$.

We have shown that $S p h_{M}^{+}\left(S p h_{M}^{+}(p)\right)=\{p\}$.
The implication $(b) \Rightarrow(a)$ follows from Proposition 2.2.
The next result is a clear consequence of our previous theorem and extends the characterization of projections in $M_{n}(\mathbb{C})$ established by G. Nagy in the final paragraph of the proof of [10, Claim 1] (compare (1.1)).

Corollary 2.4. Let H be an arbitrary complex Hilbert space, and let a be a positive norm-one element in $B(H)$. Then the following statements are equivalent:
(a) a is a projection;
(b) $S p h_{B(H)}^{+}\left(S p h_{B(H)}^{+}(a)\right)=\{a\}$.

It seems natural to ask whether the above corollary remains true if $B(H)$ is replaced with $K(H)$. For an infinite-dimensional separable complex Hilbert space H_{2}, the conclusion of Theorem 2.3 and Corollary 2.4 can be also extended to projections in the space $K\left(H_{2}\right)$. The arguments in the proof of Theorem 2.3 actually require a subtle adaptation.

Theorem 2.5. Let a be a positive norm-one element in $K\left(H_{2}\right)$, where H_{2} is a separable complex Hilbert space. Then the following statements are equivalent:
(a) a is a projection;
(b) $S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)=\{a\}$.

Proof. When H_{2} is finite-dimensional, the equivalence is proved in [10, final paragraph of the proof of Claim 1]. We can therefore assume that H_{2} is infinitedimensional.
$(a) \Rightarrow(b)$ We assume first that $a=p \in K\left(H_{2}\right)$ is a projection. We can find a family $\left\{q_{1}, \ldots, q_{n}\right\}$ of mutually orthogonal minimal projections in $K(H)$ such
that $p=\sum_{j=1}^{n} q_{j}$. As before, the inclusion

$$
\{p\} \subseteq S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(p)\right)
$$

always holds. Let us take b in the set $S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(p)\right)$. Clearly $0 \neq$ $\mathbf{1}-p \notin K\left(H_{2}\right)$. Let e be a minimal projection in $K\left(H_{2}\right)$ with $e \leq \mathbf{1}-p$ in $B\left(H_{2}\right)$. Since H_{2} is separable, we can pick a maximal family $\left\{v_{n}: n \in \mathbb{N}\right\}$ of mutually orthogonal minimal projections in $(\mathbf{1}-e) K\left(H_{2}\right)(\mathbf{1}-e)$ with $\mathbf{1}-e=\sum_{n=1}^{\infty} v_{n}$. The element $e+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}$ lies in $S\left(K\left(H_{2}\right)^{+}\right)$and $\left\|e+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}-p\right\|=1$; thus, the hypothesis on b implies that $\left\|e+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}-b\right\|=1$. Lemma 2.1 proves the existence of a minimal projection $q \in K\left(H_{2}\right)^{* *}=B\left(H_{2}\right)$ such that one of the next statements holds:
(1) $q \leq e+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}$ and $q \perp b$ in $K\left(H_{2}\right)^{* *}=B\left(H_{2}\right)$;
(2) $q \leq b$ and $q \perp e+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}$ in $K\left(H_{2}\right)^{* *}=B\left(H_{2}\right)$.

In case (2), $q \perp e+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}$, and hence $q \perp e, v_{n}$ for all n, which proves that $q \perp e+\sum_{n=1}^{\infty} v_{n}=\mathbf{1}$ in $B\left(H_{2}\right)$, which is impossible. Therefore, case (1) holds, and thus $q \leq e$. Since e is a minimal projection in $K\left(H_{2}\right)^{* *}=B\left(H_{2}\right)$, we deduce from the minimality of q that $e=q \perp b$.

We have shown that for every minimal projection e in $B\left(H_{2}\right)$ with $e \leq \mathbf{1}-p$ we have $e \perp b$, and then $1-p \perp b$ (equivalently, $p b=b p=b$).

The above arguments show that $b, p \in p K\left(H_{2}\right) p \cong M_{n}(\mathbb{C})$. Furthermore, every $x \in S p h_{p K\left(H_{2}\right) p}^{+}(a)$ lies in $S p h_{K\left(H_{2}\right)}^{+}(a)$, and hence $\|b-x\|=1$; therefore b lies in $S p h_{p K\left(H_{2}\right) p}^{+}\left(S p h_{p K\left(H_{2}\right) p}^{+}(p)\right)$. It follows from [10, final paragraph of the proof of Claim 1] (see also (1.1)) that $S p h_{p K\left(H_{2}\right) p}^{+}\left(S p h_{p K\left(H_{2}\right) p}^{+}(p)\right)=\{p\}$, and hence $b=p$. Therefore, $S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(p)\right)=\{p\}$.

The implication $(b) \Rightarrow(a)$ follows from Proposition 2.2.
Many consequences can be expected from the characterizations established in Theorem 2.3 and Corollary 2.4. We shall conclude this note with a first application. For a C^{*}-algebra A, let $\mathcal{P r o j}(A)^{*}$ denote the set of all nonzero projections in A. The next result is an infinite-dimensional version of [10, Claim 1] which proves one of the conjectures posed at the end of the just quoted paper.

Corollary 2.6. Let $\Delta: S\left(M^{+}\right) \rightarrow S\left(N^{+}\right)$be a surjective isometry, where M and N are atomic von Neumann algebras. Then Δ maps \mathcal{P} roj $(M)^{*}$ onto $\mathcal{P r o j}(N)^{*}$, and the restriction $\left.\Delta\right|_{\mathcal{P} r o j(M)^{*}}: \mathcal{P} \operatorname{roj}(M)^{*} \rightarrow \mathcal{P} r o j(N)^{*}$ is a surjective isometry.
Proof. Let p be a nonzero projection in M. Applying Theorem 2.3 we have $S p h_{M}^{+}\left(S p h_{M}^{+}(p)\right)=\{p\}$. Since Δ is a surjective isometry, the sphere around a set $E \subset S\left(M^{+}\right), S p h_{M}^{+}(E)$, is always preserved by Δ; that is, $\Delta\left(S p h_{M}^{+}(E)\right)=$ $\operatorname{Sph}_{N}^{+}(\Delta(E))$. We consequently have

$$
\{\Delta(p)\}=\Delta(\{p\})=\Delta\left(S p h_{M}^{+}\left(S p h_{M}^{+}(p)\right)\right)=S p h_{N}^{+}\left(S p h_{N}^{+}(\Delta(p))\right)
$$

and a new application of Theorem 2.3 assures that $\Delta(p)$ is a projection in N.
We have shown that $\Delta\left(\mathcal{P} \operatorname{roj}(M)^{*}\right) \subseteq \mathcal{P} \operatorname{roj}(N)^{*}$. Since Δ^{-1} also is a surjective isometry, we get $\Delta\left(\mathcal{P r o j}(M)^{*}\right)=\mathcal{P} r o j(N)^{*}$. Clearly $\left.\Delta\right|_{\mathcal{P r o j}(M)^{*}}: \mathcal{P r o j}(M)^{*} \rightarrow$ $\mathcal{P r o j}(N)^{*}$ is a surjective isometry.

When in the previous proof we replace Theorem 2.3 with Theorem 2.5 the same arguments are valid to prove the following:

Corollary 2.7. Let H_{2} and H_{3} be separable complex Hilbert spaces, and let us assume that $\Delta: S\left(K\left(H_{2}\right)^{+}\right) \rightarrow S\left(K\left(H_{3}\right)^{+}\right)$is a surjective isometry. Then Δ maps $\mathcal{P r o j}\left(K\left(H_{2}\right)\right)^{*}$ to $\mathcal{P r o j}\left(K\left(H_{3}\right)\right)^{*}$, and the restriction

$$
\left.\Delta\right|_{\mathcal{P r o j}\left(K\left(H_{2}\right)\right)^{*}}: \operatorname{Proj}\left(K\left(H_{2}\right)\right)^{*} \rightarrow \operatorname{Proj}\left(K\left(H_{3}\right)\right)^{*}
$$

is a surjective isometry.
Another result established by G. Nagy in [10] asserts that for a finite-dimensional complex Hilbert space H, the equality

$$
S p h_{B(H)}^{+}\left(S p h_{B(H)}^{+}(a)\right)=\left\{b \in S\left(B(H)^{+}\right): \quad \begin{array}{c}
\operatorname{Fix}(a) \subseteq \operatorname{Fix}(b) \\
\text { and } \operatorname{ker}(a) \subseteq \operatorname{ker}(b)
\end{array}\right\}
$$

holds for every element a in $S\left(B(H)^{+}\right.$) (see the beginning of the proof of [10, Claim 1]). Our next result is an abstract version of Nagy's result to the space of compact operators.

Theorem 2.8. Let H_{2} be a separable infinite-dimensional complex Hilbert space.
Then the identity

$$
S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)=\left\{b \in S\left(K\left(H_{2}\right)^{+}\right): \begin{array}{c}
s_{K\left(H_{2}\right)}(a) \leq s_{K\left(H_{2}\right)}(b), \text { and } \\
1-r_{B\left(H_{2}\right)}(a) \leq 1-r_{B\left(H_{2}\right)}(b)
\end{array}\right\}
$$

holds for every a in the unit sphere of $K\left(H_{2}\right)^{+}$.
Proof. (Э) We recall that, for each $b \in S\left(K\left(H_{2}\right)^{+}\right)$we have $s_{K\left(H_{2}\right)}(b)=p_{b} \in$ $K\left(H_{2}\right)$. Let $b \in S\left(K\left(H_{2}\right)^{+}\right)$be with $s_{K\left(H_{2}\right)}(a) \leq s_{K\left(H_{2}\right)}(b)$, and let $\mathbf{1}-r_{B\left(H_{2}\right)}(a) \leq$ $1-r_{B\left(H_{2}\right)}(b)$. We pick an arbitrary $c \in S p h_{K\left(H_{2}\right)}^{+}(a)$. Since $\|a-c\|=1$, Lemma 2.1 implies the existence of a minimal projection e in $B\left(H_{2}\right)$ such that one of the following statements holds:
(a) $e \leq a$ and $e \perp c$ in $K\left(H_{2}\right)^{* *}=B\left(H_{2}\right)$;
(b) $e \leq c$ and $e \perp a$ in $K\left(H_{2}\right)^{* *}=B\left(H_{2}\right)$.

In case (a), we have $e \leq s_{K\left(H_{2}\right)}(a) \leq s_{K\left(H_{2}\right)}(b)$ and $e \perp c$. Lemma 2.1 implies that $\|c-b\|=1$.

In case (b), the condition $e \perp a$ implies that $e \leq \mathbf{1}-r_{B\left(H_{2}\right)}(a) \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b)$, and thus $e \perp b$. Since $e \leq c$, Lemma 2.1 assures that $\|c-b\|=1$.

We have shown that $\|c-b\|=1$ for all $c \in S p h_{K\left(H_{2}\right)}^{+}(a)$, and thus b lies in $S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)$.
(\subseteq) Let us take $b \in S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)$.
We shall first prove that $\mathbf{1}-r_{B\left(H_{2}\right)}(a) \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b)$. If $\mathbf{1}-r_{B\left(H_{2}\right)}(a)=0$ there is nothing to prove. Otherwise, let e be a minimal projection in $K\left(H_{2}\right)$ with $e \leq \mathbf{1}-r_{B\left(H_{2}\right)}(a)$. Let $\left(e_{n}\right)$ be a maximal family of mutually orthogonal minimal projections in $K\left(H_{2}\right)$ such that $\mathbf{1}-e=\sum_{n=1}^{\infty} e_{n}$ (here we apply that H_{2} is separable). Since $\left\|e+\sum_{n=1}^{\infty} \frac{1}{2 n} e_{n}-a\right\|=1$ and $e+\sum_{n=1}^{\infty} \frac{1}{2 n} e_{n} \in K\left(H_{2}\right)$, we deduce that $\left\|e+\sum_{n=1}^{\infty} \frac{1}{2 n} e_{n}-b\right\|=1$. Lemma 2.1 proves the existence of a minimal projection $q \in B\left(H_{2}\right)$ such that one of the next statements holds:
(a) $q \leq e+\sum_{n=1}^{\infty} \frac{1}{2 n} e_{n}$ and $q \perp b$ in $B\left(H_{2}\right)$;
(b) $q \leq b$ and $q \perp e+\sum_{n=1}^{\infty} \frac{1}{2 n} e_{n}$ in $B\left(H_{2}\right)$.

We claim that case (b) is impossible. Indeed, $q \perp e+\sum_{n=1}^{\infty} \frac{1}{2 n} e_{n}$ is equivalent to $q \perp r_{B\left(H_{2}\right)}\left(e+\sum_{n=1}^{\infty} \frac{1}{2 n} e_{n}\right)=\mathbf{1}$, which is impossible. Therefore, only case (a) holds, and by the minimality of q, q coincides with e, and $e=q \perp b$ assures that $q=e \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b)$.

We have shown that for every minimal projection e in $B\left(H_{2}\right)$ with $e \leq 1-$ $r_{B\left(H_{2}\right)}(a)$ we have $q \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b)$. Since in $B\left(H_{2}\right)$ every projection is the least upper bound of all minimal projections smaller than or equal to it, we deduce that

$$
\mathbf{1}-r_{B\left(H_{2}\right)}(a) \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b) .
$$

Our next goal is to show that $s_{K\left(H_{2}\right)}(a) \leq s_{K\left(H_{2}\right)}(b)$. If $r_{B\left(H_{2}\right)}(a)-s_{B\left(H_{2}\right)}(a)=0$, we have $s_{K\left(H_{2}\right)}(a)=a=r_{B\left(H_{2}\right)}(a) \geq r_{B\left(H_{2}\right)}(b) \geq s_{B\left(H_{2}\right)}(b)$. In particular, a is a projection in $K\left(H_{2}\right)$. We shall prove that b is a projection and $a=b$. Let $\sigma(b)$ be the spectrum of b, let \mathcal{C} denote the C^{*}-subalgebra of $K\left(H_{2}\right)$ generated by b and $a=r_{K\left(H_{2}\right)}(a)$, and let us identify \mathcal{C} with $C(\sigma(b))$ and b with the identity function
on $\sigma(b)$. If there exists $t_{0} \in \sigma(b) \cap(0,1)$, then the function

$$
c(t)=\left\{\begin{array}{cc}
0 & \text { if } t \in \sigma(b) \cap\left[0, t_{0}\right] ; \tag{2.4}\\
\frac{1+t_{0}}{1-t_{0}}\left(t-t_{0}\right) & \text { if } t \in \sigma(b) \cap\left[0, t_{0}\right] ; \\
t & \text { if } t \in \sigma(b) \cap\left[\frac{1+t_{0}}{2}, 1\right]
\end{array}\right.
$$

defines a positive, norm-one element in $c \in C(\sigma(b)) \subset K\left(H_{2}\right)$ such that $\|a-c\|=$ 1 and $\|b-c\|<1$. This contradicts that $b \in S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)$. Therefore, $\sigma(b) \subseteq\{0,1\}$, and hence b is a projection. If $s_{B\left(H_{2}\right)}(b)=b<s_{K\left(H_{2}\right)}(a)=a$, we get $\left\|b-s_{K\left(H_{2}\right)}(b)\right\|=0$, and $\|a-b\|=\left\|a-s_{K\left(H_{2}\right)}(b)\right\|=\left\|s_{K\left(H_{2}\right)}(a)-s_{K\left(H_{2}\right)}(b)\right\|=1$, contradicting that $b \in S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)$. Therefore $a=b$ is a projection and $s_{K\left(H_{2}\right)}(b)=b=a=s_{K\left(H_{2}\right)}(a)$.

We assume next that $r_{B\left(H_{2}\right)}(a)-s_{K\left(H_{2}\right)}(a) \neq 0$. We first prove the following property.

Property ($\checkmark .1$): for each pair of minimal projections $v, q \in B\left(H_{2}\right)$ with $v \leq s_{K\left(H_{2}\right)}(a)$ and $q \leq r_{B\left(H_{2}\right)}(a)-s_{K\left(H_{2}\right)}(a)$ one of the following statements holds:
(1) $q \perp b$, or equivalently, $q \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b)$;
(2) $v \leq s_{B\left(H_{2}\right)}(b) \leq b$.

To prove the property, we consider a family $\left(v_{n}\right)$ of mutually orthogonal minimal projections in $K\left(H_{2}\right)$ satisfying $\mathbf{1}-v-q=\sum_{n=1}^{\infty} v_{n}$, and the element $q+$ $\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n} \in S\left(K\left(H_{2}\right)^{+}\right)$. Clearly, v is a minimal projection in $B\left(H_{2}\right)$ satisfying $v \leq a$ and $v \perp q, \mathbf{1}-v$, and hence $v \perp q+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}$. Lemma 2.1 assures that $\left\|a-\left(q+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}\right)\right\|=1$, and by hypothesis $\left\|b-\left(q+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}\right)\right\|=1$. A new application of Lemma 2.1 assures the existence of a minimal projection $e \in B\left(H_{2}\right)$ such that one of the following statements holds:
(a) $e \leq b$ and $e \perp q+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}$ in $B\left(H_{2}\right)$;
(b) $e \leq q+\sum_{n=1}^{\infty} \frac{1}{2 n} v_{n}$ and $e \perp b$ in $B\left(H_{2}\right)$.

In the second case $e=q \perp b$; equivalently, $q \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b)$. In the first case $e \leq b \leq r_{B\left(H_{2}\right)}(b) \leq r_{B\left(H_{2}\right)}(a)$, and $e \perp q, \mathbf{1}-v$. Since $e \leq r_{B\left(H_{2}\right)}(a)$ and $r_{B\left(H_{2}\right)}(a)=\left(r_{B\left(H_{2}\right)}(a)-v\right)+v$, we deduce that $e \leq v$. The minimality of e and v proves that $e=v \leq b$, and thus $v \leq s_{B\left(H_{2}\right)}(b) \leq b$. This finishes the proof of Property (\checkmark.1).

We discuss now the following dichotomy:

- There exists a minimal projection v in $B\left(H_{2}\right)$ with $v \leq s_{K\left(H_{2}\right)}(a)$ and $v \not \leq$ $s_{K\left(H_{2}\right)}(b)$;
- For every minimal projection v in $B\left(H_{2}\right)$ with $v \leq s_{K\left(H_{2}\right)}(a)$ we have $v \leq$ $s_{K\left(H_{2}\right)}(b)$.
In the first case, let v be a minimal projection in $K\left(H_{2}\right)$ with $v \leq s_{K\left(H_{2}\right)}(a)$ and $v \not \leq s_{K\left(H_{2}\right)}(b)$. Property $(\checkmark .1)$ implies that for every minimal projection $q \in B\left(H_{2}\right)$ with $q \leq r_{B\left(H_{2}\right)}(a)-s_{K\left(H_{2}\right)}(a)$ we have $q \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b)$. This proves that

$$
r_{B\left(H_{2}\right)}(a)-s_{K\left(H_{2}\right)}(a) \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b)
$$

We have therefore shown that

$$
\mathbf{1}-s_{K\left(H_{2}\right)}(a)=\left(\mathbf{1}-r_{B\left(H_{2}\right)}(a)\right)+\left(r_{B\left(H_{2}\right)}(a)-s_{K\left(H_{2}\right)}(a)\right) \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b),
$$

and thus $r_{B\left(H_{2}\right)}(b) \leq s_{K\left(H_{2}\right)}(a)$. In this case we have $0 \leq b \leq r_{B\left(H_{2}\right)}(b) \leq s_{K\left(H_{2}\right)}(a)$, and then $a b=b a=b$. If $\sigma(b) \cap(0,1) \neq \emptyset$, by considering the C^{*}-subalgebra of $K\left(H_{2}\right)$ generated by b and the definition in (2.4), we can find an element c in $S\left(K\left(H_{2}\right)^{+}\right)$such that $\|a-c\|=1$ and $\|b-c\|<1$, contradicting that $b \in S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)$. Therefore $\sigma(b) \subseteq\{0,1\}$, and hence b is a projection with $b \leq s_{K\left(H_{2}\right)}(a)$. If $b<s_{K\left(H_{2}\right)}(a)$, we have $\|b-b\|=0$ and $\|a-b\|=1$ contradicting, again, that $b \in S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)$. We have shown that in this case $b=s_{K\left(H_{2}\right)}(b)=s_{K\left(H_{2}\right)}(a)$.

In the second case of the above dichotomy, having in mind that $s_{K\left(H_{2}\right)}(a)$ can be written as a finite sum of mutually orthogonal minimal projections in $K\left(H_{2}\right)$, we have $s_{K\left(H_{2}\right)}(a) \leq s_{K\left(H_{2}\right)}(b)$ as desired.
Remark 2.9. Let us remark that Theorem 2.5 can be derived as a straight consequence of our previous Theorem 2.8. Namely, let H_{2} be a separable complex Hilbert space, and let a be an element in $S\left(K\left(H_{2}\right)^{+}\right)$. Applying Theorem 2.8 we get

$$
S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)=\left\{b \in S\left(K\left(H_{2}\right)^{+}\right): \begin{array}{c}
s_{K\left(H_{2}\right)}(a) \leq s_{K\left(H_{2}\right)}(b), \text { and } \\
\mathbf{1 - r _ { B (H _ { 2 }) }}(a) \leq \mathbf{1}-r_{B\left(H_{2}\right)}(b)
\end{array}\right\} .
$$

If a is a projection, then $s_{K\left(H_{2}\right)}(a)=r_{B\left(H_{2}\right)}(a)=a$ and hence

$$
S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)=\{a\} .
$$

If, on the other hand, $S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)=\{a\}$, having in mind that $s_{K\left(H_{2}\right)}(a)$ belongs to $S\left(K\left(H_{2}\right)^{+}\right)$and $s_{K\left(H_{2}\right)}(a) \leq r_{B\left(H_{2}\right)}(a)$, we deduce that $s_{K\left(H_{2}\right)}(a)$ lies in the set $S p h_{K\left(H_{2}\right)}^{+}\left(S p h_{K\left(H_{2}\right)}^{+}(a)\right)=\{a\}$, and hence $s_{K\left(H_{2}\right)}(a)=a$ is a projection.

Acknowledgements. Author partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and European Regional Development Fund project no. MTM2014-58984-P and Junta de Andalucía grant FQM375.

References

1. F. J. Fernández-Polo, J. J. Garcés, A. M. Peralta, and I. Villanueva, Tingley's problem for spaces of trace class operators, Linear Algebra Appl. 529 (2017), 294-323.
2. F. J. Fernández-Polo, E. Jordá, and A.M. Peralta, Tingley's problem for p-Schatten von Neumann classes for $2<p<\infty$, preprint, arXiv:1803.00763v1
3. F. J. Fernández-Polo and A. M. Peralta, Tingley's problem through the facial structure of an atomic JB W^{*}-triple, J. Math. Anal. Appl. 455 (2017), 750-760.
4. F. J. Fernández-Polo and A. M. Peralta, On the extension of isometries between the unit spheres of a C^{*}-algebra and $B(H)$, Trans. Amer. Math. Soc. 5 (2018), 63-80.
5. F.J. Fernández-Polo and A .M. Peralta, Partial Isometries: a survey, Adv. Oper. Theory 3 (2018), no. 1, 87-128.
6. F.J. Fernández-Polo and A. M. Peralta, On the extension of isometries between the unit spheres of von Neumann algebras, preprint, arXiv:1709.08529v1
7. L. Molnár and W. Timmermann, Isometries of quantum states, J. Phys. A: Math. Gen. 36 (2003), 267-273.
8. M. Mori, Tingley's problem through the facial structure of operator algebras, preprint 2017. arXiv:1712.09192v1
9. G. Nagy, Isometries on positive operators of unit norm, Publ. Math. Debrecen 82 (2013), 183-192.
10. G. Nagy, Isometries of spaces of normalized positive operators under the operator norm, Publ. Math. Debrecen 92 (2018), 243-254.
11. G. K. Pedersen, C^{*}-algebras and their automorphism groups, London Mathematical Society Monographs Vol. 14, Academic Press, London, 1979.
12. A. M. Peralta, A survey on Tingley's problem for operator algebras, Acta Sci. Math. Szeged (to appear), arXiv:1801.02473v1
13. A. M. Peralta and R. Tanaka, A solution to Tingley's problem for isometries between the unit spheres of compact C^{*}-algebras and $J B^{*}$-triples, Sci. China Math. (to appear), arXiv:1608.06327v1.
14. S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer, Berlin, 1971.
15. M. Takesaki, Theory of operator algebras I, Springer, New York, 2003.
16. R. Tanaka, Spherical isometries of finite dimensional C^{*}-algebras, J. Math. Anal. Appl. 445 (2017), no. 1, 337-341.
17. R. Tanaka, Tingley's problem on finite von Neumann algebras, J. Math. Anal. Appl. 451 (2017), 319-326.

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de
Granada, 18071 Granada, Spain.
E-mail address: aperalta@ugr.es

[^0]: Copyright 2018 by the Tusi Mathematical Research Group.
 Date: Received: Apr. 1, 2018; Accepted: Apr. 11, 2018.
 2010 Mathematics Subject Classification. Primary 47A05; Secondary 47L30, 46L05.
 Key words and phrases. Projection, unit sphere around a subset, bounded linear operator, compact linear operator.

