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Abstract. We introduce some classes of Banach spaces for which the hyper-
invariant subspace problem for the shift operator has positive answer. More-
over, we provide sufficient conditions on weights which ensure that certain
subspaces of ℓ2β(Z) are closed under convolution. Finally we consider some
cases of weighted spaces for which the problem remains open.

1. Introduction

Let X be a Banach space, and let B(X) be the Banach algebra of all bounded
linear operator on X. A closed subspace M of X is called an invariant subspace
of an operator A ∈ B(X) if AM ⊆ M . At the same token, it is called a hyperin-
variant subspace of A, if it is invariant under every operator that commutes with
A. In addition M is bi-invariant subspace of A if M is invariant subspace for A
and A−1 whenever A is invertible. Throughout the paper, we assume that M is
nontrivial; that is, M ̸= {0} and M ̸= X. An old and still open problem in op-
erator theory is the invariant subspace problem. It asks whether every operator
A ∈ B(X) has nontrivial invariant subspace. In what follows, we consider this
problem for the shift operator in some weighted spaces.

When β is a function from Z into [0,∞) set

ℓβ := ℓ2β(Z) =

{
u = (un)n∈Z : ∥u∥2β =

∑
n∈Z

|un|2β2(n) < ∞

}
.
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Here we denote by H(D) the space of functions holomorphic on the open unit

disc D, and for f ∈ H(D) we denote by f̂(n) the nth Taylor coefficient of f at
the origin. Let σ = β|Z+, and denote by Hσ := H2

σ(D) the usual weighted Hardy
space {

f ∈ H(D) : ∥f∥2σ :=
∞∑
n=0

|f̂(n)|2σ2(n) < +∞

}
.

The usual shift operator on ℓβ is defined by the formula

S.u = (un−1)n∈Z, u = (un)n∈Z ∈ ℓβ.

Let

ℓ+β = {(un)n∈Z ∈ ℓβ : un = 0, n < 0},
ℓ−β = {(un)n∈Z ∈ ℓβ : un = 0, n ≥ 0},
S+ = S|ℓ+β ,
ep = (δp,n)n∈Z,

where we denote by δp,n the Kronecker symbol. We can identify ℓ+β to ℓ2σ(Z+) in

the obvious way, and the Fourier transform f → (f̂(n))n≥0 is an isometry from
Hσ onto ℓ+β . Denote by ǔ the inverse Fourier transform, so that

ǔ(z) = Σ∞
n=0un.z

n for z ∈ D, u ∈ ℓ+β .

Denote by Γ the unit circle of the complex plane; if β(n) ≥ 1, for all n ∈ Z, we
have a subspace of L2(Γ) by the following definition.

L2
β(Γ) =

{
f ∈ L2(Γ) : ∥f∥2β =

∑
n∈Z

|f̂(n)|2β2(n) < ∞

}
and

L2
β−(Γ) =

{
f ∈ L2

β(Γ) | f̂(n) = 0, ∀ n ≥ 0
}
.

In this case, by using Fourier transform isometry, we have ℓ2β(Z) = L̂2
β(Γ) and

the shift operator can be considered as multiplication operator. We denote by
S : f(z) → zf(z) the forward shift operator (multiplication by z) on L2

β(Γ); so,

for every m,n ∈ Z, if f(z) =
∑

n∈Z f̂(n)z
n, then Ŝmf(n) = f̂(n−m).

The existence of nontrivial translation invariant subspaces of ℓ2β(Z) is an old-
standing problem, and there were so far very few cases of concrete weights β
for which translation invariant subspaces of ℓ2β(Z) have been classified. In 1932,

the hyperinvariant subspaces of the shift operator on L2 were characterized by
Wiener [9]. According to his result, the reducing subspaces of the bilateral shift
on L2(Γ) are precisely the subspaces M = {f ∈ L2(Γ) : f(z) = 0 a.e. on E}
for measurable subsets E ⊆ Γ. In 1949, Beurling [2] characterized the invariant
subspaces of the shift operator on the Hardy space H2. His result is one of the
pillars of modern function theory and says that if M is an invariant subspace of
the shift operator on the unit circle, then there exists an inner function ϕ on the
unit circle such that M = ϕH2.
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Defintion 1.1. A linear subspace M of Hβ has the division property if f(z)
f(z)−λ

belongs to M for every f ∈ M and every λ ∈ Z(f).

Esterle and Volberg [5] introduced the class of weights S which consists of all
weight β that satisfy the following conditions:

(i) 0 < infp∈Z
β(n+p)
β(p)

≤ supp∈Z
β(n+p)
β(p)

< ∞.

(ii) For all n ≥ 0, if β̄(n) = supp>0
β(p)

β(n+p)
and β̃(n) = supp>0

β(n+p)
β(p)

, then

limn→∞, β̄(n) = limn→∞ β̃(n) = 1.

Then, using sharp estimates of Matsaev–Mogulskii about the rate of growth of
quotients of analytic functions on the unit disc, they obtained the following result.

Theorem 1.2 (Esterle–Volberg). Let β ∈ S. If log β̄+(n) = O(nα) with α < 1/2

and limn→∞
log β(n)√

n
= ∞, then F = (

∨
n≤0 S

nF )∩L+
β and L2

β(Γ) = (
∨

n≤0 S
nF )+

L+
β , for every closed subspace F ̸= 0 of L+

β having the division property.

Defintion 1.3. The weight β is called dis-symmetric if

(i) β(n) = 1, n ≥ 1,

(ii) lim sup
n→−∞

β(n−1)
β(n)

< ∞,

(iii) [β(n)]
1
|n|→ 1 as n → −∞.

If U is a singular inner function, let E(U) be the closure of
∨
{SnU : n ∈ Z} and

U∗ = 1
U
− 1

limz→∞ U(z)
.

Esterle [4] characterized the structure of bi-invariant subspaces of dis-symmetric
weighted shift. His main result reads as follows.

Theorem 1.4 (Esterle). Let β be a dis-symmetric weight such that

log β(−n)√
n

→ ∞ as n → ∞.

Then the map U → E(U) is a bijection from the set of singular inner functions
on D onto the set of proper closed shift bi-invariant subspaces F such that F ∩
H2(D) ̸= {0}. Moreover, if U is a singular inner function we have E(U) ∩
H2(D) = UH2(D), L2

β(Γ) = E(U) +H2(D), and E(U) = {f ∈ L2
β(Γ)|fU∗ = 0}.

Two more important results were obtained by Shields [7] and Wermer [8].

Theorem 1.5 (Shields). Let S be a bilateral weighted shift. Then the following
assertions hold.

(i) If S is invertible, then the spectrum of S is the annulus

[r(S−1)]−1 ≤ |z| ≤ r(S).

(ii) If S is not invertible, then the spectrum is the disc |z| ≤ r(S).
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Theorem 1.6 (Wermer). If the operator T is invertible with∑
n∈Z

log ∥T n∥
1 + n2

< ∞

and spectrum of T contains more than one point, then T has nontrivial hyperin-
variant subspaces.

In what follows, the existence and structure of hyperinvariant subspaces for the
weighted shift operator will be investigated. We consider two types of weights.

ω(n) =

{
1 if n > 0,

exp(|n|α) if n ≤ 0,

and

τ(n) =

{
1 if n > 0,

exp(−|n|α) if n ≤ 0,

where (α ∈ R+). It is elementary to see that ω is log-concave if α ≤ 1, and that
τ is log-concave if α ≥ 1. In what follows, β denotes either ω or τ , and α denotes
the power of |n| in exp(|n|α).

2. Main results

In this section, we state some theorems which enable us to solve the hyperin-
variant subspace problem in some cases.

Theorem 2.1. The shift operator on ℓ2τ (Z) is invertible for every positive α and
invertible on ℓ2ω(Z) if and only if α ≤ 1.

Proof. For each u ∈ ℓ2β(Z), if u = (un)n∈Z, then S−1u = (un+1)n∈Z.
So, for every positive weight β, we have

∥S−1u∥2β =
∑
n∈Z

|un|2β2(n− 1)

=
∑
n∈Z

|un|2β2(n)

(
β(n− 1)

β(n)

)2

. (2.1)

Let β = τ . we get(
β(n− 1)

β(n)

)
=

{
1, n > 0,

exp(|n|α − (|n|+ 1)α), n ≤ 0,

which is bounded for every positive α. Similarly, when β = ω we get(
β(n− 1)

β(n)

)
=

{
1, n > 0,

exp((|n|+ 1)α − |n|α), n ≤ 0,

that is bounded if and only if α ≤ 1. Therefore, by using (2.1), we have

∥S−1u∥2β ≤ M
∑
n∈Z

|un|2β2(n) = M∥u∥2β

for some positive M . □
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Lemma 2.2. If α > 1 and 1 ≤ k ≤ n− 1, then, for sufficiently large n,

(n− 1) exp(−nα) ≤ exp(−kα − (n− k)α). (2.2)

Proof. The inequality (2.2) is equivalent to ln(n− 1) ≤ nα − kα − (n− k)α. Put
f(k) = kα + (n− k)α for k = 1, . . . , n− 1.
Note that f is a concave function and takes its maximum in 1 or n− 1.

Therefore,
nα − kα − (n− k)α ≥ nα − (n− 1)α − 1. (2.3)

On the other hand, there exists t ∈ [n− 1, n] such that

nα − (n− 1)α = αtα−1.

Hence
nα − (n− 1)α ≥ α(n− 1)α−1. (2.4)

Since

lim
n→∞

α(n− 1)α−1

ln(n− 1) + 1
= lim

n→∞
α(α− 1)(n− 1)α−1 = ∞

we have
α(n− 1)α−1 ≥ ln(n− 1) + 1 (2.5)

for all sufficiently large n.
It follows from equations (2.3), (2.4), and (2.5) that

ln(n− 1) ≤ nα − (n− 1)α − 1 ≤ nα − kα − (n− k)α.

□
Theorem 2.3. The following properties hold for weighted spaces ℓ2τ (Z) and L2

ω−(Γ).

(i) Let u, v ∈ ℓ2τ−(Z) and α > 1. Then u ∗ v ∈ ℓ2τ−(Z); that is, ℓ2τ−(Z) is stable
under convolution.

(ii) If α > 0, then L2
ω−(Γ)⊕H∞ ⊆ L∞(Γ).

Proof. (i) Suppose that u, v ∈ L2
τ−(Γ); then we have

∑
n<−1

|(u ∗ v)n|2τ 2(n) =
∑
n<−1

τ 2(n)

|n|−1∑
p=1

u−pvn+p

2

.

Let max {u−pvn+p : 1 ≤ p ≤ |n| − 1} = u−kvn+k. Using Lemma 2.2 it is easy to
see that∑

n<−1

τ 2(n)

|n|−1∑
p=1

u−pvn+p

2

≤
∑
n<−1

τ 2(n) (u−kvn+k(|n| − 1))2

≤

(∑
n<−1

τ 2(−k)|u−k|2τ 2(n+ k)|vn+k|2
)

+ C

≤ C ′∥u∥2τ∥v∥2τ .
Hence (i) is proved.
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(ii) If f ∈ L2
ω−(Γ) and z ∈ Γ, then f(z) =

∑
n<0 f̂(n)z

n.

Therefore

|f(z)| ≤
∑
n<0

|f̂(n)| =
∑
n<0

|f̂(n)|ω(n)
ω(n)

≤

(∑
n<0

|f̂(n)|2ω2(n)

) 1
2
(∑

n<0

1

ω2(n)

) 1
2

= ∥f∥2ω
∑
n>0

1

expnα
< ∞.

□
In what follows, we state a new theorem which is very useful for solving the

hyperinvariant subspace problem in some cases.

Theorem 2.4. Let S be the shift operator on either ℓ2τ (Z) or ℓ2ω(Z). Then the
following statements hold.

(i) If α > 1, then S is unbounded on ℓ2τ (Z).

(ii) If 0 < α ≤ 1, then S is bounded on ℓ2τ (Z) and ∥Sn∥τ = τ(−n) for every
n ∈ Z+.

(iii) r(S) =

{
1, α < 1,

e, α = 1,
on ℓ2τ (Z), and

∑
n<0

log ∥(S−1)n∥τ
1+n2 =

∑
n>0

nα

1+n2 .

(iv) r(S) = 1 on ℓ2ω(Z), and
∑
n>0

log ∥Sn∥ω
1+n2 = 0.

Proof. (i) Assume that α > 1 for n ∈ N. Put U (n) = (exp(|n|α)δp,−n)p∈Z.

It is obvious that U (n) ∈ ℓ2τ (Z) with

∥U (n)∥τ = 1 and ∥SU (n)∥2τ = ∥ (exp(|n|α)δp,−n+1)p∈Z ∥
2
τ .

So
∥SU (n)∥2τ = exp 2(|n|α − |n− 1|α).

On the other hand, for each n ∈ N, there exists t ∈ [n − 1, n] such that
|n|α − |n− 1|α = α|t|α−1; thus |n|α − |n− 1|α → ∞ as n → ∞.
Therefore, in the case α > 1, we have ∥S∥τ = ∞.

(ii) For each k ∈ N and u ∈ ℓ2τ (Z) we have Sku = (un−k)n∈Z.
Therefore

∥Sku∥2τ =
∑
n∈Z

|un−k|2τ 2(n) (2.6)

=
∑
n<0

|un−k|2 exp (−2|n− k|α + 2(|n− k|α − |n|α)) +
∑
n≥0

|un−k|2.
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Consider that α ≤ 1, therefore (n+ k)α − nα is decreasing on (0,∞).
So this is obvious that

(n+ k)α − (n)α ≤ kα. (2.7)

Hence, by utilizing (2.6) and (2.7), we have

∥Sku∥2τ ≤ exp (2kα)

(∑
n<0

|un−k|2 exp (−2|n− k|α)

)
+
∑

0≤n<k

|un−k|2 +
∑
i≥0

|ui|2

≤ exp (2kα)

(∑
i<−k

|ui|2 exp (−2|i|α) +
∑

−k≤i<0

|ui|2 exp (−2|i|α)

)
+
∑
i≥0

|ui|2

≤ exp (2kα)∥u∥τ .
Therefore, for each k ∈ N, we have

∥Sk∥τ ≤ exp(kα). (2.8)

Moreover, if u = (exp(|k|α)δp,−k)p∈Z, then ∥u∥τ = 1 and ∥Sku∥τ = exp(kα).

So by (2.8) we proved (ii).
(iii) It is obvious from (ii) that, for every k ∈ N, we have

∥Sk∥τ = exp kα, and so r(S) =

{
1, α < 1,

e, α = 1.

In addition ∑
n<0

log ∥(S−1)n∥τ
1 + n2

=
∑
n>0

log ∥Sn∥τ
1 + n2

=
∑
n>0

nα

1 + n2
.

(iv) Let S be the shift operator on ℓ2ω(Z).

If u ∈ ℓ2ω(Z) and u = (un)n∈Z, then S(u) = (un−1)n∈Z. So

∥Su∥2ω =
∑
n∈Z

|un|2ω2(n+ 1) =
∑
n∈Z

|un|2ω2(n)

(
ω(n+ 1)

ω(n)

)2

.

Since ω(n) is nonincreasing, we get ω(n+1)
ω(n)

≤ 1, which implies ∥S∥ω ≤ 1.

On the other hand, ∥Sn(δp,1)p∈Z∥ω = 1 for every n ∈ Z+. Hence it is obvious that
∥Sn∥ω = 1.

It is then easily verified that∑
n>0

log ∥Sn∥ω
1 + n2

= 0 and r(S) = 1 on L2
ω(Γ).

This completes the proof. □
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Remark 1. By the similar argument as in Theorem 2.4, if α ≤ 1, then∑
n>0

log ∥(S−1)n∥ω
1 + n2

=
∑
n>0

nα

1 + n2
.

In addition, we have ∥(S−1)k∥ω = 1 for every k ∈ Z−.
Thus when S is the shift operator on ℓ2τ (Z), Theorem 1.5 implies that

σ(S) =

{
Γ, α < 1,

annulus 1 ≤ |z| ≤ e, α = 1,

and if consider S as the shift operator on ℓ2ω(Z), then

σ(S) =

{
Γ, α < 1,

annulus e−1 ≤ |z| ≤ 1, α = 1,

By Theorems 1.5, 1.6, and 2.4 and Remark 1, we get immediately the following
theorem.

Theorem 2.5. If 0 ≤ α < 1, then the hyperinvariant subspace problem for the
shift operator on ℓ2β(Z) has positive answer.

Now we are in the situation that we can assert the following theorems.

Theorem 2.6. Let 0 < α < 1, and let F be a left invariant subspace of the shift
operator in L2

ω(Γ). If F ∩ L2
ω+(Γ) ̸= 0, then F has division property.

Proof. It is obvious, by using [6, Proposition 3.2]. □
Theorem 2.7. Let F be a left invariant subspace of the shift operator in L2

ω(Γ),
and let 1/2 < α < 1. If L2

ω+(Γ) ∩ F ̸= {0}, then L2
ω(Γ) = F + L2

ω+(Γ). If F is
also bi-invariant, then F = E(U) for some singular inner functions.

Proof. It follows from Theorems 1.2, 1.4, and 2.6. □
Since L2

ω(Γ) ⊆ L2(Γ), every invariant subspace of the shift operator in L2
ω(Γ) is

again an invariant subspace for S in L2(Γ). When
∑

n<0
log β(n)

n2 < ∞, with using
the discrete version of the Beurling–Malliavin theorem [1] and Wermer [9], if M
is a nontrivial hyperinvariant subspace of L2(Γ) for S, then M ∩ L2

β(Γ) ̸= {0}.
This leads to a presentation of a family of bi-invariant subspaces for the weighted
shift operator.

When
∑ log β(n)

n2 = ∞, the existence and the structure of hyperinvariant sub-
spaces for the shift operator are open problems. For more details about this
condition see [4] and [5]. In this case, Esterle and Volberg [5] proved the follow-
ing theorem.

Theorem 2.8. Let β ∈ S be a weight satisfying the following conditions.

(i)
∑

n<0
log β(n)

n2 = ∞;

(ii)
(

log β(−n)
n

(log n)a
)
n≥0

is eventually increasing for some a > 0;
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(iii) (β(−n)/nα)n≥0 is eventually log-concave for some α > 3/2;

(iv) lim supn→∞
log β̄+(n)
log β(n)

< 1/200.

Then, for every u ∈ L2
β(Γ), there exist v ∈ L2

β+(Γ) and k ≥ 0 such that∨
n≤0

Snu =
∨

n≤−k

Snv,

and, for every nontrivial left-invariant subspace M of ℓβ, there exist k ≥ 0 and a
closed subspace N of Hβ+ having the division property such that M =

∨
n≤−k S

nN.
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