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ON NEUGEBAUER’S COVERING THEOREM
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Abstract. We present a new proof of a covering theorem of C. J. Neugebauer,
stated in a slightly more general form than the original version; we also give
an application to restricted weak type (1,1) inequalities for the uncentered 
maximal operator.

1. Introduction

Covering Theorems are often crucial in order to obtain boundedness results 
for maximal operators. The classical Vitali covering lemma can be extended far
beyond the setting of euclidean space Rd, provided the underlying measure is 
doubling. In recent years a growing interest has developed around measures for 
which the doubling condition may fail, motivated, among other reasons, by the 
study of the boundedness properties of the Cauchy transform on Lipschitz curves, 
and resulting in the development of a Calderón–Zygmund theory for measures 
that satisfy certain polynomial growth conditions, more precisely, measures µ for 
which there exist constants c, s with µ(B(x, r)) ≤ crs for every point x and every 
radius r (see, for instance, [4], and the references therein).

By a cube we mean an ℓ∞ ball; that is, a cube with sides parallel to the 
coordinate axes. For measures defined by densities with respect to Lebesgue 
measure, Neugebauer proved in [3, Theorem 1] the following covering theorem
(here λd stands for Lebesgue measure in Rd).
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Theorem 1.1. Let 0 ≤ f ∈ L1(λd), and let µ be the absolutely continuous finite
measure with density f . Fix ε > 0. Then there exists a constant C = C(f, ε) > 0
such that for every collection of closed cubes {Qα : α ∈ Λ} with µ(∪{Qα : α ∈
Λ}) ≥ ε, there is a finite disjoint subcollection {Qn : 1 ≤ n ≤ N} with

µ(∪{Qα : α ∈ Λ}) < Cµ(∪{Qn : 1 ≤ n ≤ N}).

The proof in [3] is by contradiction, and utilizes the Vitali covering lemma. Of
course, the same argument works if one uses other norm balls instead of cubes.
Also, the result remains valid if one considers open instead of closed balls.

Here we present a more direct proof, which clarifies how the constant C depends
on the density f and on ε. Additionally, the result is stated in a slightly more
general form, for almost uniformly distributed measures in geometrically doubling
metric measure spaces. This allows one to state the applications from [3] in a
more general form also, but we will avoid the repetition. As a new application,
we will present a weak form of the restricted weak type (1,1) inequality for the
uncentered maximal operator, where the constant depends on the norm of the
function, but not on the function itself. This implies that if the restricted weak
type (1,1) property fails, the only way to prove it is by working with a sequence
of sets whose measures decrease to zero.

2. Definitions and notation

We will use B(x, r) := {y ∈ X : d(x, y) < r} to denote open balls, and
Bcl(x, r) := {y ∈ X : d(x, y) ≤ r} to refer to metrically closed balls. It is always
assumed that measures are not identically 0.

Definition 2.1. Let (X, d, µ) be a metric measure space, and let g be a locally
integrable function on X. For each fixed r > 0 and each x ∈ X such that
0 < µ(B(x, r)), the averaging operator Ar,µ is defined as

Ar,µg(x) :=
1

µ(B(x, r))

∫
B(x,r)

gdµ. (2.1)

In addition, the centered Hardy–Littlewood maximal operator Mµ is given by

Mµg(x) := sup
{r>0:µB(x,r)>0}

Ar,µ|g|(x), (2.2)

while the uncentered Hardy–Littlewood maximal operator Mu
µ is defined via

Mu
µg(x) := sup

{r>0,y∈X: d(x,y)<r and µB(y,r)>0}
Ar,µ|g|(y). (2.3)

Averaging operators are defined on the support of the measure, while maximal
operators are defined everywhere.

Definition 2.2. A Borel measure µ on (X, d) is doubling if there exists a C > 0
such that, for all r > 0 and all x ∈ X, µ(B(x, 2r)) ≤ Cµ(B(x, r)) < ∞.

Definition 2.3. A locally finite Borel measure µ on (X, d) is uniformly distributed
if balls with the same radius have the same measure. The Borel measure µ is
almost uniformly distributed, if there exist a function h : (0,∞) → (0,∞) and a



684 J.M. ALDAZ

constant c ∈ (0, 1) such that c h(r) ≤ µB(x, r) ≤ h(r) for all x ∈ X and r > 0.
In this case we say that µ is c− h almost uniformly distributed.

Remark 2.4. Note that if such c and h exist, then there is the smallest, nonde-
creasing hs, which also satisfies c hs(r) ≤ µB(x, r) ≤ hs(r), for all x ∈ X and
r > 0, namely, hs(r) := supx∈X µB(x, r). We always work with h = hs.

Definition 2.5. A metric space is geometrically doubling if there exists a positive
integer D such that every ball of radius r can be covered with no more than D
balls of radius r/2. We call the smallest such D the doubling constant of the
space.

Given a locally finite Borel measure on a geometrically doubling metric space,
the averaging operators are defined almost everywhere, by separability.

Definition 2.6. A metric space has the approximate midpoint property if for
every ε > 0 and every pair of points x, y, there exists a point z such that
d(x, z), d(z, y) < ε+ d(x, y)/2.

Definition 2.7. A non-negative sublinear operator T having L1(µ) as its domain
and the extended real valued measurable functions as its codomain, is of restricted
weak type (1,1) if there exists a constant C > 0 such that for all t > 0 and all
measurable sets E, we have tµ{T1E > t} ≤ Cµ(E).

3. Covering Theorem of Neugebauer

The original proof from [3] considers a sequence of sets with increasingly worse
associated constants, and takes the limsup of these sets to derive a contradiction.
Here we use the Lebesgue differentiation theorem to give a more direct proof,
along the standard argument for doubling measures. The selection process is as
follows: If there are large balls, pick one (this may be optimal), otherwise, the
collection must contain many small disjoint balls; since the “area” covered is large
(greater than ε), so we can select a “large” disjoint collection.

Since we will use open balls and geometrically doubling metric spaces are sep-
arable, we can always assume that our collection of covering balls is countable to
begin with.

Lemma 3.1. Let µ be a Borel measure on the geometrically doubling metric space
(X, d) with doubling constant D. If µ is c− h almost uniformly distributed, then
µ is doubling with constant D/c.

Proof. Fix B(x, r). Cover B(x, 2r) with at most D balls of radius r. If follows
that µB(x, 2r) ≤ Dh(r). On the other hand, µB(x, r) ≥ c h(r) > 0; so

µB(x, 2r)

µB(x, r)
≤ Dh(r)

c h(r)
.

□
Recall that the Lebesgue differentiation theorem holds for arbitrary doubling

measures in metric spaces. This result is obtained using the same arguments as in
the case of Lebesgue measure in Rd, either by the Vitali Covering Lemma (see, for
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instance, [2, Theorem 1.6]) or by the weak type (1,1) of the uncentered Hardy–
Littlewood maximal function. So from the preceding lemma, we conclude that the
Lebesgue differentiation theorem always holds for almost uniformly distributed
measures on geometrically doubling metric spaces.

Remark 3.2. The converse of the preceding lemma is not true. Consider Rd with
the radial measure dµ(y) = dy

∥y∥α2
, where 0 < α < d is a fixed constant and ∥ · ∥2

denotes the euclidean norm. It is well known that µ is doubling, but obviously
limx→∞ µB(x, r) = 0. On the other hand, uniform distribution by itself does not
entail doubling, as the example of area on the hyperbolic plane shows.

Example 3.3. The following example helps to motivate the selection process in
the next theorem, the point being that sometimes one cannot do better than just
pick one ball. Let E ⊂ R2 be the open rectangle (0, 1) × (0, 1/n), n >> 1, and
let f := 1E, and cover E with the ℓ1 balls B(x, 1) := {y ∈ R2 : ∥x − y∥1 < 1}
centered at the points x ∈ (0, 1)× {1} (recall that if x = (x1, 1) and y = (y1, y2),
then ∥x−y∥1 = |x1−y1|+ |1−y2|). Taking µ to be the planar Lebesgue measure
and dν := 1Edµ, we have that disjoint collections contain one ball, and the area
of E covered is at most 1/n2; so for 0 < ε < 1/n, C(ε, f) ≥ n.

We shall use the same notation for countably infinite and for finite sequences, by
choosing 1 ≤ N ≤ ∞ and considering collections of open balls C := {B(xn, rn) :
1 ≤ n < N}.

Recall that by the Lebesgue theorem on differentiation of integrals, for metric
spaces endowed with a doubling measure, if f ∈ L1

loc(µ), then, for almost every
x ∈ X,

f(x) = lim
x∈B(z,r)

r→0

1

µB(z, r)

∫
B(z,r)

fdµ.

The set of points x for which the limit exists and equals f(x) is called the Lebesgue
points of f .

Theorem 3.4. Let µ be a c − h almost uniformly distributed Borel measure on
the geometrically doubling metric space (X, d), with doubling constant D. Let X
have the approximate midpoint property, and let 0 ≤ f ∈ L1

loc(µ), and let ν be
defined by dν := fdµ. Fix ε > 0, and suppose that t > 0 is such that the level
set {f > t} has finite ν measure. Then there exists a constant C = C(f, t, ε) > 0
such that for every sequence of open balls {B(xn, rn) : 1 ≤ n < N} with ν({f >
t} ∩ (∪{B(xn, rn) : 1 ≤ n < N})) > ε, there exists a finite disjoint subsequence
{B(xnj

, rnj
) : 1 ≤ j ≤ M} with

ν({f > t} ∩ (∪{B(xn, rn) : 1 ≤ n < N})) < Cν(∪{B(xnj
, rnj

) : 1 ≤ j ≤ M}).
Proof. Assume that the balls in {B(xn, rn) : 1 ≤ n < N} satisfy the conditions of
the theorem. Let Dt be the set of Lebesgue points of f in the level set {f > t}.
Write

Dt,n := {x ∈ Dt : for all r ∈ (0, 1/n], whenever x ∈ B(z, r) we have

f(x)− t/2 <
1

µB(z, r)

∫
B(z,r)

fdµ < f(x) + t/2}.
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Then the sets Dt,n are increasing and Dt = ∪nDt,n; so there exists an R ∈ N with
ν(Dt \Dt,R) < ε/2. Since almost every point of {f > t} is a Lebesgue point, we
have that

ν((∪{B(xn, rn) : 1 ≤ n < N}) ∩Dt,R) > ε/2.

Disregard the balls from {B(xn, rn) : 1 ≤ n < N} that do not intersect Dt,R,
and by relabeling (and perhaps changing N) use again {B(xn, rn) : 1 ≤ n < N}
to denote this “thined out” collection. Now the selection process is as follows:
If there are large balls, pick one; otherwise, the collection must contain many
small disjoint balls, since the “area” covered is large (greater than ε/2); so select
a “large” (with respect to ν) disjoint collection.

More precisely, suppose that, for some index m, we have (4R)−1 < rm. If
we also have rm ≤ R−1, we work with B(xm, rm). Otherwise, pick any x ∈
B(xm, rm)∩Dt,R, and note that by the approximate midpoint property, given any
ball B(u, s) and any v ∈ B(u, s), there exists a w ∈ X such that d(u,w), d(v, w) <
s/2; so v ∈ B(w, s/2) ⊂ B(u, s). Using this property a finite number of times,
by successively halving rm we obtain a z ∈ X and an r ∈ (1/(2R), 1/R] with
x ∈ B(z, r) ⊂ B(xm, rm).

Letting B be either B(xm, rm) or B(z, r), depending on whether or not rm ≤
1/R, and using the fact that µ is c−h almost uniformly distributed (with h(r) :=
supx∈X µB(x, r)), we have

t

2
< f(x)− t

2
<

1

µB

∫
B

fdµ ≤ νB

c h(1/(4R))
≤ νB(xm, rm)

c h(1/(4R))
;

so
t c h(1/(4R))

2
< νB(xm, rm).

Recall that R depends on ε. Taking

C1 = C1(f, t, ε) :=
2ν{f > t}

c h(1/(4R))t
,

we have

ν({f > t} ∩ (∪{B(xn, rn) : 1 ≤ n < N})) ≤ ν{f > t} < C1νB(xm, rm).

Next, suppose that for every n, rn ≤ (4R)−1. Select T ∈ N; so that

ν((∪T
n=1B(xn, rn)) ∩Dt,R) > ν((∪{B(xn, rn) : 1 ≤ n < N}) ∩Dt,R)− ε/4 > ε/4,

and, by relabeling if needed, assume that the finite set {B(x1, r1), . . . , B(xT , rT )}
is ordered by decreasing radius; so large balls appear first. Now we utilize the
classical Vitali selection process.
Let B(xn1 , rn1) = B(x1, r1), and once B(xn1 , rn1), . . . , B(xnk

, rnk
) have been cho-

sen, let B(xnk+1
, rnk+1

) be the first B(xm, rm) in the list {B(x1, r1), . . . , B(xT , rT )}
that does not intersect any of the balls B(xn1 , rn1), . . . , B(xnk

, rnk
). The process

terminates, say, with M , after no disjoint balls from the B(xm, rm)’s are left. To
estimate how much mass we have lost, pick x0 ∈ B(xn1 , rn1) ∩ Dt,R. Then the
union of all B(xm, rm)’s that intersect B(x1, r1) is contained in B(x1, 3r1). Also

µB(x1, 3r1)(f(x0)− t/2) <

∫
B(x1,3r1)

fdµ < µB(x1, 3r1)(f(x0) + t/2),
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and

µB(x1, r1)(f(x0)− t/2) <

∫
B(x1,r1)

fdµ < µB(x1, r1)(f(x0) + t/2).

By Lemma 3.1, µ is doubling with constant D/c; so dividing and using f(x0) > t,
we get

νB(x1, 3r1)

νB(x1, r1)
<

f(x0) + t/2

f(x0)− t/2

(
D

c

)2

< 3

(
D

c

)2

.

Now repeat the argument with the remaining B(xnk
, rnk

)’s to conclude that

ν ∪T
n=1 B(xn, rn) < 3

(
D

c

)2

ν ∪M
k=1 B(xnk

, rnk
).

It follows that

ν({f > t} ∩ (∪{B(xn, rn) : 1 ≤ n < N})) < 3ε/4 + ν((∪T
n=1B(xn, rn)) ∩Dt,R)

< 4ν((∪T
n=1B(xn, rn)) ∩Dt,R) < 12

(
D

c

)2

ν ∪M
k=1 B(xnk

, rnk
).

Finally, setting C = max{C1, 12 (D/c)2} we obtain the result. □
Neugebauer’s covering theorem is now an immediate corollary of Theorem 3.4.

Corollary 3.5. Let 0 ≤ f ∈ L1(µ), where the Borel measure µ is almost uni-
formly distributed on the geometrically doubling metric space X with the approxi-
mate midpoint property, and let ν be the absolutely continuous finite measure with
density f . Fix ε > 0. Then there exists a constant C = C(f, ε) > 0 such that,
for every collection of open balls {B(xα, rα) : α ∈ Λ} with ν(∪{B(xα, rα) : α ∈
Λ}) > ε, there exists a finite disjoint subsequence {B(xnj

, rnj
) : 1 ≤ j ≤ M} with

ν(∪{B(xα, rα) : α ∈ Λ}) < Cν(∪{B(xnj
, rnj

) : 1 ≤ j ≤ M}).

Proof. First, it follows from the separability of geometrically doubling metric
spaces that {B(xα, rα) : α ∈ Λ} can be replaced by a countable collection
{B(xn, rn) : 1 ≤ n < N} (where N ≤ ∞) with the same union. Select δ > 0 such
that ε < ν(∪{B(xn, rn) : 1 ≤ n < N})− δ. Since f ∈ L1(µ), all the level sets of
f have finite measure; so we can select a t > 0 with ν(X \ {f > t}) < δ. Now

ε < ν(∪{B(xn, rn) : 1 ≤ n < N})−δ < ν({f > t}∩(∪{B(xn, rn) : 1 ≤ n < N}));
so we can apply the preceding result. □

If µ is complete; that is, if all the sets with outer measure zero are measurable,
then the open balls can be replaced by closed balls, and the proofs of Theorem 3.4
and the preceding corollary still work. This is so because by the Vitali covering
theorem for fine coverings (see, for instance, [1, Theorem 5.5.2]) arbitrary unions
of closed balls are measurable, since they can be reduced to countable unions plus
a set of measure zero.

As an application of Neugebauer’s covering theorem, we present an inequality
for ν that is weaker than the restricted weak type (1,1) inequality. It entails, as
we noted in the introduction, that if the restricted weak type (1,1) inequality fails,
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this can only be shown by considering an infinite collection of sets {En : n ≥ 1}
with limn→∞ νEn = 0.

Corollary 3.6. Let 0 ≤ f ∈ L1(µ), where the Borel measure µ is almost uni-
formly distributed on the geometrically doubling metric space X with the approx-
imate midpoint property, and let ν be the absolutely continuous finite measure
with density f . Then there exists a decreasing function C(ε) : (0,∞) → (0,∞)
such that, for all t > 0 and all measurable sets E with νE ≥ ε, we have
t ν{Mu

ν 1E > t} ≤ C(ε)ν(E).

Proof. If t ≥ 1, then {Mu
ν 1E > t} = ∅; while if 0 < t < 1, then ν{1E > t} = νE.

Now by the Lebesgue differentiation theorem, (which can be applied since ν is
defined by a density with respect to a doubling measure, see below for more
details on this assertion)

Mu
ν 1E(x) ≥ lim sup

r→0

1

νB(x, r)

∫
B(x,r)

1Edν ≥ 1E(x)

ν-a.e.; so ν{Mu
ν 1E > t} ≥ νE whenever t < 1. The result now follows by

a standard argument. Cover {Mu
ν 1E > t} with open balls B(y, s) satisfying

t νB(y, s) <
∫
B(y,s)

1Edν, and apply the preceding corollary to this collection of

balls.
Regarding the well known fact mentioned above, whereby Lebesgue differentia-

tion holds for densities of doubling measures, we want to show that, for g ∈ L1(µ),
we have ν-a.e. x,

g(x) = lim
x∈B(z,r)

r→0

1

νB(z, r)

∫
B(z,r)

g(y)dν(y).

Now since µ is doubling, µ-a.e. x,

f(x) = lim
x∈B(z,r)

r→0

νB(z, r)

µB(z, r)
.

Now, on {f > 0} we have µ-a.e. x,

lim
x∈B(z,r)

r→0

1

νB(z, r)

∫
B(z,r)

g(y)dν(y)

= lim
x∈B(z,r)

r→0

µB(z, r)

νB(z, r)

1

µB(z, r)

∫
B(z,r)

g(y)f(y)dµ(y)

=
1

f(x)
g(x)f(x) = g(x).

□
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